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Abstract—In this paper, we investigate the secrecy performance
of the multiple-input multiple-output (MIMO) wiretap channels
in the presence of an active full-duplex eavesdropper with
consideration of channel estimation error at the legitimate desti-
nation and eavesdropper. For this purpose, the probability den-
sity functions (PDFs) and cumulative density functions (CDFs)
of the receive signal-to-interference-plus-noise ratio (SINR) at
the destination and eavesdropper are given by conducting the
singular value decomposition (SVD) on the estimated channel
coefficient matrices. Consequently, the closed-form expressions
for the probability of positive secrecy capacity and secrecy outage
probability over Rayleigh fading channels are derived. Finally,
the Monte-Carlo simulation results are presented to validate the
accuracy of our theoretical analysis.

Index Terms—Physical layer security, channel estimation error,
the MIMO full-duplex active eavesdropper.

I. INTRODUCTION

Due to the broadcast nature of wireless channels, security is-
sues are increasingly becoming one of the top critical concerns
of wireless network. Currently, the traditional cryptography
technique widely used in the upper-layer of wireless networks
faces big challenges because of the high computational com-
plexity of the communication devices. Fortunately, unlike the
traditional methods, a complement or alternative appealing
approach termed as physical layer security was emerged
to achieve secure wireless transmission, which is based on
Shannon theory [1] using the physical characteristics (i.e.
noise, fading, interference) of wireless channels. The main
philosophy of physical layer security is to achieve perfect
secrecy capacity from the information-theoretic perspective,
which is defined as the maximization of wireless transmission
rate while achieving perfect secure transmission [2]. In other
words, it can be further explained as that eavesdroppers can
not do better than the legitimate destinations [3]. Against
this background, some promising techniques, such as multiple
antennas, cooperative jamming/relay [2]–[6], are exploited to
degrade the capability of either active attacker or passive
eavesdroppers so as to ease the information leakage.

Multiple antenna technique, as an effective approach, is
widely used toward improving the secrecy rate. The literature
using MIMO technique in the filed of physical layer secu-
rity demonstrated its capability of boosting secrecy perfor-
mance [4], [7]–[11]. In particular, the secrecy performance

of single-input multiple-output (SIMO) [10], multiple-input
single-output (MISO) [12] and multiple-input multiple-output
(MIMO) [8] were widely studied from the information-
theoretic viewpoint. Shafiee. et. al investigated the existence
of a computable expression for the secrecy capacity of a
2-2-1 MIMO wiretap channel [7]. Yan. et. al investigated
the classical three-player MIMO wiretap scenario that Alice
firstly selects two strongest transmitter antennas from its
multiple antenna set based on the channel gain for the sake
of maximizing the instantaneous signal-to-noise ratio (SNR)
and then performs Alamouti coding over the selected anten-
nas, afterwards, the closed-form expression of secrecy outage
probability for the proposed scheme was derived [4]. In [9], an
optimal jamming policy for a full-duplex active eavesdropper
to minimize the secrecy rate of the Alice-Bob-Eve MIMO
wiretap channel was examined. The authors of [10] analyzed
the secrecy performance of a SIMO wiretap channel with
channel estimation errors available at the legitimate receiver
and eavesdropper, its conclusion suggests that there exists error
floor of secrecy outage probability caused by the imperfect
channel estimation.

Motivated by these studies, it is so far that there is no
previous work that studied the secrecy performance of a 2-
2-2 MIMO wiretap channel with consideration of channel
estimation error whilst in the presence of an active full-
duplex eavesdroppers. To this end, the contribution of this
paper lies in the investigation of the secrecy performance of
the 2-2-2 MIMO wiretap channel, including the probability
of positive secrecy capacity and secrecy outage probability,
over Rayleigh fading in the presence of an active full-duplex
eavesdropper with channel estimation errors at the legitimate
receiver and eavesdropper side. First, the probability density
functions (PDFs) and cumulative density functions (CDFs) of
the signal-to-interference-plus-noise ratios (SINRs) of Bob’s
and Eve’s received signals are given. Second, the closed-form
expressions for the secrecy metrics are derived, and the Monte-
Carlo simulation are presented to examine our theoretical
analysis.

The reminder of this paper is organized as follows. System
model and problem formulation are outlined in Section II. In
the Section III, secrecy performance, including the probability
of positive secrecy capacity and secrecy outage probability,
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Fig. 1. System model

are derived with closed-form expressions, followed by the
comparison of theoretical analysis and numerical simulations
given in Section IV. Finally, concluding remarks are given in
Section V.

Notations: In this paper, matrices and vectors are separately
presented by boldfaced uppercase (e.g., X) and lowercase (e.g.,
x) letters. Moreover, we use XH to denote the Hermitian
transpose of the matrix X, Tr(·) to the trace operator, E(·)
to the expectation operator, Im the identity matrix of m
dimension, y ∼ CN (µ,σ2I) to denote that y is the complex
Gaussian random variable, having a µ-mean and σ2-variance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The Alice-Bob-Eve classic model shown in Fig. 1 is used
here to illustrate a wireless network with a potential ac-
tive eavesdropper, where all the users are equipped with 2
antennas. In such a wiretap channel model, the transmitter
Alice (A) wishes to send secret messages to the intended
receiver Bob (B) in the presence of an active eavesdropper
Eve (E); the link between Alice and Bob is called the main
channel, whereas the one between Alice and Eve is named
as the wiretap channel, and the one between Eve and Bob
is termed as interference channel. It is assumed that all links
are independent and undergoing quasi-static Rayleigh fading.
The fading coefficients of the links i→j are denoted as Hij ,
i, j ∈ {A,B,E}. In addition, assuming Eve operates in
the full-duplex mode, it means that she can listen to data
transmission of main channel whilst transmitting jamming
signals to Bob. Additionally, it is assumed that Bob and Eve
have imperfect channel state information (CSI) of their links,
and Alice and Bob have no knowledge of the CSI of the
wiretap links.

Then, the received signal at Bob and Eve can be expressed
as

rB = HABxA + HEBxE + nB , (1)

rE = HAExA + HEExE + nE , (2)

where xA and xE are the 2 × 1 transmit signal vector
from Alice and jamming signal vector from Eve, respec-
tively. Alice’s transmit power is assumed to be fixed to

Tr{E[xAx
H
A ]} = PA. Likewise, Eve’s jamming power

is subject to Tr{E[xEx
H
E ]} = PE . Each entry of Hij

follows independent identically distributed (i.i.d.) Gaussian
distribution with zero mean and unit variance, denoted by
Hij(m,n) ∼ CN (0, 1) for m,n ∈ {1, 2}. nB and nE are the
zero mean additive white Gaussian noise (AWGN) distributed
with CN (0,σ2

BI) and CN (0,σ2
EI), respectively.

B. Problem Formulation

Due to the characteristic of wireless channel, a practical
imperfect channel estimator is frequently exploited at the
legitimate receivers. The following model is broadly used
throughout this paper for the estimated channel Ĥij [10],

Hij =
√

1− ε2ijĤij + εijVij , (3)

where each entry of Vij follows CN (0, I), Vij is independent
of Hij , and εij ∈ [0, 1] is used to measure the accuracy of the
channel estimation.

Setting HB = ĤABĤ
H
AB, HB can be decomposed as HB =

WBΛWH
B by using the singular value decomposition (SVD),

where Λ = diag(λ1, λ2) and λ1 ≥ λ2 ≥ 0. WB is an unitary
matrix, i.e., WBW

H
B = I. Based on the above description,

we choose WB as the combiner matrix at user B. Similarly,
WE can be constructed in the same way as WB , and then is
used as the combining matrix at user E. Consequently, while
taking consideration of channel estimation error, the combined
signals at Bob and Eve are given by

YB = WH
B rB

=
√

1− ε2ABW
H
B ĤABxA + εABW

H
B VABxA+

WH
B (HBExE + nB) ,

(4)

YE = WH
E rE

=
√

1− ε2AEW
H
E ĤAExA + εAEW

H
E VAExA+

WH
E (HEExE + nE) .

(5)

Therefore, the average SINR of the combined signal at
Bob’s side γB is given by

γB = ΩBTr(W
H
B ĤABĤ

H
ABWB), (6)

where ΩB =
PA(1−ε2AB)

2ε2ABPA+σ2
B+2PE

=
ΦB(1−ε2M )

2ε2MΦB+1+2ΦJ
. Herein,

ΦB = PA/σ
2
B , ΦJ = PE/σ

2
B . For convenience, ε2AB = ε2M .

Obviously, the denominator is constant while the numerator
is equal to the sum of the eigenvalues of the Wishart matrix
ĤABĤ

H
AB. Based on the random matrix theory, the joint PDF

of the ordered eigenvalues of HB can be expressed as [13]

p(λ1, λ2) = (λ2 − λ1)2e−λ1−λ2 . (7)
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Fig. 2. The PDFs of γB when ΩB are 5 dB and 10 dB, respectively.

Let λ = λ1 + λ2, then γB = ΩBλ. The CDF of γB can be
expressed as

FγB (γB) = Pr (ΩB (λ1 + λ2) ≤ γB)

=

∫ γB
2ΩB

0

∫ γB
ΩB
−λ2

λ2

p(λ1, λ2)dλ1dλ2

= 1−
[
(
γB
ΩB

)3 + 3(
γB
ΩB

)2 + 6(
γB
ΩB

) + 6

]
e
− γB

ΩB

6
.

(8)

Differentiating (8) with regard to γB , the PDF of γB is
established as follows

fγB (γB) =
dFγB (γB)

dγB

=
γ3
B

6Ω4
B

e
− γB

ΩB .

(9)

Fig. 2 shows the PDFs of γB with respect to different values
of ΦB .

It is assumed that perfect self-interference cancellation can
be performed at the Eve’s side. Likewise, we have the received
average SINR at Eve

γE = ΩETr(W
H
E ĤABĤ

H
ABWE), (10)

where ΩE =
(1−ε2AE)PA
2ε2AEPA+σ2

E
=

(1−ε2W )ΦE
2ε2WΦE+1

, ΦE = PA/σ
2
E , and

ε2AE = ε2W .
The CDF and PDF of γE are

FγE (γE) = 1−
[
(
γE
ΩE

)3 + 3(
γE
ΩE

)2 + 6(
γE
ΩE

) + 6

]
e
− γE

ΩE

6
,

(11)
and

fγE (γE) =
γ3
E

6Ω4
E

e
− γE

ΩE , (12)

respectively.

III. SECRECY PERFORMANCE ANALYSIS

A. Probability of Positive Secrecy Capacity

According to [2], the secrecy capacity for the MIMO wire-
tap channel over Rayleigh fading is defined as the difference
between the main channel capacity CM = log2(1 + γB) and
the wiretap channel capacity CW = log2(1 + γE) as the
following form,

Cs =

{
CM − CW , γB > γE

0, otherwise.
(13)

Therefore, the probability of positive secrecy capacity refers
to the event that the secrecy capacity can be achieved, i.e.
Pr(Cs > 0), thus with regard to its definition, (13) can be
further rewritten as follows,

Pr(Cs > 0) = Pr(γB > γE)

=

∫ ∞
0

∫ γB

0

fγB (γB)fγE (γE)dγEdγB

=

∫ ∞
0

fγB (γB)FγE (γB)dγB .

(14)

Substituting (9) and (11) into (14), we use the equation (15)
[14, Eq. (3.351.3)],∫ ∞

0

xne−µxdx =

{
n!µ−n−1, if n = 0,1,2,· · · , µ > 0,
0, otherwise.

(15)
then we have the closed-form expression for the probability
of positive secrecy capacity in (16) shown on the top of next
page.

B. Secrecy Outage Probability

The outage probability of the secrecy capacity is defined as
the probability that the secrecy capacity Cs falls below the
target secrecy rate Rs, i.e.,

Pout(Rs) = Pr(Cs < Rs). (17)

Secrecy outage probability can be conceptually explained as
two cases: (i) Cs < Rs whilst positive secrecy capacity is
guaranteed; (ii) Pout(Rs) definitely happens when the secrecy
capacity is non-positive. (17) can thus be rewritten as follows
[10]

Pout(Rs) = Pr(Cs < Rs|γB > γE)Pr(γB > γE)

+ Pr(γB < γE)

=

∫ ∞
0

∫ γ0

γE

fγB (γB)fγE (γE)dγBdγE

+

∫ ∞
0

∫ γE

0

fγB (γB)fγE (γE)dγBdγE

=

∫ ∞
0

fγE (γE)

[∫ γ0

0

−
∫ γE

0

]
fγB (γB)dγBdγE

+

∫ ∞
0

∫ γE

0

fγB (γB)fγE (γE)dγBdγE

=

∫ ∞
0

FγB (γ0)fγE (γE)dγE ,

(18)
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Fig. 3. Probability of positive secrecy capacity against ΦB for selected values
of ΦE for the case of ΦJ = 0 dB and ΦJ = 5 dB whilst ε2M = 0.01,
ε2W = 0.1.

where γ0 = M(1 + γE)− 1, M = 2Rs .
Similarly, substituting (8) and (12) into (18) using (15), the

closed-form expression for secrecy outage probability can be
eventually derived as in (19) shown on the top of next page.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we perform the Monte-Carlo simulation
to validate the accuracy of the closed-form expressions for
probability of positive secrecy capacity and secrecy outage
probability. In the following figures, the curves only using
markers are the theoretical results, while the ones in lines are
the Monte-Carlo simulation results.

Fig. 3 shows the simulation and analytic results of the
probability of positive secrecy capacity against ΦB for selected
values of ΦE when ε2M = 0.01 and ε2W = 0.1 for the cases: (i)
ΦJ = 0 dB, (ii) ΦJ = 5 dB. One can observe that the numerical
results are in perfect match with our analytical results. Notably,
we can obtain the conclusions below: (i) Pr(Cs > 0) increases
with ΦB for a fixed ΦE . (ii) The higher ΦE , the lower of
probability of positive secrecy capacity. (iii) More importantly,
the jamming power ΦJ has a critical role to play in the
probability of positive secrecy capacity for fixed γE . The larger
values of ΦJ , the worse of Pr(Cs > 0). (iv) Additionally, there
exists secrecy loss of imperfect CSI compared with the case
of perfect channel estimation (ε2M = 0 and ε2W = 0) at receiver
sides.

Fig. 4 explores the relationship of probability of positive
secrecy capacity against the ratio of ε2W and ε2M whilst ε2M =
0.01, ΦE = 5 dB for selected values of ΦB . It is saying that the
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Fig. 4. Probability of positive secrecy capacity against ε2W /ε2M for selected
values of ΦB while ε2M = 0.01 and ΦE = 5 dB.

higher the ratio, the much probable the event that the positive
secrecy capacity can be achieved.

Similarly, Fig. 5 and Fig. 6 examine the simulation and
analysis results of the secrecy outage probability of physical
layer security with regard to two cases: (i) fixed ε2M and ε2W
whilst varying ΦB and ΦE ; (ii) changing the ratio of ε2B and
ε2W while fixing ΦE = 5 dB for selected values of ΦB , namely,
10 dB, 15 dB and 25 dB. Notably, we can easily draw the same
conclusion about the accuracy of our derived expression with
Monte-Carlo simulation results.

Additionally, as shown in Fig. 5, the secrecy outage prob-
ability degrades with the increase of ΦB for specific values
ΦE and ΦJ . More importantly, there exists an error floor due
to the imperfect channel estimation at the receiver sides in
comparison with the case, i.e., ε2M = 0 and ε2W = 0. As ΦB is
much larger than ΦJ regarding a fixed ΦE , ΩB converges
to the same value for different ΦJ with a limited value,
which consequently makes their secrecy outage probabilities
converge to the error floor.

When it comes to Fig. 6, the secrecy outage probability
witnesses a completely opposite trend compared with that of
the probability of positive secrecy capacity, shown in Fig. 4.
Furthermore, the larger of the gap between ΦB and ΦE , the
less likely the secrecy outage probability.

V. CONCLUSION

In this paper, we have analyzed secrecy performance of the
MIMO wiretap channel with channel estimation errors at the
legitimate destination and eavesdropper’s receivers whilst in
the presence of an active eavesdropper. The probability of
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Fig. 6. Secrecy outage probability against ε2W /ε2M for selected values of ΦB

while ε2M = 0.01, ΦE = 5 and Rs = 0.5 [bits/s/Hz].

positive secrecy capacity and secrecy outage probability were
derived with closed-form expressions through the PDFs and
CDFs of the receive SINRs. Finally, the theoretical analysis are
confirmed by the Monte-Carlo simulation results by comparing

the secrecy performances with different levels of channel
estimation errors, received SINRs and jamming signals.
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