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Abstract— Unmanned aerial vehicles (UAVs) are the emerging
vital components of millimeter wave (mmWave) wireless systems.
Accurate beam alignment is essential for efficient beam based
mmWave communications of UAVs with base stations (BSs).
Conventional beam sweeping approaches often have large over-
head due to the high mobility and autonomous operation of
UAVs. Learning-based approaches greatly reduce the overhead
by leveraging UAV data, like position to identify optimal beam
directions. In this paper, we propose a deep Q-Network(DQN)-
based framework for uplink UAV-BS beam alignment where
the UAV hovers around 5G new radio (NR) BS coverage
area, with varying channel conditions. The proposed learning
framework uses the location information and maximize the
beamforming gain upon every communication request from UAV
inside the multi-location environment. We compare the pro-
posed framework against multi-armed bandit (MAB)-based and
exhaustive approaches, respectively and then analyse its training
performance over different coverage area requirements, antenna
configurations and channel conditions. Our results show that
the proposed framework converge faster than the MAB-based
approach and comparable to traditional exhaustive approach
in an online manner under real-time conditions. Moreover, this
approach can be further enhanced to predict the optimal beams
for unvisited UAV locations inside the coverage using correlation
from neighbouring grid locations.

Index Terms— 5G, mmWave, beam alignment, deep
Q-network.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) are envisioned as
the vital ingredients for future wireless systems using
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millimeter wave (mmWave) [2], [3], [4], [5]. Especially, the
deployment of cellular-enabled UAV-user equipment (UE)s
(hereafter addressed as UAVs) adds unique features pertaining
to high mobility in three dimensional space and autonomous
operations, find appealing solutions to a myriad of civil
applications, such as traffic surveillance, mineral exploration,
internet drone delivery systems, etc. [6], [7]. It is noted
that 3rd generation partnership project (3GPP) has recently
released a technical report to understand existing challenges,
requirements and opportunities of Unmanned aerial vehicles
(UAVs) integration to fifth generation (5G) and beyond 5G
communication networks [8]. The mmWave frequencies (30
GHz to 300 GHz) together with multiple input multiple
output (MIMO) beamforming capabilities can provide high
capacities and line-of-sight (LoS) dominant connectivity [9] to
the aerial-ground communications between base station (BS)
and unmanned aerial vehicle (UAV). Besides, the real-time
ultra-high speed transmissions with UAVs still requires achiev-
ing challenges such as reliability and low-latency communi-
cations during aerial-ground communications. Solving these
challenges for mmWave beam alignment is also essential for
efficient control of UAVs in beyond 5G communications. It is
noted that more flexible three-dimensional (3D) beamforming
will be deployed in the forthcoming 5G systems, to enhance
the beamforming gain based on the angle resolutions in both
azimuth and elevation dimensions of UAVs in the sky [5].

Fast mmWave beam alignment can enhance the data
throughput for both UAV-UAV and BS-UAV communica-
tions under 5G and beyond wireless systems. Especially, the
availability of UAV position information at lower frequencies
(following the works [10], [11]) may also provide scope for
reliable communication in addition to increasing throughput.
Position information for fast beam alignment has been recently
studied under vehicular context in mmWave systems [10],
[11], [12], [13], [14]. On the other hand, high mobility
and autonomous operation of UAVs will require frequent
beam realignment as well. Therefore, a faster and reliable
beam alignment using UAV position information is crucial in
enabling high data rate for mmWave UAVs.

An effective beam alignment or tracking scheme is usually
required to ensure the consistency of beam alignment in a high
mobility environment. Existing works [15], [16], [17] pro-
posed beam tracking schemes using Kalman filters with high
processing complexity. Moreover, such schemes are vulnerable
to abrupt changes in environment to the high speed UAVs and
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tracking error accumulating over time [16]. On the other hand,
conventional beam sweeping solutions [18], [19], [20] also
often have large overhead as the UAVs move at high speeds
and perform autonomous operations. An alternate approach
is to undergo beam training [16] and perform fast beam
alignment after every significant change in UAV position along
the BS coverage area. Existing works in vehicular environment
proposed different training-based beam alignment approaches
for terrestrial systems based on stochastic methods such as
genetic and evolutionary algorithms [21], [22] and the use of
contextual information [10], [11], [12], [13], [14].

Contextual information generally involves data from the
sensors such as position information, antenna configurations,
channel state information and receiving signal power using low
frequency carrier (e.g. during initial communication in 3GPP
beam access protocol [23], [24]) whenever needed, as this
information is used abundantly to reduce the beam training
overhead. The authors in [10] assumes global positioning sys-
tem (GPS) position in vehicular scenario, considered the radio
fingerprints with position information as context and perform
beam training at the beam level with only one feedback.
They even proposed an online learning-based mmWave beam
alignment solutions using position information [11], angle of
departure (AoD) distribution with compressive sensing (CS)-
based channel measurements [14] as the context information,
respectively. The proposed methods suits well to the vehicular
communication context with rapid channel variation in the
environment. The method also requires maintaining a data-
base of channel strength information with pre-processing of
beam pairs before beam selection procedure, for each user
location in the vehicular environment. On the other hand, UAV
trajectories in general are not bound to any specific physical
structures like roads, streets, pavements etc. and involves large
coverage areas and high speed mobility of UAVs resulting in
frequent change of UAV position information. As a result, pre-
processing of beam pairs and maintaining a database could be
complex, non-generic and also cause significant overhead.

Stochastic methods such as genetic and evolutionary algo-
rithms that require hundreds of evaluations in order to discover
an optimum with sufficient precision [21]. Even though these
techniques are computationally efficient, communication over-
head can be very significant as each iteration of the objective
function implies applying a new beam pair indices in our
problem. However, the recent advancements of machine learn-
ing (ML) and neural networks (NN) techniques for stochastic
methods offers a possibility to learn such objective functions
and reduce overhead for communications [25], [26]. The
authors in [27] and [28] investigated application of supervised
ML and statistical ML techniques to reduce beam training
overhead by assuming a separate data collection phase with an
offline-learning environment, respectively. On the other hand,
learning approaches such as multi-armed bandit (MAB) and
other reinforcement learning (RL) methods such as temporal
difference learning, Q-learning etc. can generate the required
data through their interactions with the environment and
learn the beam alignment problem in an online manner [11],
[14]. Moreover, deep RL algorithms such as deep Q-network
(DQN), actor-critic (A2C), policy gradient methods etc. also

provide the generic ML framework with interactive learning
process [29], [30].

Such generic frameworks were recently investigated for
mmWave beam alignment between BS and multiple ground
users [31], [32]. In [31], a generic MAB framework for
mmWave beam alignment and tracking was proposed for
omni-directional ground users moving randomly around the
BS. The algorithm assume velocity of the users to be stochastic
with the selected arm (beam subset) to be following differ-
ent probability distribution models based on varying chan-
nel conditions in the environment. However, such proposed
framework can result in increasing beam training overhead as
the action space grows exponentially when 3D beamforming
is considered between BS and directional UAVs. Moreover,
the framework requires switching across multiple probability
distribution models as aerial-ground channel vary differently
at distinct heights [33]. In [32], a DQN-based interactive
learning process was studied to design efficient mmWave
beam training algorithms for both multi-user and user-centric
communications. Therein, the DQN interacts with commu-
nications module to select a beam subset for efficient beam
training with multiple ground users in the environment under
fast varying channel conditions. Their proposed framework
was interactive and generic, but their proposed beam image
construction method for state space is suitable mainly to
the omni-directional ground user communications. The beam
image construction can be very expensive (involves more feed-
back information from UE with uniform planar array (UPA)
antenna arrays) and less sparse when UAVs with directional
beams move with high mobility speeds at distinctive heights.
However, such generic and interactive algorithms can be
helpful to quickly learn the beam alignment after every initial
access during the high mobility and autonomous operation
of UAVs. Thus, the key idea in our work is to design such ML
framework using low-cost position information of UAVs and
serve any random initial access requests during their mobility
under BS coverage area, with efficient beam directional pairs
learnt from their past beam measurements.

In our work, we formulate an online context-information-
aided beam alignment problem as a partially observable
Markov decision process (POMDP). We then approximate
the beam-pair optimization problem for a multi-location envi-
ronment using NN techniques to address the limitations of
previous works [10], [11], [12], [13], [14]. The NN approx-
imation with POMDP formulation, uses prior knowledge of
the radio propagation from current and neighbouring UAV
context-information in the environment to significantly reduce
the beam-alignment overhead under different coverage area
requirements. For the algorithm to identify significant change
in UAV location, we consider a grid environment with
UAV position information of the grid element as the user-
context information. Thus, we combine both stochastic and
user-context optimization techniques [10], [11], [12], [13],
[14], [21], [22] with DQN and MAB learning frameworks,
in an attempt to progress from the previous works discussed
so far. Our algorithms takes into account the low-cost UAV
location information and finds an optimal beam pair to maxi-
mize the beamforming gain between BS and UAV. The random
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mobility and autonomous operation of UAVs resulting in
altitude and position information changes are captured using
different grid elements around the BS coverage area. Our
contributions are summarized as follows:

• We model the context-information-aided beam-pair align-
ment problem in uplink mmWave MIMO communication
system as a POMDP. In this system, the BS serves
multiple UAVs in a time domain multiple access (TDMA)
manner under its coverage area, using 5G new radio (NR)
based communication protocol.

• We solve the context-information-aided beam-pair align-
ment problem with deep reinforcement learning (DRL)
e.g. using a online DQN-based algorithm. During uplink
communication, the proposed method optimizes the BS-
UAV beam-pair alignment generically across any UAV
grid position inside the BS coverage area. Under the
DQN learning-based beam alignment procedure, we study
the warming and training phases to identify the opti-
mal data rate measurements for each UAV location
and then learn the corresponding optimal beam-pairs,
respectively.

• We compare our DQN-based proposed approach with the
adapted state-of-the-art MAB-based approach [11] and
traditional exhaustive-based beam alignment under ideal
channel conditions. We analyse these approaches over
different coverage areas and antenna configurations under
ideal channel conditions. Our results shown that DQN-
based approach achieves the optimal beam alignment
as the traditional exhaustive method but with reduced
number of training iterations.

• We study the online training performance of our proposed
DQN framework by incorporating thermal noise, shadow
fading and slow channel variation at each UAV grid
location under both LoS and non-line of sight (nLoS)
conditions. Our results show that the online DQN-based
approach is practical to the 3GPP standards and also
effective to solve the beam alignment problem across
multiple grid positions, for UAVs moving within the BS
coverage area. Furthermore, this generic learning-based
approach can be enhanced to maximize the beamforming
gain for untrained UAV locations inside the coverage
area as long as the predicted beam-pairs are not very
far from the optimal beams for converged neighbourhood
grid locations.

The rest of the paper is organized as follows. Section II
presents the problem formulation and communication mod-
elling, considered in this problem. The section also explains
in details about the learning scenario considered for the
problem. Section III formulates the exhaustive and learning
based methods used in this work. The section also discuss
in detail about the proposed DQN based RL approach for
beam alignment. Section IV presents the comparison of DQN
and MAB learning approaches against traditional exhaustive
method and then simulates the proposed DQN-based approach
through different system parameters under ideal channel con-
ditions. The section then discuss about the online learning
of DQN and its analysis under varying channel conditions.
Section V presents the conclusion and future work.

Fig. 1. Problem view.

II. SYSTEM AND COMMUNICATION MODEL

In this section, we describe the system model, communica-
tion model for the learning framework following 3GPP 5G
NR protocol [24] and also briefly describe the parameters
used in the learning framework. The objective of this problem
is to maximize the beamforming gain between BS and the
UAV to provide efficient communication under the defined
environment and channel conditions.

A. System Model

We consider a cellular mmWave MIMO uplink communica-
tion with BS serving multiple UAVs in a TDMA manner under
its coverage area. The BS is fixed at O(0, 0) and communicates
with the moving UAV (hereafter used as UE) using a multi-
path mmWave beamforming for urban macro-cellular (UMa)
environment as shown in Figure 1a. The multi-antenna UE
hovers randomly and communicates with the multi-antenna
BS in the urban environment following 5G NR standard
protocol [34]. We consider an analog beamforming equipped
with one radio frequency (RF) chain and uniform linear array
(ULA) structures of Nt and Nr antennas for both BS and UE,
respectively. We note that the model considers ULA structures
for simplicity in this work and can be extended to UPA
as well to support 3D beamforming with better interference
suppression capabilities. The UE transmits (TX) while the
BS receives (RX) a radio signal in multiple beam directions
following BTX and BRX codebook, respectively with angles
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defined as

bi = (i− 1)
π

N
, i ∈ {1, 2, . . . , N}, (1)

where bi represents a RF radio beam direction with a fixed
narrow beam width ( π

N ), N represents Nt, Nr antennas for
BTX and BRX codebook, respectively. We note here that this
choice is not important and other codebooks such as the
discrete Fourier transform (DFT) codebook could be used. The
codebook values are defined using the beamforming vectors
wTX and wRX for UE and BS, respectively, given by

w(bi)
]N−1

n=0
=

1√
N

exp(j
2πnd

λ
sin(bi)), bi ∈ B, (2)

where N = Nt, B = BTX and N = Nr, B = BRX for
w = wTX and w = wRX, respectively. Here, d is the antenna
spacing assumed to be λ

2 in this work. λ is the wavelength
and bi is the ith codebook direction (1).

The UE moves randomly along the 3D coverage area which
is divided into multiple (x, y, z) grids of equal size, the set
enclosing them is denoted as U. Here we assume UE hovers
on every hop with random mobility and enters the grid position
defined in U. The communication begins with a TX request
from UE, while the RX radio unit at BS starts with a random
beam-pair at time t = 0 and learns to choose the beam
direction (bp, bq), bp ∈ BTX, bq ∈ BRX over time for each TX
grid position. We assume TX and RX beam directions to be the
same for all UE movements within each grid position. The TX
and RX change their beam directions with grid positions when
there is a substantial change in TX locations, due to variance
in their radio measurements. Hence, the UE is expected to
follow the beamforming protocol at every grid position, along
the coverage area set U. When UE moves to a different
grid, it performs beam alignment initial access procedure at
the grid position by following 3GPP beamforming protocol.
In this work, we note here that this single BS and single
UE assumption is not limited and can be extended to multi-
cell, multiple UE-BS scenarios with multiple RF chains and
complex antenna array structures as well.

The 3GPP beamforming protocol of physical layer in gen-
eral involves mainly two procedures, initial communication
(used as P1 procedure) and beam management consisting
of beam selection (used as P2 procedure) and an optional
beam refinement (used as P3 procedure) [23]. We investi-
gate the 3GPP based beam-pair alignment learning through
P1 and P2 procedures between BS and UE as shown in
Figure 2. P1 procedure mainly involves requesting a connec-
tion between BS and UE using synchronization signal blocks
and random-access procedure at lower frequencies [23], [24].
As a part of this procedure, the UE is assumed to send a
communication request with respect to its position each time,
while the learning framework at BS responds with a sequence
of radio beam-pairs to be considered for next phase of uplink
based beam access protocol. P2 generally implies the radio
beam selection procedure at higher frequencies for the data
transmission. We consider the P2 procedure to follow 5G
NR communication with uplink transmissions at mmWave
frequencies [24], [34]. Similar to the works in [11], the BS
and UE in P2 are assumed to undergo the beam-training

Fig. 2. 3GPP beamforming protocol design for beam-pair learning
following [23]. P1 procedure is assumed to communicate at lower fre-
quencies (similar to the works in [11], [14]). P2 procedure is assumed
to follow 5G NR communication with uplink transmissions at mmWave
frequencies [24], [34].

procedure following the sequence of beam-pairs configured by
the BS-side learning framework from initial communication
procedure.

The received signal measurement can be observed at the BS
for different TX-RX beam pairs during these procedures and
their timing information can be estimated using 5G protocol
frame structure [34]. We define travel time unit (TTU) as
the orthogonal frequency division multiple access (OFDM)
symbol time during every beam transmission or reception
from the 5G frame structure. In this work, we use this
definition to measure the communication overhead due to the
learning-based beam sweeping procedure in TTU units.

B. Communication Model

For the communication model, we consider a multi-path link
(LoS or nLoS) radio channel between UE at time t and BS
location O ∈ R

3 as shown in Figure 1b. UEl(t) represents
the UE position on grid index l ∈ {0, 1, . . . |U|} in the BS
coverage area U at any time instant t, given by

UEl(t) = (xt, yt, zt), (3)

where {xt, yt, zt} ∈ U. We assume UEl (with respect to BS
locations) is known during each P1 procedure of 3GPP beam
access protocol. α in Figure. 1b, represents the angle of rota-
tion of UE with respect to y-axis. For simplicity, we assume
α = 0 radians, which means there is no rotation of drone. Let
θtx,m, θrx,m be the AoD and angle of arrival (AoA) of mth

communication link between BS and UE, respectively. The
UE transmits radio signals in a codebook direction from BTX

while the BS receives the signal through one of its multiple
beam directions following BRX (1). Baseband equivalent of the
received signal is given by

y[k]

=
M∑

m=0

√
Ptxβm wH

RXaR(θrx,m)aH
T (θtx,m)wTXx[k]

︸ ︷︷ ︸
r[k]

+ν[k],

(4)

where Ptx is transmission power, M is the number of
multi-paths or reflection points in the UMa environment [35],
βm, aR(θrx,m) ∈ CNr , aT (θtx,m) ∈ CNt are the antenna
channel gain and array response vectors for θrx,m and
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θtx,m along the mth multi-path communication link, respec-
tively. Here, a(θ)]N−1

l=0 = 1√
N

exp(j 2πld
λ sin(θ)), where θ =

θrx,m, N = Nr and θ = θtx,m, N = Nt for aR(θrx,m) and
aT (θtx,m), respectively. wRX ∈ CNr , wTX ∈ CNt are the
transmit and receive unit-norm beamforming vectors follow-
ing (2), ν[k] ∼ CN (0, WN0) is the effective noise with zero
mean and two-sided power spectral density N0

2 , x[k] represents
one OFDM symbol of the time-domain transmitted signal with
bandwidth W and TTU time period (from Section II-A) with
1
K

∑K
k=0 ‖x[k]‖2 = 1. Here, k = 0, 1, . . .K is the number

of samples spanned over TTU time. The mmWave channels
in general are expected to have limited scattering and hence
following a geometric channel model with m reflectors can
be effective [36]. In this work, we assume each reflector m
contributes to a single propagation path and follow 3GPP UMa
channel conditions [33], [35]. Thus, the channel measurements
Hm of the mth multi-path link is given by Hm(θtx,m, θrx,m) �
βmaR(θrx,m)aH

T (θtx,m). We define

r[k] =
M∑

m=0

√
PtxwH

RXHm(θtx,m, θrx,m)wTXx[k] (5)

Similar to the formulation mentioned in [36], the signal-to-

noise ratio (SNR) is given as SNR =
1
K

�K
k=0‖r[k]‖2

N0W and
overall rate measurement R in bits per channel use is given
by

R = log2(1 + SNR). (6)

The learning formulation (described in detail under
Section III) requires characterizing the known and unknown
parameters of the environment into exhaustive set of states
(also known as state space) and actions (action space), respec-
tively. Based on the beam management protocol considered in
Figure 2, we define the state, action spaces (S,A) for MAB
and RL learning-based beam-pair alignment, respectively as
follows:

(E1) : S = {UEl, UEl ∈ U}
A = {(bp, bq), bp ∈ BTX, bq ∈ BRX}, (7)

(E2) : S = {(UEl, br, bs), UEl ∈ U, br ∈ BTX, bs ∈ BRX}
A = {(bp, bq), bp ∈ BTX, bq ∈ BRX}, (8)

where UEl is the location of UE within coverage area U (3)
while BTX, BRX are the beam codebook sets at UE and BS
side respectively (1). Here, E1, E2 are the state-action space
learning environments for MAB and RL methods, respectively.
The 3GPP beam alignment protocol aims to find the best
(TX, RX) beam pair over time between current grid location of
UE and BS, for both E1 and E2 learning environments (similar
to problem formulation considered in [11]). E2 considers the
recently applied beam-pair as part of the state information for
the transition towards optimal beam-pair following POMDP.
Thus, the beam-pairs influence both state and action spaces
in this environment. The altitude and position changes of
UE due to their mobility can be proportional to the number
of grid elements considered as state-space in both learning
environments. For example, under high UAV mobility, number
of grid elements increases in a high channel variation scenario

while it is sufficient to have less state space with large grid
volume size under slow channel variation environments. Thus,
we emphasize that the fixed size of a grid element depends on
both state and action spaces considered under the BS coverage
area in the learning environments1. As shown in Figure 2,
the UE provides location information during P1 procedure,
while the BS responds with the sequence beam-pairs at lower
frequencies that can be configured to sweep the RF beams at
mmWave frequencies during P2 procedure. Such sequence of
beam-pairs are optimized over time by observing the history
of multiple initial access procedures corresponding to UE
locations in the grid environment. This can eventually reduce
the communication overhead during initial access using the
learning methods described in Section III. We assume that
the UE position information during P1 procedure can be
accurately obtained either from the sensors mounted on UAV
such as GPS, camera, lidar, radar etc. or using 5G localiza-
tion techniques1. Finally, the BS determines the best-beam
pair using their data-rate measurements after sweeping and
communicates it to the UE for data transmission. The optimal
beam-pair for UE-BS is selected based on their data rates
under the scenario mentioned in Section II-A.

III. LEARNING METHODS FORMULATION

In this work, we tackle the beam alignment problem at
every grid location as a learning problem. Moreover, the
performance of two learning methods, including MAB and RL
approach are also comparable to that of traditional exhaustive
search method. MAB and RL learning-based methods once
converged, can significantly reduce the communication over-
head during initial access procedure and maximize beamform-
ing in O(1) time. On the other hand, the traditional approach
always results in exhaustive search over entire action space A
each time. The focus of this work is to design an online
learning framework that is generic across both location and
time, suitable to the considered environment.

A. The Exhaustive Method

The method mainly involves exhaustive search among the
set of actions A, to find the best beam pair with maximum
possible beamforming between UE and BS. Since we consider
a multi-location environment, exhaustive beam scanning is
required for every change in grid element unit of UE inside U.
This frequent scanning results in significant communication
overhead, especially with higher antenna elements. However,
this method can determine the best possible beam alignment
between BS and UE. If st ∈ S is the UE state information
available at time instant t, then this method can be formulated
as

(P1) : max
(at|st)

R(st, at),

s.t. at ∈ A (9)

where R(st, at) is the measured data rate on applying at to
state st between BS and UE.

1Impact of contextual-errors and grid element size on beam alignment will
be studied as a separate work in future.
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Algorithm 1 MAB Approach Using Greedy Upper Con-
fidence Bound (gUCB)

// Initialization of MAB parameters for
beam management procedure

1 hyper-parameters: M episodes per UE location, UCB
multiplying factor α ∈ (0, 1);

2 episode length L = |A|
3 Q[i]← 0, ∀i ∈ A
4 ηπ

i ← 0, ∀i ∈ A // number of selections
of action i

5 for n← 1 to M // for each episode
6 do

// Apply a sequence of beam-pair
actions over channel

7 for i← 0 to L− 1 do
// Compute UCB values

8 τ(ηπ
i ) �

⌈
(1 + α)ηπ

i

⌉
9 a(n, ηπ

i ) �
√

(1+α)(1+ln n
τ(ηπ

i
) )

2 τ(ηπ
i )

10 UCBi ← Q[i]
ηπ

i
+ a(n, ηπ

i )
11 an = argmax

l∈A
UCBl // action selected

using greedy policy π
12 ηπ

an
← ηπ

an
+ 1

13 BS selects an beam-pair for data transmission,
receive signals for sequence of action beam-pairs
from UE during uplink communication

14 BS calculate the reward ran using received signal
measurements, computing data rate and following
(9)

15 Q[an]← Q[an] + ran

B. k-Armed Bandit Method

Multi-armed bandit (or MAB) is a learning problem, where
the best action is selected among k different actions available
at the same time instant. Each action selection is associated
with a reward and the best action is learnt by repeatedly
selecting those actions resulting in maximum possible reward
accumulation over time. Here, there are no state transitions
involved, unlike in a RL framework or a markov decision
process (MDP) process [30]. However, learning the best
among available actions sometimes depends on a particular
information or a context. Learning in such scenarios are
termed as contextual multi-armed bandit (CAB) problem.
Moreover, there are different algorithms such as ε-greedy,
greedy upper confidence bound (gUCB) [11], [37], bayesian-
thompson sampling (BTS) [38], fast machine learning (FML)
[39] etc. used to tackle the bandit problem.

We focus on formulating the armed bandit based beam
alignment problem as the CAB using gUCB algorithm (sim-
ilar to the works in [11] and [37]). At any time instant t,
we consider the learning environment E1 (7) with UE state
information st ∈ S as the context and the BS action at ∈ A
for the beam-alignment problem. The best action for st is
learnt over time using the history of its previous as well as

current data rate measurements among available action set A
as the reward. The objective of this problem can be formulated
as

(P2) : max
π(a|s)

E[ηπ
a (t)ra(t)],

s.t.ra(t) =

⎧⎨
⎩

1 if argmax
π(a|s)

R(a)

0 otherwise
,

ηπ
a (t) ∈ N, (10)

where ηπ
a (t) denotes the number of a (∈ A) selections until

the time instant t by following a policy π (for example,
greedy policy in gUCB), ra(t) and R(a) are the reward and
observed data rate measurement of action a at time instant t,
respectively, a is the selected action beam-pair on following
policy π for UE grid location st. We note that the initial UCB
bounds for a(∈ A) are equal and set to a minimum as we apply
the sequence of beam-pair actions each time over the channel
following 3GPP beam alignment procedure and select a gUCB
action based on the updated UCB bounds. Complete steps
using the gUCB algorithm for CAB-based beam alignment
objective are shown in Algorithm 1.

We also perform the convergence bound analysis of gUCB
algorithm based on the reward function following (10) and
the pseudo regret, one of the widely used metric for MAB
problems as defined in [40]. Translating this metric to the
beam alignment problem, the regret incurred at time instant
is non-zero when the algorithm selects a sub-optimal beam
pair with index i, i ∈ [1, |A|]. Let ri denote the mean reward
on choosing the beam pair index i after n trials (E[Xi,n] =
ri, ∀n ≥ 1). Here, Xi,n is the reward experienced by beam
pair with index i at time instant n (X̄i,n = 1

n

∑n
t=1 Xi,t, 1 ≤

i ≤ |A|, n ≥ 1). We define the mean reward for the optimal
beam pair and its index as follows:

r∗ = max
i=1,...|A|

ri,

i∗ ∈ argmax
i=1,...|A|

ri. (11)

Let Ti(n) denote the number of times the agent selects the pair
with index i on the first n trails (

∑|A|
i=1 Ti(n) = n). We define,

T ∗(n) = Ti(n), i = i∗ and X̄∗
n = X̄i,n, i = i∗. Let Δi =

r∗ − ri be the optimality gap of sub-optimal beam pair with
index i. Using these, we can now define the pseudo regret
bound following [40, eq. 2.1] as

Rn =
( |A|∑

i=1

E
[
Ti(n)

])
r∗ − E

[ |A|∑
i=1

Ti(n)ri

]

=
|A|∑
i=1

ΔiE
[
Ti(n)

]
. (12)

The pseudo-regret only increases with more selection of
sub-optimal pairs over time, providing a good framework to
compete against the optimal beam pair. For Algorithm 1,
we consider the MAB approach using episodes and apply
the rewards defined under (10) following independent and
identical distribution (IID). Under each episode, a beam pair
(say index i) is selected and then played until τ(p̃i+1)−τ(p̃i)
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times, where τ is an exponential function given as τ(p) =

(1 + α)p�. Here, p̃i is the number of episodes the ith index
beam pair got selected until time instant n. On assuming p ≥ 1
and n ≥ 1

2Δ2
i

we can rewrite the exponential function as

τ(p) ≤ (1 + α)p + 1, (13)

τ(p) ≤ τ(p− 1)(1 + α) + 1, (14)

=⇒ τ(p̃i) ≤ (1 + 4α) ln(2enΔ2
i )

2Δ2
i

. (15)

Besides, the confidence bound margin of such ith index is
given by

an,p =

√
(1 + α) ln( en

τ(p))

2τ(p)
. (16)

Using these equations and Chernoff-Hoeffding inequality,
regret bounds can be derived.

Theorem 1: The pseudo regret at time n of the greedy UCB
algorithm with 0 < α < 1 is upper bounded by

Rn ≤
|A|∑
i=1

ΔiE
[
Ti(n)

]
=

∑
i:ri<r∗

(
(1 + α)(1 + 4α) ln(2eΔ2

i n)
2Δi

+
cα

Δi

)
, (17)

where

cα = 1 +
(1 + α)e

α2
+

(
1 + α

α

)1+α[
1 +

11(1 + α)
5α2 ln(1 + α)

]
.

(18)

Theorem 1 shows the regret bound for Algorithm 1. The first
term increases with increase in n and dominates the bound as
Δi decreases. Thus, the regret bound for gUCB is O(log n)
in finding the optimal beam-pair for beam alignment on every
location. A proof of this analysis is included in Appendix. A.

C. Reinforcement Learning

RL is an interactive learning problem consisting of set of
states S, actions A and rewards, following a MDP or POMDP
process [30]. A state transition is involved on applying each
action until a terminal state is reached. The objective of the
problem is to learn an optimal policy of state transitions with
actions over time and reach the terminal state through reward
accumulation [30].

(P3) : max
{π(at|ot)}

∞∑
i=t

γi−t
Eπ[rai(i)],

s.t. rat(t) =

{
1 if R(at) ≥ Rmax(st)
−1 otherwise

,

γ ∈ (0, 1]. (19)

In this work, the RL based beam alignment problem is mod-
elled as a POMDP problem. At any time instant t, we define
the parameters st = {(s′, a′) s′ ∈ S, a′ ∈ A}, at ∈ A and
rt ∈ R where st, at, rt are the state, action and reward
at time instant t. Here, S and A correspond to state and
action spaces for scenario E2 (8). a′ corresponds to the set

Algorithm 2 RL Approach Using DQN

1 M → Training Episodes;
2 Algorithm hyper-parameters: learning rate ξ ∈ (0, 1],

discount rate γ ∈ [0, 1), ε-greedy rate ε ∈ (0, 1], update
steps K;

3 Initialization of replay memory M to capacity C, the
primary Q-network with parameters θ1, the target
Q-network with parameters θ2

4 S,A: State and Action space of DQN agent
5 for episode ← 1 to M // for each episode
6 do
7 Any random UAV transmits the communication

request from the (x,y,z) location.
8 N →Episode limit
9 BS responds with sequence of N action beam-pairs

over the channel with policy π
10 Initialization of s1 by executing a random action a0

and (x,y,z) location information
11 n=0,
12 while True do

// Episode with ε-greedy policy π
13 if pε < ε then
14 select a random action at ∈ A
15 else
16 select at = argmaxa∈AQ(st, a, θ)

17 BS applies at beam-pair over the channel, receive
signal for (t + 1)th iteration during uplink
communication

18 UE observes st+1, compute data rate and calculate
the reward following (19)

19 Store transition e = (st, at, rt+1, st+1) in replay
memory D

20 Sample random minibatch of transitions U(D)
21 Compute Loss and Perform gradient descent for

Q(s, a; θ)
22 Update the target network parameters θ2 = θ1 after

every K steps
23 n = n + 1 // Increment episode time
24 if done or (n = N) then
25 Update the optimal data rate measurement

Rmax(st)
26 break // End episode

27 DQN updates the sequence of action beam-pairs for
(x,y,z) location
// BS uses the updated sequence on

next TX request from (x,y,z)
location

of previous actions applied for state transitions until the time
instant t. As shown in (8), br, bs are the beam codebook direc-
tions corresponding to UEl previous time instant, following
BTX and BRX, respectively. This information is helpful to
instantiate a state-transition model at UEl, required for RL
POMDP formulation [30]. Data rate measurements computed
on applying each action are considered as the rewards for the
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problem. We denote ot = {at−1, st−1, at−2, st−2, . . . , a1, s1}
as the observed history of all such state information and past
actions. After the 3GPP initial communication procedure with
UE, BS starts with a random receiving beam direction and then
proceeds towards the maximum beamforming gain by applying
actions and undergoing state transitions, accordingly. The cur-
rent applied action becomes part of the next state, undergoing
state transition. We define an episode eπ as the consecutive set
of such actions until the terminal state following a policy π.
The objective of this problem can be formulated as mentioned
in (19), where Rmax(st) is the optimal data rate measurement
observed among the information history ot until its previous
episode eπ, γi−t is the discount factor applied on the rewards
received from future actions ai in the episode, rat(t) is the
reward and R(at) is the data rate measurement observed on
applying action beam-pair at, respectively. We follow DQN
approach to solve this RL objective problem.

D. Deep Q-Network

DQN is a value-based approach used generally in the con-
text of RL [29]. The approach learns an optimal approximated
policy of states mapping to actions π(s) = a by parame-
terizing and estimating state-action value function Q(s, a; θ)
using deep neural networks (DNN). The architecture of DQN
used in this learning formulation is shown in Figure 4.
We denote the primary DNN network weight matrix and target
DNN network weight matrix as θ and θ, respectively [29].
We consider a fully connected DNN for both the networks
where θ is updated with primary network parameters θ, after
every K iterations. The input of DNN is given by the observed
information in st. The observation for st contains 3D location
information and UPA/ULA antenna beam steering information
corresponding to the previously selected beam-pairs of that
location. The features are extracted separately for each such
information, mapped to a high dimensional space and then
combined together for learning under the initial layers of DNN
network. The intermediate layers are fully connected linear
units with rectifier linear units (ReLU) by using the function
f(x) = max (0, x) and the output layer is composed of
linear units, which are in one-one corresponding relationship
with all available actions in B. We consider initialization of
bias and weights of these layers with zeros and Kaiming
normalization [41], respectively.

At a time instant t, at selects either a random action from
B or perform forward propagation of Q(st, at; θ) following ε-
greedy policy [30]. A memory buffer of experiences Dt =
{e1, e2, e3, . . . , et}, ei = (si, ai, ri+1, si+1) are collected,
where a mini batch of them U(D) are randomly sampled and
sent into DQN [29]. During back propagation, a mean squared
error (MSE) loss function is computed between primary, target
networks and θ is updated using stocastic gradient descent
(SGD) [42] and Adam Optimizer [43] as

θt+1 = θt − ξAdam∇LDQN(θt), (20)

where ξAdam is the learning rate, ∇L(θt) is the gradient of
the DQN loss function, given as

∇LDQN(θt) = E
(si,ai,ri+1,si+1)

[
(Ri+1

Fig. 3. DQN training procedure consisting of two phases namely, Warmup
phase and Training phase.

+ γ max
a

Q(si+1, a; θt)

−Q(si, ai; θt))∇θQ(si, ai; θt)
]
, (21)

where θt is used to estimate future value of Q-function inside
LDQN. Complete steps followed by DQN for RL based beam
alignment problem are shown in Algorithm 2. Here, we define
episode as the consecutive set of actions applied on the starting
state until it reaches the terminal state with maximum beam
alignment for that location. In order to prevent episodes with
infinite set of actions during training, we confine maximum
episode length to exhaustive set of beam pairs possible under
the chosen antenna configuration. For example, a configuration
of 8 ULA antenna elements at both TX and RX can result in
maximum episode length of 64.

As the RL learning objective formulation involves both
current data rate Rt and best observed data rate Rmax(st)
measurements (shown in (19)), we consider the overall online
training procedure of DQN framework under two phases
namely, Warmup phase and Training phase as shown in
Figure 3. During the Warmup phase, the exploration is set to
maximum, in order to observe the best possible data rate for
the given UE location by applying maximum episode length of
actions. During the Training phase, the algorithm continues to
reduce its exploration and move towards exploitation following
ε-greedy policy. The episode starts with initial random action
and applies next actions to reach the terminal state as quickly
as possible. The Warmup phase results in extra training time
at the start but this is later helpful in quick learning of
DQN framework during the training phase. This procedure
also favours quick convergence of beam alignment process
for the current location based on its neighbourhood beam
alignment convergence through experience replay memory
buffer, thereby leading to overall faster training of DQN
framework for multi-location environment.

IV. SIMULATION RESULTS

As described in Section II-A and Section III, we formulate
the traditional exhaustive method and MAB, RL learning
methods using scenario E1 (7) and E2 (8), respectively, to solve
beam alignment between BS and UE by following 3GPP-type
5G mmWave beam access protocol. In this section, we first
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Fig. 4. DQN architecture.

investigate the training performance of our proposed RL-based
approach against MAB-based learning, to maximize beam
alignment under different ideal channel conditions. We note
that ideal channel condition corresponds to channel without
shadow fading and Rician channel variation. We implement
the RL-based beam alignment using DQN, following (P3)
objective (19) and steps mentioned in Algorithm 2. Similarly,
we implement the MAB-based approach as a CAB problem
following (P2) objective (10) and gUCB steps in Algorithm 1.
Later, we also focus on analysing DQN approach versus the
increase in coverage area, different antenna configurations on
both TX and RX and channel conditions. We then combine
these observations and perform online beam alignment in the
presence of channel variation conditions.

The simulation conditions for numerical results are listed
in Table I. We consider a 3D coordinate system with BS
located (in m) at O = [0, 0, 25]. The coverage area U around
the BS is divided in the form of unit grid cells of fixed
size volume 20 × 20 × 20 m3. We assume that the chosen
grid volume size is enough to acquire considerable number
of optimal beam-pairs across the simulated state and action
space configurations. The coordinate points along x-axis,
y-axis and z-axis are defined in steps of unit grid cell size
along their dimensions, denoted by Uxloc, Uyloc and Uzloc,
respectively. Uxloc and Uyloc are linearly spaced from −60 m
to 60 m with step size 20 m while Uzloc points are considered
above the BS height at 41.5 m and 81.5 m. For this setup,
the cardinality of the state space is |U| = 72. The transmit
power of UE is considered to be 0 dBm. We asumme UE
to be hovering around the BS following uniform random
mobility in the defined grid environment U. A maximum
of 8 antenna elements are considered at both BS (denoted
as NRX) and UE (denoted as NTX) following ULA antenna

TABLE I

SIMULATION PARAMETERS

configuration. Thus, the cardinality of the action space is
|A| = 64. We consider a mmWave radio signal with 30 GHz
carrier frequency and perform the simulations on both aerial
LoS and nLoS 3GPP UMa channel conditions. The path loss
models for LoS and nLoS are denoted by UMa-avLoS and
UMa-avnLoS, respectively, following five parameter alpha-
beta-gamma (ABG) model (from [33]) as shown in Table I.
A slow variation in the communication channel is also con-
sidered using Rician fading with doppler spread of 3 kHz.
Besides, a fixed number of random reflection points (4 to 6)
at positions close to BS are considered for UMa-nLoS
simulations.

To analyse the training performance of the proposed RL-
approach, we consider normalized reward plots, beam training
overhead plots and average received signal strength (RSS)
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Fig. 5. DQN reward-time plots for various BS coverage area requirements
under different ideal channel conditions.

error plots against training time of the learning algorithms.
An episodic reward is defined as the total reward accumulated
during an episode of the training process. We note that
normalized rewards are the episodic rewards normalized over
the episodic length, thus are bounded between −1 and 1.
The beam training overhead is defined as the average set of
beam-pairs taken to maximize beamforming gain for each
UE location over the training number of episodes of the
RL algorithm. Average RSS error is defined as the mean
difference in RSS values of proposed RL approach with
respect to exhaustive approach (measured in dB scale) over
UE locations. This metric helps us estimate the accuracy of
learning a beam-pair in the proposed RL approach with respect
to traditional exhaustive approach, at every time instant during
the training procedure.

A. DQN Vs. gUCB

As shown in Figure 5, brown and blue plots represent
the accumulated rewards over time for DQN and gUCB,
respectively, with same action space under single grid element
(|U| = 1) coverage area and different ideal channel conditions.
Thus, the coverage area considered in these simulations has
exactly one UE location for performing beam alignment.
As described under Section III-B and III-C, DQN and gUCB

learning formulations begin the training procedure with a
sequence of exhaustive beam-pairs and eventually learn the
efficient beam-pairs based on the observed history for UE
location over multiple episodes and time. Also, it is noted
that a significant number of reflection points (6 points) are
considered under UMa-nLoS based simulation. Our results
show that the DQN-based approach quickly accumulate the
rewards over TTU time for learning the optimal beam pair
compared to the gUCB approach, under both LoS and nLoS
simulations. The exploration of beam-pairs following ε-greedy
policy, simultaneously influencing the state and action spaces
for DQN-approach resulting in quicker convergence dur-
ing training phase and reduced episode length. The gUCB
approach involves iterating over exhaustive action space A,
thus consuming more time at every episode of the training
procedure. On the other hand, DQN uses its warmup phase
to quickly determine the best possible data rate measurement
for the current state and then learn the determined best rate
during training phase, by applying episodes with reduced
action sets in a iterative manner. Thus, the reward formulations
designed (10), (19) for online learning-based beam alignment
schemes, favours DQN over gUCB. Now, with increase in BS
coverage area, the training time of gUCB approach increases
significantly as every grid element shift under the environment
involves substantial change in TX location. We observe that
the gUCB-based beam alignment cannot be reliable for multi-
ple locations on convergence without frequent re-training. This
is due to substantial change in RSS measurements with respect
to (TX,RX) beam pairs for every change in UE location.

B. DQN With Increasing Coverage Area

In this subsection, we study the training performance of
DQN with increase in coverage area requirements under
different ideal UMa channel conditions. Figure 5a, Figure 6a
and Figure 5b plots the DQN accumulated normalized rewards
over time across different BS coverage area under both UMa-
LoS and UMa-nLoS ideal channel conditions for ULA and
UPA antenna configurations. It is noted here that we con-
sider around 4 random and fixed reflection points throughout
the simulation for all the UMa-nLoS coverage area plots.
With increase in coverage area of the BS, UE is provided
with more grid elements to hover around and support its radio
link. This is also evident under UPA antenna configuration for
both UMa-LoS and UMa-nLoS ideal channel conditions. It is
observed that the DQN-based approach converges well with
different coverage area requirements. Thus, DQN agent with
same architecture (as described in Figure 4) can still be used
to learn beam alignment between BS and UE across different
coverage area and different channel conditions. We note that
the accumulated reward plots are shown against number of
TTU’s for better analysis on convergence. However, during
online real-time implementation, the overall convergence time
of the DQN agent is spread across multiple initial access
procedures at grid locations following 3GPP protocol stan-
dards. After the convergence is obtained, BS can quickly
align using learnt optimal beams for any UE position within
the coverage area without frequent re-training. Also, the
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Fig. 6. DQN performance over multiple coverage area, antenna configuration
under UMa-LoS and UMa-nLoS ideal channel conditions.

learning is observed to be relatively quicker in convergence
with increase in coverage area of BS under ULA antenna
configuration as shown in Figure 8. With increase in coverage
area, neighbouring grid elements with similar optimal beam
pairs converge DQN faster as part of its MDP process,
resulting in average less number of training iterations per grid
element alongside convergence.

Figure 7a on the other hand, depicts the convergence
accuracy of DQN-based beam alignment over the exhaustive
method across multiple coverage area requirements. This is
recognized by measuring the moving average RSS error of
learning agent with that of the exhaustive approach (in dB
scale) over TTU time. It is observed that RSS error of DQN
agent with respect to exhaustive approach can always converge
to 0 dB eventually for multiple coverage area requirements.
The DQN convergence under UMa-nLoS for same coverage
area is observed to be quicker until 1dB RSS error on average
and then convergence speed is reduced drastically until it
achieves exact average global convergence. This phenom-
enon is observed more at higher coverage area simulations
as also witnessed in Figure 8. The reason for this could
be due to the increase in presence of local optimal RSS
values corresponding to each UE grid element location under

Fig. 7. DQN performance over multiple coverage area under UMa-nLoS
ideal channel conditions with 6 reflection points.

Fig. 8. DQN training convergence per grid element G measured in TTU time
(s) vs coverage area of BS (m2) under different ideal channel conditions and
average RSS error (in dB) with respect to traditional exhaustive method.

UMa-nLoS conditions. However, these training convergence
results are observed to be significantly better compared to that
gUCB-based approach as frequent re-training is avoided. Thus,
the DQN agent can achieve faster and reliable beam alignment
due to its training procedure (as observed in Section IV-A) and
the neighbourhood grid element convergence.
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C. DQN Performance Across Multiple Antenna
Configurations

In this subsection, we analyze the DQN training per-
formance over different antenna configurations between BS
and UE, under the same (|U| = 72) coverage area conditions.
In terms of RL formulation (as described in section III), this
corresponds to simulating DQN agent across different action
spaces A under the same state space S. The maximum number
of ULA antenna elements considered either at TX or RX side
is 8. Similarly under UPA, the maximum number of antenna
elements at TX side and RX side are set as 2 × 2 = 4 and
8× 8 = 64, respectively.

Figure 6b plots the normalized average beam training over-
head for a coverage area of U = 8 grid elements under dif-
ferent ULA and UPA antenna configurations. Three different
configurations of {NTX, NRX}, i.e., {8, 8}, {(2×2), (4×4)},
{(2 × 2), (8 × 8)} are considered under both UMa-LoS and
UMa-nLoS ideal channel conditions. For the same coverage
area the proposed approach is shown to converge well with
significant reduction in overall beam training over time, using
the same DQN architecture. Compared to ULA, the beam
training overhead for UPA is shown to be relatively higher
especially during nLoS conditions. This is due to more unique
beam pairs required while using both azimuthal and elevation
angles for UAV locations under the coverage area. However,
increasing action spaces, the normalized beam training over-
head decreases relatively quicker as shown for {NTX, NRX} =
{(2×2), (8×8)} configuration. This shows that the proposed
algorithm converge faster by eliminating unwanted beam pairs
under AoA-AoD distribution for UAV positions in mmWave
scenarios. However, there is less reduction in overhead when
there are more sub-optimal beam pairs as observed with wider
beams under {NTX, NRX} = {(2×2), (4×4)} configuration.
This shows that the proposed approach converge faster (in
terms of number of episodes) for higher antenna configurations
despite the increase in action space. We note that overall beam
training overhead still depends on both number of episodes
and each episode length. Once converged, the maximum beam
forming gain for any random UAV position within coverage
area can be obtained in very few steps using DQN-based
beam alignment procedure, significantly minimizing the beam
training overhead.

Figure 7b depicts DQN average RSS error (in dB) plots
under ideal UMa-LoS for 4 different ULA configurations of
NTX×NRX, i.e., 4×4, 4×8, 8×4,and 8×8. It is observed that
the DQN learning time increases with increase in exhaustive
set of actions under the (S,A) formulation. From the blue
and green plots in Figure 7b, it is evident that DQN performs
similar during training under same state S and action space
A even with different antenna configurations. The reason for
this is intuitive as the increase in action space also increases
the episode length of DQN creating significant impact in
training iterations especially during warmup phase of DQN.
It is also observed that RSS error of DQN agent with respect
to exhaustive approach can always converge to 0 dB eventually
for multiple antenna configurations. Thus, the DQN agent with
the same learning framework is still generic to learn under
different antenna configurations.

Fig. 9. Performance of DQN based beam learning in the presence of channel
variation with UMa-nLoS to UMa-LoS change in environment.

D. DQN Training Performance With Channel Variation and
Shadow Fading

Having realized the DQN training performance for differ-
ent parameters such as coverage area, channel conditions,
antenna configuration etc. It is now more evident that the
proposed DQN can effectively learn beam alignment for the
defined environment. In this subsection, we plot DQN training
performance in real-time conditions in an online manner by
considering change in channel conditions, thermal noise, slow
fading and slow channel variation as shown in Figure 9.

Figure 9a and Figure 9b plot the rewards of the DQN
learning agent and the RSS errors of agent with respect
to exhaustive approach, respectively. For these simulations,
we consider a (|U| = 32) coverage area environment between
BS and UE. The environment is equipped with thermal noise,
shadow fading, UMa-nLoS to UMa-LoS channel conditions
along with a slow rician channel variation. The parameters
used for this simulation are disclosed under Table. I. Depend-
ing on the defined coverage area, different path loss models
corresponding to aerial view of UE for both UMa-nLoS and
UMa-LoS conditions are included as well following 3GPP
standard mentioned in [33]. It is noted here that same set of
hyper-parameters are used for DQN during both LoS and nLoS
channel conditions during this simulation. We observe that
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DQN agent performs similar to previous results, converging
well under both varying channel conditions. The disturbance
in the smoothness of the reward plots observed in Figure 9a
could be due to the impact of channel variation under nLoS
conditions. This concludes that the proposed DQN framework
is generic, converge faster than the gUCB approach and can
also learn beam alignment in an online manner under varying
channel conditions.

V. CONCLUSION AND FUTURE WORK

In this paper, we developed a learning-based beam align-
ment framework for mmWave MIMO uplink BS-UAV com-
munication. We proposed a RL-based framework using DQN
to maximize the beam alignment for any UAV position within
the BS coverage area following 3GPP standard. We also
analyze the same DQN architecture over different coverage
requirements, antenna configurations and channel conditions
to demonstrate the generalization of the proposed RL-based
framework for beam learning. Our results show that, the
proposed approach significantly outperforms the MAB-based
method in terms of the convergence and also learns optimal
beam pairs comparable to that of the traditional exhaustive
search method. We further demonstrate that the DQN-based
beam alignment can be performed in an online manner under
varying channel conditions. Thus, we conclude that our pro-
posed DQN framework is generic and converge faster than
the MAB-based (gUCB) approach. The framework also learn
optimal beam alignment in an online manner under real-time
conditions.

Even though we demonstrate promising results following
3GPP standard in our work, we are yet to explore the
full capabilities of these generic learning architectures for
mmWave UAVs. From that perspective, a promising future
direction is to predict beams over unexplored grid locations,
support higher MIMO antenna configurations, multi BS-UAV
distributed environments by optimizing parameters such as
better connectivity, large number of beam-directional pairs,
interference mitigation etc. Such multi-objective optimization
is quite challenging and should be addressed in future.

APPENDIX A
PROOF OF THEOREM 1

Proof: From (12), it is understood that bounding the regret
can be done by simply bounding each E[Ti(n)] if Δi > 0.
We will now compute a bound for E[Ti(n)]. A necessary
condition for the beam pair with index i to be selected over
optimal beam pair index i∗ is UCBi > UCBi∗ . Once a beam
pair with index i is selected τ(p̃i) times (as shown in (15)), the
number of times i is selected instead of i∗ until time instant
n after its p episodes is bounded by

Ti(n) ≤ τ(p̃i)

+
∑
p>p̃i

(τ(p) − τ(p− 1))1
{
UCBi > UCBi∗

}
, (22)

Ti(n) ≤ τ(p̃i) +
∑
p>p̃i

(τ(p)− τ(p − 1))1
{
X̄i,τ(p−1) + at,p−1

≥ X̄∗
τ(p) + at,p, t ≥ τ(p̃i) + τ(p)

}
. (23)

Now, beam index pair i on completing p episodes has the
following chain of implications.

=⇒ ∃ k ≥ 0, ∃t ≥ τ(p − 1) + τ(k)
s.t. (X̄i,τ(p−1) + at,p−1) ≥ (X̄∗

τ(k) + at,k), (24)

=⇒ ∃t ≥ τ(p− 1)

s.t. (X̄i,τ(p−1) + at,p−1) ≥ r∗ − αΔi/2,

(or) ∃k ≥ 0, ∃t′ ≥ τ(p− 1) + τ(k)

s.t. (X̄∗
τ(k) + at′,k) ≤ r∗ − αΔi/2, (25)

=⇒ (X̄i,τ(p−1) + an,p−1) ≥ r∗ − αΔi/2, (26)

(or) ∃k ≥ 0, s.t.(X̄∗
τ(k) + aτ(p−1)+τ(k),k) ≤ r∗ − αΔi/2.

(27)

Using (22)-(27), E[Ti(n)] can be bounded by

E[Ti(n)] ≤ τ(p̃i)

+
∑
p>p̃i

(τ(p) − τ(p− 1)) P{(26) is True}

+
∑
p>p̃i

∑
k≥0

(τ(p)− τ(p− 1)) P{(27) is True}. (28)

From (15) and (16), an,p−1 can also be bounded as an,p−1 ≤
Δi

√
1+α
1+4α . Now, by using Chernoff-Hoeffding inequality, first

and second summation terms in (28) can also be bounded as
the following ( [44], p.251-252)∑

p>p̃i

(τ(p)− τ(p − 1)) P{(26) is True}

≤ (1 + α)e
(Δiα)2

, (29)∑
p>p̃i

∑
k≥0

(τ(p) − τ(p− 1)) P{(27) is True}

≤ (
1 + α

α
)(1+α)

[
1 +

11(1 + α)

5(αΔi)
2 ln(1 + α)

]
. (30)

Combining (29) and (30) in (28) and substituting in (12),
pseudo regret can be upper bounded ( [44], p.253) as obtained
in (17). �
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