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Channel Estimation and Data Detection Analysis of
Massive MIMO With 1-Bit ADCs
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Abstract— We present an analytical framework for the channel
estimation and the data detection in massive multiple-input
multiple-output uplink systems with 1-bit analog-to-digital con-
verters (ADCs) and i.i.d. Rayleigh fading. First, we provide
closed-form expressions of the mean squared error (MSE) of
the channel estimation considering the state-of-the-art linear
minimum MSE estimator and the class of scaled least-squares
estimators. For the data detection, we provide closed-form expres-
sions of the expected value and the variance of the estimated
symbols when maximum ratio combining is adopted, which can
be exploited to efficiently implement minimum distance detection
and, potentially, to design the set of transmit symbols. Our analyt-
ical findings explicitly depend on key system parameters such as
the signal-to-noise ratio (SNR), the number of user equipments,
and the pilot length, thus enabling a precise characterization of
the performance of the channel estimation and the data detection
with 1-bit ADCs. The proposed analysis highlights a fundamental
SNR trade-off, according to which operating at the right noise
level significantly enhances the system performance.

Index Terms— 1-bit ADCs, channel estimation, data detection,
massive MIMO, performance analysis.

I. INTRODUCTION

THE migration of operating frequencies from first- to
fourth-generation wireless systems, i.e., from 800 MHz to

the sub-3 GHz range, did not bring major changes in terms of
signal propagation. The current fifth generation (5G) features
a more pronounced transition in this respect by operating at
sub-6 GHz frequencies and, eventually, up to 30 GHz with
the objective of boosting the data rates. Following this trend,
beyond-5G systems will exploit the large amount of bandwidth
available in the mmWave band (i.e., 30 GHz–300 GHz) and
raise the operating frequencies up to 1 THz [2]. In this
context, maintaining the same signal-to-noise ratio (SNR) over
a given distance will require larger antenna arrays and increas-
ingly sharp beamforming to spatially focus the signal power.
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Although the short wavelength at mmWave and sub-THz
frequencies allows to pack many antennas into a very small
area, realizing fully digital, high-resolution massive multiple-
input multiple-output (MIMO) arrays remains prohibitive in
practice [3], [4].

As in the system model illustrated in Fig. 1, each
base station (BS) antenna is generally equipped with a
dedicated radio-frequency (RF) chain that includes com-
plex, power-hungry analog-to-digital/digital-to-analog convert-
ers (ADCs/DACs) [4]. In this setting, while the transmit power
can be made inversely proportional to the number of antennas,
the power consumed by each ADC/DAC scales linearly with
the sampling rate and exponentially with the number of
quantization bits [5]–[9]. Another limiting factor is the amount
of raw data exchanged between the remote radio head (RRH)
and the base-band unit (BBU), which scales linearly with both
the sampling rate and the number of quantization bits [10]–
[12]. For these reasons, adopting low-resolution ADCs/DACs
with 1 to 4 quantization bits as opposed to the typical 10 or
more [13] enables the implementation of massive MIMO
arrays comprising hundreds (or even thousands) of antennas,
which are necessary to operate in the mmWave and sub-THz
bands [10]. In this regard, 1-bit ADCs/DACs are particularly
appealing due to their minimal power consumption and com-
plexity since they only evaluate the sign of the input signal [5].
Such a coarse quantization is especially motivated at very high
frequencies, where high-order modulations are not essential.

There is a large body of literature on massive MIMO
with low-resolution and 1-bit ADCs/DACs, ranging from
performance analysis to channel estimation and precoding
design. The capacity of the low-resolution and the 1-bit
quantized MIMO channel is characterized in [14] and [5],
respectively, whereas [15] shows that replacing even a small
number of high-resolution ADCs with 1-bit ADCs entails a
modest performance loss. The performance-quantization trade-
off in orthogonal frequency-division multiplexing (OFDM)
uplink systems is studied in [6], which shows that using 4 to
6 quantization bits involves almost no performance loss com-
pared with infinite-resolution ADCs. The spectral efficiency
of single-carrier and OFDM uplink systems with 1-bit ADCs
is analyzed in [16]. The problem of multi-user detection is
considered, e.g., in [17] and [18] for low-resolution and 1-bit
ADCs, respectively, whereas [19] focuses on the joint channel
estimation and data detection. An efficient iterative method for
near maximum likelihood detection with 1-bit ADCs is pro-
posed in [7]. The work in [8] analyzes the channel estimation
and the uplink achievable rate with 1-bit ADCs. In addition,
it proposes a linear minimum mean squared error (MMSE)
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Fig. 1. Fully digital massive MIMO uplink system.

channel estimator based on the Bussgang decomposition,
which allows to reformulate the nonlinear quantization func-
tion as a linear function with identical first- and second-order
statistics [20]: we refer to this estimator as Bussgang linear
MMSE (BLM) estimator. A similar analysis is presented
in [21] for the downlink direction. The work in [10] extends
some of the results derived in [16] and [8] for 1-bit ADCs to
the multi-bit case. Specifically, it presents a throughput analy-
sis of uplink systems and proposes a linear channel estimator
based on the Bussgang decomposition with low-resolution
ADCs. The channel estimation with 1-bit ADCs when the
quantization threshold is not known is studied in [22]. The
channel estimation exploiting the angular and delay structure is
considered in [23] and [24] for low-resolution and 1-bit ADCs,
respectively, whereas [25] exploits the temporal correlation for
1-bit ADCs. A recent line of works employs machine learning
techniques in scenarios where obtaining accurate channel
state information with low-resolution ADCs is impractical
(see, e.g., [26], [27]). The benefits of oversampling for 1-bit
quantized uplink systems are investigated in [28] and [29].
The performance of linear precoding schemes for downlink
systems with 1-bit DACs is analyzed in [9]. A similar analysis
with multi-bit DACs is presented in [11] considering both
linear and nonlinear precoding, and in [12] considering linear
precoding with oversampling in OFDM downlink systems.
Lastly, [30] proposes a general optimization framework for
downlink precoding with 1-bit DACs and constant envelope
assuming quadrature amplitude modulation (QAM) transmit
symbols.

A. Contribution

This paper broadens prior analytical studies on the channel
estimation and the data detection in massive MIMO uplink
systems with 1-bit ADCs. On the one hand, existing works
do not provide a precise characterization of the performance
of the channel estimation with 1-bit ADCs with respect to
key system parameters such as the SNR, the number of
user equipments (UEs), and the pilot length. We fill this
gap by analyzing the mean squared error (MSE) of the
channel estimation along with its asymptotic behavior at high
SNR assuming independent and identically distributed (i.i.d.)
Rayleigh fading channels among the UEs. In this respect,
we consider the BLM estimator in [8] as well as the class of
scaled least-squares (LS) estimators, such as the one proposed
in [16] (which can be obtained from the former by ignor-

ing the temporal correlation of the quantization distortion).
On the other hand, in the context of data detection with
1-bit ADCs, the statistical properties of the estimated symbols
have not been characterized by existing works. In this regard,
an interesting SNR trade-off was observed in [10], whereby
the estimated symbols resulting from transmit symbols with
the same phase overlap at high SNR; however, this aspect
has not been formally described in the literature. We fill this
gap by analyzing the expected value and the variance of the
estimated symbols along with their asymptotic behavior at
high SNR.1 Our results on both the channel estimation and the
data detection ultimately impact the symbol error rate (SER)
and thus provide important practical insights into the design
and the implementation of 1-bit quantized systems.

The contributions of this paper are summarized as follows:
• For the channel estimation with 1-bit ADCs, we derive

closed-form expressions for the BLM estimator in [8]
and for the class of scaled LS estimators, such as the one
proposed in [16]. This enables a precise characterization
of the performance of the channel estimation with respect
to the SNR, the number of UEs, and the pilot length.
Furthermore, we show that, in the case of i.i.d. Rayleigh
fading channels among the UEs, the BLM estimator can
be simplified as a scaled LS estimator with UE-specific
scaling factors and that using a common optimized scal-
ing factor for all the UEs entails a negligible performance
loss.

• For the data detection with 1-bit ADCs, we character-
ize the statistical properties of the estimated symbols
by deriving closed-form expressions of the expected
value and the variance when maximum ratio combin-
ing (MRC) is adopted at the BS. These results can
be exploited to efficiently implement minimum distance
detection (MDD) and, potentially, to design the set of
transmit symbols to further improve the data detection
performance.

• Building on the proposed analysis, we provide a thorough
discussion on the effect of 1-bit quantization on both
the channel estimation and the data detection. For each
of the two aspects, we describe a fundamental SNR
trade-off, according to which operating at the right noise
level significantly enhances the system performance.
In this respect, the optimal transmit SNR for the chan-
nel estimation is shown to decrease as the pilot length
increases.

Outline. The rest of the paper is structured as follows.
Section II introduces the system model with 1-bit ADCs.
Sections III and IV present our performance analysis results
on the channel estimation and the data detection, respectively,
each including dedicated numerical results and discussions.
Finally, Section V summarizes our contributions and draws
some concluding remarks.

Notation. A = (Am,n) specifies that Am,n is the (m, n)th
entry of matrix A; likewise, a = (an) specifies that an

1This second part of the paper complements the results of [1] with a detailed
analysis of the normalized variance of the estimated symbols (also by means
of tractable upper bounds), while the first part is entirely new.
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is the nth entry of vector a. (·)T, (·)H, and (·)∗ represent
the transpose, Hermitian transpose, and conjugate operators,
respectively. Re[·] and Im[·] denote the real part and imaginary
part operators, respectively, whereas j is the imaginary unit.
E[·] and V[·] are the expectation and variance operators,
respectively. IN , 0N , and 1N denote the N -dimensional
identity matrix, all-zero vector, and all-one vector, respectively.
Diag(·) produces a diagonal matrix with the entries of the
vector argument on the diagonal, sgn(·) is the sign func-
tion, and vec[·] is the vectorization operator. The Kronecker
product is denoted by ⊗ and {·} is used to represent sets.
Lastly, CN (0, 1) is the complex normal distribution with
zero mean and unit variance, whereas N (0N ,Σ) is the real
N -variate normal distributions with zero mean and covariance
matrix Σ.

II. SYSTEM MODEL

Consider the scenario depicted in Fig. 1, where a BS with
M antennas serves K single-antenna UEs in the uplink. Let
H � (Hm,k) ∈ C

M×K denote the uplink channel matrix:
assuming i.i.d. Rayleigh fading (as, e.g., in [8], [10]–[12]), the
entries of H are distributed independently as CN (0, 1). Each
UE transmits with power ρ and the additive white Gaussian
noise (AWGN) at the BS has unit variance: thus, ρ can be
interpreted as the transmit SNR. Note that the same transmit
SNR is assumed for the two phases of channel estimation
and uplink data transmission. Each BS antenna is connected
to two 1-bit ADCs, one for the in-phase component and one
for the quadrature component of the receive signal. Therefore,
according to [10], we introduce the 1-bit quantization function
Q(·) : C

L×N → Q, with

Q(A) �
√

ρK + 1
2

(
sgn
(
Re[A]

)
+ j sgn

(
Im[A]

))
(1)

and where Q �
√

ρK+1
2 {±1±j}L×N is the set containing the

scaled symbols of the quadrature phase-shift keying (QPSK)
constellation.

A. Channel Estimation

In the channel estimation phase, the UEs simultaneously
transmit their uplink pilots of length τ . Let P � (Pu,k) ∈
C

τ×K denote the pilot matrix whose columns correspond to
the pilots used by the UEs, with |Pu,k|2 = 1, ∀u, k. We assume
τ ≥ K and orthogonal pilots among the UEs, so that PHP =
τIK . Hence, the receive signal at the BS prior to quantization
is given by

Yp � √
ρHPH + Zp ∈ C

M×τ (2)

where Zp � (Zm,u) ∈ C
M×τ is the AWGN term with entries

distributed as CN (0, 1). Then, at the output of the ADCs,
we have

Rp � Q(Yp) ∈ C
M×τ (3)

with Rp = (Rm,u), which is used by the BS to estimate H.
Some comments are in order. First, correlating the quantized
receive signal Rp in (3) with P, as done in (5) below,

results in residual pilot contamination even when the pilots
are orthogonal (see, e.g., [16]). Second, the pilots should
be preferably chosen such that their entries span an interval[
η, η + π

2

]
, with η ∈ [0, 2π], so as to accurately estimate

the phases (especially at high SNR). This is explained in
Appendix A, which provides a detailed discussion on the
channel estimation with 1-bit ADCs.

The LS estimator for 1-bit ADCs, which correlates the
quantized receive signal Rp in (3) with P, was first presented
in [31]. Then, a linear MMSE estimator based on the Bussgang
decomposition (see [20]), which we refer to as BLM estimator,
was proposed in [8]. According to this, h � vec[H] ∈ C

MK×1

is estimated as2

ĥBLM �
√

2
π

ρP̃TΣ−1
p rp ∈ C

MK×1 (4)

with P̃ � P ⊗ IM ∈ C
Mτ×MK , rp � vec[Rp] ∈ C

Mτ×1,
and where Σp � E[rpr

H
p ] ∈ C

Mτ×Mτ denotes the covariance
matrix of rp. A linear estimator with a simpler structure can
be obtained from (4) by ignoring the temporal correlation of
the quantization distortion, which implies that the off-diagonal
entries of Σp are zero. Such a scaled LS estimator was
proposed in [16] (and later extended to the case of multi-bit
ADCs in [10]), whereby H is estimated as

ĤSLS �
√

ΨRpP ∈ C
M×K (5)

where the scaling factor Ψ (common for all the UEs) is defined
as

Ψ � 2
π

ρ

(
2
π

ρ(τ − K) + ρK + 1
)−2

. (6)

We point out that Ψ in (6) implicitly depends on the channel
distribution. Note that, when τ = K , (5) coincides with (4)
since Σp = (ρK + 1)IMK ; otherwise, (5) accurately approxi-
mates (4) at low SNR or when K is large [10]. In Section III,
we analyze the performance of the BLM estimator in (4) and
of the class of scaled LS estimators, such as the one in (5).
Moreover, we highlight the relationship between these two in
the case of i.i.d. Rayleigh fading channels among the UEs.

B. Uplink Data Transmission

Let xk ∈ C be the transmit symbol of UE k, with
E
[|xk|2

]
= 1 and x � (xk) ∈ C

K×1. The receive signal
at the BS prior to quantization is given by

y � √
ρHx + z ∈ C

M×1 (7)

where z � (zm) ∈ C
M×1 is the AWGN term with entries

distributed as CN (0, 1). Then, at the output of the ADCs,
we have

r � Q(y) ∈ C
M×1 (8)

and the BS obtains a soft estimate of x as

x̂ � VHr ∈ C
K×1 (9)

2Note that, in the case of correlated channels, the BLM estimator in (4) is
given by [8, Eq. (60)] and the channel covariance matrix is also embedded
into Σp.
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where V ∈ C
M×K is the combining matrix adopted at

the BS. Finally, the data detection process associates each
estimated symbol to a transmit symbol, e.g., via MDD.
In Section IV, we focus on characterizing the statistical
properties of the estimated symbols when MRC is adopted at
the BS.

III. CHANNEL ESTIMATION WITH 1-BIT ADCs

In this section, we are interested in characterizing the
performance of the channel estimation with respect to the
different parameters when 1-bit ADCs are adopted at each
BS antenna (see Section II-A). In doing so, we consider the
BLM estimator in (4) and the class of scaled LS estimators,
such as the one in (5).

A. MSE of the Channel Estimation

The (normalized) MSE of the channel estimation when the
BLM estimator is used is given by

MSEBLM � 1
MK

E
[‖ĥBLM − h‖2

]
(10)

with ĥBLM defined in (4). In [8, Eq. (17)], the closed-form
expression of (10) was derived for the case of τ = K , which
gives

MSEBLM = 1 − 2
π

ρK

ρK + 1
. (11)

Note that the above expression is lower bounded by 1 − 2
π 	

0.363, which is achieved in the limit of ρK → ∞. Hence,
in realistic scenarios (especially for small values of K), using
a pilot length that is equal to the number of UEs results in
quite inaccurate channel estimates. In general, τ should be
sufficiently large to compensate for the low granularity of the
ADCs, as detailed in Appendix A. For this reason, we assume
that the pilot matrix P is chosen such that PPH is circulant3

and derive a closed-form expression of (10) that is valid for
any value of τ and K .

Theorem 1: Suppose that the BLM estimator in (4) is used
and that P is chosen such that PPH is circulant. Then, the
MSE of the channel estimation in (10) is given by

MSEBLM = 1 − 2
π

ρτ2

ρK + 1
1
K

K∑
k=1

1
τ + δk

(12)

where we have defined

δk �
∑
u�=v

(
Re[P ∗

u,kPv,k]Ω
(

ρ
∑K

i=1 Re[Pu,iP
∗
v,i]

ρK + 1

)

− Im[P ∗
u,kPv,k]Ω

(
ρ
∑K

i=1 Im[Pu,iP
∗
v,i]

ρK + 1

))
(13)

with

Ω(w) � 2
π

arcsin(w). (14)

3For example, this condition is satisfied when P is a partial discrete Fourier
transform (DFT) matrix, i.e., P is composed of any K columns of the τ -
dimensional DFT matrix.

Proof: See Appendix B.
The result of Theorem 1 enables a precise characterization
of the performance of the BLM estimator with respect to the
transmit SNR ρ, the number of UEs K , and the pilot length τ .
The parameter δk in (13) is roughly proportional to τ(τ − 1)
and, for a fixed τ , decreases with K . When τ = K , (12)
recovers the expression in (11): in fact, τ = K implies δk = 0,
∀k, since

∑K
i=1 Pu,iP

∗
v,i = 0, ∀u �= v. Moreover, the choice of

the pilot matrix P affects the MSE of the channel estimation
through the parameters {δ1, . . . , δK}. Lastly, we point out
that, if PPH is not circulant, MSEBLM can be computed via
the more involved and less insightful expression in (68) (see
Appendix B).

We now show that, in the case of i.i.d. Rayleigh fading
channels among the UEs and when PPH is circulant, the
BLM estimator can be simplified as a scaled LS estimator
with UE-specific scaling factors.

Corollary 1: Suppose that P is chosen such that PPH is
circulant. Then, the BLM estimator in (4) can be simplified
as

ĤBLM � RpPΨ
1
2 ∈ C

M×K (15)

where we have defined Ψ � Diag
(
[Ψ1, . . . , ΨK ]

) ∈ R
K×K ,

with

Ψk � 2
π

ρτ2

(ρK + 1)2(τ + δk)2
. (16)

Proof: See Appendix C.
The result of Corollary 1 states that, under the above assump-
tions, the BLM estimator can be implemented in a way that
avoids the inversion of and the multiplication with the Mτ -
dimensional matrix Σp, where Mτ can be quite large at
mmWave and sub-THz frequencies. In particular, P diago-
nalizes Σp when PPH is circulant, which greatly simplifies
the structure of (4). Lastly, we point out that, in the case of
correlated channels, Corollary 1 does not generally hold as the
channel covariance matrix is embedded into Σp and the latter
is not diagonalized by P.

Let us move our focus to the class of scaled LS estimators,
such as the one in (5); recall that, unlike the simplified
expression of the BLM estimator in (15), scaled LS estimators
are characterized by a common scaling factor for all the UEs.
In this regard, we first derive the closed-form expression of the
MSE of the channel estimation for an arbitrary scaling factor.

Theorem 2: Suppose that the scaled LS estimator in (5)
is used with arbitrary Ψ. Then, the MSE of the channel
estimation is given by

MSESLS � 1
MK

E
[‖ĤSLS − H‖2

F

]
(17)

= 1 + (ρK + 1)Ψ(τ + Δ) − 2

√
2
π

ρΨτ (18)

where we have defined

Δ � 1
K

K∑
k=1

δk (19)

with δk defined in (13).
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Proof: The expression in (18) is obtained from the proof
of Corollary 1 by replacing the UE-specific scaling factors
{Ψ1, . . . , ΨK} in (99) with the common scaling factor Ψ.
In particular, when Ψ defined in (6) is used, (18) becomes

MSESLS = 1 − 2
π

ρ

(
2
π

ρ(τ − K) + ρK + 1
)−2

×
(

4
π

ρτ(τ − K) + (ρK + 1)(τ − Δ)
)

. (20)

Note that, when τ = K , (20) recovers the expression of the
MSE of the BLM estimator in (11).

Now, if we consider the scaling factor Ψ as a tuning
parameter, we can minimize MSESLS in (18) by optimizing
over Ψ. As a result, we obtain the optimal estimator within
the class of scaled LS estimators.

Corollary 2: Suppose that the scaled LS estimator

Ĥ′
SLS �

√
Ψ′RpP ∈ C

M×K (21)

is used, where Ψ′ is obtained by minimizing (18) with respect
to Ψ and is defined as

Ψ′ � 2
π

ρτ2

(ρK + 1)2(τ + Δ)2
(22)

with Δ defined in (19). Then, the MSE of the channel
estimation is given by

MSE′
SLS � 1

MK
E
[‖Ĥ′

SLS − H‖2
F

]
(23)

= 1 − 2
π

ρτ2

(ρK + 1)(τ + Δ)
(24)

≤ (20). (25)

Proof: Since (18) is a convex function of Ψ, Ψ′ in (22)
can be obtained by setting d

dΨ (18) = 0. Then, replacing Ψ
with Ψ′ in (18) yields the expression in (24).
Note that Ψ′ in (22) implicitly depends on the channel
distribution as does Ψ in (6). The result of Corollary 2 shows
that the optimal scaled LS estimator (in terms of MSE of
the channel estimation) is not the one that simply ignores the
temporal correlation of the quantization distortion from the
BLM estimator (see (5)–(6)); instead, a simple optimization
over the scaling factor can significantly improve the channel
estimation accuracy. When τ = K , the optimal scaled LS
estimator in (21) coincides with the estimator in (5), and,
in turn, with the BLM estimator in (4): in fact, τ = K implies
that Ψ′ in (22) reduces to Ψ in (6) and (24) recovers the
expression in (11). On the other hand, the estimator in (21)
shall be always preferred to the estimator in (5) when τ > K
and the performance gap between the two widens with τ −K .
The improved performance of (21) over (5) is also suggested
by the resemblance between MSEBLM in (12) and MSE′

SLS
in (24), where the latter can be obtained from the former
by replacing δk with Δ, ∀k. Remarkably, in Section III-C,
we show that the optimal scaled LS estimator in (21) entails a
negligible performance loss with respect to the BLM estimator.

It is of particular interest to study the asymptotic behavior
of the MSE of the channel estimation at high SNR.

Corollary 3: From Theorems 1 and 2 and from Corollary 2,
in the limit of ρ → ∞, we have

lim
ρ→∞ MSEBLM = 1 − 2

π

τ2

K2

K∑
k=1

1
τ + δ̄k

, (26)

lim
ρ→∞ MSESLS = 1 − 2

π

(
2
π

(τ − K) + K

)−2

×
(

4
π

τ(τ − K) + K(τ − Δ̄)
)

, (27)

lim
ρ→∞ MSE′

SLS = 1 − 2
π

τ2

K(τ + Δ̄)
(28)

where we have defined

δ̄k �
∑
u�=v

(
Re[P ∗

u,kPv,k]Ω
(∑K

i=1 Re[Pu,iP
∗
v,i]

K

)

− Im[P ∗
u,kPv,k]Ω

(∑K
i=1 Im[Pu,iP

∗
v,i]

K

))
(29)

and

Δ̄ � 1
K

K∑
k=1

δ̄k. (30)

The results of Corollary 3 show that arbitrarily increasing the
transmit SNR is detrimental for the performance of the channel
estimation since the right amount of noise is necessary to
recover the difference in amplitude between channel entries
(see Appendix A). This is in sheer contrast with the case of
infinite-resolution ADCs, where boosting ρ produces the same
beneficial noise-averaging effect as increasing τ . In the next
section, we also discuss the asymptotic behavior at low SNR.

B. Tractable Upper Bounds

The MSE expressions derived so far depend on the specific
pilot choice through the parameters {δ1, . . . , δK} in (13) or Δ
in (19). To gain more practical insights, we now consider the
single-UE case (i.e., K = 1) and derive tractable upper bounds
that are independent of the pilot choice. We begin by pointing
out that, when K = 1, we have δk = Δ and, thus, MSEBLM

in (12) is equal to MSE′
SLS in (24). Let p � (pu) ∈ C

τ×1

denote the pilot used by the UE. In this setting, Δ in (19) can
be simplified as

Δ =
∑
u�=v

(
Re[p∗upv]Ω

(
ρRe[pup∗v]

ρ + 1

)

− Im[p∗upv]Ω
(

ρIm[pup∗v]
ρ + 1

))
(31)

≤ τ(τ − 1)Ω
(

ρ

ρ + 1

)
(32)

where the upper bound in (32) is obtained by fixing p such
that pu ∈ {±β,±j β}, ∀u, with β ∈ C and |β|2 = 1; in
the rest of the paper, when referring to this case, we will
simply use p = 1τ . Indeed, for a given pilot length τ , such a
structure of p represents the worst possible pilot choice since
it maximizes the MSE of the channel estimation in (12) and
(20). As detailed in Appendix A, this effect is particularly
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detrimental at high SNR and, in the limit of ρ → ∞, each
channel entry is reduced to a scaled symbol of the QPSK
constellation regardless of the value of τ .

Hence, plugging (32) into (12) and (26) yields

MSEBLM = 1 − 2
π

ρτ

(ρ + 1)
(
1 + (τ − 1)Ω

(
ρ

ρ+1

)) (33)

and

lim
ρ→∞ MSEBLM = 1 − 2

π
(34)

respectively. In addition, considering (33) in the limit of τ →
∞, we have

lim
τ→∞ MSEBLM = 1 − 2

π

ρ

(ρ + 1)Ω
(

ρ
ρ+1

) . (35)

Likewise, plugging (32) into (20) and (27) yields

MSESLS = 1 − 2
π

ρτ

(
2
π

ρ(τ − 1) + ρ + 1
)−2( 4

π
ρ(τ − 1)

+ (ρ + 1)
(

1 − (τ − 1)Ω
(

ρ

ρ + 1

)))
(36)

and

lim
ρ→∞ MSESLS =1− 2

π
τ

(
2
π

(τ−1)+1
)−2(4

π
(τ−1)−τ+2

)

(37)

respectively. Moreover, considering (36) in the limit of τ →
∞, we have

lim
τ→∞ MSESLS =

π

2
ρ + 1

ρ
Ω
(

ρ

ρ + 1

)
− 1. (38)

Some comments are in order. First, when τ = 1, both (33)
and (36) recover the expression in (11) with K = 1. Second,
(34) does not depend on τ since, in the absence of noise,
estimating the channel repeatedly over the same pilot symbol
does not bring any benefit. Third, it can be demonstrated that
(33) and (36) are quasiconvex functions of ρ and, as such, they
have a unique minimum. This defines a clear SNR trade-off,
according to which operating at the right noise level enhances
the channel estimation accuracy. In particular, as discussed in
Appendix A, we have that:
• At low SNR, the channel estimates are corrupted by the

strong noise;
• At high SNR, the difference in amplitude between chan-

nel entries cannot be recovered.

In general, when τ > 1, the value of ρ that minimizes (33),
denoted by ρ�, satisfies

2
π

ρ�

√
1 + 2ρ�

− Ω
(

ρ�

ρ� + 1

)
=

1
τ − 1

. (39)

Since the left-hand side of (39) monotonically increases with
the transmit SNR, ρ� decreases as the left-hand side of (39)
decreases, i.e., as τ increases. This means that using longer
pilots allows to operate at lower SNR as the noise can be
averaged out more efficiently. This interdependence between
ρ and τ can be also observed from (35): in the limit of τ → ∞,
since limw→0

w
arcsin(w) = 1, it follows that MSE′ → 0 as ρ →

0. Lastly, it is shown in Section III-C that the upper bounds
obtained by fixing p = 1τ are remarkably tight at low SNR
and up to the region around the optimal value of ρ. Therefore,
the above observations also apply to the general case.

C. Numerical Results and Discussion

We now focus on the performance evaluation of the channel
estimation with 1-bit ADCs with respect to the different para-
meters based on the analytical results presented in Sections III-
A and III-B. In this regard, when K > 1, we choose a
pilot matrix P composed of the first K columns of the τ -
dimensional DFT matrix. On the other hand, when K = 1,
we use the pilots p = p� and p = 1τ , where

p� � [1, e−j π
2τ , e−j 2 π

2τ , . . . , e−j (τ−1) π
2τ ]T ∈ C

τ×1 (40)

denotes the vector whose entries are equispaced on the first
quadrant of the unit circle: these represent the best and the
worst possible pilot choices, respectively (see Section III-B
and Appendix A for more details on the pilot choice). We thus
consider the expressions of MSEBLM derived in (12), resulting
from the BLM estimator in (4) (see [8]), MSESLS derived in
(20), resulting from the scaled LS estimator in (5) (see [16]),
and MSE′

SLS derived in (24), resulting from the optimal scaled
LS estimator in (21). These are compared with Monte Carlo
simulations with 106 independent channel realizations. For
the latter, we fix M = K to generate the channel matrices,
although the value of M does not affect the analytical and
numerical results in any way.

Fig. 2 illustrates the MSE of the channel estimation against
the transmit SNR ρ, also including the asymptotic MSE
expressions in (26)–(28). Fig. 2(a) considers K = 4 and
τ = 32 and shows that MSEBLM is 5.3% lower than MSESLS at
high SNR. Remarkably, the performance loss associated with
MSE′

SLS with respect to MSEBLM is negligible and can only be
noticed by examining the relative MSE difference in Fig. 2(b),
which reaches its maximum of about 4 × 10−4 in the limit of
ρ → ∞. Hence, in the case of i.i.d. Rayleigh fading channels
among the UEs, the scaled LS estimator with a common
optimized scaling factor for all the UEs essentially achieves
the same accuracy as the BLM estimator. Lastly, we highlight
the SNR trade-off described in Sections III-A and III-B as well
as in Appendix A, whereby the MSE of the channel estimation
exhibits a valley at about ρ = 3 dB. Fig. 2(c) considers
τ = 128 and different values of K . Here, the gap between
MSEBLM and MSESLS widens as τ − K increases, reaching
8.5% for K = 8 at high SNR. In this respect, at high SNR,
MSESLS for K = 8 surpasses its counterpart for K = 16:
in fact, (26)–(28) are not monotonically increasing with K
due to the fact that δ̄k in (29) is a decreasing function of K .
Moreover, the SNR trade-off appears more evident for small
values of K . Fig. 2(d) considers the single-UE case, showing
that the upper bounds in (33) and (36) obtained by fixing
p = 1τ are remarkably tight at low SNR and up to the region
around the optimal transmit SNR. Note that the optimal value
of ρ with p = 1τ satisfies the condition in (39) and gives an
accurate approximation of the optimal value of ρ with p = p�.

Fig. 3 plots the MSE of the channel estimation against the
pilot length τ . The transmit SNR is fixed to ρ = 10 dB in
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Fig. 2. MSE of the channel estimation against the transmit SNR.

Fig. 3(a)–(c), whereas Fig. 3(d) considers the optimized trans-
mit SNR (we recall that ρ should be reduced as τ increases to
enhance the channel estimation accuracy). Fig. 3(a) considers
K = 4 and shows that MSEBLM is 10% lower than MSESLS at
τ = 128. Furthermore, as in Fig. 2, MSE′

SLS closely matches
MSEBLM for any value of τ , which means that the optimal
scaled LS estimator essentially achieves the same accuracy as
the BLM estimator. Fig. 3(b) considers different values of K ,
showing that the gap between MSEBLM and MSESLS widens
as τ −K increases and reaches 7.8% for K = 8 and τ = 128.
Fig. 3(c) examines the case where the number of UEs grows
together with the pilot length. In this setting, the gap between
MSEBLM and MSESLS is roughly constant and increases with
the ratio τ

K , reaching about 5% for τ
K = 8. Lastly, Fig. 3(d)

considers the single-UE case and the upper bound on MSEBLM

in (33) obtained by fixing p = 1τ , which is optimized over the
transmit SNR for each τ . As discussed in Section III-B, the
optimal value of ρ satisfies the condition in (39) and decreases
as τ increases.

IV. DATA DETECTION WITH 1-BIT ADCs AND MRC

In this section, we are interested in characterizing the
performance of the data detection with respect to the different
parameters when 1-bit ADCs are adopted at each BS antenna
(see Section II-B). In this regard, we consider the scenario
where the BS uses the BLM estimator in (4) in the channel
estimation phase and the MRC receiver in the data detection
phase (see also [8]). Assuming that PPH is circulant and
building on Corollary 1, the combining matrix is given by
V = ĤBLM and we can write the soft estimate in (9) as

x̂ = Ψ
1
2 PHRH

p r (41)

=
ρK + 1

2
Ψ

1
2 PH

(
sgn
(
Re[

√
ρHPH + Zp]

)

+ j sgn
(
Im[

√
ρHPH + Zp]

))H

×
(
sgn
(
Re[

√
ρHx + z]

)
+ j sgn

(
Im[

√
ρHx + z]

))
.

(42)
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Fig. 3. MSE of the channel estimation against the pilot length.

In the following, we focus on the single-UE case (i.e., K = 1)
and characterize the statistical properties of the estimated
symbols. We recall that the BLM estimator is equivalent to the
optimal scaled LS estimator in (21) when K = 1, as detailed
in Section III-B. Note that, in a multi-UE massive MIMO
context with infinite-resolution ADCs, MRC asymptotically
becomes the optimal receive strategy as the number of BS
antennas increases. However, when the MRC receiver results
from the quantized channel estimation, it cannot be perfectly
aligned with the channel matrix, resulting in residual multi-UE
interference. Hence, the following analysis of the single-UE
case does not consider this interference; nonetheless, this can
be straightforwardly included at the expense of more involved
and less insightful expressions, which is left for future work.

A. Expected Value and Variance of the Estimated Symbols

Let x ∈ S be the transmit symbol of the UE, where S �
{s1, . . . , sL} denotes the set of transmit symbols, with s� ∈ C,
∀�; for instance, S may correspond to the QPSK or 16-QAM

constellation. To facilitate the data detection process at the
BS, for each transmit symbol s� ∈ S, we are interested in
deriving the closed-form expression of the expected value of
the resulting estimated symbol ŝ�.

Theorem 3: Assuming K = 1 and MRC, for each transmit
symbol s� ∈ S, the expected value of the resulting estimated
symbol ŝ�, denoted by E� � E[ŝ�], is given by

E� =

√
2
π

ρM
τ

τ + Δ

τ∑
u=1

p∗u

(
Ω
(

ρRe[pus�]√
(ρ + 1)(ρ|s�|2 + 1)

)

+ j Ω
(

ρIm[pus�]√
(ρ + 1)(ρ|s�|2 + 1)

))
(43)

with Δ given in (31).
Proof: See Appendix D.

The result of Theorem 3 can be exploited to efficiently
implement MDD. In this context, each estimated symbol x̂
resulting from transmitting x ∈ S can be readily mapped to
one of the expected values {E1, . . . , EL}, which are derived as
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in (43) without any prior Monte Carlo computation, according
to the minimum distance criterion. To further simplify the
process and avoid computing the distance between x̂ and
each E�, one can construct the Voronoi tessellation based
on {E1, . . . , EL} (and, possibly, other available information)
obtaining well-defined detection regions.

Now, for each transmit symbol s� ∈ S, we derive the
closed-form expression of the variance of the resulting esti-
mated symbol ŝ�.

Theorem 4: Assuming K = 1 and MRC, for each transmit
symbol s� ∈ S, the variance of the resulting estimated symbol
ŝ�, denoted by V� � V[ŝ�], is given by

V� =
2
π

ρM
τ2

τ + Δ
− 1

M
|E�|2 (44)

with Δ given in (31) and where E� is derived in closed
form in (43).

Proof: See Appendix E.
The result of Theorem 4 quantifies the dispersion of the esti-
mated symbols about their expected value, which results from
the 1-bit quantization applied to both the channel estimation
(through the MRC receiver) and the uplink data transmission.
This dispersion is not isotropic and assumes different shapes
for different transmit symbols, as illustrated in Section IV-C
(see also [32]). Some additional comments are in order. First,
V� reduces as |s�| increases due to the negative term on
the right-hand side of (44): this is somewhat intuitive since
the transmit symbols that lie further from the origin are
less subject to noise. Second, although V� increases linearly
with the number of BS antennas M , the normalized variance

V�

|E�|2 (which expresses the relative dispersion of the estimated
symbols about their expected value) is inversely proportional
to M . Third, the combined results of Theorems 3 and 4 can be
exploited to design the set of transmit symbols S by jointly
minimizing the relative dispersion and the overlap between
different symbols after the estimation, which is left for future
work. Lastly, in the context of MDD via Voronoi tessellation
described above, one can utilize the variance derived as in (44)
to further refine the detection regions [1].

It is of particular interest to study the asymptotic behavior
of the expected value and variance of the estimated symbols
at high SNR.

Corollary 4: From Theorems 3 and 4, in the limit of
ρ → ∞, we have

lim
ρ→∞

E�√
ρ

=

√
2
π

M
τ

τ + Δ̄

τ∑
u=1

p∗u

(
Ω
(

Re[pus�]
|s�|

)

+ j Ω
(

Im[pus�]
|s�|

))
(45)

and

lim
ρ→∞

V�

ρ
=

2
π

M
τ2

τ + Δ̄
− 1

M
lim

ρ→∞
|E�|2

ρ
(46)

with Δ̄ defined in (30), which can be simplified for K = 1 as

Δ̄=
∑
u�=v

(
Re[p∗upv]Ω

(
Re[pup∗v]

)−Im[p∗upv]Ω
(
Im[pup∗v]

))
.

(47)

Corollary 4 formalizes a behavior of the estimated symbols
that was observed in [10]. From (45), it emerges that, at high
SNR, all the estimated symbols lie on a circle around the origin
and their amplitude no longer conveys any information. As a
consequence, the estimated symbols resulting from transmit
symbols with the same phase become indistinguishable in
terms of their expected value, which depends only on Re[s�]

|s�|
and Im[s�]

|s�| . For instance, if S corresponds to the 16-QAM
constellation as in Section IV-C, the inner estimated symbols
become indistinguishable from the outer estimated symbols
with the same phase. Furthermore, according to (46), these
estimated symbols become identical also in terms of variance.
In the light of this, blindly minimizing the (normalized)
variance of the estimated symbols is not the key to enhancing
the system performance. Instead, the variance (which roughly
decreases with the transmit SNR) should be minimized along-
side the overlap between different symbols after the estimation
(which generally increases with the transmit SNR). This deter-
mines a clear SNR trade-off, according to which operating at
the right noise level enhances the data detection accuracy and
thus reduces the SER. In the next section, we also discuss the
asymptotic behavior at low SNR.

B. Tractable Upper Bounds

As done in Section III-B for the MSE of the channel
estimation, tractable upper bounds on the normalized variance
of the estimated symbols, i.e., that do not depend on the
specific pilot choice, can be obtained by fixing p = 1τ since
such a structure of p represents the worst possible pilot choice
(see Section III-B and Appendix A). Hence, plugging (32) into
(44) and (46) yields

V�

|E�|2 =
1
M

1+(τ−1)Ω
(

ρ
ρ+1

)
τ

((
Ω
(

ρRe[s�]√
(ρ+1)(ρ|s�|2+1)

))2

+
(

Ω
(

ρIm[s�]√
(ρ + 1)(ρ|s�|2 + 1)

))2)−1

− 1
M

(48)

and

lim
ρ→∞

V�

|E�|2 =
1
M

((
Ω
(

Re[s�]
|s�|

))2

+
(
Ω
(

Im[s�]
|s�|

))2)−1

− 1
M

(49)

respectively. In addition, considering (48) in the limit of τ →
∞, we have

lim
τ→∞

V�

|E�|2 =
1
M

Ω
(

ρ

ρ+1

)((
Ω
(

ρRe[s�]√
(ρ+1)(ρ|s�|2+1)

))2

+
(
Ω
(

ρIm[s�]√
(ρ+1)(ρ|s�|2+1)

))2)−1

− 1
M

.

(50)

Some comments are in order. First, the normalized variance of
the estimated symbols can be made arbitrarily close to zero by
increasing the number of BS antennas M . Second, (49) does
not depend on τ since, in the absence of noise, estimating
the channel repeatedly over the same pilot symbol does not
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Fig. 4. Estimated symbols with the MRC receiver, with 16-QAM transmit symbols and K = 1. The expected value of the estimated symbols is computed
as in (43).

bring any benefit. Third, it can be demonstrated that (48) is
a quasiconvex function of ρ and, as such, it has a unique
minimum that defines a further SNR trade-off. It is shown
in Section IV-C that this SNR trade-off, which is inherited
from the channel estimation phase through the MRC receiver,
is not as significant as the one described in Corollary 4.
In fact, the normalized variance of the estimated symbols
roughly decreases with ρ; on the other hand, the difference
in amplitude between symbols cannot be recovered if ρ is too
high. Lastly, while for the channel estimation a reduction of
the transmit SNR can be compensated by increasing the pilot
length (see Section III-B), a low transmit SNR in the uplink
data transmission phase inevitably results in a high normalized
variance of the estimated symbols (see, e.g., Fig. 6).4 In this
respect, we point out that the system performance can be
further enhanced by optimizing the transmit SNR separately
for the two phases of channel estimation and uplink data
transmission.

C. Numerical Results and Discussion

We now focus on the performance evaluation of the data
detection with 1-bit ADCs with respect to the different para-
meters using the analytical results presented in Sections IV-A

4For instance, assuming s� = 1, it is straightforward to observe from (48)
that limρ→0

V�
|E�|2 = ∞.

and IV-B. In this regard, we assume that the BS uses the
BLM estimator in (4), which is equivalent to the optimal
scaled LS estimator in (21) when K = 1, in the channel
estimation phase and the MRC receiver in the data detection
phase. We thus consider the expressions of E� and V� derived
in (43) and (44), respectively, for the single-UE case (i.e.,
K = 1). As in Section III-C, we use the pilots p = p�, with
p� defined in (40), and p = 1τ . Moreover, we specifically
analyze the scenario where the set of transmit symbols S
corresponds to the 16-QAM constellation, i.e., S = 1√

10

{ ±
1 ± j,±1± j 3,±3± j,±3 ± j 3

}
, which is normalized such

that 1
L

∑L
�=1 |s�|2 = 1; however, we remark that our analytical

framework is valid for any choice of S.
Fig. 4 plots the estimated symbols for different settings,

where each 16-QAM symbol is transmitted over 102 inde-
pendent channel realizations and p = p� is used in the
channel estimation phase. The expected value of the estimated
symbols is computed as in Theorem 3: this matches the
sample average of the estimated symbols for each 16-QAM
transmit symbol and can be used to efficiently implement
MDD. Comparing Fig. 4(a)–(c), which consider the same
transmit SNR and pilot length, the relative dispersion of the
estimated symbols about their expected value reduces as the
number of BS antennas grows from M = 64 to M = 256.
In fact, a higher granularity in the antenna domain allows
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Fig. 5. Normalized variance of the estimated symbols against the number
of BS antennas, with 16-QAM transmit symbols, K = 1, ρ = 10 dB, and
τ = 32.

to sum the contribution of a larger number of independent
channel entries. On the other hand, comparing Fig. 4(b)
and (d), which consider the same number of BS antennas and
transmit SNR, the relative dispersion of the estimated symbols
about their expected value slightly intensifies as we decrease
the pilot length from τ = 32 to τ = 8. This stems from
the overall diminished accuracy of the channel estimate used
to compute the MRC receiver for each channel realization.
Lastly, comparing Fig. 4(b) and (e)–(f), which consider the
same number of BS antennas and pilot length, the estimated
symbols resulting from the 16-QAM transmit symbols with
the same phase, i.e., ± 1√

10
(1 ± j) and ± 1√

10
(3 ± j 3), get

closer as the transmit SNR increases from ρ = 0 dB to ρ =
10 dB and they almost fully overlap when ρ = 20 dB. This
behavior was observed in [10] and is formalized in Corollary 4,
according to which such estimated symbols become identical
in terms of both their expected value and variance at high SNR.
In this respect, the SNR trade-off described in Sections IV-A
and IV-B is quite evident: while the normalized variance of
the estimated symbols roughly decreases with ρ, the difference
in amplitude between symbols cannot be recovered if ρ is
too high. For the 16-QAM, this produces a SER of about
25% since there are four pairs of indistinguishable estimated
symbols (see also Fig. 8). In summary, having independent
phases between the channel entries and operating at the right
noise level are crucial to accurately estimate the phases and
the amplitudes, respectively; we refer to Appendix A and to
the related discussion in [10] for more details.

Let us now examine the behavior of the variance of the
estimated symbols derived in Theorem 4, which we compare
with Monte Carlo simulations with 106 independent channel
realizations. Fig. 5 considers ρ = 10 dB and τ = 32, show-
ing how the normalized variance of the estimated symbols

V�

|E�|2 decreases with the number of BS antennas M . The
transmit symbols ± 1√

10
(1 ± j), having the smallest power

within the 16-QAM constellation, exhibit the most severe
dispersion of the estimated symbols about their expected value.
Furthermore, the upper bound in (48) becomes more accurate

Fig. 6. Normalized variance of the estimated symbols against the transmit
SNR, with 16-QAM transmit symbols, K = 1, M = 128, and τ = 32.

as M grows. Fig. 6 considers M = 128 and τ = 32,
showing that V�

|E�|2 generally diminishes with the transmit SNR
ρ except for the SNR trade-off exhibited with p = 1τ ;
here, the asymptotic expressions in (46) and (49) are also
included. Despite this trend, we recall that the difference in
amplitude between symbols cannot be recovered if ρ is too
high, as discussed in the previous paragraph for Fig. 4: thus,
arbitrarily increasing the transmit SNR is detrimental for the
system performance. Lastly, Fig. 7 considers M = 128 and
ρ = 10 dB, showing how V�

|E�|2 reduces with the pilot length τ .
We conclude this section by investigating the combined

impact of the channel estimation and the data detection with
1-bit ADCs on the system performance in terms of SER,
which we compute numerically via Monte Carlo simulations
with 106 independent channel realizations. In this context,
the symbols are decoded by means of MDD aided by the
result of Theorem 3. Fig. 8 illustrates the SER against the
transmit SNR ρ, with M = 128 and τ = 32. Here, the SNR
trade-off appears quite evident, whereby the SER decreases
until it reaches its minimum at about ρ = 5 dB (where the
upper bound obtained with p = 1τ proves to be remarkably
tight) before escalating again. Then, the SER asymptotically
reaches 25% at high SNR, where the inner estimated symbols
of the 16-QAM constellation become indistinguishable from
the outer estimated symbols with the same phase (see also
Fig. 4(f)). We remark that the SER can be further reduced by
optimizing the transmit SNR separately for the two phases of
channel estimation and uplink data transmission, which is left
for future work.

V. CONCLUSION

This paper presents an analytical framework for the channel
estimation and the data detection in massive MIMO uplink
systems with 1-bit ADCs. First, we provide a precise charac-
terization of the MSE of the channel estimation with respect
to different parameters. In addition, we show that, for i.i.d.
Rayleigh fading, the BLM estimator can be simplified as
a scaled LS estimator with UE-specific scaling factors and
that using a common optimized scaling factor for all the
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Fig. 7. Normalized variance of the estimated symbols against the pilot length,
with 16-QAM transmit symbols, K = 1, M = 128, and ρ = 10 dB.

UEs entails no noticeable performance loss. For the data
detection, we characterize the expected value and the variance
of the estimated symbols when MRC is adopted. These
results can be exploited to efficiently implement MDD and
to properly design the set of transmit symbols. The proposed
analysis gives important practical insights into the design and
the implementation of 1-bit quantized systems. In particular,
it highlights a fundamental SNR trade-off, according to which
arbitrarily increasing the transmit SNR is detrimental for the
system performance. In this respect, the optimal transmit SNR
for the channel estimation is shown to decrease as the pilot
length increases.

Future work will consider extensions of the proposed ana-
lytical framework to more realistic channel models (for the
channel estimation) and to the multi-UE case (for the data
detection), as well as a SER optimal design of the set of
transmit symbols capitalizing on our data detection analysis.

APPENDIX A
FUNDAMENTALS OF CHANNEL ESTIMATION WITH 1-BIT

ADCs

Assuming K = 1, let h � (hm) ∈ C
M×1 and p �

(pu) ∈ C
τ×1 denote the uplink channel vector and the pilot,

respectively, of the UE. When a scaled LS estimator (such as
the one in (5)) is used, the channel estimate ĥ � (ĥm) is
obtained as

ĥ=
√

ΨQ

⎛
⎜⎝
⎡
⎢⎣

√
ρh1p

∗
1+Z1,1 · · · √

ρh1p
∗
τ +Z1,τ

...
. . .

...√
ρhMp∗1+ZM,1 · · · √ρhMp∗τ +ZM,τ

⎤
⎥⎦
⎞
⎟⎠
⎡
⎢⎣

p1

...
pτ

⎤
⎥⎦

(51)

with

ĥm =

√
ρ + 1

2
Ψ

τ∑
u=1

pu

(
sgn
(
Re[

√
ρhmp∗u + Zm,u]

)

+ j sgn
(
Im[

√
ρhmp∗u + Zm,u]

))
. (52)

Fig. 8. SER against the transmit SNR, with 16-QAM transmit symbols,
K = 1, M = 128, and τ = 32.

Let hm = αmej θm , with ϑm �
(
θm mod π

2

)
, and let pu =

ej φu (recall that |pu|2 = 1, ∀u). Assuming ρ → ∞, the phase
of hm can be estimated from Q(hmpH)p as detailed in (53)–
(54), shown at the top of the next page, i.e., Q

(
ej (θm−φu)

)
shifts quadrant according to the phase of pu. Assuming that
the entries of p span the unit circle, in the limit of τ → ∞,
we obtain (55)–(56), shown at the top of the next page, where
(56) follows from

∫ ϑm

ϑm−π
2

ej φdφ = (1 − j)ej ϑm , (57)

∫ ϑm+ π
2

ϑm

ej φdφ = (1 + j)ej ϑm , (58)

∫ ϑm+π

ϑm+ π
2

ej φdφ = (−1 + j)ej ϑm , (59)

∫ ϑm+ 3π
2

ϑm+π

ej φdφ = (−1 − j)ej ϑm . (60)

Finally, from (56), we have

(1 − j)
(
sgn
(
Re[hm]

)
+ j sgn

(
Im[hm]

))
ej ϑm

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 ej ϑm if θm ∈ [0, π
2

]
(i.e., if θm =ϑm),

2 j ej ϑm if θm ∈ [π
2 , π
]

(i.e., if θm =ϑm + π
2 ),

−2ej ϑm if θm ∈ [π, 3π
2

]
(i.e., if θm =ϑm + π),

−2j ej ϑm if θm ∈ [3π
2 , 2π

]
(i.e., if θm =ϑm + 3π

2 )
(61)

= 2ej θm (62)

which yields

lim
τ→∞

1
τ

τ∑
u=1

Q(hmp∗u)pu =
4
π

√
ρ + 1

2
ej θm . (63)
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Q(hmp∗u)pu = Q
(
ej (θm−φu)

)
ej φu (53)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
ρ + 1

2
(
sgn
(
Re[hm]

)
+ j sgn

(
Im[hm]

))
ej φu if φu ∈ [ϑm − π

2 , ϑm

]
,

√
ρ + 1

2
(
sgn
(
Im[hm]

)−j sgn
(
Re[hm]

))
ej φu if φu ∈ [ϑm, ϑm + π

2

]
,

√
ρ + 1

2
(− sgn

(
Re[hm]

)−j sgn
(
Im[hm]

))
ej φu if φu ∈ [ϑm + π

2 , ϑm + π
]
,

√
ρ + 1

2
(− sgn

(
Im[hm]

)
+ j sgn

(
Re[hm]

))
ej φu if φu ∈ [ϑm + π, ϑm + 3π

2

]

(54)

lim
τ→∞

1
τ

τ∑
u=1

Q(hmp∗u)pu =
1
2π

√
ρ + 1

2

((
sgn
(
Re[hm]

)
+ j sgn

(
Im[hm]

))∫ ϑm

ϑm−π
2

ej φdφ

+
(
sgn
(
Im[hm]

)−j sgn
(
Re[hm]

))∫ ϑm+ π
2

ϑm

ej φdφ +
(
− sgn

(
Re[hm]

)−j sgn
(
Im[hm]

))

×
∫ ϑm+π

ϑm+ π
2

ej φdφ +
(
− sgn

(
Im[hm]

)
+ j sgn

(
Re[hm]

)) ∫ ϑm+ 3π
2

ϑm+π

ej φdφ

)
(55)

=
2
π

√
ρ + 1

2
(1 − j)

(
sgn
(
Re[hm]

)
+ j sgn

(
Im[hm]

))
ej ϑm (56)

Hence, the phase of hm can be estimated accurately if τ
is sufficiently large and the pilot symbols span the unit
circle. Nonetheless, from (53)–(54), it is straightforward to
see that Q

(
ej (θm−φu)

)
ej φu = Q

(
ej (θm−φu∓π

2 )
)
ej (φu±π

2 ) =
Q
(
ej (θm−φu∓π)

)
ej (φu±π), i.e., shifting the phase of the pilot

symbol by a multiple of π
2 does not add any information about

the phase of hm when ρ → ∞. As a consequence, the best
possible pilot choice features equispaced and non-repeating
phases on an interval

[
η, η + π

2

]
, with η ∈ [0, 2π] (one such

choice is p� in (40)). On the other hand, the worst possible
pilot choice is given by fixing p such that pu ∈ {±β,±j β},
∀u, with β ∈ C and |β|2 = 1 (one such choice is p = 1τ ).
Note that fixing p = 1τ with ρ → ∞ would reduce each
channel entry to a scaled symbol of the QPSK constellation
regardless of the value of τ , whereas with finite ρ the phase of
hm can be still estimated by exploiting the independent noise
realizations over the pilot symbols.

The right-hand side of (63) does not include any information
about the amplitude of hm due to the assumption that ρ →
∞. Assuming now finite ρ and, for simplicity, p = 1τ ,
the amplitude of hm can be estimated from Q

(√
ρhm1T

τ +
[Zm,1, . . . , Zm,τ ]

)
1τ , where

Q(
√

ρhm + Zm,u) =

√
ρ + 1

2

(
sgn
(√

ρRe[hm] + Re[Zm,u]
)

+ j sgn
(√

ρIm[hm] + Im[Zm,u]
))

. (64)

In the limit of τ → ∞, we have

lim
τ→∞

1
τ

τ∑
u=1

Q(
√

ρhm + Zm,u) =

√
ρ + 1

2

(
erf
(√

ρRe[hm]
)

+ j erf
(√

ρIm[hm]
))

(65)

where erf(w) � 2√
π

∫ w

0 e−t2dt denotes the error function.
Since erf(w) is approximately linear for w ∈ [−1, 1], the dif-
ference in amplitude between channel entries can be estimated
accurately if their real and imaginary parts lie in

[− 1√
ρ , 1√

ρ

]
and τ is sufficiently large, and this holds despite choosing
p = 1τ . On the other hand, if τ is not sufficiently large at
low SNR, the channel estimates are corrupted by the strong
noise. Hence, the estimation of the amplitude of hm benefits
from operating at the right noise level.

APPENDIX B
PROOF OF THEOREM 1

We begin by writing (10) as

MSEBLM =
1

MK

(
E[hHh]+E[ĥ

H

BLMĥBLM]−2E
[
Re[ĥ

H

BLMh]
])

(66)

= 1 +
1

MK

(
2
π

ρtr
(
P̃TΣ−1

p E[rprH
p ]Σ−1

p P̃∗)

− 2

√
2
π

ρRe
[
tr
(
E[hrH

p ]Σ−1
p P̃∗)]) (67)

= 1 − 1
MK

2
π

ρtr(P̃TΣ−1
p P̃∗) (68)

where (68) follows from applying E[hrH
p ] =

√
2
π ρP̃T; note

that a similar MSE expression appears in [33, Eq. (48)].
Now, as detailed in Appendix B-A, we can express the
covariance matrix of rp as

Σp = (ρK + 1)Φ ⊗ IM (69)
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where we have defined Φ � (Φu,v) ∈ C
τ×τ , with

Φu,v �

⎧⎪⎪⎨
⎪⎪⎩

1 if u = v,

Ω
(

ρ
�K

k=1 Re[Pu,kP∗
v,k]

ρK+1

)
− j Ω

(
ρ
�K

k=1 Im[Pu,kP∗
v,k]

ρK+1

)
if u �= v.

(70)

Furthermore, let pk ∈ C
τ×1 denote the kth column of P.

Hence, we can write

P̃TΣ−1
p P̃∗ =

1
ρK + 1

(PTΦ−1P∗) ⊗ IM (71)

=
τ2

ρK + 1
(PTΦP∗)−1 ⊗ IM (72)

where (72) results from the fact that, if P is chosen such that
PPH is circulant, Φ is also circulant and, as a consequence,
so is its inverse: in this case, P diagonalizes both Φ and its
inverse, which implies pT

k Φp∗
i = 0, ∀k �= i. Finally, plugging

(72) into (68) yields

MSEBLM = 1 − 1
MK

2
π

ρτ2

ρK + 1
tr
(
(PTΦP∗)−1 ⊗ IM

)
(73)

= 1 − 1
K

2
π

ρτ2

ρK + 1
tr
(
(PTΦP∗)−1

)
(74)

= 1 − 2
π

ρτ2

ρK + 1
1
K

K∑
k=1

1
pT

k Φp∗
k

(75)

and the expression in (12) is obtained by observing that
pT

k Φp∗
k = τ + δk, with δk defined in (13).

A. Derivations of (69)

In this section, we derive the closed-form expression of Σp.
To this end, we introduce the following definitions:

Am,u � sgn
(

Re
[√

ρ
K∑

k=1

Hm,kP ∗
u,k + Zm,u

])
(76)

= sgn
(√

ρ

K∑
k=1

(
Re[Hm,k]Re[Pu,k]

+ Im[Hm,k]Im[Pu,k]
)

+ Re[Zm,u]
)

, (77)

Bm,u � sgn
(

Im
[√

ρ
K∑

k=1

Hm,kP ∗
u,k + Zm,u

])
(78)

= sgn
(√

ρ

K∑
k=1

(− Re[Hm,k]Im[Pu,k]

+ Im[Hm,k]Re[Pu,k]
)

+ Im[Zm,u]
)

. (79)

Moreover, we present the following proposition, which will be
also used in Appendix D.

Proposition 1: Let ζ ∼ N (0, γIN ), with γ > 0. For
a1,a2 ∈ R

N×1, we have

E
[
sgn(aT

1 ζ)sgn(aT
2 ζ)
]

= Ω
(

aT
1 a2

‖a1‖ ‖a2‖
)

. (80)

Proof: To obtain the expression in (80), we first observe
that

E
[
sgn(X1)sgn(X2)

]
= P[X1 > 0, X2 > 0] + P[X1 < 0, X2 < 0]

−P[X1 > 0, X2 < 0] − P[X1 < 0, X2 > 0]. (81)

For X1 = aT
1 ζ and X2 = aT

2 ζ, the first term on
the right-hand side of (81) can be obtained building
on [34] as

P
[
aT

1 ζ > 0, aT
2 ζ > 0

]
= 1

4

(
1 + Ω

(
aT
1 a2

‖a1‖ ‖a2‖

))
(82)

where aT
1 a2

‖a1‖ ‖a2‖ represents the correlation coefficient between
X1 and X2, and the other terms can be derived following
similar steps.

Now, we can write the
(
(u − 1)M + m, (v − 1)M + n

)
th

entry of rpr
H
p as

Rm,uR∗
n,v =

ρK + 1
2

(Am,u + j Bm,u)(An,v + j Bn,v)∗

(83)

=
ρK + 1

2
(
Am,uAn,v + Bm,uBn,v

+ j (Bm,uAn,v − Am,uBn,v)
)

(84)

with Rm,uR∗
m,u = ρK +1. Hence, the expected value of (84)

is given by (85), shown at the top of the next page. This results
from

E[Am,uAm,v] = E[Bm,uBm,v] (86)

= Ω
(

ρ
∑K

k=1 Re[Pu,kP ∗
v,k]

ρK + 1

)
, (87)

E[Am,uBm,v] = Ω
(

ρ
∑K

k=1 Im[Pu,kP ∗
v,k]

ρK + 1

)
(88)

which are derived by applying Proposition 1. For instance,
E[Am,uAm,v] in (86)–(87) can be obtained by plugging
(89)–(91), shown at the top of the next page, into (80), which
gives (92), shown at the top of the next page. Finally, the
expression in (69) readily follows from (85).

APPENDIX C
PROOF OF COROLLARY 1

We show that the estimator in (15) provides the same MSE
of the channel estimation as the BLM estimator in (4). To this
end, we write vec[ĤBLM] = Ψ̃

1
2 P̃Trp, where we have defined

Ψ̃ � Ψ⊗ IM ∈ C
MK×MK . Following similar steps as in the

proof of Theorem 1, we obtain

MSEBLM = 1 +
1

MK

(
tr
(
Ψ̃

1
2 P̃T

E[rprH
p ]P̃∗Ψ̃

1
2
)

− 2Re
[
tr
(
E[hrH

p ]P̃∗Ψ̃
1
2
)])

(93)

= 1 +
1

MK

(
tr(Ψ̃

1
2 P̃TΣpP̃∗Ψ̃

1
2 )

− 2

√
2
π

ρtr(P̃TP̃∗Ψ̃
1
2 )
)

. (94)
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E[Rm,uR∗
n,v] =

⎧⎨
⎩

(ρK + 1)
(
Ω
(

ρ
�K

k=1 Re[Pu,kP∗
v,k]

ρK+1

)
−j Ω

(
ρ
�K

k=1 Im[Pu,kP∗
v,k]

ρK+1

))
if m = n, u �= v,

0 if m �= n
(85)

ζ =
[
Re[Hm,1], . . . , Re[Hm,K ], Im[Hm,1], . . . , Im[Hm,K ], Re[Zm,u], Re[Zm,v]

]T ∼ N
(
0(2K+2),

1
2
I(2K+2)

)
, (89)

a1 =
[√

ρRe[Pu,1], . . . ,
√

ρRe[Pu,K ],
√

ρIm[Pu,1], . . . ,
√

ρIm[Pu,K ], 1, 0
]T ∈ R

(2K+2)×1, (90)

a2 =
[√

ρRe[Pv,1], . . . ,
√

ρRe[Pv,K ],
√

ρIm[Pv,1], . . . ,
√

ρIm[Pv,K ], 0, 1
]T ∈ R

(2K+2)×1 (91)

E

[
sgn
(√

ρ

K∑
i=1

(
Re[Hm,i]Re[Pu,i] + Im[Hm,i]Im[Pu,i]

)
+ Re[Zm,u]

)

× sgn
(√

ρ

K∑
i=1

(
Re[Hm,i]Re[Pv,i] + Im[Hm,i]Im[Pv,i]

)
+ Re[Zm,v]

)]

= Ω
(

ρ
∑K

k=1(Re[Pu,k]Re[Pv,k] + Im[Pu,k]Im[Pv,k])

(ρ
∑K

k=1(Re[Pu,k]2 + Im[Pu,k]2) + 1)
1
2 (ρ
∑K

k=1(Re[Pv,k]2 + Im[Pv,k]2) + 1)
1
2

)
(92)

Hence, we can write

Ψ̃
1
2 P̃TΣpP̃∗Ψ̃

1
2 = (ρK + 1)(Ψ

1
2 PTΦP∗Ψ

1
2 ) ⊗ IM ,

(95)
P̃TP̃∗Ψ̃

1
2 = (PTP∗Ψ

1
2 ) ⊗ IM (96)

and (94) becomes

MSEBLM = 1 +
1

MK

(
(ρK + 1)tr

(
(Ψ

1
2 PTΦP∗Ψ

1
2 ) ⊗ IM

)

− 2

√
2
π

ρtr
(
(PTP∗Ψ

1
2 ) ⊗ IM

))
(97)

= 1 +
1
K

(
(ρK + 1)tr(Ψ

1
2 PTΦP∗Ψ

1
2 )

− 2

√
2
π

ρtr(PTP∗Ψ
1
2 )
)

(98)

= 1+
1
K

K∑
k=1

(
(ρK+1)Ψk(τ +δk)−2

√
2
π

Ψkρτ

)
.

(99)

Since each term in the summation of (99) is a convex function
of Ψk, the expression of the UE-specific scaling factor in (16)
can be obtained by setting d

dΨk
(99) = 0. Finally, plugging (16)

into (99) yields the MSE of the BLM estimator in (12).

APPENDIX D
PROOF OF THEOREM 3

We begin by introducing the following definitions:5

am,u � sgn
(
Re[

√
ρhmp∗u + Zm,u]

)
(100)

= sgn
(√

ρ
(
Re[hm]Re[pu] + Im[hm]Im[pu]

)
+ Re[Zm,u]

)
, (101)

bm,u � sgn
(
Im[

√
ρhmp∗u + Zm,u]

)
(102)

= sgn
(√

ρ
(− Re[hm]Im[pu] + Im[hm]Re[pu]

)
+ Im[Zm,u]

)
(103)

5Note that (100)–(103) are equivalent to (76)–(79) for K = 1.

and

cm � sgn
(
Re[

√
ρhms� + zm]

)
(104)

= sgn
(√

ρ
(
Re[hm]Re[s�]−Im[hm]Im[s�]

)
+Re[zm]

)
,

(105)

dm � sgn
(
Im[

√
ρhms� + zm]

)
(106)

= sgn
(√

ρ
(
Re[hm]Im[s�]+Im[hm]Re[s�]

)
+Im[zm]

)
.

(107)

From (42), we can write the estimated symbol as

ŝ� =
ρ+1

2

√
Ψ′

M∑
m=1

τ∑
u=1

p∗u(am,u+j bm,u)∗(cm+j dm)

(108)

=
ρ + 1

2

√
Ψ′

M∑
m=1

τ∑
u=1

p∗u
(
am,ucm + bm,udm

+ j (am,udm − bm,ucm)
)
. (109)

Hence, the expression in (43) results from

E[am,ucm] = E[bm,udm] (110)

= Ω
(

ρRe[pus�]√
(ρ + 1)(ρ|s�|2 + 1)

)
, (111)

E[am,udm] = −E[bm,ucm] (112)

= Ω
(

ρIm[pus�]√
(ρ + 1)(ρ|s�|2 + 1)

)
(113)

which are derived again by applying Proposition 1. For
instance, E[am,ucm] in (110)–(111) can be obtained by plug-
ging

ζ =
[
Re[hm], Im[hm], Re[Zm,u], Re[zm]

]T ∼N
(
04,

1
2
I4

)
,

(114)

a1 =
[√

ρRe[pu],
√

ρIm[pu], 1, 0
]T ∈ R

4×1, (115)

a2 =
[√

ρRe[s�],−√
ρIm[s�], 0, 1

]T ∈ R
4×1 (116)
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E

[
sgn
(√

ρ
(
Re[hm]Re[pu] + Im[hm]Im[pu]

)
+ Re[Zm,u]

)
sgn
(√

ρ
(
Re[hm]Re[s�] − Im[hm]Im[s�]

)
+ Re[zm]

)]

= Ω
(

ρ(Re[pu]Re[s�] − Im[pu]Im[s�])√
ρ(Re[pu]2 + Im[pu]2) + 1

√
ρ(Re[s�]2 + Im[s�]2) + 1

)
(117)

|E�|2 = (ρ + 1)2Ψ′M2
τ∑

u=1

τ∑
v=1

(
Re[p∗upv]

(
Ω
(

ρRe[pus�]√
(ρ + 1)(ρ|s�|2 + 1)

)
Ω
(

ρRe[pvs�]√
(ρ + 1)(ρ|s�|2 + 1)

)

+ Ω
(

ρIm[pus�]√
(ρ + 1)(ρ|s�|2 + 1)

)
Ω
(

ρIm[pvs�]√
(ρ + 1)(ρ|s�|2 + 1)

))
+ Im[p∗upv]

(
Ω
(

ρRe[pus�]√
(ρ + 1)(ρ|s�|2 + 1)

)

×Ω
(

ρIm[pvs�]√
(ρ + 1)(ρ|s�|2 + 1)

)
− Ω
(

ρIm[pus�]√
(ρ + 1)(ρ|s�|2 + 1)

)
Ω
(

ρRe[pvs�]√
(ρ + 1)(ρ|s�|2 + 1)

)))
(119)

Re[ŝ�]2 =
(ρ + 1)2

4
Ψ′
( M∑

m=1

τ∑
u=1

(
Re[pu](am,ucm + bm,udm) + Im[pu](am,udm − bm,ucm)

))2

(120)

=
(ρ + 1)2

4
Ψ′
( M∑

m=1

τ∑
u=1

(
Re[pu](am,ucm + bm,udm) + Im[pu](am,udm − bm,ucm)

)2

+
M∑

m=1

∑
u�=v

(
Re[pu](am,ucm + bm,udm) + Im[pu](am,udm − bm,ucm)

)(
Re[pv](am,vcm + bm,vdm)

+ Im[pv](am,vdm − bm,vcm)
)

+
∑
m �=n

τ∑
u=1

τ∑
v=1

(
Re[pu](am,ucm + bm,udm) + Im[pu](am,udm − bm,ucm)

)

× (Re[pv](an,vcn + bn,vdn) + Im[pv](an,vdn − bn,vcn)
))

(121)

|ŝ�|2 =
(ρ + 1)2

4
Ψ′
(

4Mτ + 2
M∑

m=1

∑
u�=v

(
Re[p∗upv](am,uam,v + bm,ubm,v) − Im[p∗upv](am,ubm,v − bm,uam,v)

)

+
∑
m �=n

τ∑
u=1

τ∑
v=1

(
Re[p∗upv]

(
(am,ucm + bm,udm)(an,vcn + bn,vdn) + (am,udm − bm,ucm)(an,vdn − bn,vcn)

)

+ Im[p∗upv]
(
(am,ucm + bm,udm)(an,vdn − bn,vcn) − (am,udm − bm,ucm)(an,vcn + bn,vdn)

)))
(122)

E
[|ŝ�|2

]
= (ρ + 1)2Ψ′M

(
τ +

∑
u�=v

(
Re[p∗upv]Ω

(
ρRe[pup∗v])

ρ + 1

)
− Im[p∗upv]Ω

(
ρIm[pup∗v])

ρ + 1

))

+ (M−1)
τ∑

u=1

τ∑
v=1

Re[p∗upv]
(
Ω
(

ρRe[pus�])√
(ρ+1)(ρ|s�|2+1)

)
Ω
(

ρRe[pvs�])√
(ρ+1)(ρ|s�|2+1)

)
+Ω
(

ρIm[pus�])√
(ρ+1)(ρ|s�|2+1)

)

×Ω
(

ρIm[pvs�])√
(ρ + 1)(ρ|s�|2 + 1)

))
+ (M − 1)

τ∑
u=1

τ∑
v=1

Im[p∗upv]
(

Ω
(

ρRe[pus�])√
(ρ + 1)(ρ|s�|2 + 1)

)

×Ω
(

ρIm[pvs�])√
(ρ + 1)(ρ|s�|2 + 1)

)
− Ω
(

ρIm[pus�])√
(ρ + 1)(ρ|s�|2 + 1)

)
Ω
(

ρRe[pvs�])√
(ρ + 1)(ρ|s�|2 + 1)

)))
(123)

into (80), which gives (117), shown at the top of the
page.

APPENDIX E
PROOF OF THEOREM 4

The variance of the estimated symbol ŝ� can be written as

V� = E
[|ŝ�|2

]− |E�|2 (118)

with E
[|ŝ�|2

]
= E

[
Re[ŝ�]2

]
+ E
[
Im[ŝ�]2

]
and where |E�|2

is given by (119), shown at the top of the page (cf.
(43)). Furthermore, recalling the definitions in (100)–(107)
and building on (108)–(109), we can write Re[ŝ�]2 as in
(120)–(121), shown at the top of the page, and Im[ŝ�]2 can
be obtained following similar steps. Then, summing up (121)
and Im[ŝ�]2 yields |ŝ�|2 in (122), shown at the top of the
page. Now, we have that ξm,u ∈ {am,u, bm,u, cm, dm} and
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ξn,v ∈ {an,v, bn,v, cn, dn} are independent random variables
if m �= n regardless of the indices u, v. This implies that
E[am,ucmbn,vdn] = E[am,ucm]E[bn,vdn] and the same holds
for the other products in the second summation of (122).
Hence, the expected value of (122) is given by (123), shown at
the top of the previous page, which follows from (110)–(113)
and from6

E[am,uam,v] = E[bm,ubm,v] (124)

= Ω
(

ρRe[pup∗v]
ρ + 1

)
, (125)

E[am,ubm,v] = Ω
(

ρIm[pup∗v]
ρ + 1

)
. (126)

Finally, the expression in (44) is obtained by plugging (119)
and (123) into (118).
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