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Abstract—Decentralized cognitive radio networks (CRN) re-
quire efficient channel access protocols to enable cognitive
secondary users (SUs) to access the primary channels in an
opportunistic way without any coordination. In this paper, we
develop a distributed spectrum access protocol for the case where
the SUs aim to maximize the total system throughput while
competing for spectrum resources. To model the competition
amongst SUs, we formulate the spectrum access problem as
a distributed welfare game, in which at each iteration each
SU has to compute its marginal contribution to the system’s
welfare. Moreover, the SUs also need to decide which resource
(channel) they should access at the next iteration. To address these
challenges, we propose a stochastic learning algorithm based
on payoff-based log-linear learning and prove its convergence
towards a Pareto-efficient Nash equilibrium state.

I. INTRODUCTION

In decentralized cognitive radio networks (CRN), a

fundamental while challenging task is the design of

distributed spectrum (channel) access mechanisms enabling

cognitive secondary users (SUs) to access the primary

channels in an efficient way without any coordination.

In this paper, we develop and analyze a spectrum access

control mechanism where each user aims at maximizing the

total system throughput. To this end, it follows a revision

protocol based on payoff-based log-linear learning which

will be shown to be able to orient the network towards a

Pareto-efficient Pure Nash Equilibrium (PNE).

The problem of distributed spectrum access in CRNs has

been widely addressed in the literature. A first set of papers

assumes that the number of SUs is smaller than the number

of channels. In this case, the problem is closely related to

the classical Multi-Armed Bandit (MAB) problem [1]. Some

works have investigated the issue of adapting traditional MAB

approaches to the CRN context, among which Anandkumar

et al. proposed two algorithms with logarithmic regret,

where the number of SUs is known or estimated by each

SU [2]. Complementary, other works assume large population

of SUs and study the system dynamics under asymptotic

assumptions. In [3], the authors propose a distributed learning

procedure for spatial spectrum access which is proven to

S.Iellamo is supported by the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no 612361. M. Coupechoux
is partly supported by the french ANR project NETLEARN ANR-13-INFR-
004.

converge to a Nash Equilibrium (NE) in the asymptotic case.

The analysis relies however on a random backoff mechanism,

which requires the modification of the SUs packet structure

for channel contention. In [4] the authors propose imitation

rules that are used by a large population of SUs to converge

to a Pure NE (PNE). In [4] it is also assumed that the SUs

are able to capture packets transmitted by any other SU in the

network. Differently from this literature, the spectrum access

protocol proposed in this paper is proven to converge to a

Pareto efficient payoff profile regardless of the number of

SUs in the system. Furthermore, it is completely distributed

and does not require any additional packet fields.

Other payoff-based algorithms have been proposed in the

literature. In [5] and [3] for instance, the authors develop

payoff-based mechanisms that are proven to converge to a

PNE of the formulated game. In those cases however, the best

PNE is not Pareto-efficient and, furthermore, no equilibrium

selection is performed.

The unique properties possessed by payoff-based log-linear

learning (PLLL) have been firstly studied by Marden [6], and

then readily applied by a handful of works (see the recent

[7] and references therein). To the best of our knowledge, we

are the first to use PLLL to attain Pareto-efficient PNE in the

context of cognitive radio networks. Our contribution in this

paper is therefore three-fold:

‚ We formulate the spectrum access coordination problem

as a distributed welfare game (Section III)

‚ We propose a distributed learning algorithm based on

PLLL and show its convergence towards a Pareto-efficient

PNE for the considered model (Section IV).

‚ We analyze the effectiveness of our solution by means

of an extensive numerical analysis with real settings

(Section VI).

II. SYSTEM MODEL

In this paper, we consider the downlink of a primary net-

work and a set of SUs which are allowed to opportunistically

access the primary network spectrum (see Fig. 1, where we

illustrate an example of considered primary and secondary

network). The primary spectrum consists of a set C of C

frequency channels, each with bandwidth B. The users in

the primary network operate in a synchronous time-slotted
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Fig. 1. Network model.

fashion. At each PU time slot, channel i is free with probability

µi, where such probabilities are assumed to be i.i.d. with

regard to time slot and considered channel. A set N of N

SUs tries to opportunistically access the channels when they

are left free by the Primary Users (PUs).

Let us define an iteration t as a period of time during

which channel switches by SUs are not allowed. This means,

a SU’s channel selection remains fixed throughout an iteration

t. A schematic representation of the resulting block structure

is shown in Fig. 2.

In our model, each SU j is modeled as an agent aiming

at maximizing the total system throughput. To this end, SUs

implement a generic MAC protocol (such as, e.g., CSMA/CA)

to avoid collisions throughout an iteration t.

At the end of each iteration, each SU has to decide the

strategy for the next iteration, i.e., which channel will be

accessed throughout next iteration t ` 1.

Let sjptq denote SU j’s accessed channel at the iteration

t. We define an allocation s as the set of all strategy profiles

tsjptqu for all j P N . The instantaneous throughput an

SU j can achieve on channel i in terms of packets per

second, denoted as Tji, can be expressed as a function of

µi and tsui, where tsui is the set of contending SUs using

channel i in allocation s. The expected value of Tji, which

has to be intended as the long-term throughput when t is

large, can be written as: ErTjis “ fjipµi, tsuiq. In this

paper, SUs implement a generic random access protocol

to avoid collisions. Thus, fjip.q can take the following

form: fjip.q “ Bµipjptsuiq where pjptsuiq is a decreasing

user-specific function denoting the successful transmission

probability for SU j in allocation tsui (please recall that

the number of SUs operating on a given channel i is fixed

throughout an iteration t). B is a constant standing for the

available bandwidth per channel. Without loss of generality,

we will now assume that B “ 1.

III. GAME FORMULATION

Let us express the total throughput of the system in the form

of separable welfare functions [8]:

W psq “
ÿ

iPC,jPN

fjip.q “
ÿ

iPC

Wiptsuiq (1)

Thus, the welfare Wiptsuiq linked to a given channel i can

be thought as the total (cumulative) secondary throughput

Fig. 2. Representation of the blocks structure utilized by the SUs.

available at i when the set tsui of SUs is operating on it. For

a given MAC random access scheme, such value depends on

the load conditions of the contending stations [9], [10].

In a distributed welfare game, each agent’s utility is defined

as some fraction of the welfare generated by the resource the

agent is using. More formally, the utility of agent j playing

strategy sj P C for a given allocation s :“ psj , s´jq at iteration

t is given by:

Ujptq “ πsj ptsusj , tq (2)

where πsj : N ˆ 2N Ñ R is referred to as the distribution

rule at resource sj . Note that in order to lighten notation we

will some time omit the iteration index if the latter refers to

the current iteration t.

In our case, we adopt the marginal contribution distribution

rule:

πMC
sj

ptsusj q “ Wsj ptsusj q ´ Wsj ptsusj ztjuq (3)

which can be interpreted as a user’s contribution to the total

experienced welfare. In this way, the utility for each player j

on channel i can be approximated as follows:

Uj » Ũj “
ξji ´ cji

nt

(4)

where nt is the number of time slots in one iteration t, ξji
and cji are the total number of j’s correct transmissions and

collisions on channel i respectively. As one can easily infer

from (4) the marginal contribution of a single player to the

total system throughput is positive iff its correct transmissions

outnumber the collisions caused. Note that the value obtained

by means of the formula above is a lower bound of the

real value (i.e., Ũj ď Uj), as collisions with more than

2 terminals involved should not be subtracted (intuitively,

collision would have occurred anyway if one of the 3 or

more stations involved had stepped back from transmitting).

However, the presented formula suits our distributed scenario

(can be obtained through own transmission statistics and

sensing operations while not transmitting); Moreover, the

approximation is accurate if the probability of multiple

collisions is sufficiently low. This holds true for loads not

exceeding too much the random access protocol saturation

point.



We are now in the condition of defining the game G more

formally.

Definition 1 (Channel allocation game G). The channel allo-

cation game G is a 3-tuple (N , C, tUju). The strategy sj P C

is the channel that SU j accesses at the current iteration.

Once each player j has chosen its strategy sj , its player-

specific utility function Uj is defined as

Uj “ πMC
sj

ptsusj q (5)

We know from [8] that G possesses at least one PNE

(distributing the welfare as in (3) results in a potential game

with potential W , meaning that every distributed welfare

game with decreasing marginal contributions is a potential

game). We thus need to come up with a mechanism that

is able to find out the best PNE, i.e., the equilibrium point

where global welfare is maximized. To this end, we use

payoff-based log-linear learning [6], which is proven to

converge towards such desirable equilibrium point.

IV. SOSAP: A SPECTRUM ACCESS PROTOCOL BASED ON

PAYOFF-BASED LOG-LINEAR LEARNING

We now provide details of the designed spectrum access

scheme, termed as SOSAP (Socially Optimal Spectrum

Access Protocol).

SOSAP (shown in Algorithm 1) is based on Payoff-based

Log-Linear Learning (PLLL), which has been proposed by

Marden in [6] and can be seen as the distributed version of

the more famous Logit-response rule ([11], [12]). It works as

follows:

‚ Throughout an iteration t, no channel switches are al-

lowed and each SU j accesses the chosen channel i

according to the random access protocol associated to

i.

‚ At the end of each iteration t, j calculates its own utility

Ujptq, which in our case is the marginal contribution

to the total offered system throughput. In SOSAP, j

calculates its approximate utility Ũj according to (4).

‚ The strategy for the next iteration t ` 1 is chosen

according to the payoff-based log-linear rule with prob-

ability 1 ´ ǫptq and uniformly randomly (this event is

referred to as a mutation or tremble in the literature of

evolutionary models with noise) with probability ǫptq,

where ǫptq “
`

e´1{τptq
˘m

, τptq ą 0 is the algorithm

temperature and m a large enough constant.

V. CONVERGENCE ANALYSIS

For the sake of a self-contained presentation, let us firstly

provide a few definitions and a couple of propositions before

stating the main theorem.

Definition 2 (Pure Nash Equilibrium). A Pure Nash Equi-

librium (PNE) is a point s
˚ in the action profiles space,

from which no user has incentive to deviate unilaterally. The

strategy profiles at a PNE can be defined as follows:

s
˚

fi argmax
sjĎC

Ujpsj , s
˚
´jq, @j P N . (6)

Algorithm 1 SOCIALLY OPTIMAL SPECTRUM ACCESS PRO-

TOCOL (SOSAP)

1: Initialization: Set the temperature function τptq, the pa-

rameter m and the horizon tmax.

2: while at the end of each iteration t ě 1 and for each SU

j do

3: Calculate the utility Ũjptq according to (4)

4: if j did perform mutation at iteration t ´ 1 then

5: j migrates to channel sjpt ´ 1q w.p.
exp p 1

τ
Ũjpt´1qq

exp p 1

τ
Ũjpt´1qq`exp p 1

τ
Ũjptqq

6: else

7: if j did not perform mutation at iteration t´1 then

8: W.p. ǫptq “
`

e´1{τptq
˘m

perform a mutation

at the next iteration, i.e., migrate to a channel chosen

uniformly at random.

9: end if

10: end if

11: end while

where s´j “ ts1, .., sj´1, sj`1, ..., sCu is the collection of

channels chosen by all users except user j.

Definition 3 (Pareto-efficient allocation). In a distributed

welfare game, a Pareto-efficient allocation s
o is a point in

the action profile space where the system global welfare is

maximized. That is, so P argmax
s
W psq.

Definition 4 (Price of Stability and Price of Anarchy). For a

generic game G, let E denote the set of equilibria and let PoS

and PoA denote the Price of Stability and Price of Anarchy

respectively.

PoS(G) is then the ratio between the best objective function

value of one of its equilibria and that of an optimal outcome

for the considered game G.

PoSpGq :“ max
s

˚PEpGq

W ps˚q

W psoq

Similarly, PoA(G) is defined as the ratio between the worst

objective function value of one of its equilibria and that of an

optimal outcome for the considered game G.

PoApGq :“ min
s

˚PEpGq

W ps˚q

W psoq

Proposition 1 ([6], [8]). In a distributed welfare game where

the players’ utility functions are user-specific and decreasing

in the number of contending stations, there always exists at

least one Pure Nash Equilibrium and payoff-based log-linear

learning converges to the best PNE of the game.

Proposition 2 ([8]). The Price of Stability (PoS) and Price of

Anarchy (PoA) af a distributed welfare game characterized by

players’ utility function in the form of marginal contributions

are equal to 1 and 1{2 respectively.

In other words, the best PNE is on the Pareto frontier and

is therefore Pareto-efficient. The worst PNE is worth half of

the best one.



We can write the following important result:

Theorem 1. For the distributed welfare game G, if 1) the

players’ marginal contributions are inversely proportional to

the congestion level, 2) all SUs adopt at each iteration t

Payoff-based Log-Linear Learning as revision scheme, and

3) ǫptq “
`

e´1{τptq
˘m

with m sufficiently large, then the

system dynamics converge a.s. to a Pareto-efficient Pure Nash

equilibrium s
f as the temperature τptq vanishes.

Proof. It follows from Proposition 1, Proposition 2 and The-

orem 6.1 in [6].

Remark: PLLL was recently proven to converge when

players’ utility estimations are noise corrupted [13] and, more

recently, to be efficient even over stochastic communication

links [14]. As a main constraint, the distribution of the

estimation error should be 0-mean, meaning that the agents

are supposed to be equipped with an unbiased estimator of

the true utility. In our case, the estimation error depends

on approximation (4) and iteration duration. Therefore, the

estimator is normally biased. However, if the number of SUs

is sufficiently small wrt to the number of channels and the

iteration duration is sufficiently large, such error is intuitively

very small and can be arguably neglected. We will show by

simulation (in Section VI) that this is indeed the case for the

considered scenario.

VI. SIMULATION ANALYSIS

For the simulation we consider a cognitive radio network,

made of 10 SUs and 3 channels characterized by availabilities

µ “ r0.1 0.7 0.8s. We consider a complete interference graph

and saturation SU operation conditions. We let the SUs access

the chosen channel by means of CSMA/CA with RTS/CTS.

Protocol and CR parameters are taken according to [15] and

[16] respectively (for space reason we do not report them).

We assume perfect sensing at the SUs, i.e., any transmission

of any PU on a channel is perfectly sensed by SUs sensing

that channel and thus no collision occurs between PUs and

SUs. The duration of one PU time slot is fixed. A small

initial part of it, of fixed length as well, is used by the SUs

for sensing the presence of the PU. If a packet is partially

transmitted at the end of the PU time slot, the transmission

is reactivated, without loss of information, at the first PU-slot

which is sensed non-occupied by the PU. Each channel

offered secondary throughput (i.e., without considering the

PU activity) as a function of the number of contending SUs is

depicted in Fig 3. We assume that iterations are long enough

so that the throughput obtained by the contending stations

equalize at the end of an iteration in all channels.

At the end of each iteration, the SUs calculate their utility

according to Eq. (4) and revise their strategy according to

SOSAP (Algorithm 1). For performance comparison, we

choose RSAP (which stands for Retrospective Spectrum

Access Protocol), the payoff-based algorithm proposed in

[5], where the SUs utility function is associated to their

expected throughput and the equilibria are characterized by
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Fig. 3. Saturation throughput as a function of the number of the contending
stations operating on the same channel. All channels deliver the largest amount
of throughput when there are nj “ 4 contending SUs on them; the throughput
starts to decrease afterwards.

high fairness.

Fig. 4 and Fig. 5 display respectively one realization

and an average over 200 independent realizations of the

secondary cumulative throughput as a function of the

iteration t. In Fig. 4 we clearly see that as the algorithm

temperature decreases SOSAP converges towards the

basin of attraction of the Pareto-efficient allocation. The

latter is characterized by 4 SUs on channel 2, 4 SUs on

channel 3 and 2 SUs on channel 1. The cumulative SU

throughput at the Pareto-efficient PNE can be calculated as

106 ¨ r0.8 ¨ 24.1` 0.7 ¨ 24.1` 0.1 ¨ 23.6s “ 38.51 Mb{s, where

0.8, 0.7 and 0.1 are the channel availabilities in channel 3, 2

and 1 respectively and the cumulative SU throughput values

are drawn from Fig. 3.

In Fig. 5 we compare the average behavior of SOSAP

and RSAP. We use the same temperature functions for

both algorithms. The figure shows that SOSAP clearly

outperforms RSAP in terms of cumulative SU throughput:

For the considered network, SOSAP cumulative secondary

throughput is in average 7% higher than that achieved by

RSAP. Furthermore, SOSAP always converges to a Pareto-

optimal solution, while RSAP cumulative SU throughput even

shows a decreasing trend in the displayed iteration window.

Fig. 6 shows the performance achieved by SOSAP and

RSAP in terms of Jain’s fairness index, which reaches the

maximum of 1 when the resource (the throughput in our case)

is equally shared amongst users [17]. Looking at the figure,

we see that RSAP is clearly more fair than SOSAP. This

means, at the NE the SUs will achieve approximately the same

throughput with RSAP, while this is not the case with SOSAP.

This is because RSAP equilibria are budget-balanced (i.e., they

feature a high fairness) but not Pareto-efficient (for the game

formulated in [5] PoA=PoS=1/2).

VII. DISCUSSION

From the previous sections, it seems that SOSAP and RSAP

go after different objectives; social optimality and fairness

respectively. Thus, one might wonder: Is it possible to design

a distributed learning algorithm achieving both social and
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fairness optimality? Although we don’t have a direct answer

to this question, we argue that social optimality might be a

more reasonable objective to pursue in some particular cases:

‚ The system is fair by nature: think for example of a

scenario where a network of identical secondary users

has to coordinate to access a set of identical ISM bands

(i.e., without PUs) by means of the same spectrum access

protocol (e.g., CSMA/CA). In this case, SOSAP will be

able to achieve both high fairness and social optimality.

‚ The system is made of heterogeneous SUs (with different

load conditions). In other words, the throughput obtained

by each SU depends on the identity of the SUs on the

same channel. In this particular case a PNE is not guar-

anteed to exist for the game formulated in [5] (insights

on PNE existence in congestion games can be found in

[18] and [19]).

‚ The system includes battery-powered devices (e.g., IoT

nodes): as one can infer from Eq. (4), SOSAP minimizes

the number of collisions and thereby is preferable from

an energy consumption perspective.

VIII. CONCLUSION

In this paper we have studied the problem of distributed

spectrum access in cognitive radio network, by focusing on

system throughput maximization. We have developed a dis-

tributed spectrum access revision scheme based on payoff-

based log-linear learning and have shown its convergence

towards the best Nash Equilibrium of the designed game,

which is also Pareto-efficient. We have shown how this comes

at the cost of a lower fairness among the SUs when compared

to the case where the SUs associate their expected throughput

to their utilities. Extensions involving multi-antenna users as

well as channel bonding/aggregation are interesting research

subjects which are left for future work.
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