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Abstract—In the Internet of Things (IoT) environment, edge
computing can be initiated at anytime and anywhere. However,
in an IoT environment, edge computing sessions are often
ephemeral, i.e., they last for a short period of time and can often
be discontinued once the current application usage is completed
or the edge devices leave the system due to factors such as
mobility. Therefore, in this paper, the problem of ephemeral
edge computing in an IoT is studied by considering scenarios
in which edge computing operates within a limited time period.
To this end, a novel online framework is proposed in which
a source edge node offloads its computing tasks from sensors
within an area to neighboring edge nodes for distributed task
computing, within the limited period of time of an ephemeral
edge computing system. The online nature of the framework
allows the edge nodes to optimize their task allocation and
decide on which neighbors to use for task processing, even when
the tasks are revealed to the source edge node in an online
manner, and the information on future task arrivals is unknown.
The proposed framework essentially maximizes the number of
computed tasks by jointly considering the communication and
computation latency. To solve the joint optimization, an online
greedy algorithm is proposed and solved by using the primal-dual
approach. Since the primal problem provides an upper bound
of the original dual problem, the competitive ratio of the online
approach is analytically derived as a function of the task sizes
and the data rates of the edge nodes. Simulation results show
that the proposed online algorithm can achieve a near-optimal
task allocation with an optimality gap that is no higher than
7.1 % compared to the offline, optimal solution with complete
knowledge of all tasks.

Index Terms—Competitive ratio, edge computing, internet of
things (IoT), online optimization, task allocation.

I. INTRODUCTION

Next-generation wireless networks will bring in new Inter-
net of Things (IoT) services that can potentially transform
people’s daily lives [2], [3]. Much of these emerging IoT
and 5G (fifth generation of wireless communications) services
require low latency in terms of both communication and
computing. To deliver low-latency IoT services, one can resort
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to edge computing [4], [5] techniques that can use radio and
computing resources at a network edge1.

In particular, by using local computing resources, edge
computing can significantly reduce the distance of data trans-
mission, thus inducing smaller communication latency. To
enable large-scale and distributed edge computing among
heterogeneous devices, there is a need to enable edge devices
to pool their computing resources by instantaneously forming
a local edge network to process the computational tasks
received from various user applications [4]. Clearly, if properly
deployed, edge computing will bring forth key benefits for
low-latency IoT services by ensuring that a local edge network
is instantaneously deployed by edge devices. Therein, funda-
mental challenges include joint radio and computing resource
management and application-oriented edge computing system
and architecture design.

A. Related Work

1) Edge computing in general IoT environments: Edge
computing enables a diverse set of IoT services ranging from
real-time IoT applications running on user devices to safety
applications operating on connected vehicles [32]. Recently,
a number of edge computing proof of concepts have been
implemented for various IoT applications such as network
resource management [12], IoT application deployment [13],
and multimedia data caching [14]. The work in [16] showed
how one can deploy, in the real world, edge devices with
powerful computing resources and an inherent capability
of running computation intensive applications. Recent prior
works in [6]–[11], [15] studied deployment scenarios and
resource allocation problems for standard edge computing
in static or low-mobility networks. In particular, the work
in [6] proposed an edge computing platform deployed in
network infrastructure nodes such as base stations to provide
contents to users while maintaining a required quality-of-
service. Meanwhile, the authors in [7] studied the problem
of joint computational task offloading and radio resource
allocation in a wireless powered edge computing system by
using deep learning. The work in [11] introduced a caching
scheme so as to maximize fairness for an edge computing
environment consisting of heterogeneous devices with dif-
ferent communication and computing resources. The authors

1According to the network environment and application scenario, the
network’s edge can include various entities such as border routers, access
points, base stations, mobile devices, and connected vehicles. In this study,
we focused on an edge network consisting of mobile nodes.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3208096

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Oulu University. Downloaded on September 29,2022 at 05:34:30 UTC from IEEE Xplore.  Restrictions apply. 



2

TABLE I: Comparison with related works in edge computing. (✓: considered, -: not considered)

Radio resource
allocation

Multiple edges Edge mobility Computation
heterogeneity

Time
constraints

[6] - - - - -
[7]–[10] ✓ - - - -
[11] - - - ✓ -
[12]–[14], [15] ✓ ✓ - - -
[16] ✓ ✓ - ✓ -
[17], [18], [19] ✓ - ✓ - -
[20], [21] - - ✓ - -
[22] ✓ ✓ ✓ - -
[23], [24] ✓ - ✓ ✓ -
[25], [26] ✓ ✓ ✓ ✓ -
[27]–[31] - ✓ - - -

Our work ✓ ✓ ✓ ✓ ✓

in [8] proposed a Lyapunov optimization-based computation
offloading algorithm to jointly control transmit power and CPU
(Central Processing Unit)-clock speeds when edge computing
devices are powered by energy harvesting techniques. The
work in [9] studied a partial computational task offloading
and radio allocation problems are jointly studied. Moreover,
in [15], a joint strategy of computational offloading and
content caching is proposed to maximize the utilization of each
edge node radio and computing resources when the statistical
information on the content request is previously known. In
[10], the authors used edge computing for enhancing virtual
reality services.

2) Edge computing with high mobility: The works in [17]–
[31] studied various problems related to edge computing in
IoT networks that integrate highly mobile devices such as
unmanned aerial vehicles (UAVs) and connected vehicles.
First, in [17]–[26], the authors studied the use of UAVs for
wireless and computing scenarios. For instance, the authors
in [17] proposed a framework that jointly optimizes UAV
placement and uplink power control so that UAVs can collect
edge data from ground sensors. In [20], the authors employed
UAVs as edge message ferries that collect information in
wireless sensor networks and carry the data to the destination.
In [18], [19], [21]–[26], the authors proposed various use
cases for deploying airborne edge computing using a UAV.
In [18], the authors investigated a UAV-mounted cloudlet in
which UAVs equipped with a computing processor offload
and compute the tasks offloaded from ground devices. The
work in [19] studied a UAV-enabled mobile edge computing
system in which the users harvest the energy from the signal
transmitted by the UAV in downlink, and the harvested energy
is used to transmit in uplink. The work in [21] investigated
a UAV-enabled edge computing system in which a UAV
offloads computational tasks from users and decides whether
to compute the tasks or transmit the tasks to a remote server. In
[23] and [24], the authors proposed a UAV-aided multi-access
edge computing (MEC) system in which a UAV acts as an
edge server (or cloudlet) providing computation service for the
ground devices. On the other hand, in [25] and [26], multiple
UAVs are assumed to act as edge computing devices which
cooperatively compute tasks offloaded by ground devices.
Also, the authors in [22] studied the joint problem of user
association and computational task allocation in a mobile
edge computing system where UAVs act as edge computing
devices. Hence, the role of UAVs is changeable and determined

depending on the considered network environment. In this
paper, we focus on a scenario in which one of UAVs acts
as a edge server and the rest of them act as edge computing
devices. This scenario implies that the considered UAVs are
not as powerful as a high performance computing server which
can compute all tasks alone, however, they can compute a few
tasks faster than other IoT devices such as sensors.

Next, edge computing is investigated in various scenarios
incorporating connected vehicles [27]–[31]. The authors in
[27] developed a distributed reputation management system
in which the edge computing resources are allocated in a
way to optimize security. The work in [28] proposed a low-
complexity computation offloading algorithm that minimizes
the computing cost at connected vehicles. Also, the work in
[29] proposed the use of edge computing techniques to process
the computational tasks required in a blockchain system by
using the local computing resources of vehicular nodes. The
authors in [30] developed a smart contract deployed on an edge
computing system to enable connected vehicles to store and
share the data securely. In [31], the authors applied a software-
defined networking concept to develop an edge computing
architecture in which the control plane protocol is designed
to cluster a set of neighboring vehicles and a centralized edge
computing server is used to optimize the data transmission
path.

3) Limited time constraints within edge computing: The
aforementioned prior works [6]–[11], [15], [17]–[31] assume
that edge computing operates during a relatively long time
period, and they do not consider a constraint on the total
edge computing time period. However, in IoT scenarios, edge
computing can be initiated and discontinued at any time due to
the completion of running an application or the mobility of the
edge nodes such as drones and vehicles. To capture such use
cases, we propose the concept of ephemeral edge computing
in which edge computing occurs among IoT devices that have
a stringent time constraints within which they can perform
edge computing. In Table I, we provide a comprehensive
comparison between our work and the existing works on
computation offloading in edge computing.

Next, we first provide the real-world examples of ephemeral
edge computing scenarios and, then, we outline our key
contributions in this area.
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Fig. 1: Illustrative example of ephemeral edge computing framework
in intelligent transporation systems.
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Fig. 2: Illustrative example of ephemeral edge computing framework
in smart factory.

B. Ephemeral Edge Computing

In real world applications, various edge devices can be
used to form a local edge network spontaneously and process
computational tasks of different applications. One common
observation here is that the total time period is limited in
real-world IoT examples. In particular, the running time of
a local edge network can be limited due to mobility of edge
devices. Also, when edge computing is initiated to operate an
IoT user’s application, the usage time of the application can
be finite. Therefore, we introduce a notion of ephemeral edge
computing to capture cases in which edge computing occurs
in a relatively short time period. Here, we note that there
exists a suite of industry products related to edge computing
(e.g., from Nokia or Amazon). However, these products are
mostly related to infrastructure-based edge computing, and to
our knowledge, they have not been yet exploited to deploy
a concept such as ephemeral edge computing. Meanwhile,
the emerging O-RAN standard [33] will have capabilities to
support short-lived computing transactions, however, O-RAN
does not provide any ephemeral edge computing solution that
can leverage these capabilities, as such solutions are left to the
research community, which motivates the timeliness and need
for this work. As discussed next, the concept of ephemeral
edge computing admits many real-world IoT applications in
several industrial and civilian areas in which total time period
available for the use of edge computing is constrained.

1) Intelligent transportation systems: As shown in Fig. 1,
edge computing can be applied to an urban road environment
in which a number of sensors monitor the status of the road
traffic, vehicle flow, and pedestrian generating a large data
volume [31]. For example, the generated sensory data from
the road environment can be used to detect the current traffic
status or to predict safety hazards. Moreover, the generated
data can also be used to decide the signal light timing and
schedule the vehicles at a merging ramp or intersection [27].
Therefore, processing the sensory data from a road environ-
ment is essential to optimize and control the various physical
components of transportation systems. In a road environment,
since the road sensors have a low computational capability,
edge computing on the vehicles can be used to offload the
sensory data from environment. Then, the data is processed
to extract meaningful information such as traffic forecast and
safety warnings [34], [35]. Once the data is processed by

the vehicles’ on-board computers, the vehicles can transmit
the processed information to adjacent road side unit (RSU)
that can then use the processed information to control traffic
flows. Therefore, intelligent transportation systems provide an
important use case for ephemeral edge computing. In an urban
environment such as the one shown in Fig. 1, a set of vehicles
move from an intersection to the next intersection while main-
taining a formation. When edge computing is implemented on
the vehicles, it can only be maintained for a limited time period
due to mobility. Those vehicles can cooperatively process the
offloaded data within a limited time period that is the travel
time between two intersections. Therefore, these vehicles will
form an ephemeral edge computing network. In this case, the
total time period dedicated to edge computing in a vehicular
network will be affected by the vehicles’ speed and trajectory.
In particular, the vehicles can share the information on the
destination and trajectory to estimate the time period during
which a set of vehicles moving the same direction. This is
just one example of edge computing among many others in
the context of transportation systems.

2) Smart factory: In emerging smart factory scenarios, also
known as Industry 4.0 [36], sensors can detect malfunctions
and send diagnostics signals to actuators in the factory. There-
fore, factory systems must be optimized to manage the process
of sensory data transmission, low-latency computation, and
proactive decision making in order to quickly react to new
situations [37]. Some key challenges for enabling the smart
factory vision include effective in-network computing and
improvement of wireless connectivity to integrate physical and
digital systems, i.e., networking and computation. Computing
sensory data in a timely manner is essential to operate a
physical factory system. To this end, the concept of ephemeral
edge computing can be applied in cyber-physical smart fac-
tory systems where UAVs, robots, and drones are deployed
and perform key functions such as data storage, computing,
control, and transmission [38].

As shown in Fig. 2, we consider a smart factory in which
sensors monitor the status of the manufacturing process and
generate a large data volume. For example, the generated
sensory data can be used as an input to machine learning al-
gorithms, e.g., for classification, to predict any abnormality in
the manufacturing process. Hence, a number of computational
tasks must be processed in order to make a decision on how
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to control the physical systems of the factory based on the
information extracted from the data. However, due to the low
computational capability of the sensors, it is not possible to
compute those tasks locally at the sensors. Also, sensors are
not able to transmit data over a long distance, and, hence, a
flexible relay is necessary [39]. For example, edge-enabled
UAVs can be used in a smart factory to gather the tasks
from the sensors, compute the tasks, and deliver the computed
results to the destination, e.g., a central factory controller that
can control the actuators. This is a meaningful use case of
ephemeral edge computing in that the local edge network can
be maintained until the UAVs arrive at the destination. Here,
the total time period of ephemeral edge computing corresponds
to the moving time from the source location to destination.

3) IoT sensor systems for end users: Consider an IoT
environment in which the generated sensory data from the
IoT devices is used to control and monitor the status of home
appliances, to detect a user’s motion and voice [40], or to run
gaming and augmented reality applications at a museum, sport
events, and sightseeing places [32]. Those applications require
processing and analysis of the real-time IoT data. In particular,
augmented reality and gaming applications must process the
data depending on the user’s location and orientation. In this
case, the time duration within which a user’s device is at a
stable location in space can be relatively short, and ephemeral
edge computing is needed to process the IoT data in a limited
time period.

As a result, the aforementioned examples in this section
show that: a) Ephemeral edge computing admits a diverse
set of IoT applications and b) in these applications, the
time period dedicated to ephemeral edge computing can be
limited depending on the various factors such as mobility and
usage patterns of applications. When the total time period of
ephemeral edge computing is limited, there is a need for a
new approaches to efficiently allocate the radio and computing
resources to process a maximum number of computational
tasks while considering the time-sensitive nature of the system.

C. Contributions

In all of these existing works on edge computing [6]–[31], it
is generally assumed that edge computing is formed and used
for a relatively long time period, and, therefore, the total com-
puting time of edge computing is not considered. As shown
in the real-world examples of ephemeral edge computing,
edge computing can be initiated and discontinued at any time,
resulting in the finite total time period to use edge computing.
Therefore, we propose the concept of ephemeral edge comput-
ing in which the total edge computing time is limited. Also, the
prior art on edge computing employing both communications
and computing [6]–[11], [15], [17]–[31], generally assumes
that information on prospective computing tasks such as data
size and arriving order is completely known. However, in
practice, the information on tasks can be revealed gradually
over time since sensory data is randomly generated. Hence,
when a series of tasks are offloaded to a neighboring edge
node, predicting prospective future tasks is often not possible.
Moreover, instead of offloading the computational tasks to

base stations that are connected the servers, as done in [6]–[8],
and [27]–[31], the tasks can be offloaded to neighboring edge
devices by using device-to-device (D2D) communications so
as to reduce a communication latency. Furthermore, instead of
relying on a single edge node for computing, as done in [18],
[19], [21], it is beneficial to leverage multiple, neighboring
edge nodes for distributed computing of tasks. Consequently,
unlike the existing literature [6]–[11], [15], [17]–[31] which
assumes full information knowledge on tasks and adopts either
single edge node computing models or the models placing
edge computing at the base stations, our goal is to design an
online approach to maximize the number of computed tasks
on a network of multiple end-user edge nodes engaged in an
ephemeral edge computing network in which there is a strict
and limited total edge-computing time, when the information
on tasks is revealed in an online manner.

The main contribution of this paper is a novel framework
for distributed ephemeral edge computing that can be operated
within a limited time period, as needed in the applications
of Figs. 1 and 2. In particular, our framework allows tasks
from sensors to be offloaded to a source edge node, which
can subsequently allocate tasks to neighboring edge nodes
for computation before the source node finishes edge com-
puting. When the exact information on the offloaded tasks
is unknown to the source node, it is challenging to decide
which neighboring edge node has to compute which task. If
a prior information on the task size is known to the source
node, the computation delay at each neighboring edge node
can be determined and the source node will allocate the tasks
to the edge nodes according to their computational speed and
the size of the tasks. However, in practice, the computational
tasks arrive dynamically to the source edge node under a
real-time process (i.e., online process) and their different data
sizes cannot be known in advance. Therefore, we formulate
an online optimization problem whose goal is to maximize
the number of computed tasks when the total time period
dedicated to ephemeral edge computing is constrained. To
solve this problem without any prior information on the future
task size, we propose a new online greedy algorithm that is
used by the source edge node to make an on-the-fly decision
for selecting one of the neighboring node upon the sequential
arrival of the computational tasks while a prior information on
the task size is unknown. Then, we analyze the performance
of the proposed algorithm by using the notion of competitive
ratio; defined as the ratio between the number of computed
tasks achieved by the proposed algorithm and the optimal
number of computed tasks that can be achieved by an offline
algorithm. To this end, we apply the concept of primal-dual
approach where the ratio between the dual problem and the
original problem constitutes a competitive ratio. Therefore, we
derive dual problem so as to analyze the worst-case perfor-
mance of the proposed online algorithm. By doing so, the
worst-case competitive ratio can be derived as a function of the
task sizes and the communication and computing performance
of the neighboring edge nodes. Simulation results show that
the proposed online algorithm can maximize the number of
computed tasks and achieve a performance that is near-optimal
compared to an offline solution that has full information on
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tasks.
The rest of this paper is organized as follows. In Section II,

we present the system model. Section II-B formulates the
proposed online problem. Section III presents our proposed
solution and performance analysis. Simulation results are
analyzed in Section IV while conclusions are drawn in Section
V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an ephemeral edge computing system in which
sensors generate a set I of 𝐼 tasks2 that are offloaded to a
given edge node that we refer to hereinafter as the source
edge node. The source edge node can be seen as a node
with mobility such as vehicles and UAVs. Also, the source
edge node can be a static node. While the scenarios that
can use ephemeral edge computing are diverse, the role of
the source edge node is to offload the computational task
data from the sensors and allocate them to neighboring edge
nodes. Then, each neighboring edge node directly delivers the
computed result to the destination, such as a central controller
in a smart factory or an RSU in intelligent transportation
systems. Finally, the destination collects the computed tasks
from the neighboring edge nodes and makes a decision on
how to control the physical systems of the factory based on
the collected data. When tasks reach the source edge node,
they are labeled by their order of arrival. Thus, a task that
arrives a time instant 𝑖 is denoted as task 𝑖 ∈ I. Since
the source edge node processes the tasks using a first-input-
first-output policy, it will sequentially compute its tasks. The
set J denotes the set of 𝐽 edge nodes that are neighbors
to the source. Each edge node 𝑗 ∈ J is used to compute
some allocated task 𝑖 from the source edge node. We also
consider that the set of neighboring edge nodes J is initially
selected by the source edge node. In this regard, the source
edge node selects the neighboring edge nodes that are moving
towards its same destination. Note that the term “one task”
used here can be seen as a reference to a bundle of small tasks,
making it possible to execute multiple tasks at each edge node.
Furthermore, the set J can include multiple virtual entities of
an actual edge node when the number of edge nodes is too
small to accommodate all of the tasks. In this case, |J | = 𝑘𝐽
where 𝑘 is the number of virtual entities and 𝐽 is the number
of actual edge nodes. The virtual entities of an actual edge
node would then have to share the decision variables to have
the same priority, and the edge nodes would execute their tasks
in a round-robin manner. The association between the source
edge node and neighboring edge nodes can be established
based on the clustering algorithm proposed in [41], in which
the cluster, cluster head, and cluster members correspond,
respectively, to the ephemeral edge computing system, source
edge node, and neighboring edge nodes. In the considered
clustering algorithm, the source edge nodes exchange their
link information, such as link states, computation capacity,

2For consistency, we use the term ”task” to indicate both the data
generated by a sensor and the computational job that will be used to process
data.

and mobility, and each source edge node selects the qualified
neighboring edge nodes that can maintain the connectivity
during 𝑡tot with no computation in progress, based on the
exchanged information. The source edge node is assumed to
select 𝐽 neighboring edge nodes that are qualified to join a
local edge computing network to process the computational
tasks in terms of residual battery level and computation speed.
If there are no edge nodes (i.e., 𝐽 = 0), a sensor computes
its tasks by itself and transmits the results to the destination.
In this paper, we use the edge node essentially for boosting
the computation speed rather than for carrying data between
sensors and controllers. Note that, the case in which the node
is static, can easily be accommodate into our framework. For
instance, a static source edge node offloads the computational
task data from the sensors and allocates them to neighboring
static edge nodes. Then, each static neighboring edge node
calculates the allocated task and directly transmits the result to
a destination. Moreover, mobile edge nodes can be dispatched
to any location such as mountains and rural areas where the
fixed infrastructure is not readily accessible.

The source edge node allocates the computational tasks
to other neighboring edge nodes. Such distributed computing
can reduce the overall computational latency when multiple
tasks are computed. Also, to prevent an excessive energy
consumption at neighboring edge nodes, we assume that only
one task is allocated to one edge node. Therefore, when
neighboring edge node 𝑗 computes task 𝑖, the decision variable
is set as 𝑦𝑖 𝑗 = 1. The other edge nodes are not used to process
the same task 𝑖, i.e., if 𝑦𝑖 𝑗 = 1 then 𝑦𝑖 𝑗′ = 0,∀ 𝑗 ′ ∈ J \ { 𝑗},
∀𝑖 ∈ I. Task allocation to neighboring edge node incurs a
transmission latency. The data rate pertaining to the transmis-
sion of the data of task 𝑖 to neighboring edge node 𝑗 will be:
𝑟 𝑗 = 𝐹 (𝐵, 𝑔 𝑗 , 𝑃𝑡 , 𝜎), where 𝐹 is a general transmission rate
function, 𝑃𝑡 is the transmit power of the source edge node,
𝐵 is the bandwidth, 𝜎2 is the noise power, and 𝑔 𝑗 is the
channel gain between the source edge node and neighboring
edge node 𝑗 . Therefore, when the data size of task 𝑖 is 𝑑𝑖 bits,
the transmission latency becomes 𝑑𝑖/𝑟 𝑗 . Once task 𝑖 is received
by neighboring edge node 𝑗 , it will be processed within a
computational latency3 𝑑𝑖/ 𝑓 𝑗 where 𝑓 𝑗 is the computation
power of edge node 𝑗 .

In the proposed ephemeral edge computing system, the
time period that the source edge node actively uses edge
computing is given by 𝑡tot. To determine 𝑡tot, key features of
the edge nodes can be considered. From the aforementioned
cases of ephemeral edge computing, the total time period 𝑡tot
can be determined as the moving time period of a set of edge
computing vehicles on the road or UAVs in a smart factory. For
example, 𝑡tot can depend on the mobility that is characterized
by the speed and moving distance of the source edge node. 𝑡tot
could also depend on the different trajectories of the source
edge node. In the IoT scenarios, the total time period can be

3One way to estimate computation latency is to define how many CPU
cycles are needed for computing a bit of data. In this paper, the computation
latency is defined as 𝛼 ·𝑑𝑖/𝐹𝑗 where 𝛼 is the required number of CPU cycles
per bit (i.e., computation complexity) and 𝐹𝑗 is the CPU speed of edge node
𝑗 in Hz. For notational simplicity, we introduce the computation power as
𝑓 𝑗 = 𝐹𝑗/𝛼. Therefore, the computation delay can be simply expressed as
𝑑𝑖/ 𝑓 𝑗 .

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3208096

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Oulu University. Downloaded on September 29,2022 at 05:34:30 UTC from IEEE Xplore.  Restrictions apply. 



6

3

…

…

J

… I

Fig. 3: Online edge computing framework to offload computational tasks and allocate the offloaded tasks to neighboring edge nodes in total
edge computing period 𝑡tot within an ephemeral edge computing system.

given as the running time of an application or the time period
where a smart device is staying near the other edge devices
to deploy an edge computing network. For a given 𝑡tot, if a
certain number of tasks is processed as shown in Fig. 3, then
the tasks’ transmission and computation must be completed
within 𝑡tot. We define the duration between the arrival of the
first task and completion of task 𝑖 as the completion time of
task 𝑖. As shown in Fig. 3, the tasks are sequentially offloaded
from the source edge node to one of neighboring nodes. For
instance, when the first task, 𝑖 = 1, is being allocated, the
completion time including transmission and computation of
task 1 will be:

𝐽∑︁
𝑗=1

𝑑1

(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑦1 𝑗 ≤ 𝑡tot. (1)

Subsequently, since tasks are sequentially transmitted to the
neighboring edge nodes in the order of index 𝑖, there will be
𝑖 − 1 transmissions before task 𝑖 is transmitted. Therefore, the
completion time of any task 𝑖, ∀𝑖 ∈ I \ {1},

𝑖−1∑︁
𝑖′=1

𝐽∑︁
𝑗=1

𝑑𝑖′

(
1
𝑟 𝑗

)
𝑦𝑖′ 𝑗 +

𝐽∑︁
𝑗=1

𝑑𝑖

(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑦𝑖 𝑗 ≤ 𝑡tot, (2)

where the first term is the sum of the transmission latency
of 𝑖 − 1 tasks, and the second term is the transmission and
computation latency of task 𝑖. Given that tasks are allocated to
and computed by neighboring edge nodes in the order of index
𝑖, the completion time of task 𝑖 in (2) includes the summation
of the transmission latency for the previous 𝑖 − 1 tasks. Next,
we formulate an online task allocation problem to study how
tasks are distributed within an edge computing network.

B. Problem Formulation

Our goal is to allocate tasks to neighboring edge nodes
in order to complete the maximum number of tasks during
the period 𝑡tot needed for the source edge node to reach its
destination. To compute the tasks, the source edge node must
allocate each task to a neighboring edge node that can yield
low latency. In practice, when the computational tasks arrive
dynamically to the source edge node, their different data sizes
cannot be known in advance. As a result, the source edge node

will be unable to know a priori the information on future tasks,
and, therefore, optimizing the task distribution process under
this uncertainty is very challenging. Under such uncertainty,
selecting a neighboring edge node that computes a current task
must also account for potential arrival of future tasks. When
the future information is revealed sequentially, the arrival of
information can be captured within an online optimization
framework. In particular, by using online optimization tech-
niques such as those in [42], it is possible to make an on-the-
fly decision while the future information is given in an online
manner. To cope with the uncertainty of the future task arrivals
while considering the data rate and computing capabilities of
given neighboring edge nodes, we will thus propose a rigorous
online optimization framework that can handle the problem of
task allocation under uncertainty.

First, we formulate the following online task allocation
problem whose goal is to maximize the number of computed
tasks when the total latency is limited by 𝑡tot:

(D) : max
𝒚

∑︁𝐼

𝑖=1

∑︁𝐽

𝑗=1
𝑦𝑖 𝑗 (3)

s.t. (1), (2),∑︁𝐼

𝑖=1
𝑦𝑖 𝑗 ≤ 1,∀ 𝑗 ∈ J , (4)∑︁𝐽

𝑗=1
𝑦1 𝑗 ≤ 1, (5)∑︁𝐽

𝑗=1
(−𝑦𝑖−1 𝑗 + 𝑦𝑖 𝑗 ) ≤ 0,∀𝑖 ∈ I \ {1}. (6)

where 𝒚 is the vector of decision variables 𝑦𝑖 𝑗 ,∀𝑖 ∈ I,∀ 𝑗 ∈ J .
Hereinafter, this problem is called the dual problem. Con-
straints (1) and (2) show that task 𝑖’s completion time must be
smaller than 𝑡tot and tasks that cannot satisfy those constraints
will not be offloaded. (4) implies that each neighboring edge
node can compute at most one task to prevent an excessive
energy consumption at any given edge node. In constraint
(5), the first task is allocated to one of the neighboring edge
nodes. Constraint (6) implies that task 𝑖 can be allocated to a
neighboring edge node if the task allocation of task 𝑖 − 1 is
successful, i.e.,

∑𝐽
𝑗=1 𝑦𝑖−1 𝑗 = 1. Otherwise, if

∑𝐽
𝑗=1 𝑦𝑖−1 𝑗 = 0,

then, task 𝑖 cannot be allocated to any edge node, and∑𝐽
𝑗=1 𝑦𝑖 𝑗 = 0. Due to (5) and (6), we have

∑𝐽
𝑗=1 𝑦𝑖 𝑗 ≤ 1,∀𝑖 ∈ I,

and, thus, each task is allocated to only one of neighboring
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edge nodes. Given that the demand for mobile device has
been growing exponentially in recent years, mainly driven by
various emerging IoT applications, we assume that 𝐽 ≥ 𝐼 and
all tasks can be completed during a limited time 𝑡tot using the
edge computing network, and thus, there exist some feasible
solutions that satisfy all the constraints in problem (D).

Note that problem (D) is an online optimization problem and
is challenging to solve using conventional offline approaches.
This is because the value of 𝑑𝑖 ,∀𝑖, is sequentially revealed.
When the tasks that different sensors send to the source edge
node have a random size, the arrival sequence of 𝑑𝑖 is assumed
to be unpredictable and unknown. At the moment when 𝑑𝑖
is disclosed, the source edge node knows only the current
and past tasks. However, the source edge node must make an
instant and irrevocable online decision on which neighboring
edge node will compute task 𝑖. Under such uncertainty on 𝑑𝑖 ,
allocating tasks to existing neighboring edge nodes must also
account for potential arrival of new tasks. In fact, even if a
given task allocation can compute an existing task successfully,
it may have a detrimental effect on the allocation of incoming
tasks. In particular, if an edge node having a high data rate
and high computational speed is already assigned to compute
a previous task, it may not be possible to compute a future task
having a large size. Therefore, it is challenging to optimize the
task allocation between incoming tasks and neighboring edge
nodes.

In an online setting, the ad-auction problem in [42] shows
a generalized structure of an online linear programming
problem and its algorithmic solution. We observe that the
ad-auction problem and our problem have a key difference
in the dependency of the constraints. In particular, the ad-
auction problem includes the independent constraints about
the maximum allocation size for each buyer that corresponds
to the edge node in our problem. However, in our problem,
the constraints about the maximum allocation size of edge
nodes are dependent on each other. For instance, in (1) and (2),
the sum of the transmission latency of the previous tasks and
the processing latency of the current task should be less than
𝑡tot. The total time period is a function of the task allocation
decisions of all edge nodes while each edge node has an
independent task allocation size. Therefore, if the given budget
of total time period is previously spent to offload and compute
previous tasks, the source node cannot offload a new task
to a neighboring node that is still available to accept a task.
Additionally, our problem assumes that the arriving tasks are
sequentially allocated to the neighboring node. For instance,
the current task cannot be allocated to any node, if the previous
task is not allocated due to constraints (5) and (6). Due to the
aforementioned differences, we need to develop a novel online
task allocation strategy to solve problem (D).

III. PROPOSED ONLINE TASK ALLOCATION FRAMEWORK

Our goal is to determine the vector of decision variables
𝒚 so that the maximum number of sequentially arriving tasks
is successfully computed by our distributed ephemeral edge
computing system. When task size 𝑑𝑖 is unpredictable, the
decision is not trivial since the current decision may affect

the task allocation of future tasks, and all tasks cannot be
computed due to the limited time resource 𝑡tot. In this case,
making an on-the-fly online decision, can process a smaller
number of tasks than that of offline decision in which the
complete information on all tasks is initially known. There-
fore, the gap between the results achieved by online and
offline cases must be minimized. To this end, the notion of
competitive ratio [42] from competitive analysis can be used
to measure the performance of our online algorithm. It is
an effective metric that compares the ratio between the the
objective function’s value achieved by an online algorithm and
that of the offline optimal solution. In particular, the upper
bound of the competitive ratio can be defined as a constant 𝛾
such that

1 ≤ DIP,OPT

DIP
≤ 𝛾, (7)

where DIP,OPT denotes the offline optimal solution (OPT) of
problem (D) in the form of integer programming (IP), i.e., the
maximum number of computed tasks with the integer solution
of 𝑦𝑖 𝑗 . We will measure the performance of our proposed
algorithm by observing the upper bound value defined by 𝛾.

To find the upper bound of problem (D), we use the
structure of the primal and dual approach [42]. To this end,
the optimization variables 𝑦𝑖 𝑗 are relaxed to be linear, i.e.,
𝑦𝑖 𝑗 ∈ [0, 1]. By using the duality of linear programming,
problem (D) can be rewritten as:

(P) : min
𝒙,𝒛,𝑢1

∑︁𝐼

𝑖=1
𝑡tot𝑥𝑖 +

∑︁𝐽

𝑗=1
𝑧 𝑗 + 𝑢1, (8)

s.t.
(

1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖𝑥𝑖 +

(
𝑑𝑖

𝑟 𝑗

) 𝐼∑︁
𝑖′=𝑖+1

𝑥𝑖′ + 𝑧 𝑗 + 𝑢𝑖 − 𝑢𝑖+1 ≥ 1,

∀𝑖 ∈ I \ {𝐼},∀𝑗 ∈ J , (9)(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝐼𝑥𝐼 + 𝑧 𝑗 + 𝑢𝐼 ≥ 1,∀ 𝑗 ∈ J , (10)

𝑥𝑖 ≥ 0, 𝑧 𝑗 ≥ 0, 𝑢𝑖 ≥ 0, (11)

where 𝒙 and 𝒛 are vectors with elements 𝑥𝑖 ,∀𝑖 ∈ I, and
𝑧 𝑗 ,∀ 𝑗 ∈ J , respectively. This problem is called the primal
problem. In problem (8), 𝑥1, 𝑥𝑖≥2, 𝑧 𝑗 , 𝑢1 and 𝑢𝑖≥2 are the dual
variables associated, respectively, with constraints (1), (2), (4),
(5), and (6) in problem (D).

The values of (3) and (8) are denoted by DIP and PLP,
respectively. With DIP and PLP, a competitive ratio in (7) is
derived. From the dual and primal problem formulation, it can
be shown that DIP ≤ DLP ≤ DLP,OPT ≤ PLP,OPT ≤ PLP. The
first inequality is due to the fact that a linear relaxation allows
problem (D), which is in the form of linear programming (LP),
to have a higher value. The second inequality indicates that
the offline optimal solution always achieves a value higher
than or equal to the online solution of problem (D). The
third inequality captures the slackness of the primal and dual
problems. In the fourth inequality, the offline optimal solution
of problem (P), i.e., PLP,OPT is smaller than or equal to
any online solution of problem (P), i.e., PLP. Also, we have
DIP ≤ DIP,OPT ≤ DLP,OPT. The first inequality follows from
the optimality gap between the online and offline solutions
when 𝑦𝑖 𝑗 is an integer. The second inequality shows that linear
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Algorithm 1 Online Task Allocation Algorithm

1 : Initialize 𝑦𝑖 𝑗 = 𝑥𝑖 = 𝑧 𝑗 = 𝑢𝑖 = 0, ∀𝑖, 𝑗.
2 : for 𝑖 ∈ I
3 : Task 𝑖 arrives at source node.
4 : Select edge node by using (12).
5 : if (1) and (2) are satisfied, and

∑
𝑗 𝑦𝑖−1 𝑗 = 1,

6 : 𝑦𝑖 𝑗 ← 1.
7 : Allocate task 𝑖 to edge node 𝑗∗

𝑖
defined in (12).

8 : Update 𝑧 𝑗 , 𝑥𝑖 , and 𝑢𝑖 , respectively, by using (13), (14), and (15).
9 : otherwise,
10: 𝑦𝑖 𝑗 ← 0.
11: Set Δ𝑢𝑖 = 1 and update 𝑢𝑖′ , ∀𝑖′ ≤ 𝑖
12: end if
13: end for

relaxation of 𝑦𝑖 𝑗 allows us to have a higher value in problem
(D). Thus, the ratio in (7) becomes: DIP,OPT

DIP
≤ PLP

DIP
, where

PLP/DIP corresponds to 𝛾 in (7). Therefore, PLP/DIP becomes
the upper bound of the competitive ratio.

A. Online Greedy Algorithm

To find the ratio PLP/DIP, we develop a new online greedy
algorithm (Algorithm 1) specifically designed to solve prob-
lems (D) and (P), based on a general online optimization
framework using the primal and dual approach of [42]. In
Algorithm 1, the decision variables 𝑦𝑖 𝑗 , 𝑥𝑖 , 𝑧 𝑗 , and 𝑢𝑖 are
updated while observing the new value of 𝑑𝑖 . In particular,
when task 𝑖 arrives to the source edge node, the original dual
problem is solved by determining the value of 𝑦𝑖 𝑗 . Also, other
dual variables 𝑥𝑖 , 𝑧 𝑗 , and 𝑢𝑖 are updated in order to find the
performance bound of the proposed online algorithm. At the
initial step of Algorithm 1, all variables are set to 0. The
algorithm selects which edge node should compute task 𝑖.
Since it is beneficial to offload task 𝑖 from the source node to
the neighbor with a high data rate and computing speed, this
decision rule can be designed to select an edge node with the
shortest communication and computing latency to process the
task 𝑖. To this end, edge node 𝑗∗ is selected by following the
decision rule:

𝑗∗ = arg max
∀ 𝑗

(1 − 𝑧 𝑗 )𝛼(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖

, (12)

where 𝛼 ≥ 1 is a constant used to guarantee that at least one
of the tasks can be fairly allocated among the neighboring
edge nodes. The detailed derivation of the decision rule in
(12) is presented in Appendix A. Since 𝑧 𝑗 is initially zero,
the decision rule in (12) only considers the latency required
to process task 𝑖. In Algorithm 1, if a neighboring node 𝑗

accepts a task, the value of 𝑧 𝑗 is updated to become positive.
By doing so, 1−𝑧 𝑗 is reduced, and, hence, another neighboring
node can be selected when the next task arrives. However, if
the neighboring node 𝑗 results in (1 − 𝑧 𝑗 )𝛼/

(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖 ≥

(1 − 𝑧 𝑗′)𝛼/
(

1
𝑟 𝑗′
+ 1
𝑓 𝑗′

)
𝑑𝑖 ,∀ 𝑗 ′ ∈ J \ { 𝑗}, the same node 𝑗 can

be selected again. This can violates constraint (4) that restricts
each neighbor to accept one task. Therefore, a large value of
𝛼 can be used to make (1 − 𝑧 𝑗 )𝛼 close to zero. Then, at the
arrival of a new task, a different neighboring node is selected
as 𝑗∗ by using decision rule (12).

After a neighboring node 𝑗∗ is selected for task 𝑖, if the time
budget is still available for the current task 𝑖 from constraints
(1) and (2), neighbor node 𝑗∗ finally receives task 𝑖 from the
source node and performs processing. At this moment, the
dual and primal variables are updated in Algorithm 1. The
algorithm sets 𝑦𝑖 𝑗∗ = 1 showing that task 𝑖 is allocated to
edge node 𝑗∗. Next, the value of 𝑧 𝑗∗ must be updated since
𝑧 𝑗∗ is the primal variable associated with the dual problem’s
constraint (4) with 𝑗 = 𝑗∗. When a neighboring node initially
does not have any accepted task, all 𝑧 𝑗 ,∀ 𝑗 ∈ J are set to zero.
However, if a neighboring node 𝑗 accepts a task 𝑖, 𝑧 𝑗 will be
updated as follows:

𝑧 𝑗 = 𝑧 𝑗

(
1 +

(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖

𝑡tot

)
+

(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖

𝑡tot

(
1

𝑐 − 1

)
, (13)

where 𝑐 > 1 is a positive constant that will be defined
later. Also, the total time period 𝑡tot is assumed to be enough
to process at least one task, and, thus,

(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖
𝑡tot

< 1.
Meanwhile, the update of 𝑥𝑖 must satisfy constraints (9) and
(10). The value of 𝑥𝑖 is updated by using the rule:

𝑥𝑖 =
(1 − 𝑧 𝑗 )𝛼(

1/𝑟 𝑗 + 1/ 𝑓 𝑗
)
𝑑𝑖
. (14)

Moreover, the values of 𝑢𝑖′ ,∀𝑖′ ≤ 𝑖, is updated as follows:

𝑢𝑖′ = 𝑢𝑖′ + Δ𝑢𝑖 ,∀𝑖′ ≤ 𝑖, (15)

where we define, ∀ 𝑗 ′ ∈ J ,

Δ𝑢𝑖 = max
𝑗′∈J\{ 𝑗∗ }

(
1 −

((
1
𝑟 𝑗′
+ 1
𝑓 𝑗′

) (1 − 𝑧 𝑗∗ )𝛼(
1/𝑟 𝑗∗ + 1/ 𝑓 𝑗∗

) + 𝑧 𝑗′) , 0) .
Otherwise, if the edge nodes in J do not satisfy (1) and (2),
then, the tasks arriving after task 𝑖 cannot be computed, i.e.,
𝑦𝑖 𝑗 = 0, and those tasks will not be offloaded. In this case,
to satisfy constraints (9) and (10), Algorithm 1 updates any
𝑧 𝑗 that has a value of 0 to 1 if 𝐽 ≤ 𝐼, or, otherwise, Δ𝑢𝑖 is
set to 1. This update is intended to satisfy the constraints (9)
and (10) for all 𝑖 ∈ I and 𝑗 ∈ J . For the arrival of each
task, the proposed algorithm is a one-shot decision making
process to find a feasible solution. Therefore, by iterating
the proposed algorithm for all arriving tasks during 𝑡tot, our
algorithm converges to a feasible solution of problem (D).

B. Performance Analysis

For the analysis hereinafter, we assume that 𝛼 = 1 for
analytical tractability. In practice, this assumption implies that
the decision rule (12) tends to select the neighboring node
with a high data rate and computing speed. As 𝛼 increases,
the decision rule selects a new neighboring node that has not
been used to process any previous task. Now, as a first step
to derive the competitive ratio of the proposed algorithm, we
find the following result.

Lemma 1. The constraints of the primal problem (9) and (10)
will be satisfied if 𝑧 𝑗 , 𝑥𝑖 , and 𝑢𝑖 are updated by (14), (13), and
(15), respectively.

Proof. See Appendix B. □
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The next step of our analysis is to check whether the con-
straints in problem (D) is satisfied. In particular, since it is
observable that the upper bound of the left-hand side of the
constraint (4) can be greater than one, (4) is not satisfied for
𝛼 = 1, as shown next.

Lemma 2. In (4),
∑
𝑦𝑖 𝑗 is violated by at least 2.

Proof. See Appendix C. □

This result implies that more than two tasks can be offloaded to
the same neighboring node. However, there exists a condition
under which constraint (4) is satisfied.

Lemma 3. (4) is satisfied if

𝑑𝑖 >

((
1/𝑟 𝑗∗

𝑖
+ 1/ 𝑓 𝑗∗

𝑖

)−1
−

(
1/𝑟 𝑗∗

𝐼
+ 1/ 𝑓 𝑗∗

𝐼

)−1
)
𝑡tot (𝑐−1), where

𝑗∗
𝑖

is the node selected to process task 𝑖,∀𝑖 ∈ I.

Proof. After task 𝑖 is offloaded to node 𝑗∗
𝑖
, Algorithm 1

updates 𝑧 𝑗∗
𝑖

=

(
1/𝑟 𝑗∗

𝑖
+ 1/ 𝑓 𝑗∗

𝑖

)
𝑑𝑖

𝑡tot (𝑐−1) . Next, when task
𝑖 + 1 arrives, the condition above yields the inequality

1(
1/𝑟 𝑗∗

𝑖+1
+1/ 𝑓 𝑗∗

𝑖+1

)
𝑑𝑖+1

> 1(
1/𝑟 𝑗∗

𝐼
+1/ 𝑓 𝑗∗

𝐼

)
𝑑𝑖+1

>
(1−𝑧 𝑗∗

𝑖
)𝛼(

1/𝑟 𝑗∗
𝑖
+1/ 𝑓 𝑗∗

𝑖

)
𝑑𝑖+1

,∀𝑖 ∈ I

with 𝛼 = 1. Therefore, (12) is used to select a new node 𝑗∗
𝑖+1

to process task 𝑖 + 1. Hence, a different neighboring node is
selected for each task. □

For instance, the condition in Lemma 3 can be satisfied if
the value of 𝑑𝑖 is decreasing over time. In that case, every
neighboring node can be used to process different tasks, thus
satisfying constraint (4). As a last step, we derive the increment
rate of the Δ𝑃/Δ𝐷 when a new task 𝑖 arrives in an online
manner.

Lemma 4. When the dual problem’s objective function in-
creases by one, the primal problem’s objective function in-
creases by 𝑡tot

(1/𝑟 𝑗+1/ 𝑓 𝑗)𝑑𝑖
(
1 + 1

𝑐−1

)
+ Δ𝑢𝑖 for any given 𝑐 > 1.

Proof. See Appendix D. □

Now, to derive a competitive radio for the proposed algo-
rithm, we will adopt a primal-dual online analysis analogous to
the one done in [42]. In Lemma 1, it is shown that the primal
variable is updated while satisfying the constraints (9) and
(10). Then, we show that the dual constraints from (1) to (6)
are satisfied under the derived condition in Lemma 3. Finally,
the increment rates of the primal and dual problems are,
respectively, derived in Lemma 4. As a result, from Lemmas
1, 3, and 4, we obtain the following key result:

Theorem 1. The upper bound of the competitive ratio in
Algorithm 1 is O(1/min𝑖 𝛽𝑖 𝑗 ) where 𝛽𝑖 𝑗 ≜

(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖
𝑡tot

if

𝑑𝑖 >
( (

1/𝑟 𝑗∗
𝑖
+ 1/ 𝑓 𝑗∗

𝑖

)−1
−

(
1/𝑟 𝑗∗

𝐼
+ 1/ 𝑓 𝑗∗

𝐼

)−1)
𝑡tot (𝑐 − 1).

Proof. Lemma 1 first shows that the constraints of problem (P)
are satisfied for all tasks that are assigned to the set of edge
nodes. At each iteration, Lemma 3 shows that the increment
of Δ𝑃/Δ𝐷 is at most

Δ𝑃

Δ𝐷
≤ 1

min𝑖 𝛽𝑖 𝑗

(
1 + 1
(1 + 𝛿) 1

𝛿 − 1

)
+max

𝑖
Δ𝑢𝑖 , (16)
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Fig. 4: Example of the cumulative probability distribution of
𝐹𝐾 |𝐻 (𝑘).

where 𝛽𝑖 𝑗 =
(

1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖
𝑡tot

. Also, (16) has an upper bound at 𝛿 =
1. Since 𝐷 𝐼𝑃 =

∑
∀𝑖, 𝑗 𝑦𝑖 𝑗 , the future tasks 𝑖 > 𝐷 𝐼𝑃 cannot be

allocated to any neighbor. In that case, Algorithm 1 sets Δ𝑢𝑖 =
1. Then, all values of 𝑢𝑖′ ,∀𝑖′ ≤ 𝑖 increase by one, resulting in
Δ𝐷 = 0 and Δ𝑃 = 1. Thus, we have 𝛾 ≤ Δ𝑃

Δ𝐷
+ (𝐼 − 𝐷 𝐼𝑃). We

observe that Δ𝑃/Δ𝐷 increases with the rate of O(1/min𝑖 𝛽𝑖 𝑗 )
as 𝛽𝑖 𝑗 → 0. At the same time, 𝐼 − 𝐷 𝐼𝑃 can decrease with
𝐷 𝐼𝑃 when the number of processed tasks increases. Hence,
the ratio 𝛾 can be bounded by O(1/min𝑖 𝛽𝑖 𝑗 ). □

This result characterizes the online performance bound
achieved by Algorithm 1 in which 𝛾 can decrease as min𝑖 𝛽𝑖 𝑗
approaches 1. If min

(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖
𝑡tot
≈ 1, we have an envi-

ronment in which all neighboring edge nodes have similar
communication and computing performance, thus resulting in
the smallest 𝛾 close to 1. In such a case, the online and offline
performance gap is minimized. Also, Algorithm 1 can be
usefully converted into another simple algorithm that updates
Δ𝑢𝑖 = 0 for all tasks 𝑖 ∈ I so that problem (P) has a value of
𝐼, by assuming

(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖
𝑡tot
,∀𝑖, 𝑗 , equals to 1. This algorithm

shows that the competitive ratio is inherently upper bounded
by 𝑃LP/𝐷IP = 𝐼 in the worst case.

As shown in Theorem 1, it is essential to investigate how the
value of 1/𝛽𝑖 𝑗 is determined when measuring a realistic perfor-
mance of the proposed ephemeral edge computing system. We
conduct a statistical analysis to derive the probability corre-
sponding to different values of 1/𝛽𝑖 𝑗 . To this end, it is assumed
that the data rate and task size are randomly determined. In
particular, the size of data 𝑑𝑖 is generated by following a
uniform distribution random variable 𝐷 ∼ 𝑈 (0, 𝐷max) where
𝐷max is the maximum size of a task. We assume that the data
rate is denoted by a random variable 𝑅 ≜ log2 (1 + 𝑃) where
𝑃 is the received power in a fading channel modeled as an
exponential distribution with parameter _, i.e., 𝑃 ∼ exp(_).
This statistical model is a simplified version of our edge
computing system model. This statistical modeling facilitates
the observation of factors that affect the performance of the
proposed algorithm. Then, we derive the probability to have a
certain value of 1/𝛽𝑖 𝑗 .
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Theorem 2. If 𝑘 ≥ 𝑡tot 𝑓

𝐷max
, the probability that 1/𝛽𝑖 𝑗 ≤ 𝑘 is

(𝐹𝐾 (𝑘) − 𝐹𝐾 (1))/(1 − 𝐹𝐾 (1)) where

𝐹𝐾 (𝑘) =
1

𝐷max

[∫ 𝑡tot 𝑓
𝑘

0

(
1 − exp

(
−_

(
2

1
𝑡tot
𝑘𝑥
− 1

𝑓 − 1

)))
𝑑𝑥

+
(
𝐷max −

𝑡tot 𝑓

𝑘

)]
. (17)

Proof. We define a random variable 𝐾 ≜ 𝑡tot(
1

log2 (1+𝑃)
+ 1

𝑓

)
𝐷

.

Therefore, if 𝑘 ≥ 𝑡tot 𝑓

𝐷max
, the cumulative density function of

a random variable 𝐾 is shown as:

𝐹𝐾 (𝑘) = Pr

(
𝑡tot(

1
log2 (1+𝑃)

+ 1
𝑓

)
𝐷

> 𝑘

)

=

∫ 𝐷max

0
Pr

(
𝑡tot(

1
log2 (1+𝑃)

+ 1
𝑓

)
𝑥

> 𝑘 |𝐷 = 𝑥

)
Pr(𝐷 = 𝑥)𝑑𝑥

=
1

𝐷max

[∫ 𝑡tot 𝑓
𝑘

0

(
1 − exp

(
−_

(
2

1
𝑡tot
𝑘𝑥
− 1

𝑓 − 1

)))
𝑑𝑥

+
(
𝐷max −

𝑡tot 𝑓

𝑘

)]
. (18)

When 𝐻 is defined as the event in which 𝐾 ≥ 1, the cumulative
density function of a random variable 𝐾 conditioned on 𝐻 is

𝐹𝐾 |𝐻 (𝑘) =
Pr (𝐾 ≤ 𝑘 ∩ 𝐾 ≥ 1)

Pr(𝐾 ≥ 1) (19)

= (𝐹𝐾 (𝑘) − 𝐹𝐾 (1))/(1 − 𝐹𝐾 (1)). (20)

□

When the tasks are randomly generated and wireless per-
formance dynamically changes, Fig. 4 shows an example
of the cumulative probability distribution of 𝐹𝐾 |𝐻 (𝑘) when
𝑡tot = 2, 1/ 𝑓 = 0.5, and 𝐷max = 4. In Fig. 4, if 𝑘 = 2,
the probability that 𝑘 = 1/𝛽 is less than 2 is around 50 %.
Therefore, the probability that 𝑘 becomes the empirical value
of a competitive ratio in Theorem 2 is: Pr(1/min𝑖 𝛽𝑖 𝑗 ≤ 𝑘) =
Pr(max𝑖 1/𝛽𝑖 𝑗 ≤ 𝑘) = (𝐹𝐾 |𝐻 (𝑘))𝐼 . Also, from Theorem 2, the

derived probability does not change if the total time period is
equal to the processing time of the maximum task size, i.e.,
𝑡tot = 𝐷max/ 𝑓 . Hence, if an ephemeral edge computing system
is designed to use the maximum task size given by 𝑡tot 𝑓 , it is
possible to expect the empirical value of the competitive ratio
when the data rate and task size are randomly determined in
a wireless environment.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we use a MATLAB simulator in which
we consider that the source edge node initially forms a network
with 𝐽 = 10 neighboring edge nodes uniformly distributed
within a circular area of radius between 10 m and 100 m. For
instance, this can be seen as a generalized scenario in which
an edge-enabled UAV (or vehicle) forms an edge network
with 𝐽 neighboring nodes in a smart factory (or on a road
environment). The task size follows a uniform distribution
between 50 and 100 Mbits, and the number of tasks is 𝐼 = 10.
The power spectral density of the noise is -174 dBm/Hz, the
carrier frequency is 2.1 GHz, and 𝑃𝑡 = 20 dBm. The com-
putational speed of each neighboring edge node is randomly
determined from a uniform distribution between 1 × 108 and
5 × 108 bits/sec and we assume 𝑟 𝑗 = 𝐵 log2

(
1 + 𝑔 𝑗𝑃𝑡

𝜎2

)
. The

offline optimal solution is calculated by using a mixed-integer
linear programming (MILP) solver with the assumption that
the size 𝑑𝑖 of task 𝑖, ∀𝑖 ∈ I, is completely known. All
simulations are statistically averaged over 5000 independent
runs.

Fig. 5 first shows the empirical ratio between the offline
optimal and online solutions, DIP,OPT/DIP for the different
values of min𝑖 𝛽𝑖 𝑗 when 𝑡tot = 1, 𝛼 = 1, and 𝑓 𝑗 ∈ [7 ×
107, 10 × 107]. The numerical results in Fig. 5 confirm that
the ratio DIP,OPT/DIP decreases as min𝑖 𝛽𝑖 𝑗 increases as shown
in Theorem 1. For example, the empirical competitive ratio can
be reduced up to 19.2 % if the smallest 𝛽𝑖 𝑗 increases from 0.58
to 0.85. Also, in Fig. 5, the cases in which the ratio is one
correspond to scenarios in which the proposed algorithm finds
the optimal solution. For instance, when min𝑖 𝛽𝑖 𝑗 is greater
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than 0.79, Fig. 5 shows that the empirical ratio becomes one
since DIP,OPT = DIP.

Fig. 6 shows the average number of accepted tasks per node,
i.e.,

∑
𝑖 𝑦𝑖 𝑗 , for two values of 𝛼 = 1 and 100. In Fig. 6, the

number of accepted tasks per node needs to be one due to
constraint (6). When 0 < 𝑧 𝑗 < 1, the selection rule in (12)
can decide to offload a new task to a neighboring node that
already accepted a task. In particular, Fig. 6 shows that the
average number of accepted tasks per node increases with
𝑡tot for 𝛼 = 1. This is due to the fact that the selection
rule in (12) is affected by two factors, i.e., (1 − 𝑧 𝑗 )𝛼 and
1/

(
(1/𝑟 𝑗 + 1/ 𝑓 𝑗 ) 𝑑𝑖𝑡tot

)
where (1 − 𝑧 𝑗 )𝛼 prevents the algorithm

from choosing the same node multiple times. It is observable
that 1/

(
(1/𝑟 𝑗 + 1/ 𝑓 𝑗 ) 𝑑𝑖𝑡tot

)
increases as 𝑡tot increases. Therefore,

with a large 𝑡tot, the selection rule in (12) is determined by
1/

(
(1/𝑟 𝑗 + 1/ 𝑓 𝑗 ) 𝑑𝑖𝑡tot

)
, rather than (1−𝑧 𝑗 )𝛼. For example, Fig. 6

shows the average number of accepted tasks can reach up to
2 when 𝑡tot increases from 1 to 3. Thus, to avoid offloading
more than one task to the same neighboring node, a large 𝛼
is used in Fig. 6. If 𝛼 is set to a large value, e.g., 100, Fig. 6
shows that the selection rule in (12) only offloads the tasks to
different nodes. This is due to the fact that (1 − 𝑧 𝑗 )𝛼 is close
to zero for a large 𝛼 when 0 < 𝑧 𝑗 < 1. For instance, when
𝛼 = 100, the average number of accepted tasks is 1 for all 𝑡tot.
To evaluate Algorithm 1 in a general task arrival, 𝛼 = 100 is
used for the rest of our simulations.

Fig. 7 shows the percentage of computed tasks for different
values of 𝑡tot from 0 to 7 seconds when the total bandwidth
is 10 MHz. For comparison, we calculate the offline optimal
solution of the dual integer problem, i.e., DIP,OPT, by assuming
that all task sizes, 𝑑𝑖 , ∀𝑖, are known in advance. The offline
optimal DIP,OPT shows that the percentage of computed tasks
increases with 𝑡tot that is a given parameter in problem (D). The
design goal of our online algorithm is to achieve a performance
that is similar to the offline optimal when the task size 𝑑𝑖 is
revealed one by one. To this end, in Fig. 7, we can observe that
the optimal solution and the solution found by Algorithm 1
are very close for all values of 𝑡tot. This demonstrates the

effectiveness of the proposed algorithm that can select properly
neighboring edge nodes to offload tasks while maximizing the
number of computed tasks. For instance, Fig. 7 shows that the
maximum gap between the offline optimality and the online
solution is only 7.1 % when 𝑡tot = 4. Also, in Fig. 7, as
𝑡tot increases, more tasks can be readily processed within a
given time period, and, therefore, the percentage of computed
tasks approaches to 100 %. In particular, when 𝑡tot = 7,
Fig. 7 shows that all computational tasks are processed on
the edge computing network in both online and offline cases,
respectively.

Fig. 8 shows the cumulative frequency of the empirical
ratio, DIP,OPT/DIP, for both the offline optimal and online
solutions when 𝑡tot = 1, 2, 3, 4. In Fig. 8, the ratio DIP,OPT/DIP
is shown to have a step-like shape since both DIP,OPT and DIP
are integers, and there exists a limited number of possible
values for DIP,OPT/DIP for specific settings of the simulations.
In Fig. 8, the cases in which the ratio is one correspond to
scenarios in which the proposed algorithm finds the optimal
solution. For example, in Fig. 8, about 38 − 88 % iterations
result in the slope of 1 where the optimal solution is achieved
by running the proposed algorithm. By the definition of 𝛾 in
(7), the number of computed tasks with the proposed algorithm
is at least DIP,OPT/𝛾. For instance, in Fig. 8, the largest
empirical competitive ratio is shown to be 2 which implies
that the number of computed task is at least DIP,OPT/2 when
the proposed algorithm is executed with the given simulation
parameters.

Fig. 9 shows the percentage of computed tasks for two
different ranges of computational speeds of the edge nodes
and different task sizes when the bandwidth is changed from
3 to 10 MHz with 𝑡tot = 7 and distance randomly distributed
in range from 10 m to 70 m. In Fig. 9, neighboring edge
nodes with low computational speeds are represented by
𝑓 𝑗 ∈ [5 × 107, 8 × 107], whereas edge nodes with high com-
putational speeds are assumed to have 𝑓 𝑗 ∈ [5× 108, 8× 108].
Also, we consider two scenarios with small-size tasks 𝑑𝑖 ∈
[50×106, 70×106] and large-size tasks 𝑑𝑖 ∈ [70×106, 90×106],
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Fig. 10: The empirical competitive ratios DIP,OPT/DIP for different
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respectively. From Fig. 9, we can see that the number of
computed tasks increases with more bandwidth. This is due
to the fact that a higher bandwidth can increase the data rate
and reduces tasks’ transmission latency. Therefore, more tasks
can be allocated to neighboring edge nodes. For instance,
the number of computed tasks can increase about two-fold
if the bandwidth changes from 3 MHz to 10 MHz in the
case of edge nodes with low computational speeds and large-
size tasks. Also, Fig. 9 shows that using edge nodes with
high computational speeds increases the number of computed
tasks. For example, the percentage of computed tasks increases
from 88 % to 99.5 % by using edge nodes having high
computational speeds when bandwidth is 5 MHz and the task
sizes are small. Moreover, Fig. 9 shows that more tasks can be
computed as task sizes become smaller; for example, small-
sized tasks result in 32.8 % more computed tasks compared
to that of large-sized tasks in the case of 4 MHz in a high
computational speed case.

Fig. 10 shows the empirical competitive ratio DIP,OPT/DIP
for different computational speeds of neighboring edge nodes
and different task sizes when bandwidth is 5 MHz. We can
observe that the proposed algorithm in both cases of edge
nodes having high computational speeds almost achieves the
optimal performance that can be achieved by the offline
optimal solution, i.e., DIP,OPT. However, as shown in Fig. 9,
since DIP,OPT in case of edge nodes having high computational
speeds with large-sized tasks is lower than that in case of
edge nodes having low computational speeds with small-
sized tasks, the percentage of computed tasks in case of
edge nodes having low computational speeds with small-
sized tasks is higher than that in case edge nodes having
high computational speeds with large-sized tasks. A higher
computational capability can be achieved in a larger edge
network than in a small one. However, establishing a large
network will increase the signaling overhead as the number
of participating nodes increases. Hence, between a large and
small edge network, there clearly exists a tradeoff between
signaling overhead and computing capability.

In Fig. 11, the percentage of computed tasks is shown for

different numbers of neighboring edge nodes ranging from 10
to 60. The scenario in Fig. 11 assumes that neighboring edge
nodes are randomly distributed within a maximum distance
that is varied in range from 30 m to 110 m with 𝐼 = 10,
𝐵 = 5 MHz, and 𝑡tot = 7. Simulations assume that the small-
size tasks are in the range of 𝑑𝑖 ∈ [40×106, 70×106]. Also, the
neighboring nodes use low computational speeds in the range
of 𝑓 𝑗 ∈ [5×107, 8×107]. In Fig. 11, it is clear that the number
of computed tasks increases with the number of neighboring
edge nodes. As the set of neighboring edge nodes becomes
larger, the source edge node has a higher probability to allocate
its tasks to the neighboring edge nodes having a high data
rate and computational speed. For instance, the number of
computed tasks can increase by about 8.2 % if the number
of edge nodes increases from 10 to 60 when the maximum
distance is 110 m. Fig. 11 also shows that the number of
computed tasks increases if the maximum communication
distance between edge nodes is reduced. For example, the
percentage of computed tasks increases from 91.8 % to 99.6
% by reducing the maximum distance between neighboring
edge nodes and the source edge node.

In Fig. 12, the percentage of computed tasks is shown for
different transmit powers from 20 dBm to 25 dBm when the
neighboring nodes use identical computing speed that varies
from 108 to 7.5 × 108. Fig. 12 shows that the number of
computed tasks increases with the transmit power of the source
edge node. This is due to the fact that the increased data
rate reduces the wireless transmission latency, and, therefore,
more tasks can be processed within a limited time period. For
example, the percentage of computed tasks increases by up
to 10.7 % if the transmit power changes from 20 dBm to
25 dBm with 𝑓 𝑗 = 108. Also, Fig 12 shows that increasing a
computing speed is beneficial to process notably more tasks.
For instance, if the computing speed of edge nodes increases
from 108 to 7.5×108, the edge computing network can process
up to about 20% more tasks. Thus, Fig 12 shows that reducing
the computing latency by using a high computing speed is
needed while reducing the transmission latency with a high
power.
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Fig. 11: Percentage of computed tasks for different number of neigh-
boring edge nodes and different maximum communication distances.
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V. CONCLUSION

In this paper, we have proposed a new concept of ephemeral
edge computing in which the total time period dedicated to
edge computing is limited. This concept of ephemeral edge
computing is applicable to a wide range of scenarios including
Industry 4.0 smart factory, intelligent transportation systems,
and smart homes. By modeling a generalized scenario of
ephemeral edge computing, we have proposed a novel frame-
work to maximize the number of successful computations
over an edge computing network within a limited time period.
This framework allows a source edge node to offload tasks
from sensors and distributed tasks to neighboring edge nodes
in order to compute the tasks before the source edge node
discontinues its current edge computing network. When the
exact information on the offloaded tasks is unknown to the
source edge node, it is challenging to optimize the decision
of which neighboring edge node has to compute each task.
Therefore, we have formulated an online optimization problem
that jointly optimizes the communication and computation la-
tency is formulated and introduced an online greedy algorithm
to solve the problem. Then, by using the structure of the
primal-dual problem formulation, we have derived a feasible
competitive ratio as a function of the task sizes and the data
rates of the edge nodes. Simulation results have shown that
the empirical competitive ratio defined as the ratio between
the number of computed tasks achieved by the proposed
online algorithm and offline optimal case is at most 2 in a
given simulation setting. Thus, the simulation results confirm
that the proposed online algorithm can efficiently allocate
tasks to neighboring edge nodes under uncertainty. Our future
work will include extending our results to additional practical
scenarios in which multiple tasks can be allocated to edge
nodes under the consideration of the lifetime of an ephemeral
edge computing network.

APPENDIX A
DERIVATION OF (12)

In (3), problem (D) is formulated to minimize the sum
delay. In this regard, it is beneficial to offload task 𝑖 from

the source node to the neighbor with a high data rate and
computing speed to minimize the sum delay. Therefore, the
decision rule to select edge node 𝑗∗ needs to be designed
to select an edge node with the shortest communication and
computing latency to process the task 𝑖, i.e.,

(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖 . In

(8), problem (P) is formulated to minimize the cost objective
function

∑𝐼
𝑖=1 𝑡tot𝑥𝑖+

∑𝐽
𝑗=1 𝑧 𝑗+𝑢1. Then, the decision rule to

select edge node 𝑗∗ need to be designed to select an edge
node with the smallest 𝑧 𝑗 which is equivalent to select an
edge node with the largest

(
1 − 𝑧 𝑗

)𝛼. Thus, the decision rule
to select edge node 𝑗∗ is obtained by (12).

APPENDIX B
PROOF OF LEMMA 1

We will show that the first constraint is always satisfied for
all 𝑖 when using the updating rule. When allocating task 𝑖′,
𝑥𝑖 = 0,∀𝑖 ≥ 𝑖′ and 𝑢𝑖 = 0,∀𝑖 due to the initialization. From the
constraints in (9) and (10), we have that

(
1/𝑟 𝑗 + 1/ 𝑓 𝑗

)
𝑑𝑖𝑥𝑖 +(

𝑑𝑖/𝑟 𝑗
) ∑𝐼

𝑖′=𝑖+1 𝑥𝑖′ + 𝑧 𝑗 + 𝑢𝑖 − 𝑢𝑖+1 =
(
1/𝑟 𝑗 + 1/ 𝑓 𝑗

)
𝑑𝑖 (1 −

𝑧 𝑗 ) 1
(1/𝑟 𝑗+1/ 𝑓 𝑗)𝑑𝑖 + 𝑧 𝑗 = 1. Then, we consider the constraints

regarding other edge nodes 𝑗 ∈ J \ { 𝑗∗} for a given task
∀𝑖 ∈ I. When 𝑢𝑖 is updated, 𝑢𝑖−𝑢𝑖+1 is equal to Δ𝑢𝑖 . Therefore,
we can show that edge node ∀ 𝑗 ∈ J satisfy the constraint (5)
as follows:(

1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖 (1 − 𝑧 𝑗∗ )𝛼

1(
1/𝑟 𝑗∗ + 1/ 𝑓 𝑗∗

)
𝑑𝑖
+ 𝑧 𝑗 + Δ𝑢𝑖

=

(
1/𝑟 𝑗 + 1/ 𝑓 𝑗

)(
1/𝑟 𝑗∗ + 1/ 𝑓 𝑗∗

) (1 − 𝑧 𝑗∗ )𝛼 + 𝑧 𝑗
+max
𝑗′∈J

(
1−

( (
1/𝑟 𝑗′ + 1/ 𝑓 𝑗′

)(
1/𝑟 𝑗∗ + 1/ 𝑓 𝑗∗

) (1−𝑧 𝑗∗ )𝛼 + 𝑧 𝑗′) , 0) (21)

≥
(
1/𝑟 𝑗 + 1/ 𝑓 𝑗

)(
1/𝑟 𝑗∗ + 1/ 𝑓 𝑗∗

) (1 − 𝑧 𝑗∗ )𝛼 + 𝑧 𝑗
+

(
1 −

( (
1/𝑟 𝑗 + 1/ 𝑓 𝑗

)(
1/𝑟 𝑗∗ + 1/ 𝑓 𝑗∗

) (1 − 𝑧 𝑗∗ )𝛼 + 𝑧 𝑗 )) = 1. (22)

Hence, the primal constraints (9) and (10) are satisfied.
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APPENDIX C
PROOF OF LEMMA 2

For a given 𝑗 , the upper bound of
∑
∀𝑖 𝑦𝑖 𝑗 in (4) is derived

by using the fact that the proposed algorithm does not update
𝑧 𝑗 if

∑
𝑖 𝑦𝑖 𝑗 ≥ 1. In particular, when the task is indexed by

𝑖′, suppose that the task allocation is not possible for the first
time, i.e., 𝑦𝑖 𝑗 = 0, ∀𝑖 > 𝑖′. Before the last task 𝑖′ arrives, the
value of

∑
∀𝑖 𝑦𝑖 𝑗 is still less than the total budget of edge node

𝑗 . However, after allocating task 𝑖′ to edge node 𝑗 ,
∑
∀𝑖 𝑦𝑖 𝑗 can

be greater then one. The violation of the constraint (4) makes
the value of 𝑧 𝑗 be greater than 1. Therefore, for any 𝑐 > 1, the
inequality 𝑧 𝑗 ≥ 1

𝑐−1

(
𝑐
∑𝑖′

𝑖=1 𝑦𝑖 𝑗 − 1
)

is used to derive the upper

bound of
∑
∀𝑖 𝑦𝑖 𝑗 . From this relationship, if

∑𝑖′

𝑖=1 𝑦𝑖 𝑗 ≥ 1, we
have 1

𝑐−1

(
𝑐
∑𝑖′

𝑖=1 𝑦𝑖 𝑗 − 1
)
≥ 1, then 𝑧 𝑗 ≥ 1.

When we define 𝛽𝑖′ 𝑗 =
(

1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖′
𝑡tot

, the update rule of 𝑧 𝑗
in (13) is used as following:

𝑧 𝑗 = 𝑧 𝑗 (1 + 𝛽𝑖′ 𝑗 ) + 𝛽𝑖′ 𝑗
1

𝑐 − 1
(23)

≥ 1
𝑐 − 1

(
𝑐
∑𝑖′−1

𝑖=1 𝑦𝑖 𝑗 − 1
)
(1 + 𝛽𝑖′ 𝑗 ) + 𝛽𝑖′ 𝑗

1
𝑐 − 1

(24)

=
1

𝑐 − 1

(
𝑐
∑𝑖′−1

𝑖=1 𝑦𝑖 𝑗 (1 + 𝛽𝑖′ 𝑗 ) − 1
)

(25)

(𝑎)
≥ 1

𝑐 − 1

(
𝑐
∑𝑖′−1

𝑖=1 𝑦𝑖 𝑗+𝛽𝑖′ 𝑗 − 1
)
, (26)

where 𝑐 ≜ (1 + 𝛿)1/𝛿 for a constant 𝛿 ≥ 𝛽𝑖′ 𝑗 . From the
definition of 𝑐, (𝑎) holds due to the relationship 1 + 𝛽𝑖′ 𝑗 ≥(
(1 + 𝛿)1/𝛿

)𝛽𝑖′ 𝑗
=

(
(1 + 𝛿)1/𝛿

)𝛽𝑖′ 𝑗
when 0 ≤ 𝛽𝑖′ 𝑗 ≤ 𝛿 ≤ 1.

Also, the definition of 𝑧 𝑗 in (13) has an upper bound 𝑧 𝑗 ≤ 𝑧 ≜
(1+ 𝛿) + 𝛿

𝑐−1 , and, therefore, we can rewrite (26) as following:∑𝑖′−1
𝑖=1 𝑦𝑖 𝑗 ≤ log𝑐 (𝑧(𝑐 − 1) + 1) − 𝛽𝑖′ 𝑗 . Thus, an upper bound of∑𝑖′

𝑖=1 𝑦𝑖 𝑗 is derived as:∑︁𝑖′

𝑖=1
𝑦𝑖 𝑗

(𝑏)
≤ log𝑐 (𝑧(𝑐 − 1) + 1) − 𝛽𝑖′ 𝑗 + 1

≤ 1 + log𝑐
(1 + 𝛿)𝑐
𝑐𝛽𝑖′ 𝑗

(27)

where (𝑏) hold since
∑𝑖′

𝑖=1 𝑦𝑖 𝑗 =
∑𝑖′−1
𝑖=1 𝑦𝑖 𝑗 + 1 if task 𝑖′ is

allocated. Then, if 𝛿 = 𝛽𝑖′ 𝑗 = 0, we can have a lower bound
1 + log𝑐

(1+𝛿)𝑐
𝑐
𝛽𝑖′ 𝑗

= 2.

APPENDIX D
PROOF OF LEMMA 4

By using the definition of 𝑧 𝑗 and 𝑥𝑖 , we derive the change of
the objective function of problem (P), denoted by Δ𝑃. When
a task 𝑖 is allocated to an edge node 𝑗 , 𝑧 𝑗 and 𝑥𝑖 are updated,
and, therefore, the objective function of problem (P) increases.
In particular, Δ𝑃 increase with Δ𝑧 𝑗 since we want to observe
the increment of 𝑧 𝑗 at current interation while the value of
𝑧 𝑗 can be updated multiple time. Also, Δ𝑃 increase with 𝑥𝑖
since 𝑥𝑖 is initially given by 0 and updated only once. Thus,

we have Δ𝑃 = Δ𝑧 𝑗 + 𝑡tot𝑥𝑖 + Δ𝑢𝑖 and

Δ𝑃 =

(
1
𝑟 𝑗
+ 1
𝑓 𝑗

)
𝑑𝑖

𝑡tot

(
𝑧 𝑗 +

1
𝑐 − 1

)
+ 𝑡tot (1 − 𝑧 𝑗 )𝛼

1(
1/𝑟 𝑗 + 1/ 𝑓 𝑗

)
𝑑𝑖
+ Δ𝑢𝑖 (28)

(𝑐)
≤ 𝑡tot(

1/𝑟 𝑗 + 1/ 𝑓 𝑗
)
𝑑𝑖

(
𝑧 𝑗 +

1
𝑐 − 1

)
+ (1 − 𝑧 𝑗 )

𝑡tot(
1/𝑟 𝑗 + 1/ 𝑓 𝑗

)
𝑑𝑖
+ Δ𝑢𝑖

=
𝑡tot(

1/𝑟 𝑗 + 1/ 𝑓 𝑗
)
𝑑𝑖

(
1 + 1

𝑐 − 1

)
+ Δ𝑢𝑖 , (29)

where (𝑐) holds due to
(
1/𝑟 𝑗 + 1/ 𝑓 𝑗

) 𝑑𝑖
𝑡tot
≤ 1 with 𝛼 = 1.

Next, the objective function of problem (D) is increases by
one, and it is denoted by Δ𝐷 = 1. This is due to the fact
that 𝑦𝑖 𝑗 is initially set to zero, and we update 𝑦𝑖 𝑗 = 1 when
task 𝑖 is assigned to edge node 𝑗 . Hence, we have Δ𝑃

Δ𝐷
≤

𝑡tot

(1/𝑟 𝑗+1/ 𝑓 𝑗)𝑑𝑖
(
1 + 1

𝑐−1

)
+ 𝑢𝑖 .
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