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Abstract—In this paper, we address energy detection for M -
ary quadrature amplitude modulation (QAM) signals. In the
literature deterministic signal model is widely used and detection
probability is a function of signal energy. Unlike constant
amplitude signals, the QAM signal is not deterministic since the
energy in each QAM symbol can randomly vary. For random
signals, model where both signal and noise are Gaussian has
been widely used. However, this approximation may not provide
accurate detection probability for QAM signals. Instead the
detection probability should be averaged over the distribution
of the energy. Previous work has considered calculating exact
detection probability for given M analytically. However, the
method presented previously has complexity that increases as
a function of M and the number of samples.

In this paper, we show that the distribution of observed energy
for any M can be accurately approximated by one distribution
which is derived analytically. Multiple numerical results showing
probability density function, Kolmogorov-Smirnov distance, and
detection probability are shown. Based on these results, a range
where the proposed approximation is applicable is obtained.

Index Terms—Energy Detection, Quadrature Amplitude Mod-
ulation, Spectrum Sensing

I. INTRODUCTION

The rapid increase in wireless communication services

leads to the scarcity of spectrum resource for new wireless

services/systems. The spectrum resource is usually allocated

to each wireless services/systems exclusively and new wireless

services/systems have difficulty in getting spectrum resource

anymore [1]. However, according to numerous spectrum usage

measurement campaigns, e.g. [2], utilization ratio of the allo-

cated spectrum resource is not always high. This fact indicates

that the spectrum resource has not been utilized efficiently.

In order to solve the spectrum scarcity problem, the concept

of dynamic spectrum access (DSA) has emerged [3]. In the

DSA concept, the un-licensed users, i.e. secondary users

(SUs), can access the unused spectrum owned by licensed

users, i.e. primary users (PUs), provided that the spectrum

usage by the SU does not cause harmful interference to PU.

This work was supported by the European Commission in the framework of
the H2020-EUJ-02-2018 project 5GEnhance (Grant agreement no. 815056),
by “Strategic Information and Communications R&D Promotion Programme
(SCOPE)” of Ministry of Internal Affairs and Communications (MIC) of Japan
(Grant no. JPJ000595), the JSPS KAKENHI Grant Numbers JP18K04124 and
JP18KK0109, and Institute of Global Innovation Research in TUAT. The work
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One way for the DSA to work is that SUs find unused

spectrum where PU user is currently not transmitting. One

possible way to find the unused spectrum is spectrum sensing

which can detect whether the spectrum is used or not [4].

Energy detection (ED) is one of the most common methods for

spectrum sensing. The benefits of ED include low complexity

in terms of operation and implementation. Also it does not

need a priori information about the received signal unlike for

example matched filter based spectrum sensing.

For the design of ED, it is necessary to get statistics of

observed energy which consists of a signal component and

a noise component. Specifically, the detection threshold can

be calculated based on the statistical distribution of observed

energy. Typically, the noise component is assumed to follow a

Gaussian distribution and the observed energy with only noise

component follows the central Chi-square distribution. On the

other hand, the signal component can belong to two categories:

a deterministic signal or a random signal. In case of constant

envelope modulation signal, such as M -ary phase shift keying

(PSK) modulation using single-carrier technique, the energy of

the signal component can be approximated by constant value

and this corresponds to the deterministic category. In this case,

the observed energy follows the non-central Chi-square distri-

bution. For the random case, a simple method is to assume

that the signal component follows Gaussian distribution [5].

An observed energy with a quadrature amplitude modulation

(QAM) signal based on single-carrier technique belongs to

the random case. However, the Gaussian approximation is

not applicable. For this issue, a design for ED in the case

of QAM signal based on single-carrier technique has been

investigated in [6]. Specifically, analysis of ED performance

has been shown and the analytical result depends on the

number of signal points (M ) of M -ary QAM and the number

of received samples K. The analytical method in [6] can

provide accurate analytical result. However it requires huge

computational complexity when K and M are large.

In this paper, we investigate a simplified analytical deriva-

tion of the distribution of observed energy for the QAM signal

case. The contributions of the paper are summarized as follow.

• We propose a method for approximating the distribution

of observed energy for the QAM signal case. A remark-

able thing is that the proposed method can provide the

analytical distribution without depending on M .



• In the proposed method, we approximate finite M as

infinity for low complexity. Although it is using an

approximation, this method can give good accuracy even

when M is small, such as M = 16.

• Numerical evaluations show the benefits of the proposed

method in terms of accuracy as compared to a conven-

tional method in the literature.

II. ENERGY DETECTION

An assumed detection problem in the spectrum sensing is

a binary hypothesis testing problem: H0 (only noise present)

or H1 (noise and signal both present) as [7]:

H0 : y[k] = w[k] k = 0, 1, 2, ...,K − 1

H1 : y[k] =
√
Px[k] + w[k] k = 0, 1, 2, ...,K − 1,

(1)

where k is the index number for the time domain sample,

K is the number of samples during the observation interval,

y[k] is an observed signal at the SU, w[k] is noise compo-

nent which follows circularly symmetric zero mean complex

Gaussian distribution with zero mean and variance σ2
n, x[k]

is a signal component sent from the PU with unit variance,

and P indicates the average power for the signal component.

The noise component is uncorrelated with x[k]. The assumed

modulation type for x[k] is M -ary QAM where M is power

of two, such as 16, 64 and 256. Since the observed energy

is not affected by frequency and phase offsets, they are not

considered in this paper [8].

The normalized observed energy V
′

at the SU is given by:

H0 : V
′

=
K−1∑

k=0

(

wI[k]
σn√
2

)2

+
K−1∑

k=0

(

wQ[k]
σn√
2

)2

(2)

H1 : V
′

=
K−1∑

k=0

(√
PxI[k] + wI[k]

σn√
2

)2

+

K−1∑

k=0

(√
PxQ[k] + wQ[k]

σn√
2

)2

,

(3)

where I and Q indicate inphase and quadrature component of

x[k] and w[k], respectively. The observed energy is normalized

by σ2
n/2 in (3) without loss of generality [6]. The detection

rule is as follows: if V
′

is larger than the predetermined thresh-

old V
′

T , the detection result is H1, otherwise the detection

result is H0, i.e.

V
′
H1

≷
H0

V
′

T . (4)

Two criteria to express performance of ED are the false alarm

probability (PFA) and the detection probability (PD). The

event for PFA is that the detection result is H1 when H0 is

correct hypothesis and the event for PD is that the detection

result is H1 when H1 is the correct hypothesis. Mathematically

PFA and PD are given by:

PFA = Pr(V
′ ≥ V

′

T |H0) (5)

PD = Pr(V
′ ≥ V

′

T |H1), (6)

where Pr() is the probability of its argument. The average

signal to noise power ratio (SNR) is defined by γ = P/σ2
n.

The detection probability depends on the average SNR, V
′

T

and possible randomness in the signal (this is explained in the

next Section).

III. ANALYTICAL DESIGN OF ED

For designing ED properly, the threshold V
′

T has to be set

to satisfy either target PFA or PD.

For satisfying the target PFA, we need to know statistics

of V
′

under H0. It is well known that the probability density

function (PDF) of V
′

under H0 follows a central chi-square

distribution with 2K degrees of freedom (DOF) [9], and the

distribution is given by

p(V
′ |H0) = pχ2,K(V

′

) =

⎧

⎪⎨

⎪⎩

V
′K−1e−

V
′

2

2KΓ(K)
V

′

> 0

0 otherwise

(7)

where Γ(K) is the gamma function.

On the other hand, PD depends on V
′

under H1. Let λ de-

note the normalized observed energy due to signal component

in V
′

and λ is defined by

λ =
K−1∑

k=0

(√
PxI[k]
σn√
2

)2

+
K−1∑

k=0

(√
PxQ[k]
σn√
2

)2

. (8)

If the observed energy for the signal component λ is

deterministic (such as for PSK since all its constellation

symbols have the same energy), PDF of V
′

under H1 follows

a noncentral chi-square distribution with 2K DOF as

p(V
′ |H1) = pχ2,K(V

′ |λ) =
∞∑

i=0

e
−λ

2 (−λ
2
)i

i
pχ2,K(V

′

), (9)

and λ is known as the non-centrality parameter in the chi-

square distribution. In this case, an achievable PD with a given

threshold is [6]:

PD = QK

(√
λ,

√

V
′

T

)

, (10)

where QK(·) is the generalized Marcum Q-function [10].

In the case where randomness in signal leads to the signal

energy following a random distribution, λ may follow PDF

p(λ) and PDF of p(V
′ |H1) is given by

p(V
′ |H1) =

∫ ∞

0

pχ2,K(V ′|λ)p(λ)dλ. (11)

Similarly, by averaging (10) over p(λ), PD can be obtained

by [11]

PD =

∫ ∞

V
′

T

p(V
′ |H1)dV

′

=

∫ ∞

0

QK

(√
λ,

√

V
′

T

)

p(λ)dλ.

(12)

If there is a target PD, V
′

has to be set properly to satisfy the

target PD and knowledge of distribution p(V
′ |H1).

In a typical approach, it is assumed that signal component

x[k] follows Gaussian distribution and in this case p(V
′ |H1)



Fig. 1: The number of outcomes as a function of the number

of samples

follows the generalized chi-squared distribution similarly to

(7) [12]. This method is denoted by a conventional Gaussian

approximation (CGA) in this paper.

The other conventional method and a proposed method to

derive the distribution of ED output V ′ for M -QAM signal

are shown as follows.

A. Exact solution (ES)

In [6], the distribution of observed energy due to signal

component, λ, is attempted to be derived exactly. Let ES
K

denote the sample space of observed energy contributed by

signal component during K samples. In this case, the exact

p(λ) can be expressed by

p(λ) =
∑

ǫ∈ES
K

δ(λ− ǫ)Pr(ǫ), (13)

where Pr(ǫ) denote probability of observed energy ǫ due to

the signal components. Then, by using (12), PD is given by

PD =
∑

ǫ∈ES
K

Pr(ǫ)QK(
√

λ(ǫ),
√

V ′
T ). (14)

One issue in this method is that the number of elements in the

set ES
K elements could be significantly large. Let us denote

the number of elements in ES
K as NK . It is given by [6]

NK =
(N1 +K − 1)!

(N1 − 1)!K!
, (15)

where N1 depends on M . An example of NK is shown in

Fig. 1. Specifically, NK as a function of K for M = 16 and

M = 256 are plotted in Fig. 1. This figure indicates that even

for K = 30, NK can be a significantly large for large M . In

[6], at most K = 15 with M = 16 was investigated and larger

K and M may be difficult to handle.

(a) M = 16 (b) M = 256 (c) M = ∞

Fig. 2: Constellation points for M -QAM.

B. Proposed method (PM)

In the proposed method, we employ p(λ) with M = ∞
and this distribution corresponds to an approximated p(λ) with

finite number of M . In Fig. 2, constellation points for different

M (16, 256, and ∞) are plotted. This figure shows that the

distributions of x[k] have a square shape. The PDF of λ with

K = 1 and M = ∞ can be expressed by

p∞,1(λ) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π

8γa2
(0 < λ ≤ 2γa2)

π

2
− 2 cos−1

√

2γa2

λ
4γa2

(2γa2 ≤ λ ≤ 4γa2),

(16)

where suffix 1 of p∞,1(λ) corresponds to K = 1 and 2a is

one side of IQ plane (a =
√

3
2

), as Fig. 2c shows. The details

of the derivation of p∞,1 are shown in Appendix A. For the

general K, p∞,K(λ) can be obtained by

p∞,K(λ) =

K
︷ ︸︸ ︷

p∞,1(λ) ∗ p∞,1(λ) · · · p∞,1(λ), (17)

where ∗ denotes convolution. By substituting p∞,K(λ) for

p(λ) in (11), the approximated p(V
′ |H1) is available. One

of benefits in PM is the the distribution does not depend on

M . In case of adaptive modulation scheme such as IEEE Std

802.11ad-2012 [13], there are multiple QAM can be used and

it is difficult to know which QAM is used in the observed

signals.

IV. SIMULATION RESULTS

In this section, we evaluate the approximated distributions

based on CGA and PM to show the benefit of the proposed

method by comparing with the Monte Carlo simulation based

PDF with multiple M .

In Fig. 3, the approximated distributions based on CGA and

PM, and Monte Carlo simulation based PDF of V
′

for M =
16, 64 and 256 are shown. In this evaluation, K = 10 and

γ = 0 dB. Typically, ED for spectrum sensing is performed

at such low SNR [4]. The remarkable thing is that PDFs of

V
′

based on Monte Carlo simulations approximately coincide

with the distribution with PM. In fact, the mean of V
′

does

not depend on M and the variance of V
′

(σ2
V

′ ) as a function

of M asymptotically approaches a certain value as [14]

σ2
V

′ = 4K

(

2

(

1− 1

5

4M − 1

M − 1

)

γ2 + 2γ + 1

)

. (18)



Fig. 3: PDF of observed energy for empirical distributions,

PM and CGA with γ = 0 dB and K = 10

Fig. 4: PDF of observed energy for empirical distributions,

PM and CGA with γ = 10 dB and K = 10

It can be seen from the figure that the distribution obtained

with PM coincides with the simulation results, showing its

accuracy. On the other hand, there is a gap between the

approximated distributions obtained by CGA and the empirical

PDFs.

In Fig. 4, the PDFs obtained by the approximated distri-

butions and empirical PDFs are shown. In this evaluation,

K = 10 and γ = 10 dB. Therefore, this result corresponds to

a high SNR case. The gap between distribution obtained by

CGA and the other distributions has increased compared to

the result in Fig. 3. In addition, the empirical distribution with

M = 16 is also slightly different from the other empirical

distributions. Thus, the approximated distributions based on

the proposed method are more appropriate for higher values

of M and/or low γ.

In order to evaluate the validity of the proposed method

Fig. 5: KS statistics as a function of γ with M = 16 and

K = 10

Fig. 6: KS statistics as a function of K with M = 16 and

γ = 0 dB

in different scenarios in terms of SNR, K and M , we

employ Kolmogorov-Smirnov (KS) test [15] as Goodness-Of-

Fit (GOF) metrics. In the KS statistic, a difference between

empirical cumulative distribution function (CDF) and target

CDF, such as approximated CDFs by CGA and PM, is used.

Specifically, the KS statistic is defined by

DKS = max
V

′

KS
<V

′
<∞

|S(V ′

)− P (V
′

)|, (19)

where V
′

KS is used to determine a range for the CDF. Without

loss of generality, V
′

KS is set to satisfy P (V
′

KS) = 0.1. The

reason of P (V
′

KS) = 0.1 is to evaluate the KS statistic in the

region in terms of CDF where PD > 0.9 according to the

requirement of PD in the IEEE 802.22 standard [16].

Fig. 5 shows KS statistics as a function of γ for M = 16
and K = 10. As confirmed in Figs. 3 and 4, increase of SNR



Fig. 7: KS statistics where K = 10 and γ = 0 dB

corresponds to increase in the KS statistic in CGA. On the

other hand, the variation of SNR does not lead to significant

changes in KS statistics of PM. The PM can achieve better

accurate performance in any SNR than CGA.

Fig. 6 shows KS statistics as a function of K (number of

samples) for M = 16 and γ = 0 dB. For PM and CGA the

KS statistics are approximately constant in terms of K and

PM can again achieve better accurate performance. In Fig. 7,

KS statistics as a function of M for low SNR (γ = 0 dB)

is shown. In all methods, higher number of M leads to more

accurate performance.

V. CONCLUSION

For the design of ED with M -ary QAM modulation signals,

we proposed an approximation in terms of PDF of observed

energy at ED. In a previous work, an exact solution of PDF

regarding the observed energy with M -ary QAM was used

to design ED. However, this method leads to enormous com-

putational complexity in case of large K and M . To address

this issue, we approximate the PDF of the observed energy

for all M by assuming M = ∞ and derive exact distribution

for this assumption. Based on the numerical evaluations, we

can confirm that the proposed method always exceeds the

performance of that of the conventional method for random

signal case (that assumes Gaussian signal).

APPENDIX A

DERIVATION OF p∞,1(λ) FOR PM

In the following, derivation of p∞,1(λ) is shown. Fig.2c

is IQ plane, where blue plane is aggregation of constellation

points of x[k] in M = ∞. Circumference l on blue plane is:

l =

⎧

⎨

⎩

2πr (0 < r ≤ a)

4r
(π

2
− 2 cos−1 a

r

)

(a ≤ r ≤
√
2a),

(20)

where r is radius as Fig. 2c shows. Since l can be interpreted

as likelihood of r, p∞,1(r) is given by:

p∞,1(r) =

⎧

⎨

⎩

πr

2a2
(0 < r ≤ a)

r

a2

(π

2
− 2 cos−1 a

r

)

(a ≤ r ≤
√
2a),

(21)

where p∞,1(r) can be calculated by the normalization of

4a2, the area of IQ plane. Moreover, since λ is described as

2γr2 when K = 1, p∞,1(λ) can be calculated by using the

transformation of random variable from r to λ as follows:

p∞,1(λ) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π

8γa2
(0 < λ ≤ 2γa2)

π

2
− 2 cos−1

√

2γa2

λ
4γa2

(2γa2 ≤ λ ≤ 4γa2).

(22)
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