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Abstract—This paper aims at guaranteeing the achievable
energy efficiency (EE) fairness in a multicell multiuser multiple-
input single-output downlink system. The design objective is
to maximize the minimum EE among all base stations (BSs)
subject to per-BS power constraints. This results in a max-min
fractional program and as such is difficult to solve in general. Our
goal is to develop decentralized algorithms for the max-min EE
problem based on combining successive convex approximation
(SCA) framework and alternating direction method of multipliers
(ADMM). Specifically, leveraging the SCA principle, we itera-
tively approximate the nonconvex design problem by a sequence
of convex programs for which two decentralized algorithms
are then proposed. In the first approach, the convex program
obtained at each step of the SCA procedure is solved optimally
by allowing the BSs to exchange the required information until
the ADMM converges. The convergence of the first method is
analytically guaranteed but the amount of backhaul signaling can
be noticeable in some realistic settings. To reduce the backhaul
overhead, the second method performs an abstract version of
the ADMM where only one variables update is carried out.
Numerical results are provided to demonstrate the effectiveness
of the two proposed decentralized algorithms.

Index Terms—Energy efficiency, max-min fractional program-
ming, successive convex approximation, alternating direction
method of multipliers.

I. INTRODUCTION

Multiple-antenna techniques can offer impressive improve-

ments on the achievable capacity of wireless communications

systems. Previously, a major objective in network design has

been to maximize the spectral efficiency (SE) to satisfy the

increasing demand on data traffic of cellular networks. While

the SE maximization problem still remains important, we also

need to consider the total energy spent by the wireless systems,

especially due to the recent and on-going explosive growth of

the number of wireless devices and data traffic volumes. As a

result, energy-efficient transmission approaches have been the
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main focus in a large portion of recent works (cf. [2] for a

relatively comprehensive survey).

Energy efficiency (EE), also known as bit-per-Joule ca-

pacity, is defined as the ratio of throughput and the total

power consumption of the network [2]. The problem of EE

maximization under individual quality-of-service constraints

and/or transmit power constraints has been of particular in-

terest [3]–[9]. To maintain fairness of the individual cells or

base stations (BSs), maximizing the minimum of EEs of users

was considered [10]–[12]. This is relevant, e.g., in cellular

networks where BSs are not connected to fixed electricity grid.

The problem leads to solving a max-min fractional program,

which is nonconvex and generally difficult to solve to global

optimality.

For nonconvex problems in general, and for the max-

min EE problem in particular, a classical goal is to find a

stationary solution, i.e., a solution that satisfies the Karush-

Kuhn-Tucker (KKT) conditions. This was done in [10] by

combining the Dinkelbach’s approach and alternating opti-

mization. More explicitly, the parameterized problem attained

from the Dinkelbach’s method is solved by alternately optimiz-

ing the beamformers, receivers and other auxiliary variables.

To improve this approach, in [13], we proposed a more

computationally efficient beamforming design for the max-min

EE problem, using an inner approximation framework which is

now probably better known as the successive convex approxi-

mation (SCA). Therein, novel transformations were introduced

to expose the hidden convexity of the considered problem,

and the remaining nonconvexity is iteratively replaced by

convex approximations. In [12], the SCA principle together

with fractional programming was also used to derive power

control policies for the max-min EE problem for massive

MISO systems. Furthermore, a general framework combining

the SCA approach and fractional programming for energy-

efficient resource allocation problems was presented in [14].

The existing beamforming designs or power control policies

for the max-min EE problem are centralized algorithms, which

need a central node to collect all the relevant information

(i.e., channel state information (CSI) and power parameters)

and then solve the problem. This may not be appealing from

a practical implementation perspective, especially when the

amount of CSI needs to be shared is large (e.g., a large

number of antennas or highly dispersive channels) and/or a

central node is difficult to build. In [11], a distributed energy-

efficient power optimization for SISO interference channels

was studied. Although the main computational efforts can be

done in a distributed manner at each BS, some information



2

still needs to be collected and processed at the central node.

In this paper we consider multicell multiuser multiple-input

single-output (MISO) downlink channels and propose two

decentralized solutions for the problem of achieving fairness

EE among BSs, each of which is limited by a total transmit

power budget. The two proposed algorithms are a result of

applying the SCA method to obtain convex approximations of

the nonconvex max-min EE problem and applying the ADMM

to solve the resulting convex programs. We note that in our

recent work of [13], generic convex programs (GCPs) were

derived to approximate the max-min EE problem. In a revised

attempt, we introduce novel transformations to approximate

the max-min EE problem into a series of second order cone

programs (SOCPs). This leads to enormous reduction in terms

of computational complexity as numerically demonstrated in

Section VI of this paper. For the ease of description, the

convex approximate problem obtained at iteration n of the

SCA procedure is simply called the SCAn problem.

Motivated by many successful applications of the ADMM

to numerous problems in wireless communications, e.g., in

[15], [16], we aim to particularize the ADMM to solve

the SCAn problem in a decentralized manner. However, the

SCAn problem is not in a standard form that allows for

a direct application of the ADMM. To make it possible

we introduce the local and global versions of the so-called

interference temperature, and decompose the SCAn problem

into subproblems that can be solved independently at each

BS. In the first proposed distributed method which strictly

follows the ADMM, we allow the BSs to exchange the relevant

information until the ADMM converges. In other words the

ADMM is carried out until an optimal solution to the SCAn

problem is found. Once this has been accomplished, all the

BSs update the relevant parameters to create the SCAn+1

problem for which another loop of the ADMM is carried out.

In this way the first proposed algorithm can yield the same

performance as the centralized method, but the amount of

exchanged information is significant in some cases. To reduce

the backhaul signaling overhead, we also consider a modified

version of the first algorithm in which the ADMM is early

terminated, i.e., after a small number of variable updates.

In the second proposed method we perform only one

variables update in the ADMM. More specifically the BSs

carry out only one iteration of the ADMM when solving

the SCAn problem, and immediately consider the SCAn+1

problem. The idea behind the second proposed solution is

that, one iteration for the ADMM is sufficient when the

SCA procedure nearly converges. This is true if a warm-start

technique is used in the ADMM, i.e., the ADMM for the

SCAn+1 problem is initialized by the solution obtained from

the SCAn problem. In view of this, the ADMM is not used to

find an optimal solution of the SCAn problem, but to guide

the local and global versions of the interference temperature

towards the consensus value, while the SCA procedure is

to update the interference temperature. The two proposed

distributed solutions are provably convergent.

The rest of the paper is organized as follows. System model

and the max-min EE problem are described in Section II.

In Section III, a brief review of the centralized SCA based

approach is presented, followed by the new novel transforma-

tion to approximate the max-min EE problem. Two proposed

decentralized SCA-ADMM based algorithms are presented in

Section IV. The convergence of the proposed algorithms is

analyzed in Section V. Section VI provides the simulation

results and concludes the paper.

Notation: The following notations are used throughout the

paper. Vectors are denoted by bold lowercase letters and sets

are denoted by calligraphic letters. Ca×b represents the space

of complex matrices of dimension given as superscripts. (.)
T

and (.)H represent the transpose and Hermitian transpose

operator, respectively. |.| and ℜ(.) represent the absolute

value and real part of a complex number, respectively. ‖.‖2
represents the ℓ2 norm. {xb}b∈B refers to a composite vector

that containing all xb where b belongs to the set B.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MISO downlink system consisting of B BSs,

each equipped with N antennas. The set of BSs is denoted by

B = {1, . . . , B}. To lighten the notation we assume each BS

serves a different group of K single-antenna users and refer

to the kth user served by BS b as bk for k = 1, 2, . . . ,K .

Note that the total number of users in the considered system

is BK . Assuming a flat fading channel, the received signal at

user bk is

ybk = hb,bkwbksbk +
∑K

i=1,j 6=khb,bkwbjsbj

+
∑B

i=1,i6=b

∑K

j=1hi,bkwijsij + nbk ,
(1)

where hi,bk ∈ C1×N is the channel vector from BS i to user

bk; wbk ∈ CN×1 and sbk are the beamforming vector and

the transmit data symbol from BS b to user bk, respectively;

nbk ∼ CN (0, N0) is the additive white Gaussian noise. We

treat the inter-user interference as Gaussian noise and thus the

SINR for user bk is given by

γbk(w) =
|hb,bkwbk |2

Ibk(w) +WN0
, (2)

where W is the system bandwidth, w is the vector encompass-

ing the beamformers of all BK users, and Ibk (w) is defined

as

Ibk(w) ,
∑K

j=1,j 6=k|hb,bkwbj |2+
∑B

i=1,i6=b

∑K
j=1|hi,bkwij |2.

(3)

Assuming Gaussian input signaling, the data rate of user bk is

given by rbk(w) ,W log2
(

1+γbk(w)
)

. In this paper, we are

interested in achieving the EE fairness among individual BSs.

Particularly, the EE of BS b, which is defined as the ratio

of total data rate transmitted from BS b and its total power

consumption [11], is expressed as

fb (w) =

∑K
k=1 rbk(w)

1
ǫ

∑K

k=1 ‖ wbk ‖22 +NPdp + Psp

(4)

where ǫ ∈ (0, 1) is the power amplifier efficiency which is

defined as the ratio between the total radio frequency (RF)

output power and the direct current (DC) input power of the

power amplifier (PA) [17]. Note that the value of ǫ depends

on the design techniques and operating conditions of the PA
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[17], [18]. In addition, Pdp is the dynamic power consumption

corresponding to the power radiation of all circuit blocks in

each active radio frequency chain; and Psp is the static power

spent by the cooling system, power supply, etc [14], [17], [18].

We denote by P0 , NPdp + Psp the total circuit power. The

problem of max-min EE fairness among all the BSs is stated

as

max
w

min
1≤b≤B

fb (w) (5a)

subject to
∑K

k=1 ‖ wbk ‖22≤ Pb, ∀b ∈ B (5b)

where Pb is the transmit power budget of BS b.
To the best of our knowledge, the computational complexity

of (5) has not been studied previously and seems to be

challenging to characterize. Here we provide two remarks

giving intuitive insights on its computational complexity cor-

responding two special scenarios. In particular, we discuss the

complexity of (5) when the total circuit power P0 is so large

that maximizing the minimum EE amounts to maximizing

the minimum of the sum rate of all BSs. That is to say, the

denominator in (4) is mainly determined by P0 which is a

constant, and thus we only need to concentrate on maximizing

the nominator. As a consequence, for the special case of

K = 1, or a single user per BS (or commonly known

as interference channel), this leads to the problem of SINR

balancing which is known to be polynomial time solvable [19].

For the case when K ≥ 2, the resulting problem is equivalent

to the max-min utility problem with multiple tones which was

proved to be NP-hard in [20, Theorem 2].

We remark that the existing solutions aim at finding a

stationary solution to (5), which is a classical goal for general

nonconvex problems [10], [12], [13]. Since (5) is basically a

max-min fractional program, the so-called generalized Dinkel-

bach algorithm can be customized to solve (5) as done [10],

[12]. Although it was shown in [21] that the induced param-

eter in Dinkelbach-type algorithms can converge linearly (or

superlinearly under some stronger assumptions), these results

are hardly applicable to (5). The main barrier is that the

parametric programs obtained from applying the Dinkelbach’s

method to (5) are still nonconvex, and thus typically require

a large number of iterations to find an optimal solution. To

deal with this problem, such approaches as those in [10],

[12] apply iterative local optimization methods, e.g. SCA or

MMSE, to solve the parametric problems but their convergence

rate may be relatively slow (cf. [13, Section IV]). As a

result, these known algorithms are in fact a two-layer iterative

procedure that needs a very high number of iterations to

converge. Moreover, since these approaches can only achieve

local optimality for each parametric problem, the convergence

of the Dinkelbach’s method may not be always guaranteed [8].

As an effort to reduce the computational complexity, we

proposed in [13] a one-layer iterative method where (5) is

reformulated into a more tractable representation which can

be handled efficiently by the SCA framework. Nevertheless,

the studies mentioned earlier arrived at centralized solutions,

requiring a central node in their implementation to collect

the required information and carry out all the computations,

and thus are not practically appealing. Towards a distributed

solution, we propose decentralized algorithms to solve the

max-min EE problem in this paper. Particularly, our proposed

approaches are inspired by the low-complexity SCA-based

method in [13] whose details are given in the next section.

III. CENTRALIZED BEAMFORMING DESIGN FOR

MAX-MIN EE FAIRNESS

A. Equivalent Formulation

We start by introducing an equivalent reformulation of

(5) which exposes the hidden convexity of the max-min EE

problem. Specifically, (5) can be rewritten as

max
w,η,z,t

η (6a)

subject to z2b/tb ≥ η, ∀b ∈ B (6b)

∑K
k=1 log(1 +

|hb,bkwbk |2
Ibk(w) +WN0

) ≥ z2b , ∀b ∈ B
(6c)

∑K
k=1 ‖ wbk ‖22 /ǫ+ P0 ≤ tb, ∀b ∈ B (6d)

∑K

k=1 ‖ wbk ‖22≤ Pb, ∀b ∈ B, (6e)

where η, z , [z1, . . . , zB]
T ∈ RB×1, t , [t1, . . . , tB]

T ∈
RB×1 are newly introduced slack variables. To deal with

the nonconvexity of (6c) we further introduce new auxiliary

variables g , [g11 , . . . , g1K , g21 , . . . gBK
]T ∈ RBK×1 and

q , [q11 , . . . , q1K , q21 , . . . qBK
]T ∈ RBK×1, and rewrite (6)

as

max
w,η,z,t,q,g

η (7a)

subject to z2b/tb ≥ η, ∀b ∈ B (7b)
∑K

k=1 log(1 + gbk) ≥ z2b , ∀b ∈ B, (7c)

|hb,bkwbk |2/qbk ≥ gbk , ∀b ∈ B, k = 1, . . .K
(7d)

Ibk(w) +WN0 ≤ qbk , ∀b ∈ B, k = 1, . . .K
(7e)

∑K

k=1 ‖ wbk ‖22 /ǫ+ P0 ≤ tb, ∀b ∈ B (7f)
∑K

k=1 ‖ wbk ‖22≤ Pb, ∀b ∈ B. (7g)

It is easy to see that the constraints from (7b) to (7f) must

hold with equality at the optimality. Thus, the equivalence

between (5) and (7) is guaranteed. We further note that all

the constraints listed in (7) are convex, excluding (7b) and

(7d). This implies that we need to find ways to deal with the

nonconvexity in (7b) and (7d).

B. New Centralized Approach

In this subsection we first briefly review the low-complexity

beamforming design for the max-min EE problem introduced

in our earlier work [13], then propose a new centralized

solution that will be numerically shown to achieve a better

performance when the system model is of small or moderate

number of cells and users. In particular the solution presented

in [13] was based on the observation that (7b) and (7d) admit

the same form, i.e., the left-hand side (LHS) is a quadratic-

over-affine function (which is convex) and the right-hand
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side (RHS) is an affine function. This naturally leads to a

direct application of the inner approximation algorithm [22]

to approximate the nonconvex part of (7b) and (7d). More

explicitly, we iteratively replace (7b) and (7d) by

φnb (zb, tb) ≥ η, b ∈ B (8)

and

ψn
bk
(wbk , qbk) ≥ gbk , b ∈ B, k = 1, . . .K (9)

respectively, where φnb (zb, tb) ,
2zn

b

tn
b

zb − (zn
b )2

(tn
b
)2 tb and

ψn
bk
(wbk , qbk) ,

2ℜ(hn
b,bk

wbk
)

qn
bk

− |hb,bk
wn

bk
|2qbk

(qn
bk

)2 are the first

order approximations of z2b/tb and |hb,bkwbk |2/qbk around

the point (znb , t
n
b ) and (wn

bk
, qnbk), respectively. We denote

hn
b,bk

=
(

wn
bk

)H
hH
b,bk

hb,bk . The superscript n denotes the

nth iteration of the iterative procedure. In summary, the

approximate convex program at iteration n+1 of the iterative

algorithm proposed in [13] is given as

max
w,η,z,t,g,q

{η | (7c), (7e), (7f), (7g), (8), (9)}. (10)

We note that (znb , t
n
b ,w

n
bk
, qnbk) are treated as constants in (10)

since they are the solution to the problem at iteration n. After

solving (10), we update the involved variables for the next

iteration until a stopping criterion is satisfied [13].

Convergence Analysis: Since the approximants of non-

convex constraints (7b) and (7d) meet the properties listed in

[22], the proposed iterative procedure solving (10) produces

a sequence of objective values that is provably monotonically

convergent. Note that the solution obtained at each iteration

satisfies the optimality conditions (i.e. the KKT conditions) of

(10). Moreover, it is easy to check that the KKT conditions

of (10) are indeed identical to those of (7) at convergence (cf.

[22, Theorem 1]). In other words, a limit point of the proposed

algorithm achieves the necessary optimality conditions of the

original nonconvex problem (7).

We now turn our attention to the convex constraint in

(7c) which is central to our discussions for the rest of this

subsection. The idea in [13] was to preserve the convexity

of (7c) and then approximate it (to a desired accuracy) by

a system of small conic constraints. In this way the GCP in

(10) can be cast as a second order cone program which can

avail of state-of-the-art conic solvers such as MOSEK [23]

or GUROBI [24]. In doing so, a number of slack variables

are introduced to (10), which can result in an increase of per-

iteration complexity. As an extension of our earlier work, we

have numerically observed that in some settings, it is more

computationally efficient to approximate (7c) by a constraint

that can be SOC representable with a smaller number of

additional slack variables. Toward this end we can see that

(7c) is equivalent to the following two constraints

gbk log(1 + gbk) ≥ gbkβbk , ∀b ∈ B, k = 1, . . .K (11a)
∑K

k=1βbk ≥ z2b , ∀b ∈ B (11b)

for gbk > 0, and β , [β11 , . . . , β1K , β21 , . . . βBK
]T ∈ RBK×1

stands for the newly introduced slack variables. We note that

the LHS of (11a) is convex with gbk which can be easily

proved by checking the second order derivative of gbk log(1+
gbk). As a result the following inequality holds

gbk log(1 + gbk) ≥ gnbk log(1 + gnbk)+

(gbk − gnbk)(g
n
bk
(1 + gnbk)

−1 + log(1 + gnbk))

= gbkv
n
bk

− unbk , ∀b ∈ B, k = 1, . . .K
(12)

where unbk ,
(gn

bk
)2

gn
bk

+1 and vnbk ,
gn
bk

gn
bk

+1 + log(1 + gnbk). In light

of SCA principle we now can replace (11a) with

gbkv
n
bk

− unbk ≥ gbkβbk , ∀b ∈ B, k = 1, . . .K (13)

which is equivalently represented by the following SOC con-

straint

gbk − βbk + vnbk ≥ ‖[gbk + βbk − vnbk 2
√

unbk ]‖2,
∀b ∈ B, k = 1, . . .K

(14)

From the discussion from (11) to (14), we propose a new

iterative algorithm, in which the convex problem at iteration

n+ 1 reads as

max
w,η,z,t,g,q,β

{η | (7e), (7f), (7g), (8), (9), (11b), (14)} (15)

The complexity of the proposed algorithm can be analyzed

as follows. Recall that K , B, and N denote the number

of users served by each BS, the number of BSs, and the

number of antennas equipped for each BS, respectively. As

can be seen, BK additional slack variables are introduced

to approximate (7c) into the SOC constraints. According to

the primal-dual path-following interior point method in [25,

Section 6.6], the per-iteration complexity for solving (15) is

O(N3B3K3+B3K3). Recall that the per-iteration complexity

of the algorithm presented in [13] is O(N3B3K3 + (m +
7)3B3K3), where m is the parameter that depends on the

desired accuracy to approximate the exponential cone. In

addition, the per-iteration complexity for solving the GCP

(10) using (7c) is O(N4B4K4 + B4K4). Obviously, the

new algorithm based on (15) can reduce the per-iteration

complexity as numerically shown in Figs. 2 and 3 in Section

VI.

IV. DECENTRALIZED APPROACHES FOR THE MAX-MIN EE

Our goal in this section is to propose decentralized solutions

to solve (7). Those are of practical interest when a central

processing station is not available, or when sending the CSI

of all BSs to a central node is overwhelming. To the best

of our knowledge, decentralized solutions for the max-min

EE problem have not been reported previously in the related

literature. The idea is to propose distributed approaches for

solving the convex program obtained in each step of the itera-

tive procedure. Thus, we may base our decentralized proposed

algorithms on the SCAn+1 problem given in (10) or in (15),

depending on the problem size. Without loss of generality we

represent a decentralized algorithm to solve (10) optimally in

the sequel, and note that a decentralized method to solve (15)

can be obtained similarly. Before proceeding further, we note

that in this paper, CSI of all users is locally known at each

BS, which is a standard assumption in numerous studies in

the context of designing distributed algorithms for wireless
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communications applications [15], [26]–[28]. More explicitly,

each BS b ∈ B perfectly knows the CSI of the channels from

itself to all users in the network, i.e., {hb,ij}∀ij .

A. Pure ADMM based Decentralized Method for Max-Min EE

A simple and popular approach in the context of distributed

optimization is the dual decomposition method. However, this

approach cannot be applied to solve the SCAn+1 problem in

(10) due to the lack of strict convexity of the objective (see

[29] for further details). A similar problem was also mentioned

in [15], but in a different context. A remedy for this issue

is to combine the dual decomposition and the augmented

Lagrangian method which results in the so-called ADMM

[15], [29]. In addition to the lack of strict convexity, the

formulation in (10) is not amendable to a direct application of

ADMM since (7e) is not decomposable due to the intercell

interference (ICI) contained in Ibk(w). To overcome these

issues we rewrite (10) as

min
w,η,{ηb},z,t,g,q,

{τb,ij
},{τ′

bk,i
},{µb,ij

}

−
B
∑

b=1

ηb (16a)

subject to τb,ij ≥∑K
k=1|hb,ijwbk |2, ∀i 6= b (16b)

qbk ≥ ∑K

j=1,j 6=k|hb,bkwbj |2

+
∑B

i=1,i6=bτ
′
bk,i

+WN0,
(16c)

ηb = η, b ∈ B (16d)

τb,ij = µb,ij ∀i 6= b, j = 1, . . .K (16e)

τ ′bk,i
= µi,bk ∀i 6= b, k = 1, . . .K (16f)

(7c), (7f), (7g), (8), (9), (16g)

where ηb, τb,ij , τ ′bk,i are newly introduced slack variables,

representing the energy efficiency of BS b, the ICI produced by

BS b to user ij , and the ICI that user bk causes to neighboring

BSs i (i 6= b), respectively. We remark that ηb, τb,ij , τ ′bk,i are

locally stored at BS b. On the other hand, η, µb,ij and µi,bk are

respectively the global copies of ηb, τb,ij and τ ′bk,i. Intuitively,

ηb is introduced to decouple the objective in (10), and (16d)

is to force {ηb}b∈B to be identical. Similarly, we introduce

slack variables representing ICI and impose constraints (16e)

and (16f) to decouple (7e). In this regard, τb,ij and τ ′ij ,b both

represent the value of the ICI produced by BS b to user ij (i.e.,
∑K

k=1 |hb,ijwbk |2), where τb,ij is the local variable stored by

BS b and τ ′ij ,b is that of BS i. Thus the slack variable µb,ij is

to ensure τb,ij and τ ′ij ,b are equal, i.e., τb,ij = µb,ij
= τ ′ij ,b,

which is due to (16e) and (16f). It is easy to see that (16) is

equivalent to (10). For the ease of description we will refer

to the (local or global) variables representing interference as

(local or global) interference temperature since their value

varies with iterations. Next we include all the constraints that

can be handled locally at BS b in the set Sn+1
b which is defined

as

Sn+1
b , {sb | (7c), (7f), (7g), (8), (9), (16b), (16c)} (17)

where sb , [ηb, zb, tb,gb1 , . . . , gbK ,wb1 , . . .wbK ,qb1 , . . . qbK ,
θT
b ] simply stacks all the local variables at

BS b. Note that we have defined θb ,

[τb,11 , . . . , τb,(b−1)K ,τb,(b+1)1 , . . . , τb,BK
,τ ′b1,1, . . . , τ

′
bK ,b−1,

τ ′b1,b+1, . . . , τ
′
bK ,B]

T which represents the local

interference temperatures of BS b. Similarly we

denote νb , [µb,11 , . . . , µb,(b−1)K , µb,(b+1)1 , . . . , µb,BK
,

µ1,b1 , . . . , µb−1,bK , µ(b+1),b1 , . . . , µB,bK ]T , by sorting the

corresponding global versions of θb. From the definitions

above, (16) can be equivalently rewritten in a more compact

form as

min
s,ϑ

−∑B
b=1ηb (18a)

subject to sb ∈ Sn+1
b , ∀b ∈ B (18b)

ηb = η, ∀b ∈ B (18c)

θb = νb, ∀b ∈ B (18d)

where s , [s1, . . . , sB] and ϑ , [η,νT
1 , . . . ,ν

T
B]. We are

now in a position to describe the ADMM to solve (18) in a

decentralized manner.

First, the augmented Lagrangian function of (18) is given

by

Ln+1(ϑ, s, ζ, ξ) =
∑B

b=1[−ηb + ξb(ηb − η) + ζT
b (θb − νb)

+
c

2
((ηb − η)2 + ‖θb − νb‖22)],

(19)

where ξ , [ξ1, . . . , ξB], ζ , [ζT
1 , . . . , ζ

T
B]; ξb and ζb are

the Lagrange multipliers associated with (18c) and (18d),

respectively. In (19), c > 0 is the penalty parameter and

the quadratic penalty term c
2 ((ηb − η)2 + ‖θb − νb‖22) is

to provide strict convexity w.r.t. s and ϑ for (19), and thus

problem (18) is always solvable [29]. The general idea of the

ADMM is to use the Gauss-Seidel method to update the global

variables (i.e., ϑ), the local variables (i.e., s), and the Lagrange

multipliers (i.e., ζ and ξ). Intuitively, at each iteration of the

ADMM, all BSs agree a common knowledge of associated

interference temperatures and the consensus EE by the update

of global variables. Then, each BS independently solves its

own subproblem and updates its Lagrange multipliers such

that involved variables are driven into equality. Details of the

proposed algorithm are presented as follows.

Update of Global Variables

An iteration of the first proposed algorithm starts with

the update of global variables, which can be done by fixing

the local variables when solving the optimization problem

min
ϑ

{Ln+1(ϑ, sl, ζl, ξl)}. Note that the superscript associated

with each variable is the iteration counter of the ADMM

part. Since Ln+1(ϑ, sl, ζl, ξl) is separable in η and {νb},

the ϑ-minimization step leads to the following independent

subproblems

ηl+1 = arg min
η

∑B

b=1(−ξlbη +
c

2
(ηlb − η)2) (20)

and

νl+1
b = arg min

νb

− (ζl
b)

Tνb +
c

2
‖θl

b − νb‖22, ∀b ∈ B. (21)

Note that in above equation ηlb and θl
b are the values obtained

after solving (25) at iteration l and are exchanged by all BSs.
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We also remark that (20) and (21) are unconstrained quadratic

programs for which the closed form solutions are given by

ηl+1 =
∑B

b=1(η
l
b + ξlb/c)/B (22)

and
µl+1
b,ij

=(τ lb,ij + τ ′lij ,b)/2 + (ζlb,ij + ζlij ,b)/2c

µl+1
i,bk

=(τ li,bk + τ ′lbk,i)/2 + (ζli,bk + ζlbk,i)/2c
(23)

where {ζb,ij , ζbk,i} and {ζi,bk , ζij ,b} are the dual variables

associated to the primal variables {τb,ij , τ ′bk,i} of BS b and

{τi,bk , τ ′ij ,b} of BS i 6= b, respectively. In addition, (22) and

(23) are independently carried out at each BS so that ηl+1

and νl+1
b are available at BS b to update its local variables in

the next step of the procedure. Particularly, to compute ηl+1 in

(22), all BSs can run an average consensus algorithm [3], [29],

[30]. We note that µl+1
b,ij

and µl+1
i,bk

are computed after gathering

(
τ ′l
ij ,b

2 +
ζl
ij ,b

2c ) and (
τ l
i,bk

2 +
ζl
i,bk

2c ) from BS i 6= b, respectively.

Since the required information is real-valued, the amount of

exchanged signaling overhead is significantly lower, compared

to directly sharing the complex-value CSI.

Update of Local Variables

The set of local variables s is updated by solving the convex

problem

sl+1 = argmin
sb∈Sn+1

b
,∀b∈B

Ln+1(ϑl+1, s, ξl, ζl). (24)

The main point of the ADMM is that the augmented La-

grangian function in (19) is decomposable in sb, and thus the

optimization problem (24) can be solved in parallel at each

BS. Specifically, BS b can locally solve the following convex

subproblem

sl+1
b = arg min

sb∈Sn+1

b

− ηb + ξlb(ηb − ηl+1) + (ζl
b)

T (θb − νl+1
b )

+
c

2

(

(ηb − ηl+1)2 + ‖θb − νl+1
b ‖22

)

(25)

using only its local CSI, i.e., {hb,ij}ij , and ηl+1 and νl+1
b

from the update of global variables. We recall that all the

constraints defining the set Sn+1
b are SOC representable, and

thus (25) can be efficiently solved by SOCP solvers.

Update of Lagrange Multipliers

The last step of the ADMM is to update the Lagrange

multipliers as

ξl+1
b = ξlb + c(ηl+1

b − ηl+1), ∀b ∈ B (26)

ζl+1
b = ζl

b + c(θl+1
b − νl+1

b ), ∀b ∈ B. (27)

Because the current iterates of the local and global variables

are already available to all BSs at this step, the update of

the Lagrange multipliers does not require extra information

exchange, and thus incurs no signaling overhead.

After the ADMM procedure converges, i.e., the primal

residual εADMM (see step 3 of Algorithm 1) is below a thresh-

old, we update the involved SCA parameters, i.e., (wn+1,

qn+1, zn+1, tn+1) as in the centralized algorithm and carry

Algorithm 1 Proposed decentralized beamformer ADMM-

based design for max-min EE in multicell multiuser MISO

downlink

1: Initialization: Set n := 0, l := 0 and choose feasible

initial values for (wn, qn, zn, tn) and choose the initial

values for {η0b}, {θ0
b}, ξ0, ζ0.

2: repeat {SCA outer loop}

3: while εADMM ,

√

∑B

b=1 ‖[ηlb, (θl
b)

T ]T − [ηl, (νl
b)

T ]T ‖22 ≥
10−5 do {ADMM inner loop}

4: for b ∈ B do

5: BS b updates ηl+1 through an average consensus

algorithm [30].

6: BS b receives (
τ ′l
ij ,b

2 +
ζl
ij ,b

2c ) and (
τ l
i,bk

2 +
ζl
i,bk

2c ) then

updates µl+1
b,ij

and µl+1
i,bk

by (23).

7: BS b updates sl+1
b by (25).

8: Update Lagrange multipliers ξl+1
b and ζl+1

b by (26)

and (27), respectively.

9: end for

10: l := l + 1.

11: end while

12: Obtain the optimal value (w∗, q∗, z∗, t∗).
13: Update the SCA parameters (wn+1, qn+1, zn+1,

tn+1) = (w∗, q∗, z∗, t∗), and ({η0b}, {θ0
b},ξ0,

ζ0) =({η∗b}, {θ∗
b}, ξ∗, ζ∗).

14: n := n+ 1; l := 0.

15: until the SCA converges

out another ADMM step to solve the SCAn+2. This iterative

process is terminated until the SCA outer loop converges. To

summarize, Algorithm 1 outlines the proposed decentralized

algorithm for the max-min EE beamforming design problem.

We now discuss some practical issues and complexity analysis

in relation to the implementation of Algorithm 1.

1) Amount of Exchanged Information: Algorithm 1 requires

BS b to broadcast θb and ηb to the other BSs. The amount

of backhaul signaling mainly depends on steps 5 and 6 of

Algorithm 1 as can be seen in Table I. To update global

variables in steps 5 and 6, BS b needs to send out 2 and 2K
real values to other (B − 1) BSs, respectively. In the current

LTE systems, the information sharing process among BSs can

be done via the X2 interface.

2) Per-BS Complexity Analysis: We remark that the per-

iteration complexity of Algorithm 1 is dominated by the

complexity of solving the subproblem (25) at each BS. As

presented in the previous section the constraint
∑K

k=1 log(1+
gbk) ≥ z2b in the set Sn+1

b can be handled by two ways, one

based on (12) and the other based on the SOC approximation

of the exponential cone in [13, Eq. (13)]. Thus, the cost

of solving the subproblem (25) with the former and latter

approximation is respectively O(N3K3) and O(N3K3+(m+
7)3K3) [25, Sect. 6.6], where m is the conic approximation

parameter of accuracy. The choice of a proper approximation

depends on the problem size which is numerically discussed

in Figs. 2 and 3.

3) Improved Convergence Rate: We now present a variant

of Algorithm 1 which may potentially improve its convergence
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Table I
INFORMATION EXCHANGE IN ALGORITHM 1.

Procedure Exchanged information

Step 5, update η at BS b {ηb} and {ξb} (average consensus among BSs)

Step 6, update µb,ij
and µi,bk

at BS b (
τ ′l
ij ,b

2
+

ζlij ,b

2c
) and (

τ l
i,bk
2

+
ζli,bk
2c

) from BS i 6= b

rate in practice. Note that waiting for the ADMM-based loop

to completely converge at each SCA iteration ensures the

global convergence of Algorithm 1 but generally slows down

its convergence rate. The idea is to allow the ADMM part

to terminate early when solving the SCAn for some first n.

In fact, we numerically obverse that the increase in the cost

function between two consecutive iterations is large in some

first SCA iterations, and thus it usually requires a large number

of variable updates for the ADMM to converge. However, the

solutions returned by the ADMM part are still rough estimates

of the solution of the max-min EE problem in the first SCA

problems. Thus, letting the ADMM to completely converge in

the first stage of the SCA loop is usually not beneficial. To

improve the convergence rate we stop the ADMM loop after a

fixed number of updates, say IADMM. That is, the ADMM inner

loop is terminated if l > IADMM, and the value of IADMM can

be varied as the SCA outer loop evolves. For example, IADMM

can be set to be higher for some first SCA problems so that the

ADMM part can produce a good estimate of the solution. On

the other hand, when the SCA is nearly convergent, we can

set IADMM to be smaller. By adapting IADMM we can enhance

the convergence rate of Algorithm 1 significantly as shown in

Section VI. The special case when IADMM = 1 for all SCA

iterations deserves particular attention and is treated in the

following subsection.

B. Interlaced SCA-ADMM based Decentralized Method for

Max-Min EE

A special variant of Algorithm 1 is described in Algorithm

2, which is obtained by carrying out the next SCA iteration

immediately after each ADMM iteration, rather than letting

the ADMM completely converge. Thereby the SCA and the

ADMM iterations are tightly interlaced and merged into a

single layer iterative algorithm. It is best to view Algorithm 2

as a result of applying the ADMM to the original nonconvex

problem in (7), but the local feasible sets are approximated by

the SCA principle at each ADMM update. To be more specific,

let us define the (nonconvex) feasible set of {Sb} for BS b as

Sb , {sb | (7b), (7c), (7d), (7f), (7g), (16b), (16c)}. Note that

Sb is the original feasible set at BS b where the nonconvex

constraints are not approximated by the convex approximants

using the SCA principle. Then we can equivalently rewrite

(18) as

min
s,ϑ

{−∑B
b=1ηb | sb ∈ Sb, ηb = η, θb = νb, ∀b ∈ B}. (28)

The difference between (28) and (18) is that Sb is used in

(28) instead of a convex approximation Sn+1
b in (18). The

Algorithm 2 Proposed interlaced SCA-ADMM based decen-

tralized algorithm for Max-Min EE in multicell multiuser

MISO downlink

1: Initialization: Set l := 0, choose feasible initial values

for (wl, ql, zl, tl) and choose the initial values for {η0b},

{θ0
b} ξ0, ζ0.

2: repeat

3: for b ∈ B do

4: BS b updates ηl+1 through an average consensus

algorithm [30].

5: BS b receives (
τ ′l
ij ,b

2 +
ζl
ij ,b

2c ) and (
τ l
i,bk

2 +
ζl
i,bk

2c ) then

updates µl+1
b,ij

and µl+1
i,bk

by (23).

6: BS b updates sl+1
b by (30b) by the approximate

convex set Sl+1
b .

7: Update Lagrange multipliers ξl+1
b and ζl+1

b by (30c).

8: end for

9: Update the SCA parameters (wl+1, ql+1, zl+1,

tl+1) =(w∗, q∗, z∗, t∗).
10: l := l + 1
11: until Convergence

augmented Lagrangian for (28) is given by

L(ϑ, s, ζ, ξ) =∑B

b=1[−ηb + ξb(ηb − η) + ζT
b (θb − νb)

+
c

2
((ηb − η)2 + ‖θb − νb‖22)].

(29)

The ADMM in Algorithm 2 has the form

ϑl+1 = argmin
ϑ

L(ϑ, sl, ζl, ξl), (30a)

sl+1
b = argmin

sb∈Sl+1

b

L(ϑl+1, s, ζl, ξl), ∀b ∈ B, (30b)

ξl+1
b = ξlb + c(ηl+1

b − ηl+1)

ζl+1
b = ζl

b + c(θl+1
b − νl+1

b )
, ∀b ∈ B. (30c)

Note that the update of global variables in (30a) is done exactly

as in Algorithm 1, i.e., in (20) and (21). Particularly, the update

of local variables at iteration l + 1 is carried out inexactly.

That is the sb-minimization in (30b) is over the approximate

convex set Sl+1
b defined in (17) which arises from the SCA

framework, not over the original nonconvex set Sb. Intuitively,

the ADMM part guides the global and local variables towards

an equality and the SCA is used to find a good locally feasible

solution. The convergence of Algorithm 2 is provable as shown

in Section V.

We note that the analysis of the amount of exchanged

information and the per-BS complexity at each iteration are the

same as those in Algorithm 1, since the size of the problem and

the amount of required exchanged information do not change.
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It will be numerically shown in Section VI that Algorithm 2

may converge faster than Algorithm 1.

V. CONVERGENCE ANALYSIS OF PROPOSED ALGORITHMS

In this section we provide the convergence analysis of

the two algorithms proposed in the preceding section. Our

simulation analysis is based on [31], in which the augmented

Lagrangian is proved to be monotonically decreasing.

A. Convergence Proof of Algorithm 1

The convergence of Algorithm 1 is guaranteed by that of the

ADMM and SCA procedures. First we discuss the convergence

of the ADMM for solving the SCAn+1 problem. Recall that

(16) is equal to (10) at the optimality. Thus, it is trivial to see

that the set Sn+1
b defined in (17) is nonempty and the problem

(18) is feasible. As a result, the subproblems (20), (21), and

(25) are always solvable, i.e., the optimal solutions do exist and

the optimal objectives are bounded below. We can also easily

check that there exists a saddle point for the unaugmented

Lagrangian, i.e., the function obtained by setting c = 0 in

(19). Thus, the convergence of the ADMM part in Algorithm

1 is guaranteed due to the result in [29, Section 3.2]. We

now provide another convergence result for the ADMM part

in Algorithm 1, which can be used to prove the convergence

of Algorithm 2. In particular, we have the following lemma.

Lemma 1. The difference of the augmented Lagrangian func-

tion between two consecutive iterations in the ADMM inner

loop of Algorithm 1 is

Ln+1(ϑl+1, sl+1, ζl+1, ξl+1)− Ln+1(ϑl, sl, ζl, ξl)

≤
B
∑

b=1

1

c
(d2 − c2

2
)
(

(ηl+1
b − ηlb)

2 + ‖θl+1
b − θl

b‖22
)

−
B
∑

b=1

c

2

(

(ηl+1 − ηl)2 + ‖νl+1
b − νl

b‖22
)

(31)

where c is the penalty parameter and d is a positive constant

which depends on the problem data.

The proof of Lemma 1 is deferred to Appendix A. Lemma

1 gives a useful insight into the convergence of the ADMM

inner loop of Algorithm 1. That is, if c is chosen to be

sufficiently large, i.e., c > d
√
2, then the Lagrangian function

Ln+1(ϑl, sl, ζl, ξl) generated by the ADMM loop is mono-

tonically decreasing. Note that this is a new convergence result

for the ADMM applied to the considered problem, compared

to the standard result in [29].

We now show that the SCA iteration is also provably

convergent which follows the same line of argument as that in

[22]. Towards this end let us denote the feasible set and the

optimal solution, obtained by the ADMM procedure of the

SCAn problem is Sn and sn, respectively. The convergence

analysis of the SCA outer loop is presented as follows. Due

to the use of approximations in (8) and (9), sn satisfies all the

constraints in (18) at iteration n + 1, i.e., sn ∈ Sn+1. This

immediately implies that the sequence of the objective values

{ηn} is non-increasing. Moreover, we can easily see that the

power constraint in (5b) ensures that Ln+1(ϑl, sl, ζl, ξl) is

bounded below for all l. Thus, the convergence of {ηn} is

established.

B. Convergence Proof of Algorithm 2

Following the new convergence result for the ADMM of

Algorithm 1, we have the following lemma regarding the

convergence of Algorithm 2.

Lemma 2. The difference of the augmented Lagrangian func-

tion between two consecutive iterations in Algorithm 2 is

L(ϑl+1, sl+1, ζl+1, ξl+1)− L(ϑl, sl, ζl, ξl)

≤
B
∑

b=1

1

c
(d̃2 − c2

2
)
(

(ηl+1
b − ηlb)

2 + ‖θl+1
b − θl

b‖22
)

−
B
∑

b=1

c

2

(

(ηl+1 − ηl)2 + ‖νl+1
b − νl

b‖22
)

−
B
∑

b=1

δlb

(32)

where c is the penalty parameter, d̃ is a positive constant which

depends on the problem data and

δlb = πbt
l
b

(

zlb
tlb

− zl−1
b

tl−1
b

)2

+

K
∑

k=1

ωbkq
l
bk

(

ℜ(hl
b,bk

wl
b,bk

)

qlbk
−

ℜ(hl−1
b,bk

wl−1
b,bk

)

ql−1
bk

)2

,

where πb ≥ 0 and ωbk ≥ 0 are dual variables associated to

the approximated constraints when solving (30b).

The proof of Lemma 2 is given in Appendix B and its

corollary is discussed in the following remark.

Remark 3. We can see that the SCA step introduces the term

−∑B
b=1 δ

l
b ≤ 0 in the RHS of (32). Thus, if c is chosen

to be large enough, i.e., c > d̃
√
2, then the RHS of (32)

becomes negative, meaning that the augmented Lagrangian

function L(ϑl, sl, ζl, ξl) is monotonically decreasing. Recall

that L(ϑl, sl, ζl, ξl) is bounded below by the power constraint

in (5b) for all l, and thus guaranteed to converge. Convergence

analysis of Algorithm 2 for the case of small c is beyond the

scope of this paper and is left for future work. Since it is hard

to analytically derive the constant d̃, a practical way is to vary

the value of c, i.e., iteratively increasing c until monotonic

convergence of L(ϑl, sl, ζl, ξl) is established [29].

C. The Choice of Penalty Parameter c

The two lemmas presented above imply that the value of c
has a significant impact on the convergence behavior of the

proposed algorithms. On one hand, a large value of c should

be considered to ensure the convergence of Algorithms 1 and

2. On the other hand, it was shown that better convergence

may be achieved for small c [32]. This issue is numerically

shown in Fig. 4 in Section VI.

We now present a way to further increase the convergence

rate of Algorithms 1 and 2. Note that the values of η and {ηb}
are practically much smaller than those of {θb} and {νb}.

As a result the range of (ηb − η)2 is much smaller than that
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Table II
SIMULATION PARAMETERS [10], [11]

PARAMETERS VALUE

Path loss and shadowing 38 log10(db,ij m) + 34.5+N (0, 8) dB

Inter-BS distance D = 1 km
Static power consumption Psp 33 dBm
Power amplifier efficiency ǫ 0.35

Number of BSs B 3
Number of Tx antennas N 4

Signal bandwidth W 10 kHz
Power spectral density of noise -174 dBm/Hz

of ‖θb − νb‖22 during the iterative procedure. This imbalance

between the two terms can cause a detrimental effect on the

convergence rate of Algorithms 1 and 2, since the two residual

terms tend to converge at different rates as they both approach

zero [29, Sect. 3.4.1]. To overcome this issue, we make a

simple modification to enhance the convergence speed of the

proposed algorithms by maintaining the balance among the

penalty terms in the Lagrangian. To this end we assign two

different penalty parameters c1 and c2 to the two penalty terms

in the augmented Lagrangian as

Ln+1(ϑ, s, ζ, ξ) =
∑B

b=1[−ηb + ξb(ηb − η) + ζT
b (θb − νb)

+
c1
2
(ηb − η)2 +

c2
2
‖θb − νb‖22]

(33)

It is trivial to see that the convergence of Algorithms 1 and

2 is still guaranteed if c1 and c2 are sufficiently large. From

the discussion above we will choose c1 > c2 to keep the two

residual norms within a factor of one another as they both

converge to zero [29, Sect. 3.4.1]. Numerical results on the

convergence properties of Algorithms 1 and 2 are provided in

Figs. 4 and 5 in the next section.

VI. NUMERICAL RESULTS

In this section we numerically evaluate the effectiveness

of the proposed methods. The general simulation parameters

are listed in Table II and specific ones are given in the

caption of the corresponding figures. We consider the scenario

where K users are randomly distributed in a cell with a

radius of 500 m. For instance, the simulation scenario for

a specific case where B = 3 and K = 2 is illustrated

as in Fig. 1. The flat fading channel hb,ij is assumed to

be Gaussian distributed, i.e., hb,ij ∼ CN (0, ρb,ij IN ) where

ρb,ij represents the path loss and shadowing between BS b
and user ij as given in Table II. The initial values of all

proposed algorithms are generated as follows. First, a set of

beamformers that satisfy (7g) is created at each BS. Then the

initial values of other variables (z0b , t
0
b , q

0
bk
) are obtained by

setting all the constrains in (17) to be equality. The initial

local values {η0b} and {θ0
b} are calculated by the initial local

variables set {S0
b }, and the Lagrange multipliers ξ0 and ζ0

are simply set to zero. The iterative procedure of the proposed

decentralized algorithms is terminated if the increase in η in

two subsequent SCA iterations is less than 10−5. We model

the algorithms in MATLAB environment and all the convex

problems considered in this paper are solved using MOSEK,

a state-of-the-art solver for SOCPs.

Base station

User

BS 1

BS 2 BS 3

D = 1 km

Fig. 1. Illustration of simulation scenario where B = 3 and K = 2. Users
are randomly distributed within the dash circle of coverage region of each
BS.

A. Convergence Results of New Approximation in (15)

We first provide a numerical comparison of the convergence

results among the new formulation in (15), the one in our pre-

vious work of [13] and the GCP (10) with (7c) in Figs. 2 and 3.

Specifically, we consider two scenarios with B = 3 and B = 4
BSs. Each point of the curves in Figs. 2 and 3(b) is obtained

by averaging out 500 channel realizations. As expected, the

use of the approximation methods reduces the per-iteration

complexity compared to that of using the original non-linear

constraint (7c). Furthermore, the new formulation in (15) can

potentially reduce the per-iteration complexity compared to

the one in [13]. This is confirmed by the numerical results

shown in Fig. 2 where we report the average runtime for each

iteration of the three schemes in comparison. Also, it is natural

to imply that the new approach outperforms the one in [13], in

terms of overall runtime. However this is not always the case

as the overall runtime of the two schemes critically depends

on the number of iterations required for convergence, which

is studied in the next numerical experiment.

In Fig. 3(a), we compare the convergence rate of the

three methods for a random channel realization with different

numbers of users per BS K . We observe that the method in

[13, eq. (13)] converges faster in terms of the required number

of iterations, compared to the one proposed in (15), while

resulting in the same convergence rate compared to solving

the GCP (10). This is understandable because (12) is a lower

1 2 3 4
10−3

10−2

10−1

100

B = 3

B = 4

B = 3

B = 4

Number of users per cell K

R
u
n
ti

m
e

p
er

it
er

at
io

n
(s

)

New approximation

[13, eq. (13)]

GCP (10) with eq. (7c)

Fig. 2. Per-iteration runtime with Pb = 35 dBm and Pdyn = 40 dBm.
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Fig. 3. Comparison of convergence rate and average runtime between new
approximation algorithm, the one in [13] and GCP (10) with eq. (7c), with
Pb = 35 dBm and Pdyn = 40 dBm.

bound of gbk log(1 + gbk), and the tightness of the bound

evolves with iterations. On the contrary, the conic constraints

in [13, eq. (13)] are an approximation of log(1 + gbk) to

a desired accuracy level, which is fixed during the iterative

procedure. Consequently, the approximation in (12) usually

takes more iterations to converge, especially when the prob-

lem size grows. This results in the average runtime of both

approximation methods shown in Fig. 3(b). We can see that the

formulation in (15) is more computationally efficient for the

setting of small sizes. The reason is that the new formulation

presented in this paper has a comparable convergence rate

with the method in [13] for such cases, and much lower per-

iteration complexity. When the problem size becomes large,

the new approximation requires far more iterations to stabilize

and thus results in a larger overall runtime. On the other

hand, the average runtime of solving the GCP (10) is always

larger than that of the method in [13, eq. (13)], since two

approaches yields the same convergence speed while using

the SOCP approximation significantly reduces the per-iteration

complexity (cf. Fig. 2).

B. Convergence Results of Proposed Distributed Methods

In the second set of numerical experiments we explore the

convergence properties of the proposed distributed methods,

i.e., Algorithms 1 and 2. First the effect of the penalty

parameter c on the convergence behavior of Algorithms 1 and

2 is investigated. To numerically verify Lemmas 1 and 2, we

plot in Fig. 4(a) the convergence duality gap of Algorithms 1

and 2 with different values of c for a channel realization. The

duality gap measures the distance between the values of the
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Fig. 4. The duality gap of Algorithms 1 and 2 by 20000 iterations with
Pb = 35 dBm , Pdyn = 40 dbm, K = 2 and different values of c for one
channel realization.

augmented Lagrangian at iteration l and the one at the optimal

solution of the ADMM procedure. More explicitly, for Algo-

rithm 1 the duality gap is defined for the inner ADMM loop

of the SCAn problem which is given by Ln(ϑl, sl, ζl, ξl) −
Ln(ϑ∗, s∗, ζ∗, ξ∗) where (ϑ∗, s∗, ζ∗, ξ∗) is the convergence

point of the inner procedure. For Algorithm 2, the duality

gap is defined as L(ϑl, sl, ζl, ξl) − L(ϑ∗, s∗, ζ∗, ξ∗) where

(ϑ∗, s∗, ζ∗, ξ∗) is the output of the algorithm. We also note

that for Algorithm 1, Figs. 4(a) and 4(b) only demonstrate the

convergence of the augmented Lagrangian of the ADMM inner

loop for the SCA1 problem, i.e., the first SCA iteration. As

we can see, the convergence of both distributed algorithms

improves as c decreases, and monotonic decrease in the

augmented Lagrangian is guaranteed for large c, while this

does not hold for small c. This observation is consistent with

the analytical results in Lemmas 1 and 2. In Fig. 4(b) we

illustrate how the convergence of Algorithms 1 and 2 improves

by using different penalty parameters c1 and c2 in (33). As

can be observed, the setup c1 = 20, c2 = 0.02 significantly

reduces the number of iterations needed to converge since it
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Fig. 5. Convergence behavior of Algorithms 1 and 2 with Pb = 35 dBm,
Pdp = 40 dBm and K = 2. The markers denote the iterations where the
SCA parameters are updated.
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Fig. 6. Average EE versus the transmit power budget Pb for fixed value of
total circuit power P0 with K = 2.

successfully compensates for the imbalance among the penalty

terms. We also see that Algorithm 2 achieves a faster con-

vergence speed compared to Algorithm 1. For the remaining

figures we set c1 = 20 and c2 = 0.02, which offers good

convergence rate.

In Fig. 5 we compare the convergence of the consensus EE η
of Algorithm 1, Algorithm 1 with a fixed number of ADMM

iterations, and Algorithm 2 for one channel realization. We

can see that the proposed decentralized algorithms obtain the

same optimal solution as the centralized approach. Since the

SCA parameters of Algorithm 1 are updated after the ADMM

inner loop has completely converged, it usually requires a large

number of iterations to output a solution. On the other hand,

limiting the maximum number of iterations of the ADMM

and updating the SCA parameters earlier, can significantly

accelerate the convergence rate of Algorithm 1.

C. Achievable max-min EE

In the final set of numerical experiments, we illustrate the

achieved EE versus different settings of the transmit power

budget Pb, the number of transmit antennas N , and the total

circuit power consumption P0. For comparison purpose, we

provide the performances of two existing EE schemes, the

max-min EE in [10] and sum weighted EE maximization

(maxSWEE) in [7]. Note that the maxSWEE scheme is given

by maxw{
∑B

b=1 αbfb(w)} where αb is the weighting factor,

which is set to αb = 1 in this paper. The achieved EE

is compared in terms of the achieved minimum EE (i.e.,

minb∈B{fb(w∗)}) and total network EE (i.e.,
∑B

b=1 fb(w
∗)).

Each point of the curves in Figs. 6–8 is obtained by averaging

from 1000 random channel realizations.
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Fig. 7. Average EE versus the number of Tx antennas N with Pb = 35 dBm
and K = 2.

Fig. 6 plots the average achieved EE versus the transmit

power budget for a fixed total circuit power consumption.

We can see that, as the transmit power budget increases,

the achieved EE first increases (when Pb is small) and then

it remains constant (when Pb exceeds a certain level). This

observation can be explained based on the logarithm function

of data rate as follows. In the low transmit power regime, a

small increase of transmit power could result in a significant

increase of data rate leading to an increase in EE. On the other

hand, when transmit power is large enough, further increasing

the transmit power could reduce the EE performance because

the data rate slightly increases, and thus the EE strategy does

not use all transmit power budget. We also observe that the

proposed max-min EE scheme achieves the same performance

with the one in [10]. In addition, the max-min algorithm in

general outperforms the maxSWEE scheme in terms of the

minimum EE while it suffers a certain loss on the overall

network EE compared to the maxSWEE approach. This is

understood since the max-min EE scheme aims to improve

the minimum-EE BS, not the total achieved EE.

Fig. 7 shows the average achieved EE as a function of

the number of transmit antennas when the transmit power

budget is fixed. As can be seen, the achieved EE increases

with N when N is small and vice versa when N is large

enough. We explain this result based on the two following

facts. First, the data rate is a logarithmic function with N
[33]. Second, the total consumed power linearly increases with

N . That is to say, when N is large enough, the spatial gain

cannot compensate for the additional circuit power, leading to

a decrease in the achieved EE. AsN becomes large, antenna

selection has proved to be an efficient way to improve the EE
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Fig. 8. Achieved EE, sum rate and transmit power versus the transmit power
budget Pb with Pdp = 40 dBm and K = 2.

as shown in [8].

Fig. 8 illustrates the average achieved sum rate and the

average transmit power of an individual BS versus the transmit

power budget with a fixed value of P0. In particular we

demonstrate how the EE of individual BSs varies in a more

severe interference setting. For this purpose, users served by

BSs 1, 2 and 3 are dropped to the cells within the distances of

[50–200 m], [200–400 m] and [400–500 m] from their own

serving BS. That is, the users served by BS 1 lie in their

serving cell center, while those served by BSs 2 and 3 lie

towards the cell edge. The sum rate and transmit power of

each BS are calculated as
∑K

k=1 rbk(w
∗) and

∑K

k=1 ‖w∗
b,k‖2

∀b ∈ B, respectively. Accordingly, the interference seen by

users in BS 1 is smaller than that by users in BSs 2 and 3.

As seen in Fig. 8(a), the EEs of three BSs are different if the

transmit power budget Pb is small, i.e., below 32 dBm in this

considered simulation setting. Due to the specific interference

situation explained above, BSs 2 and 3 use more power but

achieve lower sum rates in return, which is shown in Fig.

8(b). This explains the largest EE of BS 1. We can also

see that for small Pb, the max-min EE fairness optimization

in fact prevents BS 1 from transmitting at full power to

establish fairness. On the other hand, the max-min fairness

is achieved when Pb is large enough, i.e., when BSs 2 and 3

have sufficient power budget to deal with the path loss. Recall

the results discussed above that, due to the EE optimal design,

the transmit power and the achieved sum rate of all BSs will

remain unchanged when Pb exceeds a certain threshold.

VII. CONCLUSION

This paper has studied the distributed solutions for the

problem of the EE fairness optimization for multicell multiuser

MISO downlink systems, in which minimum EE among all

BSs is maximized. To this end, we have transformed the

original nonconvex design problem into a tractable form where

the hidden convexity is more exposed. Exploiting the hidden

convexity, we have developed two algorithms based on the

combination of SCA and ADMM, which are suitable for

systems with limited backhaul signaling. In the first algorithm,

the remaining nonconvexity of the problem was replaced by

the convex approximations using SCA principle. Then we have

introduced the sets of local and global variables to translate the

approximate problem into the ADMM applicable form, before

applying the ADMM to solve the arrived convex programs at

each iteration of the SCA procedure. More specifically, in one

iteration of the SCA loop, we carried out the ADMM update

by allowing the BSs to exchange the required information until

those variables converge to optimal consensus values. Numer-

ical results have demonstrated that, in some cases, Algorithm

1 requires to exchange a large amount of information among

all BSs. Therefore, we have proposed the second algorithm

for which the backhaul overhead is remarkably reduced. In

the latter algorithm, instead of using the ADMM to find the

optimal solution of the SCA, we have applied the ADMM to

guide the local and global variables towards consensus values

while the SCA was used to update the local variables. The

convergence analysis of the proposed algorithms has been

provided and discussed. Simulation results have been provided

to evaluate the effectiveness of the proposed algorithms.

APPENDIX A

PROOF OF LEMMA 1

The convergence analysis of Algorithm 1 can be done

exactly in the same way as in [29]. Herein, we provide another

convergence proof for Algorithm 1 which is also the key

to establishing the convergence results of Algorithm 2. In

particular our new proof is inspired by the recent work of [31]

in which the authors show monotonicity of the Lagrangian

function by a proper choice of the penalty parameter. By

the power constraint at each BS we can assume that Sn+1
b

given in (17) is a nonempty closed convex set. To proceed

let us consider the problem SCAn+1 and denote by ISn+1

b
the

indicator function of Sn+1
b , i.e., ISn+1

b
(x) = 0 if x ∈ Sb and

+∞ otherwise. Then the constrained optimization problem in

(25) can be rewritten as

sl+1
b = arg min

sb∈Sn+1

b

− ηb + ξlb(ηb − ηl+1) + (ζl
b)

T (θb − νl+1
b )

+
c

2

(

(ηb − ηl+1)2 + ‖θb − νl+1
b ‖22

)

+ ISn+1

b
(sb)

, arg min
sb∈Sn+1

b

Ll+1
b (sb) + ISn+1

b
(sb).

(34)

It is known that if s∗b is the solution of (34) then 0 ∈
∇sbLl+1

b (s∗b) + ∂ISn+1

b
(s∗b), where the notation ∂ISn+1

b
(x)

denotes the set of all subgradients of ISn+1

b
(x) [34]. That is

∂ISn+1

b
(x) = {u ∈ R| 〈u,y − x〉 ≤ 0 ∀y ∈ Sn+1

b }. Note that
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∂ISn+1

b
(x) is in fact the normal cone of Sn+1

b at x ∈ Sn+1
b [34,

pp. 215]. Now we are ready to show monotonic decrease of

the augmented Lagrangian between two consecutive iterations

in the inner loop of Algorithm 1. Let us split the LHS of (31)

into three terms as

Ln+1(ϑl+1, sl+1, ζl+1, ξl+1)− Ln+1(ϑl, sl, ζl, ξl)

= [Ln+1(ϑl+1, sl+1, ζl+1, ξl+1)− Ln+1(ϑl+1, sl+1, ζl, ξl)]

+ [Ln+1(ϑl+1, sl+1, ζl, ξl)− Ln+1(ϑl+1, sl, ζl, ξl)]

+ [Ln+1(ϑl+1, sl, ζl, ξl)− Ln+1(ϑl, sl, ζl, ξl)].
(35)

The first term in (35) refers to the Lagrange multipliers update

which can be expressed as

Ln+1(ϑl+1, sl+1, ζl+1, ξl+1)− Ln+1(ϑl+1, sl+1, ζl, ξl)

=
1

c

B
∑

b=1

((ξl+1
b − ξlb)

2 + ‖ζl+1
b − ζl

b‖22).

By the step of updating local variable ηb, we obtain the

following optimality condition

1− ξlb − c(ηl+1
b − ηl+1) = 1− ξl+1

b ∈ ∂ISn+1

b
(ηl+1

b ). (36)

Since all constraints in Sn+1
b are continuously differentiable,

it is known that ISn+1

b
(sb) is Lipschitz continuous. Let d be

the Lipschitz constant of ISn+1

b
(sb). Then ‖g‖2 ≤ d for all

g ∈ ∂ISn+1

b
(ηl+1

b ). As a result we have
∑B

b=1(ξ
l+1
b − ξlb)

2 ≤
∑B

b=1 d
2(ηl+1

b − ηlb)
2. Similarly, the above arguments can be

applied to achieve
∑B

b=1 ‖ζl+1
b − ζl

b‖22 ≤ ∑B

b=1 d
2‖θl+1

b −
θl
b‖22. Thus, the first term can be bounded as

Ln+1(ϑl+1, sl+1, ζl+1, ξl+1)− Ln+1(ϑl+1, sl+1, ζl, ξl)

≤
B
∑

b=1

d2

c
((ηl+1

b − ηlb)
2 + ‖θl+1

b − θl
b‖22).

(37)

For the second term in (35) we notice that sl+1
b is the solution

to (34) and thus the following equality holds

Ln+1(ϑl+1, sl+1, ζl, ξl)− Ln+1(ϑl+1, sl, ζl, ξl)

=

B
∑

b=1

(Ll+1
b (sl+1

b )− Ll+1
b (slb))

= −
B
∑

b=1

c

2
((ηlb − ηl+1

b )2 + ‖θl
b − θl+1

b ‖22)

+

B
∑

b=1

〈

∂ISn+1

b
(sl+1

b ), (slb − sl+1
b )

〉

−
B
∑

b=1

〈

(∇sb
Lb(s

l+1
b ) + ∂ISn+1

b
(sl+1

b )), (slb − sl+1
b )

〉

= −
B
∑

b=1

c

2
((ηlb − ηl+1

b )2 + ‖θl
b − θl+1

b ‖22)

+
B
∑

b=1

〈

∂ISn+1

b
(sl+1

b ), (slb − sl+1
b )

〉

.

Note that
〈

∂ISn+1

b
(sl+1

b ), (slb − sl+1
b )

〉

≤ 0 due to the defi-

nition of ∂ISn+1

b
(x). Thus, the second term can be bounded

by

Ln+1(ϑl+1, sl+1, ζl, ξl)− Ln+1(ϑl+1, sl, ζl, ξl)

≤ −
B
∑

b=1

c

2
((ηlb − ηl+1

b )2 + ‖θl
b − θl+1

b ‖22).
(38)

Finally, the third term in (35) is equivalent to

Ln+1(ϑl+1, sl, ζl, ξl)− Ln+1(ϑl, sl, ζl, ξl)

= −
〈

∇ϑLn+1(ϑl+1, sl, ζl, ξl),ϑl − ϑl+1
〉

−
B
∑

b=1

c

2
((ηl − ηl+1)2 + ‖νl+1

b − νl
b‖22)

= −
B
∑

b=1

c

2
((ηl+1 − ηl)2 + ‖νl+1

b − νl
b‖22),

(39)

since ϑl+1 is the optimal solution of the unconstrained opti-

mization problem min
ϑ

{Ln+1(ϑ, sl, ζl, ξl)}. Combining (37),

(38), and (39) we obtain (31) which completes the proof.

APPENDIX B

PROOF OF LEMMA 2

The proof of Lemma 2 follows the same steps as those

Lemma 1, but some modifications are made since the SCA

parameters in Algorithm 2 are immediately updated right after

every ADMM iteration. First we rewrite the LHS of (32) as

L(ϑl+1, sl+1, ζl+1, ξl+1)− L(ϑl, sl, ζl, ξl)

= [L(ϑl+1, sl+1, ζl+1, ξl+1)− L(ϑl+1, sl+1, ζl, ξl)]

+ [L(ϑl+1, sl+1, ζl, ξl)− L(ϑl+1, sl, ζl, ξl)]

+ [L(ϑl+1, sl, ζl, ξl)− L(ϑl, sl, ζl, ξl)].

(40)

We note that the first and the last terms can be bounded

exactly as done in (37) and (39), respectively. Thus to prove

Lemma 2 we only need to deal with the second term in

(40). Towards this end let us introduce the feasible set S̃b ,

{sb | (7c), (7f), (7g), (16b), (16c)} and again IS̃b
(sb) denotes

the indicator function of S̃b. The update of local variable step

is now equivalent to the following convex program

min
sb∈S̃b

Ll+1
b (sb) + IS̃b

(sb) (41a)

subject to ul+1
b (sb) ≤ 0 b ∈ B, (41b)

vl+1
bk

(sb) ≤ 0, b ∈ B, (41c)

where Ll+1
b (sb) is given in (34), ul+1

b (sb) = ηb − 2zl
b

tl
b

zb +

(zl
b)

2

(tl
b
)2
tb, and vl+1

bk
(sb) = gbk − 2ℜ(hl

b,bk
wbk

)

ql
bk

+
|hb,bk

wl
bk

|2qbk
(ql

bk
)2

.

We remark that (41) is considered instead of (34) since

ul+1
b (sb) and vl+1

bk
(sb) are replaced by new constraints after

each iteration. Let πb ∈ R and ωbk ∈ R be the Lagrangian
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multipliers of (41b) and (41c), respectively. Then we can

rewrite the second term in (40) as

L(ϑl+1, sl+1, ζl, ξl)− L(ϑl+1, sl, ζl, ξl)

=

B
∑

b=1

(Ll+1
b (sl+1

b )− Ll+1
b (slb))

= −
B
∑

b=1

c

2
((ηlb − ηl+1

b )2 + ‖θl
b − θl+1

b ‖22)

+

B
∑

b=1

[〈

(∂IS̃b
(sl+1

b ) + πb∇sbu
l+1
b (sl+1

b )

+
∑K

k=1ωbk∇sbv
l+1
bk

(sl+1
b )), (slb − sl+1

b )
〉]

−
B
∑

b=1

[〈

(∇sb
Ll+1
b (sl+1

b ) + ∂IS̃b
(sl+1

b ) + πb∇sbu
l+1
b (sl+1

b )

+
∑K

k=1ωbk∇sbv
l+1
bk

(sl+1
b )), (slb − sl+1

b )
〉]

.

(42)

Since sl+1
b is optimal to (41), the KKT conditions result in















0 ∈
(

∇sbLl+1
b (sl+1

b ) + πb∇sbu
l+1
b (sl+1

b )

+
∑K

k=1 ωbk∇sbv
l+1
bk

(sl+1
b ) + ∂IS̃b

(sl+1
b )

)

πb ≥ 0, ωbk ≥ 0, πbu
l+1
b (sl+1

b ) = 0, ωbkv
l+1
bk

(sl+1
b ) = 0.

(43)

Due to the linearity of ul+1
b (sb), the following equality holds

ul+1
b (sl+1

b )− ul+1
b (slb) +

〈

∇sbu
l+1
b (sl+1

b ), (slb − sl+1
b )

〉

= 0

⇔ ul+1
b (sl+1

b )− ulb(s
l
b) +

〈

∇sbu
l+1
b (sl+1), (slb − sl+1

b )
〉

= −δlb(z, t),
(44)

where

δlb(z, t) , ulb(s
l
b)− ul+1

b (slb)

= −2zl−1
b

tl−1
b

zlb −
(zl−1

b )2

(tl−1
b )2

tlb +
2zlb
tlb
zlb −

(zlb)
2

(tlb)
2
tlb

= 2zlb(
zlb
tlb

− zl−1
b

tl−1
b

)− tlb(
(zlb)

2

(tlb)
2
− (zl−1

b )2

(tl−1
b )2

)

= tlb(
zlb
tlb

− zl−1
b

tl−1
b

)2.

In the same way we have

vl+1
bk

(sl+1
b )−vlbk(slb)+

〈

∇sv
l+1
bk

(sl+1), (sl − sl+1)
〉

= −δlbk(w,q)
(45)

where δlbk(w,q) , qlbk(
ℜ(hl

b,bk
wl

b,bk
)

ql
bk

− ℜ(hl−1

b,bk
w

l−1

b,bk
)

q
l−1

bk

)2.

Thus, by (43), (44), (45) and noting that πb(u
l+1
b (sl+1

b ) −
ulb(s

l
b)) ≥ 0, ωbk(v

l+1
bk

(sl+1
b ) − vlbk(s

l
b)) ≥ 0, and

〈

∂IS̃b
(sl+1

b ), (slb − sl+1
b )

〉

≤ 0, we obtain an upper bound of

(42) as

L(ϑl+1, sl+1, ζl, ξl)− L(ϑl+1, sl, ζl, ξl)

≤ −
B
∑

b=1

c

2
((ηlb − ηl+1

b )2 + ‖θl
b − θl+1

b ‖22)−
B
∑

b=1

δlb,
(46)

where δlb , πbδ
l
b(z, t)+

∑K

k=1 ωbkδ
l
bk
(w,q). Hence, combin-

ing (37), (39), and (46) we have (32) and thus completes the

proof.
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