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Abstract—1In virtualized radio access network (VRAN), the
base station (BS) functions are decomposed into virtualized
components that can be hosted at the centralized unit or distrib-
uted units through functional splits. Such flexibility has many
benefits; however, it also requires solving the problem of finding
the optimal splits of functions of the BSs in such a way that
minimizes the total network cost. The underlying vVRAN system
is complex and precise modelling of it is not trivial. Formulating
the functional split problem to minimize the cost results in a
combinatorial problem that is provably NP-hard, and solving
it is computationally expensive. In this paper, a constrained
deep reinforcement learning (RL) approach is proposed to solve
the problem with minimal assumptions about the underlying
system. Since in deep RL, the action selection is the outcome
of inference of a neural network, it can be done in real-time
while training to update the neural networks can be done in
the background. However, since the problem is combinatorial,
even for a small number of functions, the action space of the
RL problem becomes large. Therefore, to deal with such a large
action space, a chain rule-based stochastic policy is exploited
in which a long short-term memory (LSTM) network-based
sequence-to-sequence model is applied to estimate the policy that
is selecting the functional split actions. However, the utilized
policy is still limited to an unconstrained problem, and each
split decision is bounded by VRAN’s constraint requirements.
Hence, a constrained policy gradient method is leveraged to
train and guide the policy toward constraint satisfaction. Further,
a search strategy by greedy decoding or temperature sampling is
utilized to improve the optimality performance at the test time.
Simulations are performed to evaluate the performance of the
proposed solution using synthetic and real network datasets.
Our numerical results show that the proposed RL solution
architecture successfully learns to make optimal functional split
decisions with the accuracy of the solution is up to 0.05% of the
optimality gap. Moreover, our solution can achieve considerable
cost savings compared to C-RAN or D-RAN systems and a faster
computational time than the optimal baseline.

Index Terms— Radio access networks (RANs), network virtual-
ization, Cloud RAN (C-RAN), deep reinforcement learning (RL),
optimization.
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I. INTRODUCTION

HE increase in mobile data traffic of emerging appli-

cations with diverse requirements has driven the
efforts to re-design the radio access networks (RANS).
Cloud/Centralized-RAN (C-RAN) has become a favourable
solution to enable the low-cost deployment and high-
performance systems by pooling the baseband functions of the
base station (BS) to a central server which is also known as
Cloud/Central unit (CU). This idea is motivated by the growth
of network densification, enabled by the concept of softwariza-
tion, to offer cost-efficient solutions and high-performance
network operations through centralized control [2]. However,
a fully centralized RAN is typically not implementable for
many reasons [3]. For instance, it requires a low-latency and
high-capacity fronthaul, which is frequently absent in current
RANSs and prohibitively expensive to develop from scratch.
This challenge motivates the transition from rigid C-RAN
designs to flexible architectures, where only a subset of BS
functions is centralized at the CU, and the other functions
are hosted at the distributed units (DUs) and radio units
(RUs).! Further, the term virtualized RAN (VRAN) is coined
to describe these architectures [4].

In vRANSs, the BS functions (except RF functions) can
be decomposed into virtualized components and executed on
commodity hardware across a geo-distributed edge cloud sys-
tem? [5]. Then, the operators can uniquely select the functional
splits suited to their needs by deciding which functions will be
centralized at the CU and which will be kept at the DUs. This
paradigm brings flexibility to the RAN operations, potentially
offers a cost-saving, and accommodates diverse use cases and
applications in 5G+ systems [6], [7]. However, selecting the
functional splits of all the BSs is challenging. Each split has
a different delay requirement, initiates a different computing
load to the CU and DUs, and induces a different data flow.
The initial design of VRAN fronthaul using point-to-point
Common Public Radio Interface (CPRI) is also suggested to
be updated with the new Crosshaul/xHaul architecture based
on an open interface and packet-switch (shared) network such
as the enhanced CPRI [6]-[8]. As a result, in addition to
sharing the same computing nodes, each BS has to share the
same network links, which leads to complex interdependence

'RUs are the radio hardware units to run the RF functions.

2Each CU and DU is to run as virtualized software, e.g., virtualized
CU (vCU) and virtualized DU (vDU). A DU is typically executed at the
far-edge server (co-located or close to the RU), while a CU is at the edge
server (a more centralized server).
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between split decisions. Therefore, it is important to optimize
the splits carefully to ensure that the deployment is beneficial;
otherwise, it can lead to high operating costs and performance
degradation.

On the other hand, optimizing the functional splits produces
a high degree of complexity. In addition to the mentioned
challenges, unlike legacy RANSs, the behaviour of VRAN sys-
tem performance such as computing utilization [9] and power
consumption [10] is highly non-trivial. This non-triviality is
also reinforced by VRAN deployment over the same platform
with other workloads such as video analytics [11]. As a result,
it is complex and difficult to model the underlying system
precisely. Meanwhile, traditional mathematical optimization
approaches rely on complete knowledge of the system behav-
iour to define the models and solve the problems; and this
can be unfeasible in practice. These challenges motivate us to
shift to machine learning (ML)-based approaches, which can
be best to address our VRAN splitting problem amidst minimal
assumptions about the underlying system.

A. Related Works

1) Optimization-Based Approaches: 3GPP [12], [13] and a
seminal white paper [14] have defined the detail VRAN split
specifications. Although the authors in [6] have discussed the
gains and requirements for each split, there are still few works
on the optimization issues. Energy consumption for various
splits has been evaluated in [15]. The authors in [16] have
studied optimizing the function centralization of VRANs over
xHaul. Follow-up works, [17] and [18] offered an optimal
solution of minimizing total cost for integration vVRANs with
Mobile Edge Computing (MEC). Then, the work in [19] has
proposed an optimized multi-cloud VRAN framework with
balancing its centralization [3]. The authors in [20] have
proposed the PlaceRAN framework to minimize the computing
resources while maximizing the radio function aggregations
using the IBM CPLEX solver. These mentioned works [3],
[15]-[20] have addressed various optimization problems in
VRANSs. However, their frameworks require assuming com-
plete models of the underlying system to define their problem
structures and solve the problems. We argue that such strong
assumptions can be inaccurate as the underlying vVRAN system
is complex and difficult to model precisely. Additionally, those
frameworks need heavy mathematical solutions with exponen-
tial complexity and slow execution time, which typically are
unsuitable for large networks and online execution. The above
problems are also often complex combinatorial and difficult
to solve optimally. Therefore, we opt out to use optimization-
based approaches to formulate and solve our VRAN splitting
problem.

2) ML-Based Approaches: ML techniques recently have
been spurred to address complex optimization and control
problems in wireless networks [21], [22]. The authors in [9]
have proposed a learning framework that successfully solves
a contextual bandit problem of dynamic computing and radio
resource controls in VRANs using a deep reinforcement learn-
ing (RL) paradigm. Further, they leveraged Bayesian learn-
ing for energy efficient-based resource orchestrator in [10].
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ML-based predictor also has been developed in [11] that learns
to share the CPU resources between a VRAN workflow and
other workflows in the same server. Although the authors
in [9]-[11] have shown the non-triviality of VRAN perfor-
mance and the importance of learning based-framework to
manage the VRAN resources, they still did not discuss how
to design a framework that learns to optimize the functional
splits.

Recent work in [23] has studied user-centric slicing and
split optimization problems using a deep learning method. The
authors modelled their problem as supervised learning, which
relies on high-quality labelled datasets (e.g., optimal labels)
to assess the quality of the decisions. Once trained, the model
can be used quickly in an online manner, offering a real-time
solution for assigning the split for each user slice. However,
in VRANSs, obtaining such high-quality labels is expensive.
To construct the labelled datasets, we still need complete
knowledge of the system performance to model the problem
mathematically and solve multiple instances of the problem.
The work in [24] has addressed the functional split problem
for green Open RANSs using Q-learning and SARSA; however,
they assumed each DU/CU as an independent agent that
focuses on its own utility. We argue that every split decision in
VRANS is interdependent as the BSs share the same network
links and computing nodes with limited capacity. Besides, [23]
focused on the split assignment for the users, and [24] studied
the effectiveness of energy sources, but we aim for a different
goal.

B. Methodology & Contributions

Our goal is to develop a zero-touch optimization framework
that optimizes the functional splits of the BSs to minimize the
total network cost in the VRAN system. First, we formulate
and present the functional split problem mathematically to
provide a better understanding of its objective and constraints.
Our formulation yields a combinatorial and NP-hard problem.
Therefore, it is computationally expensive to solve optimally,
especially for large-scale networks and real-time execution.
Moreover, solving such a problem often relies on the assump-
tions of the underlying system to define and model the
problem structure (e.g., mathematical optimization). However,
in practice, the behaviour of VRAN performance and resources
is highly non-trivial, which is complex and can be unfeasible
to model the system precisely.

Motivated by the above challenges, we formulate the func-
tional split problem with constrained neural combinatorial RL.
We use neural networks to approximate the policy that maps
the state observations to the actions. Then, the idea is to
estimate the neural network model’s parameters iteratively by
taking instances from the problem spaces using a constrained
deep RL paradigm. For every interaction with the environment
(VRAN system), we expect to receive a reward (the induced
total network cost) and penalty (constraint violation) as feed-
back signals and the output returned by the neural network
to learn and improve the model. This paradigm considers the
VRAN system as a black-box environment, making minimal
assumptions about the underlying system. It also does not need
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the optimal labelled datasets, which are highly expensive to
obtain in VRANS.

Further, we propose a novel constrained deep reinforcement-
based functional split optimization framework (CDRS) to
solve the problem. Due to the combinatorial nature of the
problem finding the optimal splits, the action space of our RL
problem becomes enormously large. Therefore, we develop
CDRS using a chain rule-based stochastic policy [25] in
which policy network architecture using a long short-term
memory (LSTM) network-based sequence-to-sequence model
is applied to estimate the policy [26], [27]. However, this
policy is still limited to an unconstrained problem, which
is not directly applicable to our VRAN splitting problem.
Therefore, we leverage a constrained policy gradient method
to train and guide the policy toward constraint satisfac-
tion. Then, CDRS can be tailored into CDRS-Fixed and
CDRS-Ada. CDRS-Fixed uses a fixed penalty coefficient [28],
[29] while CDRS-Ada updates the penalty coefficient adap-
tively [30], [31]. A self-competing baseline is also utilized
with an auxiliary network to improve the policy further. Once
the model is trained, finding the solution for the problem is
computationally efficient as it only requires a forward pass
through the trained neural network. Therefore, we provide a
search strategy to improve the optimality performance at the
test time. Following the search strategy, CDRS can be further
tailored into CDRS-Fixed-G, CDRS-Ada-G, CDRS-Fixed-T
and CDRS-Ada-T. CDRS-Fixed-G and CDRS-Ada-G utilize
greedy decoding while CDRS-Fixed-T and CDRS-Ada-T use
temperature sampling.

CDRS is evaluated in terms of training behaviour, opti-
mality performance, the impact of altering the traffic load
and routing cost and the computational time. The evaluations
are performed using a synthetic network generated by the
Waxman algorithm [32] and a real network dataset [33].
The used system parameters are from a measurement-based
3GPP-compliant system model. To assess the effectiveness
of our approach, we compare it to the optimal value
obtained from a Phyton-MIP solver.> Following our evalua-
tions, CDRS successfully learns the optimal functional splits
and solves the problem with 0.05% of the optimality gap*
(e.g., CDRS-Fixed-T). Our results also show that CDRS is
the most cost-effective compared to two extreme cases: fully
C-RAN and D-RAN. All of our CDRS settings are also faster
than the MIP solver, where CDRS-Ada-G can attain as high
as 22.82 times faster. Our contributions can be summarized:

o We formulate the VRAN split problem to constrained
neural combinatorial RL, which takes minimal assump-
tions about the underlying system and does not require the
optimal labelled datasets to solve the problem. We also
consider the interdependence between split decisions cap-
turing the network links and computing resources sharing
among the BSs.

3We use a solution obtained from a mixed-integer programming solver
(https://www.python-mip.com/) as an optimal baseline comparison. It offers
an exact solution through a well-known method, Branch-&-Cut algorithm.

4We use the term optimality gap to define our solution’s error compared to
the optimal value obtained from the MIP solver.
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Fig. 1. vRAN over integrated fronthaul/midhaul (xHaul). It has many degrees
of design freedom by possibly hosting BS functions at the CU or DUs.

e We propose CDRS as a novel solution framework.
CDRS adopts a chain rule-based stochastic policy to
deal with the interdependence between split decisions
and the combinatorially large discrete action space of the
problem in which an LSTM networks-based sequence-
to-sequence model is applied to estimate the policy.
We utilize a constrained policy gradient method with
a self-competing baseline to train and guide the policy
toward constraint satisfaction. Following the penalty coef-
ficient and search strategy settings, CDRS can be tailored
into CDRS-Fixed-G, CDRS-Fixed-T, CDRS-Ada-G and
CDRS-Ada-T.

o We conduct a series of evaluations using synthetic and
real network datasets. We investigate the training behav-
iour, the accuracy of the solution, the impact of routing
cost and traffic load and the computational time.

To the best of our knowledge, this work is first to opti-
mize the functional splits of the BSs to minimize the total
network cost in the VRAN system using a constrained deep
RL paradigm, which takes minimal assumptions about the
underlying system and adopts a chain rule-based stochastic
policy to deal with the large action space and interdependence
between decisions.

The rest of this paper is organized as follows. The back-
ground and system model of VRAN are presented in Section II.
The functional split problem is formalized mathematically
in Section III. Our proposed framework is described in
Section IV. Our simulation and experiment results are dis-
cussed in Section V. Finally, our work is concluded in
Section VI.

II. SYSTEM MODEL
A. Background

In C-RAN, all BS functions are centralized at the Base Band
Unit (BBU) except RF layers at the RU. In vRANs, the BBU is
decoupled into the CU and DU [13]. Hence, functions of a BS
can be deployed at the CU, DU and RU. Fig 1 illustrates that
a CU is typically executed at a bigger and more centralized
server (e.g., edge server), while a DU is at a smaller server
(e.g., far-edge server) and located near (or co-located) with
an RU.

Our model refers to the standardization of 3GPP [12],
[13] and seminal white paper [14], where each split has
a different performance gain [3], [6]. Although 3GPP has
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TABLE I

DATA AND DELAY REQUIREMENTS OF VRAN SPLIT WHEN THE TRAFFIC
LOADIs A MBPs [14], [18]

Flow (Mbps) Delay Req. (ms)

Split 0 (S0) A 30
Split 1 (SI) A 30
Split 2 (S2)  1.02A+15 2
Split 3 (S3) 2500 0.25

defined eight options for the splits, several are still hardly
implemented. Therefore, we consider four splits that have been
experimentally validated in a prototype [34], [35]. Split 0: All
functions are at the DU, except the RF layers at the RU. It is
a typical D-RAN setup. Split 1 (PDCP-RLC): RRC, PDCP,
and upper layers are hosted at the CU, while RLC, MAC, and
PHY are at the DU. This split enables a separate user plane
and control plane with centralized RRC. Split 2 (MAC-PHY):
MAC and upper layers are at the CU, while PHY is at the
DU. It allows improvement for CoMP by centralized HARQ.
Split 3 (PHY-RF): All functions are at the CU, except RF
layers. It is a fully centralized version of VRANSs. It gains
power-saving and improved joint reception CoMP with uplink
PHY level combining. Going from Split 0 to Split 3, more
functions are hosted at the CU. In addition to increasing
network performance, a higher centralization level can lead to
more computing cost savings [3]. However, centralizing more
functions increases the data load to be transferred to the CU,
going from A in Split 1 to 2.5 Gbps in Split 3 for each BS, and
has a stricter delay requirement. Table I summarizes VRAN
split options and their requirements.’

B. RAN

We model a VRAN architecture with a graph G = (Z,€)
where Z has a subsets N of the N = |[N] DUs, L of the
L = |L] routers and a CU (index 0). Each node is connected
through a link of (¢, j) with a set £ of links and has capacity ¢;;
(Mbps) each. The DU-n is connected to {0} with a single path
(e.g., shortest path) p,o; hence, we define 7, , as the amount
of data flow (Mbps) to be transferred and routed through a
path ppo:={(n,i1),..., (ix,0):(¢,j) €E}. The BS functions
are deployed in servers using virtual machines (VMs).® Each
server has a processing capacity, i.e., H,, for DU-n and
Hy for CU. Naturally, a central server has a higher computing
performance and capacity, hence Hy > H,,. We define p{, and
pd as the incurred computational load (cycle/Mb/s) in results
of deploying the split configuration o€ {0, 1,2, 3} at each CU
and DU, respectively.

C. Demand & Cost

We focus on the uplink transmission where \,, > 0 (Mbps)
is the aggregate data flow of DU-n to serve the users traffic;
hence, there are N different flows in the network. We denote

5The requirements are tailored from [14], [18] by following settings: 1 user
per TTI, 20MHz channel bandwidth, 1 carrier component, UE IP MTU
1500 bytes, 2 x 2 MIMO.

6Each BS function can operate as a virtual network function (VNF), and
the VNFs can be executed on top of a single VM or multiple VMs.
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a = (a,,n € N) and B8 = (B,,n € N) as the VM
instantiation cost (monetary units) and the computing cost
(monetary units/cycle) at the DUs, respectively, while oy and
(o are the respective cost for the CU. We also have a routing
cost (p,, (monetary units/Mbps) for each path p,. This cost
arises from the network links being leased from third parties
or maintaining the links.

D. Problem Statement

We have four choices of the splits for each BS in vVRANS.
What is the best-deployed split for each BS that minimizes
the total network cost? The decision leads to interesting
problems. Each split generates a different DU-CU data flow
and has a distinct delay requirement. Executing more functions
at the CU is more efficient in computing cost; however,
it produces a higher load for xHaul links. The BSs share
the same capacitated servers and network links, where each
split decision is interdependent. Moreover, the behaviour of
the VRAN system (e.g., resources, performance) is complex
and highly non-trivial, which makes complete assumptions of
the model can be unfeasible or inaccurate. The goal is to
design a framework to solve this problem by taking minimal
assumptions about the model of the system.

III. FORMALIZATION OF VRAN SPLIT PROBLEM

The BS functions can be deployed at the DUs or CU
depending on the splits, as seen in Table I. Each split must
respect to the chain of functions fo — f1 — fo — f3.”
Thus, we define x,, € {0,1} as the decision for deploying
split o € {0,1,2,3} at DU-n. For instance, zgp, = 1 is
for deploylng anflvaafS (Spht 0); x1n, = 1 for fUaflva
(Split 1); xo, = 1 for fo, f1 (Split 2); or x3, = 1 for fy
(Split 3) at DU-n. We only deploy a single split configuration
for each BS. Therefore, a set of eligible splits is:

X—{mne{0,1}‘§:xon—1, Vne./\f}, (1)
0o=0

where x,, = (Zon, Vo) and * = (x,,Vn). The BS functions,
f1, f2 and f3, are deployed using VMs at each server. We have
computational processing at the CU and DU-n that must
respect to its capacity as:

3
Z An Zﬂﬁ(mpg S HO; (2)

neN 0=0

3
An Zﬂ?(mpg <H,, Vne N. 3)
0=0

A. Data Flow & Delay

Let define 7,,,, (Mbps) as the amount of data flow (Mbps)
to be transferred through a path p,o. Hence, the flow must
respect capacity of each link:

> rpaolil, <eijy V(i j) €E, )
neN

7 fo is a function that encapsulates RF layers. Then, fi, f2 and f3 are the
functions for Layer 1 (PHY), Layer 2 (MAC, RLC) and Layer 3 (PDCP, RRC
and the upper layers), respectively.
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where I'J e {0,1} indicating whether the link (i, j) is used
by path p,o. Assuming a single path (e.g., shortest path), the
amount of data flow depending on each split configuration
is [17]:

Tpno :/\n(xOH + xln) + 1‘2n(1-02)\n + 15) + 2500 T3n- (5)

We let dj, , denote the incurred delay for routing through
path p,o from DU-n to the CU. Each split has to satisfy the
respective delay requirement (Table I):

mondpno < dl::ax7 Yo,Vn € N. (6)

B. Objective Function

We aim to minimize the total network cost consisting of the
computational costs at the DUs and CU and the routing cost.®
The needs of computing cost for each BS-n at DU-n is:

3
‘/n (wn) =ay + 6n)\n Z pgmon- (7)
0=0

We also have the required computing cost of BS-n at the CU:

3
Voo(@n) = Y Zon (a0 + AnfBops). ®)

0=0

The first terms in (7) and (8) represent the required instanti-
ating cost at each DU and CU for BS-n. The last terms in (7)
and (8) are the required data processing cost by each DU and
CU to serve BS-n load. Next, we have the cost to route the
data flow from DU-n to the CU:

Uno (wn) = Cpnorn(w)- )

Finally, we have the total VRAN cost as:

J@) =Y (Val@a) + Uno(@a) + Vao(@n)).  (10)
neN

which leads to the following problem:

st (2) = (6).

P : minimize J(x),
xreX
P is a combinatorial problem to decide the function placement
a for all the BSs and serve the traffic load A with DU-CU
path p,o for each BS-n in the network graph G = (Z,&).
Next, we discuss the complexity of P.

C. Complexity Analysis

The complexity of P can be identified from the polynomial
reduction of multiple-choice multidimensional knapsack prob-
lem (MMKP).

81n this case, we follow the linear objective cost function similar to the
previous studies [17], [18]. However, our solution approach does not restrict
only to the linear objective. Our approach relies on the scalar reward and
penalty as feedback; hence, it can also be tailored to a non-linear objective.
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1) MMKP: Let suppose there are N items with values
V1,02, ...,VN. We also have ri,ro, ..., 7N correspond to the
required resources to pick the items. In the 0-1 knapsack
problem (KP), the aim is to pick the items z; € {0,1},Vi
that maximize the total value Zf\il x;v;, subject to constraint
SN @r; < R. This is a well-known NP hard problem and
there is a pseudo-polynomial algorithm using a dynamic pro-
gramming concept that has complexity O(N R) [36]. MKKP
is a variant of 0-1 KP where there are M groups of items,
e.g., group ¢ has [; items. Each item has a specific value
v;; corresponds to j-th item of ¢-th group and needs K
resources. Hence, each item in a group has a resource vector
ri; = (Tiji,...,Tijx) and R = (R1,..., Rx) is the resource
bound of the knapsack. The aim is to exactly pick one item
from each group, e.g., Z§=1 ziy; = l,z;; € {0,1} that
maximizes the total value: Zf\il Z?:l x;jVij;, subject to the
resource constraint: Zf\il Zé‘iﬂ Tk < Ry, k=1,... K.

Finding an exact solution for MMKP is also NP-hard [36].
It is also worth noting that the search space for solution in
MMKP is smaller than other KP variants; hence, exact solution
is not implementable in many practical problems as there is
more limitation of picking items from a group in MMKP
instance [36]. Next, We prove that PP is harder than MMKFP.

Theorem 1: MKKP can be reduced to PP in polynomial time,
e.g., MMKP <p IP.

Proof: Let suppose we have unlimited link capacity,
no routing cost and no delay requirement. Hence, all paths of
the DU-CU pair are eligible and (4)-(6) are always satisfied.
This problem then can be mapped to MMKP by setting:
1) M groups to N BSs, 2) each i-th group with [; items to
each BS-n with |o] = 4 of split options, 3) j-th item of i-th
group to the split o,, of BS-n, 4) 7;; to the incurred computing
loads, e.g., \p,p¢ and A, p¢, and 5) the knapsack constraints
to computing constraints /1,, and Hy. The value v;; of item-j
in group-¢ also can be mapped with the costs (e.g., computing
and routing) of deploying split-o of BS-n, where the MMKP
is a maximization problem and PP is a minimization problem.
We can see the reduction is of polynomial time: we select the
functional split for every BS correspond to that we activate
an item that we pick to a knapsack in each group. Therefore,
we can conclude that if we can solve [P in polynomial time
we also can solve any MMKP problem.

IV. CONSTRAINED DEEP REINFORCEMENT BASED
FUNCTIONAL SPLIT OPTIMIZATION FRAMEWORK

We leverage a constrained deep RL paradigm to solve our
VvRAN splitting problem by treating the VRAN system as a
black-box environment, which makes minimal assumptions
about the underlying system. Consequently, our RL agent
does not need to know the information about the formulation
in (1)-(10) to decide the splits. Our agent relies on the scalar
reward and penalization returned from the environment to
assess the quality of the solutions. At each episode, our
agent observes a state of incoming a sequence of all BS
functions drawn from the environment of vVRANSs, takes an
action to decide the splits for all the BSs, and expects to
receive feedback signals of the reward (total network cost) and
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penalization (for violating the constraints). Our state comprises
of a sequence information of BS functions: F = {F,}N_,,
where F,, is a set of BS-n functions. Given the input state,
our agent assigns O={o0, €{0,1,2,3},Vn € N'} as a set of
selected splits for all the BSs, which decides the placement of
BS functions at the CU or DUs. Our objective is to minimize
the total network cost while enforcing the constraint require-
ments. Given the selected splits, our agent expects to receive
scalar values from the environment consisting of: i) J(O|F),
the total induced cost and ii) {(O|F), the weighted sum of
penalization. Further, we consider a particular RL algorithm
using one-step constrained policy optimization and neural
network architecture, where the interactions are narrowed to
a single time step at every episode, and our agent learns
iteratively over episodes.

Our goal is to design a stochastic policy mp(O|F) para-
meterized by a neural network with weights 6 to predict the
splits for all the BSs to minimize the total cost while satisfying
constraint requirements. However, we have the N BSs that
need to deploy the splits together, where each has four possible
split options. Each split decision is also interdependent as
the BSs share the same network links and computing servers.
Consequently, our problem has a combinatorially large discrete
action space with a total of 4"V possible actions. Such a curse
dimensionality in high dimensional spaces can be avoided by
modelling complicated joint probability distributions using the
chain rule decomposition. Therefore, we design our policy
based on a chain rule by factorizing the output probability,
parameterized by a neural network with weights 6 as:

N
7o(O|F) = ] mo(onlo(eny, Fn)- (11)
n=1

This policy strategy assigns a higher probability to the
splits for having a lower cost and vice versa for every BS,
which also can be represented by individual softmax modules
(e.g., at the output layer). Motivated by [26], [27] that uses
neural networks to estimate the same factorization of our
stochastic policy for machine translation, we design our pol-
icy network using an encoder-decoder sequence-to-sequence
model based on LSTM networks. Our policy network archi-
tecture, which also utilizes an attention mechanism, captures
the dependency and correlation between split decisions. This
architecture allows our policy to read input information from
all BS functions, then maps them into split selections for all
the BSs. In the training, we use a batch of B i.i.d samples on
the stochastic policy to select the splits and generate several
pretraining models. In the test, we perform an inference
through a search strategy by greedy decoding or temperature
sampling.

A. Policy Network Architecture

Our policy network infers a strategy to deploy the splits for
all the BSs, given a sequence information of BS functions as an
input F = {Fy,....,Fn}. It is constructed from an encoder
decoder sequence-to-sequence model with an attention mech-
anism based on LSTM networks [26], [27]. We also consider
a batch training by drawing a batch of B i.i.d samples with
different sequence order to encourage the exploration further.
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Fig. 2. A generic architecture of an LSTM cell.

1) LSTM Structure: We leverage LSTM networks, a par-
ticular RNN architecture [37], to construct our sequence-to-
sequence model that maps the input BS functions into split
decisions for all the BSs. An LSTM cell has three main
structures comprising of: (i) a forget gate that receives the cell
state input and learns how long should memorize or forget
from the past; (ii) an input gate that aggregates the current
input and the output of past steps, then feeds them to the
activation function; and (iii) an output gate that provides the
LSTM output from the combination of current cell state and
the output of input gate. The relationship of these blocks can
be expressed as:

Fo=c(Wilhl_1.sT]" +by), (12)
= o (We[RI_1,sT]" +b,), (13)
&, = tanh (We[RI_,, s7]" +b.), (14)
én = f, % Cp1+ P % G, (15)
6n = a(W,[hE_,s7]" +b,), (16)
h, = 6, * tanh(é,), a7

where function o(z) = is the sigmoid function

and symbol * is element-wise multiplication. The weight and
bias matrices for the respective forget, input and output gates
of the LSTM cell are represented by Wy, W,., W., W, and
bs,b.,b.,b,. Multiple LSTM layers can be further stacked
one on top of another (a stacked LSTM) to create a deeper
model, which may obtain more accurate prediction. Each
LSTM cell reads an input of embedding vector representation
Sn € [—1,1]¥ translated from each input F,,, where E is the
embedding size. The structure of an LSTM cell is illustrated
in Fig 2 and utilized to construct our sequence-to-sequence
model.

2) Policy Network: Our policy network is built from an
encoder-decoder sequence-to-sequence model based on LSTM
networks. One main drawback of vanilla sequence model is
generally unable to learn accurately long sequence. Therefore,
the vanilla model may not be able learn our problem with large
number of BSs. An attention mechanism comes to address
this issue as it considers all the hidden state from all input
sequences. The encoder read the entire input sequence to a
fixed-length vector. The decoder decides the deployed split
of each BS at each step from an output function based on
its own previous state combined with an attention over the
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encoder hidden states [27]. The decoder network hidden state
is defined with a function: h; = f(hy_1,h: 1,c;), where
¢; and h; are the context vector and the source hidden state
at time step t. Our model derives the context vector ¢, that
captures relevant source information that helps to predict the
splits. The main idea is to use an attention mechanism, where
the context vector c¢; takes consideration of all the hidden
states of the encoder and the alignment vector a;:

Ct = Z atk’_lk.
keN

Note that the alignment vector has an equal size to the
number of steps in the source side, which can be calculated by
comparing the current target hidden state of decoder h; with

(18)

each source hidden state by, as:

exp(score(hy, hy))
Egzl exp(score(hy, hy)))

This alignment model gives a score ay; which describes
how well the pair of input at position £ and the output at
position ¢. The alignment score is parameterized by a feed-
forward network where the network is trained jointly with the
other models [27]. The score function is defined by a non-
linear activation function following Bahdanau’s additive style:

(20)

Qi — (19)

score(hy, hy) = v, (tanh(w,hy + wohy)),

where 'v;r € R", w; € R™™ and wso € R™*™ are defined as
the weight matrices to be learned in the alignment model, and
n is the size of hidden layers. The overall architecture of our
policy network is illustrated in Fig. 3.

B. Constrained Policy Gradient With Baseline

We train the above neural network model using a con-
strained policy gradient method with a self competing baseline.
We define the objective of P as an expected reward that is
obtained for every vector of weights 6. Hence, the expected
cost J in associated with the selected split o,, given BS-n
functions is denoted as:

JT(O1Fn) = [/ (on)], @2n

E
o~ (| Fn)

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022

and we have the expected of total cost from all BSs:

JT0) = E [J(6)0).

22
B, (22)

The VRAN system has constraints of delay requirement and
computational and link capacity. Therefore, our original prob-
lem turns to a primal problem as:

Pip: min J™(0); s.t. JE,(0) <0,Vi,

m~11

where we define JZ(0) = (JZ, (0),Vi) as a function of
constraint dissatisfaction to capture the penalization that the
environment returns for violating each ¢ constraint require-
ment, e.g., computing, link, delay. In this problem, we con-
sider parametrized stochastic policy using a neural network.
In order to ensure the convergence of our policy to constraint
satisfaction, we follow [30] and make assumptions:

Assumption 1: J™ is bounded for all policies 7 € 1L

Assumption 2: Each local minima of JZ(0) is a feasible
solution.

Assumption 2 describes that any local minima 7y satisfies
all constraints, e.g., J7, () <0,Vi. It is the minimal require-
ment that guarantees the convergence of a gradient algorithm
to a feasible solution. The stricter assumptions, e.g., convexity,
may guarantee the optimal solution.

Next, we reformulate Pp to unconstraied problem with
Lagrange relaxation method [38]. The penalty signal is also
included aside from the original objective for infeasibility,
which leads to a sub-optimality for infeasible solutions. Given
P;p, we have the dual function:

9(p) = min JF (1, 0) = min J7 (0) + Zi:m«fc,; ()

min J7(0) + J(©),

(23)

where p1= (i, Vi), J7 (u, 0) and J7(§) are the penalty coeffi-
cients (Lagrange multipliers), Lagrange objective function and
the expected penalization, respectively. Then, we define the
dual problem:

Pip : max g(p).

P1p aims to find a local optima or a saddle point (6(u*), 1*),
which is a feasible solution. The feasible solution is a solution
that satisfies: J7& (¢) < 0,Vi. To compute the weights 6 that

optimize the objective, we use Monte-Carlo policy gradient
and stochastic gradient descent by the following update:

Or1 = Ok — 14 (E)VoJT (11,0),

where 7,(k) is the step-size. The gradient VyJT (1, 0) with
regards to weights 6 can be calculated using a log-likelihood
method as:

Voli0) =, E 5

(24)

[L(O|F) Vglogmg(O|F)].  (25)

L(O|F) represents the total cost with penalization obtained
from: L(O|F) = J(O|F) + £(O|F), where J(O|F) is the
total network cost in each iteration and £(O|F) = pC(O|F)
is the weighted sum of constraint dissatisfaction of C'(O|F).
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The penalty coefficient g is set manually [29], [39] for
CDRS-Fixed within a range [0, ftmax].” In this case, the selec-
tion of p can be set following intuition approach in [29]
(Appendix C), i.e., agent will not pay attention to penalty
if 4 = 0, and it will only converge to penalization if p =
oo. Hence, selecting the appropriate penalty coefficient is
important in this case. Otherwise, we can follow a less intu-
itive approach by adaptively updating the penalty coefficient
(CDRS-Ada). CDRS-Ada is updated based on the primal-
dual optimization (PDO) method inspired from [31]. Hence,
we update the penalty coefficient in the ascent direction as:

pr1 = i+ na(k)V I (p, 0) (26)
= pk +na(k)(JE(0))+, (27

where 74(k) is the step-size (Dual) and V,J](u,0) =
Eo~ry (.17 [C(O|F)] is the gradient with respect to . The
penalty coefficient py is updated for every k-th iteration
and will converge to a fixed value once the constraints
are satisfied [30], [31]. Then, Monte-Carlo sampling can be
applied to approximate J7(¢) by drawing B i.i.d samples

Fl, ..., FB~F, which can be written:
B
Vo JE(8)~ EZ}(L(O 7)o, (F7))Vologrs (O'| ),

(28)

where by, (F?) is the baseline estimation given the state input
of i-th batch, parameterized by a neural network structure with
weights 6,,.

1) Baseline Estimator: The baseline choice can be from an
exponential moving average of the reward over time that cap-
tures the improving policy in training. Although it succeeds in
the Christofides algorithm, it does not perform well because it
cannot differentiate between inputs [25]. To this end, we use a
parametric baseline by, to estimate the expected total cost with
penalization that typically improves the learning performance.
We estimate the baseline through an auxiliary network built
from an LSTM encoder connected to a multilayer perceptron
output layer. The auxiliary network (parameterized by 6,) that
approximates the expected cost with penalization from input
F is trained with stochastic gradient descent. It employs a
mean squared error (MSE) objective, calculated from the pre-
diction of by, and the total cost with penalization L(O|F?),
and sampled by the most recent policy (obtained from the
environment). We formulate the auxiliary network goal is to
minimize the below loss function:

1< . .
£0,) = 5 D [lbo,(F) = LOTF)|,. 29
i=1

Fig. 4 illustrates the architecture of the auxiliary network for
estimating the baseline.

To sum up, our training procedures are summarized in
Algorithm 1 and illustrated in Fig. 5, which run iteratively
by K episodes (epochs) based on a single time-step Monte-
Carlo policy gradient with a baseline estimator. The sequence
of policy updates will converge to a locally optimal policy

Tf Assumption 2 is satisfied, jtmax can be set to co [30].
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Fig. 4.  Baseline Estimator. The self-competing baseline of CDRS is
estimated using an auxiliary network constructed from an LSTM encoder
connected to a multilayer perceptron output linear layer.
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Fig. 5. CDRS Diagram. CDRS is trained using a single time step Monte-
Carlo policy gradient algorithm, where at every epoch, the interactions with
the environment are narrowed to a single time step. Our agent learns the
policy iteratively over epochs.

(Total cost + penalty)

Algorithm 1 CDRS Training
Input: K (Num of epoch), B (Batch size), F (Learning
set)
Initialize: assign agent and critic (baseline) networks
with random weights 6 and 6,,.
1for k=1,...,K do
2 | df «— 0 % Reset gradient
F* ~ Samplelnput (F) for i € {1,..., B}.
O' ~ SampleSolution (7y(.|F)) fori € {1,..., B}.
bt « by, (F') forie {1,...,B}.
Compute L(O?) fori € {1,..., B}.
7 | gp— %Zil@((y)—bi)Vglogmg(Oﬂ]:i) from (28).
0 «— Adam(0, gp) %Run Adam algorithm
9 | L, — 538 || = L(O)]]2 from (29).
10 | 0, — Adam(d,, L,) %Run Adam algorithm
11 | Update p from (26) %CDRS-Ada
12 | Set = max(0, ) %CDRS-Ada
13 end
14 return 6,0, i

A N A W

and the penalty coefficient updates (e.g., CDRS-Ada) will
converge to a fixed value when all constraints are satisfied;
see also [30], [31].
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C. Searching Strategy

At the test time, evaluating the total network cost is inex-
pensive as it only requires a forward pass from the policy
network to decide the splits. Our agent can add a search
procedure during the inference process by considering solution
candidates from multiple pretraining models to select the
splits. It can help to reduce the inferred policy suffering
from a severe suboptimality. We employ two different search
strategies by greedy decoding and temperature sampling [25].

1) Greedy Decoding: 1t is the simplest search strategy. The
idea is to greedily select the splits with the highest probability
for having the lowest cost from multiple pretraining models
during the inference time. Then, we can extend CDRS to
CDRS-Fixed-G, which uses a fixed penalty coefficient with
greedy decoding and CDRS-Ada-G that uses an adaptive
penalty coefficient with greedy decoding.

2) Temperature Sampling: This method samples through
stochastic policy for each pretraining model to generate several
candidate solutions then decides the splits with the lowest
total cost among them [25], [29]. As opposed to the heuristic
solvers, it does not sample the different split options. Instead,
it samples through the stochastic policy and controls the
sparsity of the output distribution by a temperature hyper-
parameter 7. The softmax function in (19) is modified to

exp (score(ht,f_zk)/T)
fo,zl exp (score(h,,,}_z;c)/T))
the training, the temperature hyperparameter 7" is set to 1.
Meanwhile, we modify to T' > 1 during the test, hence
the output distribution becomes less step, which prevents the
model from being overconfident. With this method, we can
extend CDRS to CDRS-Fixed-T (fixed penalty coefficient,
temperature sampling) and CDRS-Ada-T (adaptive penalty
coefficient, temperature sampling). Note that this method
requires additional time, which depends on the number of
samples.

Qi =

(softmax temperature). In

V. RESULTS AND DISCUSSION

In this section, we conduct several experiments to evalu-
ate our approach using synthetic and real network datasets.
We aim to examine our approach in regards to: (i) the
behaviour during the training process, (ii) the accuracy and
solution distributions to the optimality with different penalty
coefficient and search strategy settings, (iii) the impact of
routing costs and traffic loads on the optimality performance
and total network cost, and (iv) the computational time.

A. Environment & Experiment Setup

We use synthetic (R1) and real (R2) network datasets to
evaluate our approach. We generate R1 with stricter constraints
and a larger scale environment than R2. R1 is generated using
the Waxman algorithm [32] with parameters such as link
probability («) and edge length control (). These respec-
tive parameters («a,3) are set to (0.5,0.1). Rl has 1 CU
and 99 DUs. In the case of R2, we utilize a real network
dataset from [40], which has 1 CU and 63 DUs. We assume
that the routers are co-located with the DUs. R1 and R2
differ in parameters, e.g., location, link capacity, weighted
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Fig. 6. RANSs dist. eCDF of (a) per-path routing cost, (b) per-link capacity,
(c) per-path latency for R1 and R2.

link, delay. We use a standard store-and-forward model to
calculate the delay. It is from 12000/c;;, 4usecs/Km and
Susecs for transmission, propagation and processing delay,
respectively; see [18]. The link capacity varies to 100 Gbps
(R1) and 252 Gbps (R2). The path delay reaches to 3658 s
(R1) and 42 us (R2). In R1, the routing cost per path is
calculated from the total cost per link (randomly generated)
which belongs to the selected path. A link with a routing cost
of 1 monetary unit per Mbps means having the same cost as
a DU computing cost. We consider the routing cost within a
range of 0.001 — 0.01 times of DU computing cost (for the
same network load) for each link in R1. In R2, we calculate
the distance between nodes based on its geolocation dataset
from [40] and charge the cost of 0.01 monetary units per
Mbps/km. Fig. 6 depicts the parameter distributions of our
RANs with eCDFE.

In this experiment, all system parameters correspond to
testbed measurements of previous studies [2], [3], [18], [41].
We assume a high load scenario A, = 150 Mbps for every
DU. This setting is based on 1 user/TTI, 2 x 2 MIMO, 20 Mhz
(100 PRB), 2 TBs of 75376 bits/subframe and IP MTU 1500B.
We use an Intel Haswell i7-4770 3.40GHz CPU as the refer-
ence core, and set the maximum computing capacity to 75 RCs
for CU and 7.5 RCs for each DU. Each split o € {0,1,2,3}
incurs computational load p¢ = {0.05,0.04,0.00325,0} RCs
per Mbps at each DU and p¢ = {0, 0.001,0.00175,0.05} RCs
per Mbps at the CU. The VM instantiation cost at the CU is
half of the DU (ap = «,,/2) and the processing cost is set to
Bo = 0.0175,,.

Our learning rate is initially set to 1, = 0.0001 (Agent)
and 7, = 0.005 (Baseline) with the batch size: 128. Our
neural network has the number of layers, hidden dimension
and embedding size with 1,32 and 32, respectively. The
temperature hyperparameter is set to 7' = 1 by default,
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Fig. 7. Training results of CDRS in (a) R1 and (b) R2. CDRS-Fixed uses a fixed value of penalty coefficient (reward shaping) with p; = 1, Vi. CDRS-Ada

utilizes an adaptive update of penalty coefficient.

so the model computes the softmax function directly. We scale
all the original values of weighted paths and traffic loads
randomly with uniform distribution [0,1] as in [25]. Then,
we generate three models (RL-pretaining) as outputs of our
training with 50000 (in R1) and 15000 (in R2) epochs each.
CDRS-Fixed uses a fixed penalty coefficient with p; = 1,Vs
for all epochs while CDRS-Ada is set with initial penalty
coefficient 1;(0) = 1,Vi and step-size 1y = 0.001. The
training is performed with Tensorflow 1.15.3 and Python 3.7.4.
In the test, the temperature sampling method uses 16 samples
and 7' = 15 (softmax temperature).

B. Training Analysis

We aim to examine the behaviour of CDRS-Fixed and
CDRS-Ada during the training process in R1 and R2. We focus
on the mini-batch loss, reward (total network cost), Lagrangian
cost and penalization.

Fig. 7 visualizes the training of CDRS-Fixed and
CDRS-Ada in R1 and R2. We found additional costs because
of penalization at the beginning of the training for both
settings in R1 and R2. It occurs because CDRS-Fixed and
CDRS-Ada try to find the solution, but violate the constraint
sets (e.g., latency, bandwidth, computation). Fig. 7 also shows
a significant difference in the cost of penalization in R1
compared to R2. The main reason is that R1 has stricter
constraints, e.g., larger path delays, smaller link capacity
than R2. We can also see that CDRS-Fixed and CDRS-Ada
improve their policy by focusing on constraint satisfaction and
then correcting the weights via stochastic gradient descent. It is
proven from our agent’s behaviour in R1 and R2, where each
penalization cost keeps decreasing and turns to zero as soon
as the training goes. CDRS-Ada sets the penalty coefficient

increasing in the ascent direction, causing a higher penal-
ization value than CDRS-Fixed. However, it can help speed
up the policy toward constraint satisfaction, i.e., CDRS-Ada
penalization downs faster than CDRS-Fixed.

We also found that the policy of CDRS-Ada converges
faster than CDRS-Fixed from the behaviour of mini-batch
loss in R1. Despite the mini-batch loss decreases to near
zero after several epochs, the mini-batch loss of CDRS-Ada
diminishes faster than CDRS-Fixed. However, CDRS-Ada
suffers from more severe sub-optimality. It is shown by the
total VRAN cost of CDRS-Ada that converges to a fixed
value but has a higher cost compared to CDRS-Fixed. Then,
we have the Lagrangian cost from the sum of VRAN cost and
penalization cost. It describes how our agent tries to minimize
the primal problem P;p through the dual problem P;p. When
our agent finally dismisses the penalization cost, it means that
all constraints are satisfied. As a result, the Lagrangian cost
becomes equal to the VRAN cost, and the penalty coefficient
of CDRS-Ada converges to a fixed value. Although having
different behaviours, CDRS-Ada and CDRS-Fixed can learn
the solution and converge to the local minima or saddle point
in R1 and R2.

1) Findings: 1) R1 has stricter constraint requirements than
R2; hence, it produces a higher additional cost for penal-
ization to CDRS-Fixed and CDRS-Ada. 2) CDRS-Fixed and
CDRS-Ada improve the policy by focusing on the penal-
ization; then, it adjusts the weights as the training goes.
3) CDRS-Ada receives higher penalization compared to
CDRS-Fixed as a result of increasing the penalty coefficient in
the ascent direction; however, it also helps speed up the policy
to constraint satisfaction. 4) CDRS-Ada converges faster but
has a higher cost than CDRS-Fixed in RI1. 5) When all
constraints are satisfied, the Lagrangian cost becomes equal
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to the total vVRAN cost, and the penalty coefficient of CDRS-
Ada converges to a fixed value.

C. Accuracy of Solutions

In this part, we study the accuracy of CDRS over
different penalty coefficient and search strategy settings:
CDRS-Fixed-G, CDRS-Fixed-T, CDRS-Ada-G and
CDRS-Ada-T. We conduct 128 tests with a distinct sequence
order of the BSs in R1 and R2 to assess how accurate these
four CDRS settings find the solution of the VRAN split
problem. We utilize three pretraining models from our CDRS
training.

Fig. 8 shows the distribution of the solutions from
CDRS-Fixed-G, = CDRS-Fixed-T, = CDRS-Ada-G  and
CDRS-Ada-T in R1 and R2. Each bar counts the number
of offered solutions resulting in some suboptimality,
represented using the optimality gap (error). It shows that
the distribution varies between four settings, especially in
a stricter environment (R1). Still, all of these settings can
guarantee less than 0.6% (R1) and 0.1% (R2) of the optimality
gap. In R1, CDRS-Fixed-G and CDRS-Fixed-T perform better
by offering lower solution errors (< 0.05% and < 0.05%
of optimality gap) than CDRS-Ada-G and CDRS-Ada-T
(< 0.6%). It means that a fixed penalty coefficient setting can
lead to a better optimality performance during the test than
the adaptive one. However, CDRS-Fixed-G, CDRS-Ada-G
and CDRS-Ada-T have a similar performance in R2.
Regardless of R1 or R2, using a sampling method with
a temperature hyperparameter can improve (or at least at
same) the optimality performance than greedy decoding. It is
shown from the higher total number of solutions (counts)
for a sampling method that having a lower error. The
combination of a fixed penalty in the training and temperature
sampling method (CDRS-Fixed-T) can improve the solution
performance significantly both in R1 and R2. It can achieve
an optimal value (R2) and less than 0.05% of error for
a more complex environment (R1). It is also shown that
CDRS-Fixed-T is less affected to the stricter environment
than any other settings where all of the distribution solutions
are in less than 0.05%.

1) Findings: 1)  CDRS-Fixed-G, = CDRS-Fixed-T,
CDRS-Ada-G and CDRS-Ada-T can guarantee the solution
with very close to the optimal value offering less than
0.6% (R1) and 0.1% (R2) of the optimality gap over
128 tests. 2) CDRS-Fixed-T can significantly improve the
optimality performance (offers < 0.05% of optimality gap)
and outperforms the other settings.

D. Impact of Routing Cost

This part studies the impact of altering the routing
cost to CDRS-Fixed-G, CDRS-Fixed-T, CDRS-Ada-G and
CDRS-Ada-T. We aim to examine how the routing cost affects
optimality performance and the total network cost. Hence, the
default routing cost is changed within a range of v = 0.1 to
~v = 1. This change can arise due to increasing or decreasing
the leasing agreement’s price, maintenance, etc. The traffic
load is fixed with \,, = 150 Mbps. We utilize three pretraining
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models, conduct 128 tests for each routing cost scale, and
analyze the offered solutions’ distribution. We also consider
benchmarking with two extremes of RAN setups, fully D-RAN
and C-RAN'? to assess how significant the routing cost affects
the total network cost over various RAN setups.

Fig. 9 depicts how the routing cost affects the optimality per-
formance of CDRS-Fixed-G, CDRS-Fixed-T, CDRS-Ada-G
and CDRS-Ada-T. It shows that the overall optimality
gap (error) diminishes as the routing cost increases; then,
it converges to a specific value. In R1, we see a perfor-
mance improvement as the errors decrease for CDRS-Fixed-G
(=~ 75%), CDRS-Fixed-T (= 75%), CDRS-Ada-G (=~ 78%)
and CDRS-Ada-T (= 75%) by the increase of routing cost.
It also shows that CDRS-Ada-G gets the most impact while
CDRS-Fixed-T is the least affected. In R2, all CDRS settings
also have a similar trend in terms of error performance.
Although we have changed the routing cost from the default
parameter, we found that altering the routing cost gives
relatively less effect to these settings where the errors are
maintained under 1.8%. CDRS-Fixed-T even can guarantee
the solution under 0.08% (v = 0.1) of the optimality gap.

Fig. 10 shows the routing cost’s effect on the total network
cost of CDRS-Fixed-T and D-RAN, normalized to the C-RAN
cost in R1 and R2. It shows that CDRS-Fixed-T can obtain a
larger cost-saving than the D-RAN cost at a cheaper routing
cost by up to 59.06% of cost-saving at v = 0.1 while only
25.49% of cost-saving at v = 1 in R1. Compared to C-RAN,
CDRS-Fixed-T can save the cost by up to 92% at v = 1 in R1.
However, this gain diminishes as the routing cost decreases
and eventually CDRS-Fixed-T will reach near the C-RAN
cost if all constraint requirements are eligible. A similar trend
also appears for R2. Moreover, CDRS-Fixed-T can offer the
solution extremely close to the optimal solution by < 0.09%
(R1) and < 0.5% (R2).

1) Findings: 1) The increase of routing cost reduces the
optimality gap (error); then, it converges to a fixed value.
2) CDRS-Fixed-T is the least affected by the routing cost
changes, while CDRS-Ada-G is the most affected. 3) Scaling
the routing cost from v = 0.1 to v = 1 does not significantly
degrade the optimality performance. 4) CDRS-Fixed-T has the
lowest optimality gap than other CDRS settings, and becomes
the most cost-effective setup in R1 and R2. 5) CDRS-Fixed-T
can reach near the D-RAN cost at a high routing cost, while
it can be near the C-RAN cost at a cheap routing cost if all
constraint requirements are eligible.

E. Impact of Traffic Load

In this part, we assess how the traffic load affects the
optimality performance and the total network cost. We change
the traffic load from 10 Mbps to 150 Mbps. This evaluation is
conducted using three pretraining models and examined over
128 tests.

10We practically cannot implement C-RAN because our RANs do not meet
the constraint requirements of delay, bandwidth and CU capacity to deploy
C-RAN. The presented C-RAN in this experiment is just for benchmarking;
hence we also do not consider the penalization cost (constrains violation) for
this case.
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Fig. 9.
An = 150 Mbps, Vn € N. There are 128 tests for each routing scale [0.1, 1].

Fig 11 shows the impact of altering the traffic load to the
optimality performance of CDRS-Fixed-G, CDRS-Fixed-T,
CDRS-Ada-G and CDRS-Ada-T. In R1, it shows that the
increase of traffic load in line with the rise of the error
to CDRS-Ada-G and CDRS-Ada-T, but it then diminishes
to a fixed value, i.e., around 0.4% (CDRS-Ada-G) and
0.18% (CDRS-Ada-T). However, the traffic load does not

Impact of the routing cost to the accuracy in (a) R1 and (b) R2. Study of altering the routing cost to the optimality performance with

significantly affect CDRS-Fixed-G and CDRS-Fixed-T, where
they stay at around 0.04% and 0.02% of errors, respectively,
in R1. In R2, CDRS-Fixed-G, CDRS-Fixed-T, CDRS-Ada-G
and CDRS-Ada-T have the same trend where the optimality
gap increases with the traffic load; then, it diminishes at
around 0.05%. We also found that CDRS-Fixed-T has a better
optimality performance and a more stable solution.
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Fig 12 examines the impact of traffic load on CDRS-Fixed-T
and D-RAN cost normalized to the C-RAN cost. Despite
an increase in CDRS-Fixed-T cost as the traffic load
rises, it shows that CDRS-Fixed-T is still the most cost-
effective compared to D-RAN and C-RAN in R1 and R2.
CDRS-Fixed-T almost has the same cost as D-RAN at the
low traffic load with only 12.33% cost-saving. This cost-
saving then increases for the higher traffic load settings by
up to 25.5% at 150 Mbps in RI. This trend also happens
in R2. Compared to C-RAN, CDRS-Fixed-T significantly
outperforms at the low traffic load, but this gain then dimin-
ishes as the increase of the load. CDRS-Fixed-T can reach near
the C-RAN cost when all constraint requirements are satisfied,
and the traffic load is high, but the routing cost is significantly
low.

1) Findings: 1) CDRS-Fixed-T can offer to better optimal-
ity performance and more stable solution than other CDRS
settings. 2) In R2, all CDRS settings have similar trends where

the increase of traffic load can also increase the optimality
gap, but it then diminishes and stays at around 0.05% for
CDRS-Fixed-T and 0.06% for the others. 3) CDRS-Fixed-T
is the most cost-efficient compared to C-RAN and D-RAN.
4) CDRS-Fixed-T can eventually almost have the same
C-RAN cost when all constraint requirements are satisfied,
and the traffic load is high, but the routing cost is significantly
low.

F. Computational Time

Finally, we examine the computational time to solve
a single instance of the VRAN split problem. We use a
small laptop with an Intel Core i5-7300U CPU@2.60GHz
and 8GB memory. The computational time for each CDRS
setting is a result of averaging 128 executions with a trained
model. We report this evaluation in Table II. Overall, our
proposed CDRS settings: CDRS-Fixed-G, CDRS-Fixed-T,
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TABLE II
COMPUTATIONAL TIME. STUDY OF COMPUTATIONAL TIME FOR SOLVING A SINGLE PROBLEM INSTANCE IN SECONDS. THE PRESENTED

COMPUTATIONAL TIME IS A RESULT OF AVERAGING 128 EXECUTIONS

Topology MIP solver

CDRS-Fixed-T CDRS-Fixed-G CDRS-Ada-T CDRS-Ada-G

R1 0.2527
R2 0.1756

0.2026
0.1240

0.0155
0.0098

0.1985
0.1207

0.0120
0.0077

CDRS-Ada-G and CDRS-Ada-T, have a faster computational
time than the MIP solver. CDRS-Ada-G is the fastest with
0.0120 secs and 0.0077 secs in R1 and R2 reaching to
22.82 times faster than the MIP solver. We also found that
any CDRS settings with greedy decoding for the inference
process, e.g., CDRS-Fixed-G, CDRS-Ada-G, is more time-
efficient than a temperature sampling method with around
10-20 times faster. It is also shown that CDRS-Ada-G/T has
a slightly faster computational time than CDRS-Fixed-G/T.
Finally, we can sort from the fastest computational time as
1) CDRS-Ada-G, 2) CDRS-Fixed-G, 3) CDRS-Ada-T,
4) CDRS-Fixed-T, 5) the MIP solver.

1) Findings: 1) CDRS-Ada-G, CDRS-Fixed-G, CDRS-
Ada-T, and CDRS-Fixed-T can reach up to 22.82,
17.99,1.45 and 1.41 times faster than the MIP solver.
2) Greedy decoding is more time-efficient than a temperature
sampling method for the inference process.

VI. CONCLUSION

In this paper, we have investigated the functional split opti-
mization problem in which the BS functions can be deployed
at the CU or DUs. We have formulated the problem mathe-
matically and analyzed the complexity, which is shown to be
combinatorial and NP-hard. Because finding the exact solution
is computationally expensive and precise modelling the actual
vRAN system is highly non-trivial, we have proposed CDRS
as a solution framework to optimize the functional splits of
the BSs amidst minimal assumptions about the underlying
system. We have developed CDRS using a chain rule-based
stochastic policy to handle the interdependence between split
decisions and the large action space. We have applied LSTM
networks-based sequence-to-sequence model to approximate

the policy. Since this policy is limited to an unconstrained
problem, and VRAN’s constraint requirements bound each
function placement decision, we have leveraged a constrained
policy gradient method to train the policy. We have also
provided a search strategy by greedy decoding or temperature
sampling to improve the optimality performance at the test
time. The performance of CDRS has been extensively eval-
uated using synthetic and real network datasets. The results
have shown that CDRS successfully learns the functional
split decision with less than 0.05% optimality gap, attains
considerable cost savings compared to C-RAN or D-RAN
systems, and has a faster computational time than the optimal
baseline.

REFERENCES

[11 F. W. Murti, S. Ali, and M. Latva-Aho, “Deep reinforcement based opti-

mization of function splitting in virtualized radio access networks,” in

Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Jun. 2021,

pp. 1-6.

V. Suryaprakash, P. Rost, and G. Fettweis, “Are heterogeneous cloud-

based radio access networks cost effective?” IEEE J. Sel. Areas Com-

mun., vol. 33, no. 10, pp. 2239-2251, Oct. 2015.

[3] F. W. Murti, J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez,
and G. losifidis, “An optimal deployment framework for multi-cloud
virtualized radio access networks,” IEEE Trans. Wireless Commun.,
vol. 20, no. 4, pp. 2251-2265, Apr. 2021.

[4] “Open and virtualized—The future radio access network,” NEC, Tokyo,
Japan, White Paper, 2020.

[5] “5G immersive service opportunities with edge cloud and cloud RAN,”
Nokia, Espoo, Finland, White Paper, 2019.

[6] L. M. P. Larsen, A. Checko, and H. L. Christiansen, “A survey of the
functional splits proposed for 5G mobile crosshaul networks,” IEEE
Commun. Surveys Tuts., vol. 21, no. 1, pp. 146-172, 1st Quart., 2019.

[7] “Mobile anyhaul,” Nokia, Espoo, Finland, White Paper, 2017.

[8] S. Gonzalez-Diaz et al., “Integrating fronthaul and backhaul networks:
Transport challenges and feasibility results,” IEEE Trans. Mobile Com-
put., vol. 20, no. 2, pp. 533-549, Feb. 2021.

[2

—



9864

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022

J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
A. Banchs, and J. J. Alcaraz, “VrAln: Deep learning based orchestration
for computing and radio resources in VRANS,” IEEE Trans. Mobile
Comput., early access, Dec. 8, 2021, doi: 10.1109/TMC.2020.3043100.
J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and
G. losifidis, “Orchestrating energy-efficient VRANs: Bayesian learning
and experimental results,” IEEE Trans. Mobile Comput., early access,
Oct. 29, 2021, doi: 10.1109/TMC.2021.3123794.

X. Foukas and B. Radunovic, “Concordia: Teaching the 5G VRAN to
share compute,” in Proc. ACM SIGCOMM Conf. New York, NY, USA:
Association Computing Machinery, Aug. 2021, pp. 580-596.

Study on New Radio Access Technology: Radio Access Architecture and
Interfaces, document TS 38.801, Version 14.0.0, 3GPP, Mar. 2017.
NG-RAN: Architecture Description, document TS 38.401, Version
16.8.0, 3GPP, Technical Specification Group Radio Access Network
(NG-RAN), Mar. 2021.

R6.0. Small Cell Virtualization Functional Splits and Use Cases,
document Rec. 159.07.02, Version 14.0.0, Release 7, Small Cell Forum,
2016.

H. Gupta, M. Sharma, A. A. Franklin, and B. R. Tamma, “Apt-RAN:
A flexible split-based 5G RAN to minimize energy consumption
and handovers,” IEEE Trans. Netw. Service Manage., vol. 17, no. 1,
pp. 473487, Mar. 2020.

A. Garcia-Saavedra, J. X. Salvat, X. Li, and X. Costa-Perez, “WizHaul:
On the centralization degree of cloud RAN next generation fronthaul,”
IEEE Trans. Mobile Comput., vol. 17, no. 10, pp. 2452-2466, Oct. 2018.
A. Garcia-Saavedra, X. Costa-Perez, D. J. Leith, and G. losifidis,
“FluidRAN: Optimized VRAN/MEC orchestration,” in Proc. IEEE Conf.
Comput. Commun., Apr. 2018, pp. 2366-2374.

A. Garcia-Saavedra, G. Iosifidis, X. Costa-Perez, and D. J. Leith,
“Joint optimization of edge computing architectures and radio access
networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 11, pp. 2433-2443,
Nov. 2018.

F. W. Murti, A. Garcia-Saavedra, X. Costa-Perez, and G. Iosifidis, “On
the optimization of multi-cloud virtualized radio access networks,” in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1-7.

F. Z. Morais et al., “PlaceRAN: Optimal placement of virtu-
alized network functions in beyond 5G radio access networks,”
IEEE Trans. Mobile Comput., early access, Apr. 29, 2022, doi:
10.1109/TMC.2022.3171525.

S. Ali et al., “6G white paper on machine learning in wireless commu-
nication networks,” 2020, arXiv:2004.13875.

S. Ali, W. Saad, and D. Steinbach, Eds., White Paper on Machine
Learning in Wireless Communication Networks (6G Research Visions),
no. 7. Oulu, Finland: Univ. Oulu, Jun. 2020.

S. Matoussi, I. Fajjari, N. Aitsaadi, and R. Langar, “Deep learning based
user slice allocation in 5G radio access networks,” in Proc. IEEE 45th
Conf. Local Comput. Netw. (LCN), Nov. 2020, pp. 286-296.

T. Pamuklu, M. Erol-Kantarci, and C. Ersoy, “Reinforcement learning
based dynamic function splitting in disaggregated green open RANS,”
in Proc. IEEE Int. Conf. Commun., Jun. 2021, pp. 1-6.

I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” in Proc. Int.
Conf. Learn. Represent. (ICLR), Nov. 2019, pp. 1-15.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. 27th Int. Conf. Neural Inf. Process. Syst.
(NIPS), vol. 2. Cambridge, MA, USA: MIT Press, 2014, pp. 3104-3112.
D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2015, pp. 1-15.

R. Solozabal, J. Ceberio, and M. Taka¢, “Constrained combinatorial
optimization with reinforcement learning,” 2020, arXiv:2006.11984.

R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 2,
pp- 292-303, Dec. 2020.

C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained
policy optimization,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2019,
pp. 1-15.

Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-
constrained reinforcement learning with percentile risk criteria,” J. Mach.
Learn. Res., vol. 18, no. 1, pp. 6070-6120, 2017.

B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas
Commun., vol. SAC-6, no. 9, pp. 1617-1622, Dec. 1988.

[33] S. Orlowski, R. Wessily, M. Piéro, and A. Tomaszewski, “SNDIib 1.0
survivable network design library,” Special Issue, Netw. Optim. vol. 55,
no. 3, pp. 276-286, May 2010.

[34] N. Nikaein, “Processing radio access network functions in the cloud:
Critical issues and modeling,” in Proc. ACM Mobisys, 2015, pp. 36-43.

[35] A. M. Alba, J. H. G. Veldsquez, and W. Kellerer, “An adaptive functional
split in 5G networks,” in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), Apr. 2019, pp. 410-416.

[36] M. M. Akbar, M. S. Rahman, M. Kaykobad, E. G. Manning, and
G. C. Shoja, “Solving the multidimensional multiple-choice knapsack
problem by constructing convex hulls,” Comput. Oper. Res., vol. 33,
no. 5, pp. 1259-1273, May 2006.

[37] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., May 2013, pp. 6645-6649.

[38] D. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena
Scientific, 1999.

[39] R. Solozabal, J. Ceberio, and M. Takac, “Constrained combinatorial
optimization with reinforcement learning,” 2020, arXiv:2006.11984.

[40] S. Orlowski, R. Wessily, M. Piéro, and A. Tomaszewski, “SNDIib
1.0—Survivable network design library,” Networks, vol. 55, no. 3,
pp- 276-286, 2010.

[41] P. Rost, S. Talarico, and M. C. Valenti, “The complexity-rate tradeoff
of centralized radio access networks,” IEEE Trans. Wireless Commun.,
vol. 14, no. 11, pp. 6164-6176, Jun. 2015.

Fahri Wisnu Murti received the B.S. degree
from Telkom University, Indonesia, and the master’s
degree from the WENS Laboratory, Department of
IT Convergence Engineering, Kumoh National Insti-
tute of Technology, South Korea. He is currently
pursuing the Ph.D. degree with the Centre for Wire-
less Communications (CWC), University of Oulu,
Finland. Prior to his doctoral study, he has worked
as a Research Assistant at the Department Computer
Science, Trinity College Dublin, Ireland. His current
research interests lie in the development of machine
learning and optimization techniques for intelligent wireless networks.

Samad Ali received the B.S. degree in electrical
engineering from the University of Tabriz, Tabriz,
Iran, and the M.S. and Ph.D. degrees in wireless
communications engineering from the University
of Oulu, Oulu, Finland. He is currently a Post-
Doctoral Researcher with the University of Oulu and
a Senior Research Specialist at Nokia Standards.
His research interests include machine learning in
wireless communications, machine type communi-
cations, and RIS.

Matti Latva-aho (Senior Member, IEEE) received
the M.Sc., Lic.Tech., and Dr.Tech. (Hons.) degrees
in electrical engineering from the University of
Oulu, Finland, in 1992, 1996, and 1998, respectively.
From 1992 to 1993, he was a Research Engineer at
Nokia Mobile Phones, Oulu, Finland, after which
he joined the Centre for Wireless Communications
(CWCQ), University of Oulu. He was the Director of
CWC during the years 1998-2006 and the Head of
the Department of Communication Engineering until
August 2014. He currently serves as the Academy of
Finland Professor for the period 2017-2022 and the Director for the National
6G Flagship Program for the period 2018-2026. He has published close to
500 conferences or journal articles in the field of wireless communications. His
research interests are related to mobile broadband communication systems and
his group focuses on beyond 5G systems research. He has received the Nokia
Foundation Award in 2015 for his achievements in mobile communications
research.


http://dx.doi.org/10.1109/TMC.2020.3043100
http://dx.doi.org/10.1109/TMC.2021.3123794
http://dx.doi.org/10.1109/TMC.2022.3171525


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


