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Position and Orientation Estimation through

Millimeter Wave MIMO in 5G Systems

Arash Shahmansoori, Gabriel E. Garcia, Giuseppe Destino, Member, IEEE, Gonzalo

Seco-Granados, Senior Member, IEEE, and Henk Wymeersch, Member, IEEE

Abstract

Millimeter wave signals and large antenna arrays are considered enabling technologies for future 5G

networks. While their benefits for achieving high-data rate communications are well-known, their potential

advantages for accurate positioning are largely undiscovered. We derive the Cramér-Rao bound (CRB) on

position and rotation angle estimation uncertainty from millimeter wave signals from a single transmitter,

in the presence of scatterers. We also present a novel two-stage algorithm for position and rotation angle

estimation that attains the CRB for average to high signal-to-noise ratio. The algorithm is based on

multiple measurement vectors matching pursuit for coarse estimation, followed by a refinement stage

based on the space-alternating generalized expectation maximization algorithm. We find that accurate

position and rotation angle estimation is possible using signals from a single transmitter, in either line-

of-sight, non-line-of-sight, or obstructed-line-of-sight conditions.

I. INTRODUCTION

Fifth generation (5G) communication networks will likely adopt millimeter-wave (mm-wave) and

massive multiple-input-multiple-output (MIMO) technologies, thanks to a number of favorable properties.

In particular, operating at carrier frequencies beyond 30 GHz, with large available bandwidths, mm-wave
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can provide extremely high data rates to users through dense spatial multiplexing by using a large number

of antennas [2], [3]. While these properties are desirable for 5G services, mm-wave communications also

face a number of challenges. Among these, the severe path loss at high carrier frequencies stands out. The

resulting loss in signal-to-noise ratio (SNR) must be compensated through sophisticated beamforming at

the transmitter and/or receiver side, leading to highly directional links [4]–[6]. However, beamforming

requires knowledge of the propagation channel. Significant progress has been made in mm-wave channel

estimation, by exploiting sparsity and related compressed sensing tools, such as distributed compressed

sensing-simultaneous orthogonal matching pursuit (DCS-SOMP) [7], compressive sampling matched

pursuit (CoSOMP) [8], and group sparse compressed sensing (GCS) [9]. In particular, since at mm-wave

frequencies only the line-of-sight (LOS) path and a few dominant multi-path components contribute to

the received power, mm-wave channels are sparse in the angular domain [10], [11]. This is because in

mm-wave frequencies, the received power of diffuse scattering and multiple-bounce specular reflections

are much lower than that in LOS and single-bounce specular reflection [12]–[14]. Different compressed

sensing (CS) methods for mm-wave channel estimation are proposed in [15]–[23]. In [15], a method

for the estimation of angle-of-arrival (AOA), angle-of-departure (AOD), and channel gains is proposed

based on the compressive beacons on the downlink. A method for the continuous estimation of mm-wave

channel parameters is proposed in [22], while [21] applies CS tools with refinement in the angular domain.

In [16], a CS method is proposed based on the redundant dictionary matrices. A two-stage algorithm

with one-time feedback that is robust to noise is used in [20]. In [17], an adaptive CS method is proposed

based on a hierarchical multi-resolution codebook design for the estimation of single-path and multi-path

mm-wave channels. In [18], a beam selection procedure for the multiuser mm-wave MIMO channels with

analog beamformers is proposed. In [19], a CS approach with reduced training overhead was considered.

Finally, CS tools are used in [23] for the sparse estimation of power angle profiles of the mm-wave

channels and compared with the codebook designs in terms of overhead reduction. However, in all the

aforementioned papers, a narrow-band mm-wave channel model is used. When the bandwidths becomes

larger, one needs to consider the effect of the delays of different paths in the mm-wave channel model,

i.e., the wide-band mm-wave channel model.

Channel estimation provides information of the AOA/AOD and thus of the relative location of the

transmitter and receiver. In addition, location information can serve as a proxy for channel information

to perform beamforming: when the location of the user is known, the base station (BS) can steer its

transmission to the user, either directly or through a reflected path. This leads to synergies between

localization and communication. The use of 5G technologies to obtain position and orientation was

previously explored in [24]–[26] for mm-wave and in [27]–[29] for massive MIMO. The early work
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[24] considered estimation and tracking of AOA through beam-switching. User localization was treated

in [25], formulated as a hypothesis testing problem, limiting the spatial resolution. A different approach

was taken in [26], where meter-level positioning accuracy was obtained by measuring received signal

strength levels. A location-aided beamforming method was proposed in [30] to speed up initial access

between nodes. In the massive MIMO case, [27] considered the estimation of angles, [31] proposed a

direct localization method by jointly processing the observations at the distributed massive MIMO BSs,

while [28] treated the joint estimation of delay, AOD, and AOA, in the LOS conditions and evaluated the

impact of errors in delays and phase shifters, and [1] derived sufficient conditions for a nonsingular Fisher

information matrix (FIM) of delay, AOD, AOA, and channel coefficients. A hybrid time-difference-of-

arrival (TDOA), AOA, and AOD localization was proposed in [32] using linearization. In [29], positioning

was solved using a Gaussian process regressor, operating on a vector of received signal strengths through

fingerprinting. While latter this approach is able to exploit non-line-of-sight (NLOS) propagation, it

does not directly harness the geometry of the environment. Complementarily to the use of mm-wave

frequencies, approaches for localization using centimeter-wave (cm-wave) signals have been recently

proposed as well. The combination of TDOAs and AOAs using an extended Kalman filter (EKF) was

presented in [33], [34], where the mobile station (MS) has a single antenna, while the BS employs an

antenna array. This method assumes LOS propagation thanks to the high density of access nodes and

provides sub-meter accuracy even for moving devices.

In this paper, we show that mm-wave and large MIMO are enabling technologies for accurate po-

sitioning and device orientation estimation with only one BS, even when the LOS path is blocked.

The limited scattering and high-directivity are unique characteristics of the mm-wave channel and large

MIMO systems, respectively. We derive fundamental bounds on the position and orientation estimation

accuracy, for LOS1, NLOS2, and obstructed-line-of-sight (OLOS)3 conditions. These bounds indicate

that the information from the NLOS links help to estimate the location and orientation of the MS. We

also propose a novel three-stage position and orientation estimation technique, which is able to attain the

bounds at average to high SNR. The first stage of the technique harnesses sparsity of the mm-wave channel

in the AOA and AOD domain [10], [11]. Moreover, the sparsity support does not vary significantly with

frequency, allowing us to use DCS-SOMP across different carriers. The delay can then be estimated on a

per-path basis. As DCS-SOMP limits the AOA and AOD to a predefined grid, we propose a refinement

1LOS is defined as the condition where the LOS path exists and there are no scatterers.

2NLOS is defined as the condition where there are scatterers and the LOS path is not blocked.

3OLOS is referred to the condition where the LOS path is blocked and only the signals from the scatterers are received.
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Fig. 1. Two dimensional illustration of the LOS (blue link) and NLOS (red link) based positioning problem. The BS location

q and BS orientation are known, but arbitrary. The location of the MS p, scatterer sk, rotation angle α, AOAs {θRx,k}, AODs

{θTx,k}, the channels between BS, MS, and scatterers, and the distance between the antenna centers are unknown.

stage, based on the space-alternating generalized expectation maximization (SAGE) algorithm. Finally, in

the last stage, we employ a least-squares approach with extended invariance principle (EXIP) to recover

position and orientation [35], [36].

II. SYSTEM MODEL

We consider a MIMO system with a BS equipped with Nt antennas and a MS equipped by Nr antennas

operating at a carrier frequency fc (corresponding to wavelength λc) and bandwidth B. Locations of the

MS and BS are denoted by p = [px, py]
T ∈ R2 and q = [qx, qy]

T ∈ R2 with the α ∈ [0, 2π) denoting

the rotation angle of the MS’s antenna array. The value of q is assumed to be known, while p and α are

unknown.

A. Transmitter Model

We consider the transmission of orthogonal frequency division multiplexing (OFDM) signals as in

[37], where a BS with hybrid analog/digital precoder communicates with a single MS. At the BS, G

signals are transmitted sequentially, where the g-th transmission comprises Mt simultaneously transmitted

symbols x(g)[n] = [x1[n], . . . , xMt
[n]]T ∈ CMt for each subcarrier n = 0, . . . , N − 1. The symbols are
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first precoded and then transformed to the time-domain using N -point inverse fast Fourier transform

(IFFT). A cyclic prefix (CP) of length TCP = DTs is added before applying the radio-frequency (RF)

precoding where D is the length of CP in symbols. Here, Ts = 1/B denotes the sampling period and

TCP is assumed to exceed the delay spread of the channel. The transmitted signal over subcarrier n

at time g can be expressed as F(g)[n]x(g)[n]. The beamforming matrix F[n] ∈ CNt×Mt is defined as

F[n] = FRFFBB[n] where FRF is implemented using the analog phase shifters with the entries of the

form ejφm,n , where {φm,n} are given phases, and FBB[n] is the digital beamformer, and overall they

satisfy a total power constraint ‖FRFFBB[n]‖F = 1. Considering the sparsity of the mm-wave channels

one usually needs much less beams Mt than antenna elements Nt, i.e., Mt ≪ Nt. Also, the presence

of F[n] in the proposed model leads to the extension of system model to multi-user mm-wave downlink

systems with a limited feedback channel from MSs to the BS. Our work does not assume any specific

beamformer. We will provide general expressions that permit the study of the impact on performance

and optimization of different choices of beamformers F(g)[n] and signals x(g)[n], although this is out

of the scope of the paper. Our approach is also compatible with beam reference signal (initial access)

procedures, and it could be complemented with a Bayesian recursive tracker with user-specific precoding.

B. Channel Model

Fig. 1 shows the position-related parameters of the channel. These parameters include θRx,k, θTx,k,

and dk = cτk, denoting the AOA, AOD, and the path length (with time-of-arrival (TOA) τk and the

speed of light c) of the k-th path (k = 0 for the LOS path and k > 0 the NLOS paths). For each

NLOS path, there is a scatterer with unknown location sk, for which we define dk,1 = ‖sk − q‖2 and

dk,2 = ‖p − sk‖2. We now introduce the channel model, under a frequency-dependent array response

[11], suitable for wideband communication (with fractional bandwidth B/fc up to 50%). Assuming K+1

paths and a channel that remains constant during the transmission of G symbols, the Nr ×Nt channel

matrix associated with subcarrier n is expressed as

H[n] = ARx[n]Γ[n]A
H
Tx[n], (1)

for response vectors

ATx[n] = [aTx,n(θTx,0), . . . ,aTx,n(θTx,K)], (2)

ARx[n] = [aRx,n(θRx,0), . . . ,aRx,n(θRx,K)], (3)

and

Γ[n] =
√

NtNrdiag

{
h0√
ρ0

e−j2πnτ0/(NTs), . . . ,
hK√
ρK

e−j2πnτK/(NTs)

}
, (4)
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for path loss ρk and complex channel gain hk, respectively, of the k-th path. For later use, we introduce

h̃k =
√

(NtNr)/ρkhk and γn(hk, τk) = h̃ke
−j2πnτk/(NTs).

The structure of the frequency-dependent antenna steering and response vectors aTx,n(θTx,k) ∈ CNt

and aRx,n(θRx,k) ∈ CNr depends on the specific array structure. For the case of a uniform linear array

(ULA), which will be the example studied in this paper, we recall that (the response vector aRx,n(θRx,k)

is obtained similarly)

aTx,n(θTx,k) = (5)

1√
Nt

[e−j Nt−1

2

2π

λn
d sin(θTx,k), . . . , ej

Nt−1

2

2π

λn
d sin(θTx,k)]T,

where λn = c/(n/(NTs)+ fc) is the signal wavelength at the n-th subcarrier and d denotes the distance

between the antenna elements (we will use d = λc/2). We note that when B ≪ fc, λn ≈ λc, and (5)

reverts to the standard narrow-band model.

C. Received Signal Model

The received signal for subcarrier n and transmission g, after CP removal and fast Fourier transform

(FFT), can be expressed as

y(g)[n] = H[n]F(g)[n]x(g)[n] + n(g)[n], (6)

where n(g)[n] ∈ CNr is a Gaussian noise vector with zero mean and variance N0/2 per real dimension.

Our goal is now to estimate the position p and orientation α of the MS from {y(g)[n]}∀n,g. We will

first derive a fundamental lower bound on the estimation uncertainty and then propose a novel practical

estimator.

III. POSITION AND ORIENTATION ESTIMATION: FUNDAMENTAL BOUNDS

In this section, we derive the FIM and the Cramér-Rao bound (CRB) for the estimation problem of

position and orientation of the MS for LOS, NLOS, and OLOS. To simplify the notation and without

loss of generality, we consider the case of G = 1, i.e., only 1 OFDM symbol is transmitted.

A. FIM Derivation for Channel Parameters

Let η ∈ R5(K+1) be the vector consisting of the unknown channel parameters

η =
[
ηT
0 , . . . ,η

T
K

]T
, (7)

in which ηk consists of the unknown channel parameters (delay, AOD, AOA, and channel coefficients)

for the k-th path

ηk =
[
τk,θ

T
k , h̃

T
k

]T
, (8)
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where h̃k = [h̃R,k, h̃I,k]
T contains the real and imaginary parts defined as h̃R,k and h̃I,k, respectively,

and θk =
[
θTx,k, θRx,k

]T
.

Defining η̂ as the unbiased estimator of η, the mean squared error (MSE) is bounded as [38]

Ey|η

[
(η̂ − η)(η̂ − η)T

]
� J−1

η , (9)

in which Ey|η[.] denotes the expectation parameterized by the unknown parameters η, and Jη is the

5(K + 1)× 5(K + 1) FIM defined as

Jη , Ey|η

[
−∂2 ln f(y|η)

∂η∂ηT

]
, (10)

where f(y|η) is the likelihood function of the random vector y conditioned on η. More specifically,

f(y|η) can be written as [39]

f(y|η)∝exp

{
2

N0

N−1∑

n=0

ℜ{µH[n]y[n]}− 1

N0

N−1∑

n=0

‖µ[n]‖22

}
, (11)

where µ[n] , H[n]F[n]x[n] and ∝ denotes equality up to irrelevant constants.

The FIM in (10) can be structured as

Jη =




Ψ(η0,η0) . . . Ψ(η0,ηK)
...

. . .
...

Ψ(ηK ,η0) . . . Ψ(ηK ,ηK)


 , (12)

in which Ψ(xr,xs) is defined as

Ψ(xr,xs) , Ey|η

[
−∂2 ln f(y|η)

∂xr∂xT
s

]
. (13)

The 5× 5 matrix Ψ(ηr,ηs) is structured as

Ψ(ηr,ηs) =




Ψ(τr, τs) Ψ(τr,θs) Ψ(τr,hs)

Ψ(θr, τs) Ψ(θr,θs) Ψ(θr,hs)

Ψ(hr, τs) Ψ(hr,θs) Ψ(hr,hs)


 . (14)

The entries of Ψ(ηr,ηs) are derived in Appendix A.

B. FIM for Position and Orientation

We determine the FIM in the position space through a transformation of variables from η to η̃ =[
η̃T
0 , . . . , η̃

T
K

]T
, where η̃k =

[
sTk , h̃

T
k

]T
for k > 0 and η̃0 =

[
pT, α, h̃T

0

]T
. If the LOS path is blocked

(i.e., OLOS), we note that we must consider ηolos = [ηT
1 , . . . ,η

T
K ]T and η̃olos = [pT, α, η̃T

1 , . . . , η̃
T
K ]T.

The FIM of η̃ is obtained by means of the (4K + 5)× 5(K + 1) transformation matrix T as

Jη̃ = TJηT
T, (15)

October 17, 2017 DRAFT



8

where

T ,
∂ηT

∂η̃
. (16)

The entries of T can be obtained by the relations between the parameters in η and η̃ from the geometry

of the problem shown in Fig. 1 as:

τ0 = ‖p− q‖2/c, (17)

τk = ‖q− sk‖2/c+ ‖p− sk‖2/c, k > 0 (18)

θTx,0 = arccos((px − qx)/‖p− q‖2), (19)

θTx,k = arccos((sk,x − qx)/‖sk − q‖2), k > 0 (20)

θRx,k = π − arccos((px − sk,x)/‖p − sk‖2)− α, k > 0 (21)

θRx,0 = π + arccos((px − qx)/‖p− q‖2)− α. (22)

Consequently, we obtain

T =




T0,0 . . . TK,0

...
. . .

...

T0,K . . . TK,K


 , (23)

in which Tk,k′ is defined as

Tk,k′ ,
∂ηT

k

∂η̃k′

. (24)

For k′ 6= 0, Tk,k′ is obtained as

Tk,k′ =



∂τk/∂sk′ ∂θT
k /∂sk′ ∂h̃T

k /∂sk′

∂τk/∂h̃k′ ∂θT
k /∂h̃k′ ∂h̃T

k /∂h̃k′



 , (25)

and Tk,0 is obtained as

Tk,0 =




∂τk/∂p ∂θT
k /∂p ∂h̃T

k /∂p

∂τk/∂α ∂θT
k /∂α ∂h̃T

k /∂α

∂τk/∂h̃0 ∂θT
k /∂h̃0 ∂h̃T

k /∂h̃0


 , (26)

where

∂τ0/∂p =
1

c

[
cos(θTx,0), sin(θTx,0)

]T
,

∂θTx,0/∂p =
1

‖p− q‖2

[
− sin(θTx,0), cos(θTx,0)

]T
,

∂θRx,0/∂p =
1

‖p− q‖2

[
− sin(θTx,0), cos(θTx,0)

]T
,

∂θRx,k/∂α = −1, k ≥ 0
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∂τk/∂p =
1

c

[
cos(π − θRx,k),− sin(π − θRx,k)

]T
, k > 0

∂τk/∂sk =
1

c

[
cos(θTx,k) + cos(θRx,k), sin(θTx,k) + sin(θRx,k)

]T
, k > 0

∂θTx,k/∂sk =
1

‖sk − q‖2

[
− sin(θTx,k), cos(θTx,k)

]T
, k > 0

∂θRx,k/∂p =
1

‖p− sk‖2

[
sin(π − θRx,k), cos(π − θRx,k)

]T
, k > 0

∂θRx,k/∂sk = − 1

‖p− sk‖2

[
sin(π − θRx,k), cos(π − θRx,k)

]T
, k > 0

and ∂h̃T
k /h̃k = I2 for k ≥ 0. The rest of entries in T are zero.

C. Bounds on Position and Orientation Estimation Error

The position error bound (PEB) is obtained by inverting Jη̃, adding the diagonal entries of the 2× 2

sub-matrix, and taking the root square as:

PEB =

√
tr
{
[J−1

η̃
]1:2,1:2

}
, (27)

and the rotation error bound (REB) is obtained as:

REB =
√

[J−1
η̃

]3,3, (28)

where the operations [.]1:2,1:2 and [.]3,3 denote the selection of the first 2 × 2 sub-matrix and the third

diagonal entry of J−1
η̃

, respectively.

D. The Effect of Multi-Path Components on Position and Orientation Estimation Error

In this subsection, we discuss the effect of adding multi-path components (MPCs) for localization under

different conditions. As the number of antennas in the MS increases, the scalar product between steering

vectors corresponding to different receive directions tends to vanish, i.e. |aHRx,n(θRx,r)aRx,n(θRx,s)| ≪ 1

for θRx,r 6= θRx,s. Also, increasing the number of antenna elements in the transmitter results in narrower

beams and the spatial correlation between different beams is reduced. Moreover, as the system bandwidth

increases, the different MPCs coming from different scatterers can be more easily resolved. In other words,

the MPCs can be considered to be orthogonal [40], [41]. Consequently, large Nt, Nr, and bandwidth lead

to very small multipath cross-correlation terms in the FIM [42]. Ignoring those terms, the approximate

expression for the equivalent Fisher information matrix (EFIM) of position and rotation angle Je(p, α)

with large Nt, Nr, and bandwidth is4

Je(p, α) ≈ T̃0,0Λe,0T̃
T
0,0 +

K∑

k=1

[Υe,k]1:3,1:3 , (29)

4In computing (29), we used the fact that the last two rows of Tk,0 are zero for k 6= 0.
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where

Υe,k = Tk,0Ψ(ηk,ηk)T
T
k,0 −Tk,0Ψ(ηk,ηk)T

T
k,k

(
Tk,kΨ(ηk,ηk)T

T
k,k

)−1
Tk,kΨ(ηk,ηk)T

T
k,0, (30)

in which T̃0,0 is the 3× 3 sub-matrix in the transformation matrix Tk,0 for k = 0 in (26) containing the

derivatives with respect to p and α, [.]1:3,1:3 denotes the selection of the first 3× 3 sub-matrix, and Λe,0

denotes the EFIM of the delay, AOD, and AOA from LOS, i.e., {τ0, θTx,0, θRx,0}. From simulations,

it is observed that the exact and approximate FIM lead to nearly identical PEBs, under the mentioned

conditions. Hence, greedy techniques from compressed sensing, which extract path after path, are a natural

tool for such scenarios. In the LOS case, (29) only contains the term corresponding to k = 0, i.e., the

first term. When MPCs are present, the terms corresponding to k ≥ 1 appear, i.e., the second summand

in (29), which contains terms that are added and others that are subtracted (because the scatterer location

is an additional parameter that has to be estimated for each MPC [43, eq. (3.59)]). The additive terms

imply that the presence of MPCs help in the estimation of the MS localization, as they add information

to the EFIM. In general the contribution of the MPCs results in a positive contribution to the FIM, and

hence in a reduction of the CRB as shown in papers [40], [41]. It is only in the cases where the MPCs

heavily overlap, specially with the LOS, in the directional and time domains that the negative terms are

dominant, and then the presence of MPCs degrades the MS localization.

IV. POSITION AND ORIENTATION ESTIMATION: ESTIMATOR IN BEAMSPACE

Next, we propose the use of a beamspace channel transformation in order to estimate the channel

parameters in (6). The considered beamspace representation of the channel reduces the complexity by

exploiting the sparsity of the mm-wave MIMO channel. If the fractional bandwidth and the number of

antennas are not violating the condition for the small array dispersion [11], there exists a common sparse

support across all subcarriers. Consequently, the DCS-SOMP method from [8] can be applied for the

estimation of AOA, AOD, and TOA. As the estimates of AOA and AOD are limited to lie on a grid

defined by the transformation, we apply a refinement of the estimates of all parameters using the SAGE

algorithm. Finally, we invoke the EXIP to solve for the position p and orientation α.

A. Beamspace Channel Representation

We introduce the Nt ×Nt transformation matrix, uniformly sampling the virtual spatial angles [44]

UTx , [uTx(−(Nt − 1)/2), . . . ,uTx((Nt − 1)/2)] ,

uTx(p) ,
[
e
−j2πNt−1

2

p

Nt , . . . , e
j2πNt−1

2

p

Nt

]T
,
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where we assumed Nt to be even. Similarly, we define the Nr × Nr matrix URx. Both UTx and URx

are unitary matrices. The partial virtual representation of the channel with respect to the angular domain

can be written as

Ȟ[n] = UH
RxH[n]UTx (31)

=

K∑

k=0

γn(hk, τk)U
H
RxaRx,n(θRx,k)a

H
Tx,n(θTx,k)UTx. (32)

It is readily verified that [11]

[Ȟ[n]]i,i′ =

K∑

k=0

γn(hk, τk)χr

( d

λn
sin(θRx,k)−

i

Nr

)
χt

( d

λn
sin(θTx,k)−

i′

Nt

)
, (33)

for −(Nr − 1)/2 ≤ i ≤ (Nr − 1)/2 and −(Nt − 1)/2 ≤ i′ ≤ (Nt − 1)/2. We have introduced

χt(φ) =
sin(πNtφ)√
Nt sin(πφ)

, (34)

χr(φ) =
sin(πNrφ)√
Nr sin(πφ)

. (35)

From (33), it is observed that Ȟ[n] is approximately sparse, since ‘strong’ components are only present

in the directions of {θTx,k} and {θRx,k}.

Stacking the observation y(g)[n] from (6), we obtain

y̌[n] = Ω[n]ȟ[n] + ň[n], (36)

where

Ω[n] =




Ω(1)[n]
...

Ω(G)[n]


 , (37)

Ω(g)[n] = (Z
(g)
Tx[n])

T ⊗URx, (38)

Z
(g)
Tx[n] = UH

TxF
(g)[n]x(g)[n], (39)

ȟ[n] = vec(Ȟ[n]). (40)

Hence, since ȟ[n] is an approximately sparse vector, we can interpret solving (36) for ȟ[n] as a CS

problem, allowing us to utilize tools from that domain. In principle, the columns of UTx and URx corre-

sponding to non-zero entries of the sparse vector ȟ[n] correspond to coarse estimates of the AOA/AOD,

while the entries in ȟ[n] are estimates of γn(hk, τk) (including the effect of the functions χt(·) and χr(·)).
The latter values can then be used to estimate τk for each path. Since the vectors ȟ[n] ∈ CNrNt×1, for

i = 1, . . . , N , corresponding to the sensing matrix Ω[n] in (36) are approximately jointly (K+1)-sparse,
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i.e., the support of ȟ[n] does not vary significantly from subcarrier to subcarrier, we can use specialized

techniques, such as DCS-SOMP for estimating all ȟ[n] jointly in an efficient manner.

Based on the above discussion, we propose to use the following approach:

1) Coarse estimation of AOA/AOD using a modified DCS-SOMP algorithm.

2) Fine estimation using the SAGE algorithm, initialized by the coarse estimates.

3) Estimation of the position and orientation.

Remark: The above sparse representation is not unique. Another representation could rely on a sparse

vector of length Nt ×Nr ×N , where each entry would then correspond to an AOA/AOD/TOA triplet.

However, the complexity of such an approach would be significantly higher, since N is generally a large

number.

B. Step 1: Coarse Estimation of Channel Parameters using DCS-SOMP

The first stage of the algorithm involves calling the DCS-SOMP algorithm, providing estimates of

the number of paths, the AOA/AOD, and estimates of ȟ[n]. For the sake of completeness, the steps of

DCS-SOMP can be found in Algorithm 1. We note that the algorithm is rank-blind as it does not assume

knowledge of the number of the paths (i.e., K + 1) [45]. Since K + 1 is unknown, we use the change

of residual fitting error
∑N−1

n=0 ‖rt−1[n]− rt−2[n]‖22 at each iteration t to a threshold δ. The value for δ

is obtained using a similar procedure as in [15]:

δ = N0γ
−1

(
N,Γ(N)(1 − Pfa)

1/(NrNt)
)
, (41)

in which γ−1 (N,x) denotes the inverse of the incomplete gamma distribution, Γ(N) is the gamma

function, and Pfa is the false alarm probability.

For each path k = 0, . . . , K̂, we can now write

ˆ̌
h(k) = h̃kA(τk)z

(k) + v(k), (49)

where
ˆ̌
h(k) = [ˆ̌h(k)[0], . . . , ˆ̌h(k)[N −1]]T in which

ˆ̌h(k)[n] is the entry on subcarrier n, related to the k-th

path found in Algorithm 1, A(τk) = diag{1, . . . , e−j2π(N−1)τk/(NTs)}, vk is the N × 1 noise vector, and

z(k) has entries

zn(k) , uH
Rx(

nRx,k − (Nr − 1)/2 − 1

Nr
)aRx,n(θ̂

(0)
Rx,k)a

H
Tx,n(θ̂

(0)
Tx,k)uTx(

nTx,k − (Nt − 1)/2 − 1

Nt
). (50)

For the purpose of coarse estimation, we ignore the dependence on n in (50), leading to the simple model

ˆ̌
h(k) = h̃kz

(k)a(τk) + v(k), (51)
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Algorithm 1 Modified DCS-SOMP

Input: Recieved signals y̌[n], sensing matrix Ω[n], and the threshold δ.

Output: estimates of K, θTx,k, θRx,k, ȟ[n], n = 0, . . . , N − 1.

1: For n = 0, . . . , N−1, the residual vectors are set to r−1[n] = 0 and r0[n] = y̌[n], the orthogonalized

coefficient vector β̂n = 0, K0 is chosen to be an empty set, and iteration index t = 1. ωm[n] is the

m-th column of measurement matrix Ω[n].

2: while
∑N−1

n=0 ‖rt−1[n]− rt−2[n]‖22 > δ do

3: Find AOA/AOD pair

ñt = argmax
m=1,...,NrNt

N−1∑

n=0

|ωH
m[n]rt−1[n]|
‖ωm[n]‖2

, (42)

nTx,t = ⌈ñt/Nr⌉, nRx,t = mod(ñt − 1, Nr) + 1, (43)

θ̂
(0)
Tx,t = arcsin ((λc/d)(nTx,t − (Nt − 1)/2 − 1)/Nt) , (44)

θ̂
(0)
Rx,t = arcsin ((λc/d)(nRx,t − (Nr − 1)/2 − 1)/Nr) . (45)

4: Update AOA/AOD set of indices Kt = Kt−1 ∪ {ñ}.

5: Orthogonalize the selected basis vector:

ρt[n] = ωñt
[n]−

t−1∑

t̃=0

ωH
ñt
[n]ρt̃[n]

‖ρt̃[n]‖2
ρt̃[n]. (46)

6: Update the residual vector rt[n] by subtracting the effect of chosen columns from rt−1[n]: rt[n] =

rt−1[n]− β̂n(t)ρt[n], where

β̂n(t) =
ρH
t [n]rt−1[n]

‖ρt[n]‖22
. (47)

7: t = t+ 1.

8: end while

9: Perform QR factorization of the mutilated basis ΩKt
[n] = [ωñ1

[n], . . . ,ωñK̂+1
[n]] = Υ[n]R[n]

where Υ[n] = [ρ1[n], . . . ,ρK̂+1[n]] and R[n] is an upper triangular matrix. Since ΩKt
[n]ˆ̌h[n] =

Υ[n]R[n]ˆ̌h[n] = Υ[n]β̂n, we obtain

ˆ̌
h[n] = R−1[n]β̂n. (48)
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where a(τk) = [1, . . . , e−j2π(N−1)τk/(NTs)]T and z(k) is as in (50), but considering only λc instead of

λn. From this model, we can recover τk and h̃k by solving a least squares (LS) problem

[τ̂
(0)
k , ˆ̃h

(0)
k ] = argmin

τk,h̃k

‖ˆ̌h(k) − h̃kz
(k)a(τk)‖22. (52)

Solving for h̃k yields

ˆ̃h
(0)
k =

aH(τk)
ˆ̌
h(k)

z(k)N
. (53)

Substituting (53) into (52) and expanding the square allows us to solve for τk:

τ̂
(0)
k = argmax

τk
|aH(τk)ˆ̌h(k)|2. (54)

C. Step 2: Fine Estimation of Channel Parameters using SAGE

Channel parameter estimates are refined in an iterative procedure, which is initialized by the estimates

from step 1. In principle, we can perform an iterative ascent algorithm directly on the log-likelihood

function associated with the model (36). However, this requires a multi-dimensional minimization and

computationally complex solutions. A more practical approach is to use the SAGE algorithm with the

incomplete data space in (36) as the superposition of K + 1 complete data space y̌k[n] as:

y̌[n] =

K̂∑

k=0

Ω[n]ȟk[n] + ňk[n]︸ ︷︷ ︸
y̌k[n]

, (55)

where ȟk[n] denotes the vectorized form of Ȟk[n] = UH
RxHk[n]UTx with Hk[n] being the corresponding

term for the k-th path in the channel frequency response H[n] in (1). Writing (55) for all the subcarriers

results in:

y̌ =

K̂∑

k=0

Ω̌ȟk + ňk︸ ︷︷ ︸
y̌k

, (56)

where

Ω̌ = diag {Ω[0], . . . ,Ω[N − 1]} ,

y̌ =
[
y̌T[0], . . . , y̌T[N − 1]

]T
,

ȟk =
[
ȟT
k [0], . . . , ȟ

T
k [N − 1]

]T
,

ňk =
[
ňT
k [0], . . . , ň

T
k [N − 1]

]T
.

In the (m + 1)-th iteration where m is the iteration index, the expectation and maximization steps are

performed as described below. For the initialization of the iterative procedure, we use the AOA/AOD,

TOA, and channel coefficients from the detection phase using θ̂
(0)
Tx,k and θ̂

(0)
Rx,k obtained from (44) and

(45), respectively, τ̂
(0)
k computed from (54), and the corresponding coefficient obtained from (53).
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Expectation step: We compute the conditional expectation of the hidden data space y̌k log-likelihood

function based on the previous estimation η̂(m) and the incomplete data space y̌ as:

Q(ηk|η̂(m)) , E

[
ln f(y̌k|ηk, {η̂

(m)
l }l 6=k)|y̌, η̂(m)

]
. (57)

For k = 0, . . . , K̂, we obtain

Q(ηk|η̂(m)) ∝ −‖ẑ(m)
k − µ̌(ηk)‖22, (58)

where µ̌(ηk) = Ω̌ȟk, and

ẑ
(m)
k = y̌ −

K̂∑

l 6=k,l=0

µ̌(η̂
(m)
l ). (59)

Maximization step: The goal is to find ηk such that (58) is maximized. In other words, we have

η̂
(m+1)
k = argmax

ηk

Q(ηk|η̂(m)). (60)

Solving (60) directly for ηk is analytically complex due to the fact that it is hard to compute the gradient

and Hessian with respect to ηk. Instead, we update the parameters θ̂
(m+1)
Tx,k , θ̂

(m+1)
Rx,k , τ̂

(m+1)
k , and

ˆ̃h
(m+1)
k

sequentially using Gauss-Seidel-type iterations [46].

D. Step 3: Conversion to Position and Rotation Angle Estimates

As a final step, based on the refined estimates of AOA/AOD/TOA from step 2, here we show how the

position and orientation of the MS is recovered. Four scenarios are considered: LOS, NLOS, OLOS, and

unknown condition.

• LOS: When K̂ = 1 and we are in LOS condition, the expressions (17), (19), and (22) describe a

mapping η = f los(η̃). The classical invariance principle of estimation theory is invoked to prove

the equivalence of minimizing the maximum likelihood (ML) criterion in terms of either η0 or η̃0

[47]. Consequently, the estimated values of p̂ and α̂ are obtained directly from

p̂ = q+ cτ̂0[cos(θ̂Tx,0), sin(θ̂Tx,0)]
T, (61)

α̂ = π + θ̂Tx,0 − θ̂Rx,0. (62)

• NLOS: For the case with K̂ scatterers and a LOS path, the EXIP can be used, as (17)–(22) describe

a mapping η = fnlos(η̃). Consequently, the estimated ˆ̃η obtained as

ˆ̃η = argmin
η̃

(η̂ − fnlos(η̃))
T
Jη̂ (η̂ − fnlos(η̃))︸ ︷︷ ︸

vnlos(η̃)

, (63)

is asymptotically (w.r.t. G×N ) equivalent to the ML estimate of the transformed parameter η̃ [35],

[36]. Note that Jη could be replaced by the identity matrix, leading also to a meaningful estimator of
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η̃, although with probably slightly larger root-mean-square error (RMSE). The Levenberg-Marquardt

algorithm (LMA) can be used to solve (63) [48], [49], initialized as follows: we first estimate p̂ and α̂

from the LOS path (i.e., the path with the smallest delay). Then, for the first-order reflection ŝk can be

obtained by the intersection of the following two lines: tan(π−(θ̂Rx,k+α̂)) = (p̂y−s1,y)/(p̂x−s1,x)

and tan(θ̂Tx,k) = (s1,y − qy)/(s1,x − qx).

• OLOS: For the case with K̂ scatterers and no LOS path, the EXIP could be used, as (18), (20),

and (21) describe a mapping ηolos = folos(η̃olos). Consequently, the estimated ˆ̃ηolos obtained as

ˆ̃ηolos = argmin
η̃

olos

(η̂olos − folos(η̃olos))
T
Jη̂olos

(η̂olos − folos(η̃olos))︸ ︷︷ ︸
volos(η̃olos)

, (64)

is asymptotically equivalent to the ML estimate of the transformed parameter η̃olos where Jη̂olos

denotes the FIM of ηolos. The estimated parameters from the NLOS links could be used to initialize

η̃olos for the application of the LMA algorithm. The process is slightly more involved than under

NLOS. We consider different trial values of α, with a resolution ∆α over a range [−αm,+αm] of

possible rotation values. For each trial value α̂trial, we can find a corresponding estimate of p. For

instance, by solving a set of linear equations for two paths:

p = q+ dk,1


cos(θ̂Tx,k)

sin(θ̂Tx,k)


+ (cτ̂k − dk,1)


 cos(θ̂Rx,k + α̂trial)

− sin(θ̂Rx,k + α̂trial)


 , k ∈ {k1, k2} (65)

where dk,1 was introduced in Fig. 1. After solving (65) for [p, d1,1, d2,1], it is straightforward to

determine the scatterer locations (as was done in the NLOS case). For each trial value α̂trial, we can

then apply the LMA to (64) to obtain ˆ̃ηolos. The solution ˆ̃ηolos with the smallest volos(η̃olos) (with

respect to all possible trial value α̂trial) is then retained. Clearly, there is a performance/complexity

trade-off based on the choice of ∆α. It is readily seen that to obtain estimates of all parameters,

at least three scatterers are needed, since then we have 9 available estimated parameters (1 AOA,

1 AOD, 1 TOA per path) and 9 unknowns (6 scalars for the scatterer locations sk, 3 scalars for p

and α).

• Unknown: For the case that the receiver does not know whether it operates in NLOS or OLOS, the

receiver could apply the technique above under NLOS and under OLOS, separately. This will give

two solutions with different cost (measured in terms of (63) and (64)). The best solution (the one

with lowest cost) can then be retained.

The complexity analysis for each step of the aforementioned algorithm is presented in Appendix B.
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V. SIMULATION RESULTS

In this section, we present simulation results show the values of the bounds and the performance of

the proposed estimators for different parameters.

A. Simulation Setup

We consider a scenario representative of indoor localization in a small conference room with the

maximum distance between MS and BS of 4 meters [50]. We set fc = 60 GHz, B = 100 MHz,

c = 0.299792 m/ns, and N = 20. The geometry-based statistical path loss is used with path length dk

and the number of reflectors in each path is set to one, i.e., it is assumed that there is one reflector in

each NLOS path [51]. The path loss ρk between BS and MS for the k-th path is computed based on

geometry statistics [52], [53]. We set

1/ρk = σ2
0P0(dk,2)ξ

2(dk)

(
λc

4πdk

)2

, (66)

where σ2
0 is the reflection loss, P0(dk,2) = (γrdk,2)

2e−γrdk,2 denotes the Poisson distribution of envi-

ronment geometry with density γr (set to 1/7 [51]), ξ2(dk) denotes the atmospheric attenuation over

distance dk, and the last term is the free space path loss over distance dk. For the LOS link, we obtain

1/ρ0 = ξ2(d0)

(
λc

4πd0

)2

. (67)

The average reflection loss for the first-order reflection σ2
0 is set to −10 dB with the root-mean-square

(RMS) deviation equal to 4 dB [54], and the atmospheric attenuation over distance dk is set to 16 dB/km

[3]. The number of transmit and receive antennas are set to Nt = 65 and Nr = 65, respectively. The

number of simultaneous beams is Mt = 1, and the number of sequentially transmitted signals is G = 32,

unless otherwise stated. The BS is located at q [m] = [0, 0]T and the MS is located at p [m] = [4, 0]T

with the rotation angle α = 0.1 rad. The elements of the analog beamformers are generated as random

values uniformly distributed on the unit circle. The sequences x̃(g)[n] = F
(g)
BB[n]x

(g)[n] are obtained

as complex exponential terms ejφg,n with uniform random phases in [0, 2π) along different subcarriers,

indexed by n, and sequentially transmitted symbols, indexed by g. The values of the CRB for
√

CRB(τk),
√

CRB(θRx,k), and
√

CRB(θTx,k) are defined similar to PEB and REB in (27) and (28), that is, by

inverting the FIM Jη̃ from (15), choosing the corresponding diagonal entries and taking the square root.

Finally, the received signal-to-noise ratio (SNR) is defined as

SNR ,
E[‖diag{Ω[0], . . .Ω[N − 1]}vec{ȟ[0], . . . , ȟ[N − 1]}‖22]

E[‖vec{ň[0], . . . , ň[N − 1]}‖22]
, (68)

in which diag{·} creates a block diagonal matrix from its arguments and vec{·} creates a tall column

vector from its arguments.

October 17, 2017 DRAFT



18

The performance of the RMSE of the estimation algorithm was assessed from 1000 Monte Carlo

realizations. The false alarm probability was set to Pfa = 10−3 to determine the threshold δ.

B. Results and Discussion

The Performance versus number of sequential beams: Fig. 2 shows the cumulative distribution function

(CDF) of the PEB and the RMSE(p̂) as a function of the number of beams for LOS conditions. The

MS can be anywhere in a rectangle with vertices at the coordinates (in meters): (2, 0), (4, 0), (2, 0.3),

and (4, 0.3). The signal is scaled so that the total transmit power is kept constant. By increasing the

number of beams G, the probability of covering the target location in the specified area with a certain

accuracy increases. In other words, due to the ergodicity of the process localization accuracy with a

certain number of randomly selected sequential beams in each step converges to a constant value for

sufficient number of beams G. The reason is that for a larger number of beams, the bound decreases

thanks to the better spatial coverage. But this effect vanished when the number of beams is sufficient to

cover the area where the MS may be located, and then increasing the number of beams only translated

into an increased complexity. In principle, the 3 dB beam width for the ULA is approximately 2/Nt,

thus reducing when increasing the number of transmit antennas Nt. Consequently, the number of required

beams G to cover the target location in the specified area with the same probability increases. Similarly,

by reducing the number of transmit antennas Nt, the number of required beams G to cover the area

decreases. However, the localization accuracy is improved for the case with larger number of transmit

antennas Nt with the cost of transmitting more beams G for the same coverage. It is observed that for the

aforementioned system parameters, G ≥ 20 randomly selected beams approximately provides the same

localization accuracy with CDF = 0.9. Note that fewer beams would be needed under a well-chosen

deterministic strategy. The same behavior has been observed in NLOS conditions.

Performance in LOS: Fig. 3 shows the evolution of the RMSE of TOA and AOA/AOD in the LOS

conditions. The Cramér-Rao bounds are shown by the red lines with the corresponding markers. It is

observed that after a few iterations of Algorithm 2 the RMSE of TOA and AOA/AOD converges to the

corresponding bounds even for SNR = −20 dB,−10 dB, 0 dB. The performance of the RMSE of the

estimation algorithm with respect to different values of the received SNR is shown in Fig. 4–5. It is

observed that after SNR ≈ −20 dB the RMSE of the TOA, AOA/AOD, rotation angle, and position

converge to their corresponding bounds (red dashed lines). Moreover, the proposed algorithm performs

well even for very low values of the received SNR, which is the typical case at mm-wave systems before

beamforming. We observe that at SNR ≈ −20 dB the TOA, AOA/AOD, rotation angle, and position

approach the corresponding bounds.
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Fig. 2. The effect of increasing the number of beams on (top) PEB and RMSE(p̂) at CDF = 0.9 and (bottom) CDF plots for

LOS conditions.

Performance in NLOS: Fig. 6 shows the evolution of the RMSE of TOA and AOA/AOD for 1000 Monte

Carlo realizations in the presence of a scatterer located at sk [m] = [1.5, 0.4]T . It can be observed that the

RMSE of the TOA and the AOA/AOD obtained with the proposed algorithm for both the parameters of

the LOS and the reflected signals converges to the theoretical also in this case, even at very low received

SNR. At SNR ≈ −5 dB the TOA, AOA/AOD, rotation angle, and position approach the corresponding

bounds.

Performance in OLOS: Finally, the performance in the OLOS case for three scatterers located at

sk [m] = [1.5, 0.4 + 0.5(k − 1)]T for k = 1, 2, 3 is investigated in this section using two different

initializations of the rotation angle: one with grid resolution ∆α [rad] = 0.01 and one with ∆α [rad] =

0.05. For both, we set αm [rad] = 0.5. Fig. 9 shows the performance of the RMSE with respect to the

received SNR for position and rotation angle estimation. The proposed estimation method approaches the

bound even for the initialization with the resolution ∆α [rad] = 0.05. However, the performance of the

estimation algorithm is dependent on the resolution of the grid of points ∆α. In particular, a finer grid

for the rotation angle leads to better initial estimates and thus a lower final RMSE. For SNR ≈ −10 dB

the RMSE of position and rotation angle approach the corresponding bounds. We note that the OLOS

values, for a fixed SNR, are significantly higher in the OLOS than in the NLOS case.
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Fig. 3. The evolution of RMSE of TOA and AOA/AOD for the LOS for SNR = −20 dB,−10 dB, 0 dB. The red lines with

the same markers show the bounds for the same value of SNR corresponding to the RMSE of TOA and AOA/AOD.

TABLE I

UNKNOWN CONDITIONS

SNR (in dB) -20 -10 0 10

∆v 5.5 5.2 5 5.3

Unknown Conditions: To analyze the application of the algorithm when the propagation conditions

are unknown, we consider the case where there are three scatterers and the LOS path is blocked, that is,

the OLOS condition. Starting with the wrong assumption that the path with the shortest delay is the LOS

path (i.e., the NLOS condition) leads to very large values of the cost function (63) compared to the actual

value of the cost function (64). The results are summarized in Table. I for the average value of the ratio

∆v , vnlos(ˆ̃η)/volos(ˆ̃ηolos) between the cost function with the wrong and true assumptions. The values

in Table I are obtained by averaging 100 realizations, and with a grid resolution of ∆α = 0.05[rad].

The slight difference in the ratio for different values of SNR is due to the limited number of trials. It is
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Fig. 6. The evolution of RMSE of TOA and AOA/AOD for the LOS (left column) and the NLOS (right column) paths at

SNR = −5 dB, 0 dB. The red lines with the same markers show the bounds.

clear that using the wrong assumption about the path with the shortest delay leads to much larger values

of the cost function, i.e., the mean value of the ratio ∆v between the cost function with the wrong and

true assumptions is on the order of 5. The main reason for the increase of the cost function using the

wrong assumption about the shortest path is that the estimate of MS rotation angle obtained from the

AOA and AOD of this path is heavily erroneous. When the shortest path is considered to be a LOS but

it is really a reflection, there is a clear mismatch between the geometry of the propagation and the model

equations, since there is a scatterer that breaks the direct relation between AOA and AOD existing with

the LOS. This mismatch causes a large error in the initial position that is propagated to the final solution.

Therefore, observing the ratio of cost functions, we can identify that the path with the shortest delay is

related to the scatterer and the LOS path does not exist, that is to say, the OLOS condition is correctly
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Fig. 7. RMSE in dB scale for the NLOS plotted against received SNR for TOA and AOA/AOD in the presence of a scatterer

located at sk [m] = [1.5, 0.4]T . The red lines show the corresponding bounds.

recognized.

Comparison of LOS versus NLOS Performance: Fig. 10 compares the performance of the positioning

algorithm in LOS and NLOS for SNR = −5 dB and G = 20. The MS is anywhere in the same rectangle

described at the beginning of Sec. V-B. The scatterers are located at coordinates (in meters) s1 = (1.5, 0.4)

and s2 = (1.5, 0.6). The accuracy and robustness of the localization algorithm is improved by adding

the scatterers compared to the case when only LOS is used. Moreover, the performance in the OLOS is

much worse than in LOS or NLOS due to the severe effect of path loss as shown already in the paper

by comparing Figs. 5 and 8 with Fig. 9.
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presence of a scatterer located at sk [m] = [1.5, 0.4]T . The red lines show the corresponding bounds.
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corresponding bounds.
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VI. CONCLUSION

We have studied the determination of a receiver position and orientation using a single transmitter in a

MIMO system. Our study includes LOS, as well as NLOS and OLOS conditions, shedding insight into the

potential of locating a receiver even when the LOS is blocked. We have derived fundamental performance

bounds on the estimation uncertainty for delay, angle of arrival, angle of departure, and channel gain

of each path, as well as the user position and orientation angle. We also proposed a novel three stage

algorithm for the estimation of the user position and orientation angle. This algorithm determines coarse

estimates of the channel parameters by exploiting the sparsity of the mm-wave in beamspace, followed by

an iterative refinement, and finally a conversion to position and orientation. Through simulation studies,

we demonstrate the efficiency of the proposed algorithm, and show that even in OLOS conditions, it is

possible to estimate the user’s position and orientation angle, by exploiting the information coming from

the multipath, though at a significant performance penalty.

APPENDIX A

ELEMENTS IN (14)

Replacing y[n] from (6) in (11), using (13), and considering Ey|η[n[n]] = 0, we obtain

Ψ(xr, xs) =
2

N0

N−1∑

n=0

ℜ
{
∂µH[n]

∂xr

∂µ[n]

∂xs

}
. (69)

October 17, 2017 DRAFT



26

The elements of the FIM are obtained based on (69). The entry associated with the n-th subcarrier is

denoted as Ψn(xr, xs), and given by (for {τr, τs} and {θr,θs})

Ψn(τr, τs) =
2

N0
ℜ{h̃∗r h̃sARx,n(θRx,r, θRx,s)A

(2)
Tx,F,n(τr, τs, θTx,s, θTx,r)}, (70)

Ψn(τr, θTx,s) =
2

N0
ℜ{jh̃∗r h̃sARx,n(θRx,r, θRx,s)A

(1)
DTx,s,F,n(τr, τs, θTx,s, θTx,r)}, (71)

Ψn(τr, θRx,s) =
2

N0
ℜ{jh̃∗r h̃sADRx,s,n(θRx,r, θRx,s)A

(1)
Tx,F,n(τr, τs, θTx,s, θTx,r)}, (72)

Ψn(θTx,r, θTx,s) =
2

N0
ℜ{h̃∗r h̃sARx,n(θRx,r, θRx,s)ADdTx,F,n(τr, τs, θTx,s, θTx,r)}, (73)

Ψn(θTx,r, θRx,s) =
2

N0
ℜ{h̃∗r h̃sADRx,s,n(θRx,r, θRx,s)A

(0)
DTx,r,F,n(τr, τs, θTx,s, θTx,r)}, (74)

Ψn(θRx,r, θRx,s) =
2

N0
ℜ{h̃∗r h̃sADRx,r,s,n(θRx,r, θRx,s)A

(0)
Tx,F,n(τr, τs, θTx,s, θTx,r)}. (75)

The following notations are introduced:

A
(k)
Tx,F,n(τr, τs, θTx,s, θTx,r) , aHTx,F,n(θTx,s)Ak,n(τr, τs)aTx,F,n(θTx,r), (76)

A
(l)
DTx,s,F,n(τr, τs, θTx,s, θTx,r) , aHDTx,F,n(θTx,s)Al,n(τr, τs)aTx,F,n(θTx,r), (77)

A
(l)
DTx,r ,F,n(τr, τs, θTx,s, θTx,r) , aHTx,F,n(θTx,s)Al,n(τr, τs)aDTx,F,n(θTx,r), (78)

ADdTx,F,n(τr, τs, θTx,s, θTx,r) , aHDTx,F,n(θTx,s)A0,n(τr, τs)aDTx,F,n(θTx,r), (79)

where l ∈ {0, 1}, and Ak,n(τr, τs), k ∈ {0, 1, 2}, is given by

Ak,n(τr, τs) , (2πn/(NTs))
k x[n]xH[n]e−j2πn(τr−τs)/(NTs). (80)

The vectors aTx,F,n(θTx,r) and aDTx,F,n(θTx,r) are given by aTx,F,n(θTx,r) = FH[n]aTx,n(θTx,r) and

aDTx,F,n(θTx,r) = FH[n]DTx,r[n]aTx,n(θTx,r). The matrix DTx,r[n] is defined as

DTx,r[n] , j
2π

λn
d cos(θTx,r)diag{0, . . . , Nt − 1}. (81)

The scalars ARx,n(θRx,r, θRx,s), ADRx,s,n(θRx,r, θRx,s), and ADRx,r,s,n(θRx,r, θRx,s) are defined as

ARx,n(θRx,r, θRx,s) , aHRx,n(θRx,r)aRx,n(θRx,s), (82)

ADRx,s,n(θRx,r, θRx,s) , aHRx,n(θRx,r)DRx,s[n]aRx,n(θRx,s), (83)

ADRx,r,s,n(θRx,r, θRx,s) , aHRx,n(θRx,r)D
H
Rx,r[n]DRx,s[n]aRx,n(θRx,s), (84)

where DRx,r[n] has the same expression as (81) by replacing the subscript Tx by Rx and Nt by Nr.

The terms including channel coefficients are summarized as:

Ψn(τr, h̃s) =
2

N0
[ℜ{jh̃∗rARx,n(θRx,r, θRx,s)A

(1)
Tx,F,n(τr, τs, θTx,s, θTx,r)},

ℜ{−h̃∗rARx,n(θRx,r, θRx,s)A
(1)
Tx,F,n(τr, τs, θTx,s, θTx,r)}], (85)
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Ψn(θTx,r, h̃s) =
2

N0
[ℜ{h̃∗rARx,n(θRx,r, θRx,s)A

(0)
DTx,r,F,n(τr, τs, θTx,s, θTx,r)},

ℜ{jh̃∗rARx,n(θRx,r, θRx,s)A
(0)
DTx,r ,F,n(τr, τs, θTx,s, θTx,r)}], (86)

Ψn(θRx,r, h̃s) = − 2

N0
[ℜ{h̃∗rADRx,r,n(θRx,r, θRx,s)A

(0)
Tx,F,n(τr, τs, θTx,s, θTx,r)},

ℜ{jh̃∗rADRx,r,n(θRx,r, θRx,s)A
(0)
Tx,F,n(τr, τs, θTx,s, θTx,r)}], (87)

Ψn(ℜ{h̃r},ℜ{h̃s}) = Ψn(ℑ{h̃r},ℑ{h̃s}) =
2

N0
ℜ{ARx,n(θRx,r, θRx,s)A

(0)
Tx,F,n(τr, τs, θTx,s, θTx,r)}, (88)

Ψn(ℜ{h̃r},ℑ{h̃s}) = −Ψn(ℑ{h̃r},ℜ{h̃s}) =
2

N0
ℜ{jARx,n(θRx,r, θRx,s)A

(0)
Tx,F,n(τr, τs, θTx,s, θTx,r)}. (89)

APPENDIX B

COMPLEXITY ANALYSIS

We analyze the complexity of different stages of the proposed algorithm.

• Coarse Estimation: The complexity in performing (42) is on the order of O(N2
rN

2
t GNsub) where

Nsub denotes the few subcarriers sufficient to detect the dominant path. The QR factorization of

the mutilated basis ΩKt
[n] approximately requires O(GNrK̂

2) operations for each subcarrier, and

matrix inversion to obtain the channel coefficients in (48) approximately takes O(NK̂3) operations

for all the subcarriers. The complexity in computing (54) is on the order of O(NDoK̂) where Do

denotes the number of delay grid points, and (53) requires O(NK̂) operations. Consequently, the

maximum complexity from coarse estimation of the channel parameters is dominated by the term

K̂ ×O(N2
rN

2
t GNsub).

• Fine Estimation: In the refinement phase, the complexity is mainly affected by Gauss-Seidel-type

iterations with first and second order derivatives of a vector a(x) of length Lx with respect to a

variable x that can be delay, AOA, and AOD. These operations lead to a complexity on the order

of O(L2
xN) for each path. Given the subsequent path refinement, the maximum complexity of fine

estimation is on the order of O(K̂2)×O(L2
xN).

• Conversion to Position and Orientation: The conversion to position and orientation in the LOS case is

easy to implement since it involves only some basic operations. For the NLOS and OLOS scenarios,
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the LMA algorithm is applied. It is not considered the complexity driver, since it combines the

advantages of gradient-descent and Gauss-Newton methods. The LMA algorithm can be effectively

applied by implementing delayed gratification, which leads to higher success rate and fewer Jacobian

evaluations.
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