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Abstract—This paper focuses on the way to protect privacy
of clients requesting datasets stored in data servers while
keeping communication efficiency. To this end, we introduce a
novel communication-efficient and privacy protecting framework
termed crowded information acquisition (CIA), well suited to a
large number of clients scenario. We investigate the CIA under
various conditions addressing possible communication scenarios.
Contrary to the conventional belief, the results claim that a
large number of clients demanding private services can enhance
the privacy protection while providing low latency services and
generating a small amount of traffic.

Index Terms—Private information retrieval, crowded informa-
tion acquisition, communication efficiency

I. INTRODUCTION

Many people today are hyperconnected to the Internet by
the help of advanced communication systems and devices.
This high connectivity surely offers a great convenience to the
people, however, it may also lead to serious and incognizable
privacy leakage problems. One possible scenario of a client’s
privacy disclosure to a server happens when the client sends
query for information acquisition, e.g., medical data collection,
streaming or downloading videos, using GPS-based maps on
vehicles and searching the Internet. Through the query sent by
the client, the server may collect private information, such as
interests, intentions, etc., whether the client wants it or not.

Unfortunately, in the networks that demand user registration,
e.g., cellular networks, V2X networks, private networks, etc,
the clients are unable to leverage anonymity-based approaches
for protecting their privacy. Alternatively, one of the simplest
and effective actions that the client can take is to request
undesired dummy information together with the desired infor-
mation, in order to increase uncertainty of the client’s desire
in the perspective of the server. The problem of such a simple
approach is that due to a large amount of dummy information
for increasing the uncertainty, it wastes a large amount of
communication resources for getting the desired information
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Fig. 1. An overview of the conventional (a) individual information
acquisition and the proposed (b) crowded information acquisition.

and causes traffic problems. To resolve this, a private informa-
tion retrieval (PIR) method [1], [2] and its variations [3]–[5]
suggest the concept of getting coded information from multiple
database servers and canceling out the dummy information
with help of diversity gain from the multiple servers. Yet, if
there are a large number of clients that are trying to acquire the
desired information with privacy protective methods, the sys-
tem will still suffer from serious latency and traffic issues. In
this context, designing a communication-efficient and private
information acquisition method for supporting a large number
of clients, without sparing excessive amount of communication
resources, is the prime interest of this paper. To this end, we
first seek for a novel approach that can effectively reduce the
service delay and network traffic, which is very challenging
in general. Fortunately, the traditional concept of hiding in the
crowd helps us to come up with a simple-but-powerful idea:
when a group of clients cooperatively requests the desired
information to a data server, the server can hardly figure out
the individual interest of the members in the group, and much
harder if the number of members in the group is very large.
Here, the idea is that instead of hiding a client in the crowd
for identity anonymization, its individual interests are hidden
in crowds’ interests to protect the individual privacy about its
interests, without anonymizing the identity of the client.

Throughout the article, we turn this idea into a novel
fast and information-theoretic private information acquisition
framework termed, crowded information acquisition (CIA).
Rather than individually requesting the desired information
to the server, in the CIA, as illustrated in Fig. 1-(b), the
clients make a cooperative group, so called a crowd, before-
hand, and then request the desired information as a group.
The effectiveness of the proposed CIA method is shown by
examining the overall latency and privacy level under several
network environments. Here, the overall latency of a client
is defined as the delay that the client experiences from the
occurrence of an individual dataset request to the completion
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of the desired dataset download while guaranteeing the privacy
protection. We assume the system is running on the basis
of time-division multiple access (TDMA) approach, so that
the communication-efficiency can be tested by measuring the
latency. The privacy level is an information-theoretic mea-
sure that describes how the proposed method is capable of
protecting the client privacy. Compared to the conventional
approach, referred to as individual information acquisition1

described in Fig. 1-(a), though it depends on the time overhead
for making a crowd, we show that the CIA can retrieve the
desired information faster while achieving a higher privacy
level in the most of the cases. We also claim that the proposed
method is especially communication-efficient compared to the
conventional, when there are a large number of clients. The
communication-efficiency of the proposed CIA is basically
coming from the multicasting gain by reducing redundant
information transmitted over the network, compared to the
individual information acquisition served with unicasting.

II. SYSTEM MODEL

The network under study is composed of a data server and
N clients, wherein the clients and server are communicating
over wireless. We assume that the clients are located within a
circular region of radius R and the distance between the center
of the circular region and the data server is Rs > R. Consider
that the server is storing K(≥ N) independent datasets,
i.e., D1, . . . ,DK , and clients are making requests for private
dataset downloads. Here, the private download describes the
case when the dataset download is done without giving a clue
on the identity of the dataset to the server which tries to siphon
off that identity from the client request.

A. Communication Model

All communications considered throughout the article are
half-duplex and done in TDMA. Let Hi,j be the channel gain
from one i ∈ {s, 1, . . . , N} to another j ∈ {s, 1, . . . , N},
j 6= i, where s describes the data server and the numbers
1, . . . , N describe the client indices. The channel follows the
complex normal distribution with zero mean and variance σ2

(Hi,j ∼ CN (0, P )), where P is the transmission power. We
assume that the channel gains are independently and identi-
cally distributed (i.i.d.) and channel reciprocity holds between
any two endpoints, that is Hi,j = Hj,i. We define ε-outage
transmission time to describe the successful transmission time
in fading channels in a stochastic manner. Note that the data
server only transmits datasets of size Ms and clients only
transmit request/coordination messages of size Mc << Ms,
and moreover, transmission power used at the server Ps is
relatively larger than that used at the clients Pc < Ps in
general. Hence, we define two different ε-outage transmission
times τε,s and τε,c for the server and clients, respectively.

Assuming a block fading model, where the target transmis-
sion time is shorter than the channel coherence time, and thus

1The individual information acquisition considered as a benchmark in this
paper can be seen as the special case of the private information acquisition
[1] with a single database server

the channel stays unchanged during the target transmission
time, we define τε,s as the minimum τ such that

Pr

 Ms

Ws log2

(
1 +

|Hs,i|2
PnRαi

) ≥ τ
 ≤ ε, (1)

for all i ∈ {1, . . . , N}, where Ri denotes the distance between
the server and the user i, α is the path-loss exponent, Ps is the
transmission power of the server, Ws is the bandwidth used
by the server and the channel is assumed to experience an
additive white Gaussian noise (AWGN) with zero mean and
variance Pn. From (1) and the cumulative distribution function
(c.d.f.) of the exponential distribution, we have

Pr
[
|Hs,i|2 ≤ hi

]
= 1− e−

hi
Ps ≤ ε, (2)

where hi =
(
2Ms/(Wsτ) − 1

)
PnR

α
i . Since Ri ≤ Rs +R, for

all i ∈ {1, . . . , N}, and from (1) and (2), τ can be bounded
as

τ ≥ Ms

Ws log2

(
1− Ps

Pn(Rs+R)α log (1− ε)
) . (3)

From the definition, we take the minimum τ as the ε-outage
target transmission time of each dataset from the server to
the client as τε,s = Ms

Ws log2(1− Ps
Pn(Rs+R)α

log(1−ε))
. Similarly

we define the ε-outage target transmission time of a client as
τε,c = Mc

Wc log2(1− Pc
Pn(2R)α

log(1−ε))
, where Wc is the bandwidth

leveraged for transmission at a client. For the failed transmis-
sions, we suppose that the transmitter compensates for them
by retransmissions, where the average transmission time of
the server until successful transmission is τ̄s = τε,s/(1− ε)
by using the mean of geometric random variables. Similarly,
the average transmission time of a client is τ̄c = τε,c/(1− ε).

B. Privacy Model

We focus on the information-theoretic definition of privacy
[1] and its variation throughout the article. In the following
I(A;B) denotes the mutual information between variables A
and B, and H(A) denotes the information-theoretic entropy
of A. Supposing Dk is requested to the server by a client with
a query Q and k drawn uniformly over {1, . . . ,K}, we say
that the privacy of the client is perfectly protected when the
mutual information is zero such that

I(k;Q) = 0. (4)

This perfect privacy, however, is dependent on the cardinality
of the set {1, . . . ,K}, which means that the perfect privacy is
harder to achieve when K becomes larger. Therefore, in this
paper, we define a privacy level Π in terms of the conditional
entropy that measures the uncertainty of the requested dataset’s
identity with given query

Π , H(k |Q). (5)

Notice that the perfect privacy is achieved when Π = H(k),
i.e., Π = log2K bits, thereby achieving (4), and identity of
requested dataset is disclosed when Π = 0, which illustrates
that there exists no more uncertainty on k.
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III. CROWDED INFORMATION ACQUISITION

In this section, we propose and investigate crowded infor-
mation acquisition (CIA). The core of the CIA is to aggregate
a sufficiently large number of individual dataset requests, and
then make a group-wise request for downloading datasets via
multicasting. To be specific, the proposed method for the client
privacy protection is basically composed of the following three
step procedure (see Fig. 1):
(1) Crowding - The crowding is a process of aggregating
the dataset requests generated by individual clients. To do
this, the clients form a decentralized network and go through
process of exchanging the requests. For coordination over
a decentralized network, suppose the number of clients N
is known to the clients and consider the slotted-ALOHA
protocol, which can coordinate the clients to have consensual
dataset requests within O(N) time slots (τε,c). Note that
the medium access control (MAC) protocols such as slotted-
ALOHA can be seen as a solution to the wireless leader
(requesting client) election problem. Thus, after N rounds of
leader election without replacement, N clients have consensual
dataset requests. Furthermore, though the client network is
decentralized, it is resilient against faulty nodes since the
message exchange is done over wireless and every client is
aware of the others’ requests [6], [7].
(2) Crowded Requesting - The first client who initiated the
crowding2 sends a query that incorporates consensual datasets
which are agreed on downloading by the crowd. In addition,
the identities of the members are sent as long as the server
only serves registered clients, however, doing this still does
not hinder individual request privacy protection.
(3) Crowded Downloading - Third, the server sends the series
of requested datasets via multicasting over a shared channel
to the members in the crowd.

Therefore, the latency of the CIA incorporates the time
required for the three steps, i.e., crowding (coordination) T1,
crowded dataset requesting (uplink) T2, and crowded dataset
downloading (downlink) T3. Overall, the latency for a client
in the crowd to obtain the desired dataset is

To = T1 + T2 + T3. (6)

A. No Privacy Requirement between Members

Now we demonstrate the advantage of the proposed CIA
for protecting client privacy. To clearly show the profit of the
proposed method, we first consider a scenario where the clients
do not have antipathy against disclosing the desired datasets to
the other members. Consider N clients, each desiring one of
the datasets from the server. Instead of individually requesting
the desired datasets, the clients first make a crowd of size
N , which is a group of clients that will request the desired
datasets together. As aforementioned, the crowding is done
by cooperatively exchanging the ind of the desired datasets in
advance of requesting and downloading the desired datasets.
Based on the slotted-ALOHA approach, the coordination of

2It is reasonable for the initiator to send the group message, since with high
probability, the initiator spent less transmission power among the others that
went through the multiple rounds of leader election in the crowding phase.

a crowd of size N is done within T
(a)
1 = CNτε,c, for some

constant C. Normally for a vanilla slotted-ALOHA it is known
that C = e for sufficiently large N .

After the aggregation, the crowd requests for dataset down-
load. Note if each client uniformly selects m ≤ K indices
over the index set {1, . . . ,K} without replacement, where
the selections are independent between the clients, then the
number of distinct indices chosen by the clients Xm is
distributed according to the shifted binomial distribution with
probability mass function (p.m.f.)

Pr[Xm = x] =

(
K −m
x−m

)
(1− pm)x−mpK−xm , (7)

where pm =
(
1− m

K

)N−1
, for a positive integer x ≥ m. Since

m = 1 in this case, we express the number of the collected
distinct dataset indices as X1, which follows the p.m.f. in
(7) with m = 1. From the assumption that the size of the
query size increases in proportion to the number of requesting
datasets, it takes T (a)

2 = X1τε,c for delivering the query to the
server.

Upon receiving the request message, the sever multicasts
the requested datasets to the clients. Depending on the order
of multicasting, the time when a client gets its desired dataset
will vary. Thus, we consider the worst case, when the desired
dataset comes the latest among all the other requested dataset.
Then, it takes T (a)

3 = X1τε,s for the desired dataset download.
As a result, we have following proposition.

Proposition 1. The overall latency the CIA for a client in the
crowd of N clients to achieve the privacy level Π(a) = log2X1

against the server can be expressed as

T (a)
o = (CN +X1)τε,c +X1τε,s, (8)

for some constant C > 0. Moreover, the average overall
latency, with respect to X1 and considering retransmissions,
is

E[T (a)
o ] = (CN + g(1))τ̄c + g(1)τ̄s, (9)

while the average privacy level against the server can be
approximately expressed by using big-O notation as

E[Π(a)] = log2(g(1))− (g(1)− 1)p1

2g(1)2 loge 2
+O(K−2), (10)

where g(m) = m+ (K −m)(1− pm).

Proof: The equation (9) can be readily derived from the
average of binomial distribution, and (10) is from the Taylor
expansion of log2X1.

From Proposition 1, it can be seen that as the number of
members in the crowd N increases, the average achievable
privacy level against the server increases. Also note that if
all the datasets desired by the members are distinct, the CIA
can achieve the privacy level of Π(a) = log2N and only a
single dataset download is required per each client. Therefore,
the proposed method is especially effective in the information
acquisition scenarios with a large number of clients in the
crowd.
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B. Given Privacy Requirement Against Server

In the mean time, consider the case when each client has
a privacy level requirement Π∗ against the server. Depending
on the diversity of the collected indices of the desired datasets
during the crowding, the CIA can select one among two
predefined strategies. If the number of collected distinct dataset
indices X1 desired by clients, distributed according to (7) with
k = 1, is sufficiently large so that Π∗ ≤ log2X1, the crowd
can follow the same process as done in Sec. III-A. On the
other hand, if Π∗ > log2X1, 2Π∗ − X1 more datasets must
be requested in addition to the desired datasets to satisfy the
privacy requirement.

Remark 1. The overall latency of the CIA for a client in the
crowd of N clients with given privacy level requirement Π∗

against the server is

T (b)
o =

{
(8), Π∗ ≤ log2X1,

(CN + 2Π∗
)τε,c + 2Π∗

τε,s, Π∗ > log2X1.
(11)

for some constant C > 0.

Note that the overall latency T
(b)
o averaged over X1 for

given condition Π∗ ≤ log2X1 is the same as (9). Moreover,
the probability of having the condition Π∗ ≤ log2X1 can be
simply expressed as

Pr[Π∗ ≤ log2X1]=
K∑

x=2Π∗

(
K−1

x−1

)
pK−x1 (1− p1)x−1. (12)

C. Given Privacy Requirement Between Members

For a general network, without any given assumptions on
relations between the clients, the system must additionally
handle the problem that comes from possible privacy leakage
during crowding. In such case, the clients must hide the desired
dataset by proposing sufficient number of dummy datasets in
order to satisfy the given privacy requirement between the
members.

Suppose that the privacy level requirement is given by
Π# ≤ Π∗ between any pair of members in the crowd as
well as the requirement Π∗ against the server. Then, each
client must choose 2Π# − 1 dummy datasets uniformly over
K − 1 datasets that are not desired, and propose 2Π#

datasets
including the desired one when crowding with other members.
Moreover, by considering the privacy level requirement against
the server, similar to Proposition 1, we have the following.

Remark 2. The overall latency of the CIA for a client in the
crowd of N with satisfying the privacy level requirements Π∗

and Π#, respectively, is

T (c)
o =

{
(2Π#

CN+X
2Π# )τε,c+X2Π# τε,s, Π∗≤ log2X2Π# ,

(2Π#

CN+2Π∗
)τε,c+2Π∗

τε,s, Π∗> log2X2Π# .

(13)

for some constant C > 0.

Note that the overall latency T (c)
o averaged over X

2Π# for
given condition Π∗ ≤ log2X2Π# is the same as

E[T (c)
o ] = (2Π#

CN + g(2Π#

))τ̄c + g(2Π#

)τ̄s. (14)

Moreover, the probability of having the condition Π∗ ≤
log2X2Π# can be derived by replacing g(1) with g(2Π#

) in
(12).

IV. CIA WITH RANDOM REQUEST ARRIVALS

In the former section, we simply assumed that the clients
in the network are requesting datasets at the same instance
and making a crowd of size N . However, in the real world,
the dataset requests are generated randomly over time, and
thus we now consider that the generation of the requests are
following the Poisson arrival model at each client. Then the
time required for crowding will vary, depending on the request
rate.

A. Poisson Request Arrival Model

Consider that the dataset requests are generated following
the Poisson arrival process model [8] with the rate λ at each
client, which is defined as the average number of requests
within a unit time span τε,c, and assume that the desired
datasets are uniformly distributed over the set {D1, . . . ,DK}
stored at the server. Supposing that the crowd is composed
of N dataset requests, the crowding time can be expressed as
T

(d)
1 =

∑N
i=2 Yiτε,c, where Y1, . . . , YN are the random vari-

ables defined as the inter-arrival times until the N -th request
arrival in the network and it is assumed that the coordination
time between the clients is assumed to be negligibly small
compared to the inter-arrival time.

Note that the inter-arrival time of the Poisson arrival process
with parameter λ is known to follow an i.i.d. exponential
distribution with parameter λ, i.e., Yn ∼ Exp(λ) for all
n ∈ {1, . . . , N}. It can be easily shown that the time span
between the first arrival and the N -th arrival is distributed
according to the gamma distribution with parameters N−1 and
λ, i.e.,

∑N
n=2 Yn ∼ Gamma(N − 1, λ)). Moreover, since the

number of distinct datasets requested until N request arrivals
is randomly distributed according to the p.m.f. (7) with m = 1,
we have T (d)

2 = X1τε,c and T (d)
3 = X1τε,s for requesting and

downloading datasets, respectively.

Proposition 2. Considering Poisson request arrival with rate
λ, the overall latency of the CIA for a client, whose request
is in the crowd consisting of N requests and with achieving
the privacy level Π(d) = log2X1 against the server, can be
expressed as

T (d)
o =

(
N∑
i=2

Yi +X1

)
τε,c +X1τε,s, (15)

where X1 is distributed according to (7) with k = 1.
Moreover, the average overall latency, with respect to Y =
{Y2, . . . , YN}, X1 and considering retransmissions, is

E[T (d)
o ] =

(
N − 1

λ
+ g(1)

)
τ̄c + g(1)τ̄s. (16)

Proof: Since X1 different datasets are requested, we have
(15) and the average overall latency (16) is from the results
in Proposition 1 and the fact that average of N − 1 i.i.d.
exponential distributed random variables with parameter λ is
(N − 1)/λ.
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B. Poisson Arrivals and Privacy Requirement Against Server

If the target privacy level against the server is given, the
clients can stop crowding if there are enough numbers of
distinct datasets desired by the members of the crowd. Note
that this scenario can be also seen as each dataset request
arrives according to the independent Poisson arrival process
model with rate λ/K.3 Suppose that the clients are crowding
until 2Π∗

distinct datasets are desired in order to satisfy the
given requirement. Let Z1, . . . , ZK be the random variables
denoting the first request arrival time of datasets D1, . . . ,DK ,
respectively, and let Z(1), . . . , Z(K) be the ascending order
statics of Z1, . . . , ZK , e.g., Z(1) = min{Z1, . . . , ZK} and
Z(K) = max{Z1, . . . , ZK}. Since the crowding is done when
2Π∗

distinct datasets are desired, the crowding time can be
written as T (e)

1 = (Z(2Π∗ ) − Z(1))τε,c. Since the first arrival
time of request for Dk is following an independent exponential
distribution, i.e. Zk ∼ Exp(λ/K), the mean of the first order
statistic is

E[Z(1)] =
1

λ
(17)

and the mean of k-th order statistic, for k < K is

E[Z(k)] =
K

λ

 k∑
j=1

1

K − j + 1

 . (18)

Since 2Π∗
different datasets are requested to achieve the target

privacy level, we can get the overall latency as in the following.

Remark 3. Considering that requests for each dataset are
generated following the Poisson arrival process with rate
λ/K, the overall latency of the CIA for a client with achieving
the privacy level requirement Π∗, can be expressed as

T (e)
o = 2Π∗

τε,c +
(
Z(2Π∗ ) − Z(1) + 2Π∗

)
τε,s, (19)

Moreover, the overall latency averaged with respect to Z =
{Z(1), Z(2Π∗ )} is

E[T (e)
o ] = 2Π∗

τ̄c +

K∑2Π∗

j=1
1

K−j+1 − 1

λ
+ 2Π∗

 τ̄s. (20)

C. Poisson Arrivals and Privacy Requirement b/w Members

For the case when both the against-server and between-
client privacy requirements are given, we can use a splitting
approach similar to the one used in Sec. IV-B. Owing to the
given privacy requirement between the members, we can split
the request arrival rate of each dataset to λ

K 2Π#

. Suppose
that the clients are crowding until 2Π∗

distinct datasets are
requested in order to satisfy the given privacy requirement
against the server. Let Z ′1, . . . , Z

′
K be the random variables

respectively denoting the first request arrival time of the
datasets D1, . . . ,DK and let Z ′(1), . . . , Z

′
(K) be the ascending

order statics of Z ′1, . . . , Z
′
K . Then, from Proposition 3, we

have the following result.

3Strictly saying, we split (or thin) the original Poisson arrival process in
to K independent processes, which is not exactly the same as the original
random process.

Remark 4. Considering each dataset request follows the
Poisson arrival process with rate λ

K 2Π#

, the overall latency
of the CIA for a client, whose dataset request is in the
crowd satisfying the privacy requirements Π∗ and Π#, can
be expressed as

T (f)
o = 2Π∗

τε,c +
(
Z ′(2Π∗ ) − Z

′
(1) + 2Π∗

)
τε,s. (21)

Moreover, the overall latency averaged with respect to Z ′ =
{Z ′(1), Z

′
(2Π∗ )

} is

E[T (f)
o ]=2Π∗

τ̄c+

K∑2Π∗

j=1
1

K−j+1−1

2Π#λ
+ 2Π∗

 τ̄ε,s. (22)

V. EXPERIMENTS AND DISCUSSIONS

This section verifies the results obtained in Secs. III and
IV via numerical experiments. For the experiments, we fix the
number of datasets stored at the server to K = 256. Moreover,
the simulation parameters to reflect the real world communi-
cation scenarios are chosen as follows: R = 500, Rs = 1000
meters, the transmission powers of a client and server are
respectively fixed to Pc = 1 and Ps = 100 Watts, while
the thermal noise power is Pn = 10−10 Watts. We assume
that the request message and dataset sizes are Mc = 103 bits
and Ms = 106 bits. Note that as the ratio Ms/Mc increases
(and correspondingly τε,s/τε,s increases), the efficiency of
the proposed CIA, compared to the individual information
acquisition, increases. The bandwidth is set W = 108 Hz and
the path-loss exponent is fixed to α = 3 considering the urban
outdoor scenarios. The outage probability threshold is chosen
to be ε = 0.001 and the constant is fixed to C = e ≈ 2.718.

Fig. 2 verifies the results obtained in Sec. III. First of
all, Fig. 2a illustrates the overall latency of the CIA with
no privacy requirements between the clients, i.e., T (a)

o , with
respect to the size of the crowd. As shown in Proposition
1, the achieved privacy level against the server increases
as the number of members in the crowd increases, while
the overall latency is increasing almost linearly as the num-
ber of members increases. Note that the overall latency of
the conventional individual information acquisition increases
quadratically (∝ N2) for the same privacy level against the
server as that of the CIA. Fig. 2b illustrates the comparison of
the overall latency with perfect privacy requirement against the
server (Π∗ = 8) and different privacy requirements between
the clients (Π# = 0, 4 8). Naturally, with larger privacy
requirements between the clients, the overall latency increases.
However, Fig. 2c shows that even though there are privacy
requirements within the crowd, the CIA still outperforms the
conventional individual information acquisition. Note that such
communication-efficiency comes from the multicasting gain
owing to the CIA as mentioned earlier.

Fig. 3 verifies the results obtained in Sec. IV. First, Fig.
3a illustrates the overall latency of the CIA with Poisson
arrivals of the dataset requests T (d)

o , with respect to the arrival
rate. Furthermore, Fig. 3b illustrates the overall latency of
the CIA with perfect privacy requirement against the server
and different privacy requirements between the clients (Π# =
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Fig. 2. (a) The overall latency and achieved privacy level against the server of the CIA versus the size of the crowd, without privacy
requirements between clients, (b) the overall latency with perfect privacy requirement against the server (Π∗ = 8) and different privacy
requirements between the clients (Π# = 0, 4 8), (c) the overall latency comparison of the individual information acquisition and CIA.
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Fig. 3. (a) The overall latency and achieved privacy level against the server of the CIA versus the dataset request arrival rate λ, (b) the overall
latency of the CIA with perfect privacy requirement against the server and different privacy requirements between the clients (Π# = 0, 4, 8)
versus λ.

0, 4, 8) versus λ. Interestingly, unlike the result shown in
Fig. 2b, for larger Π#, the overall latency is smaller for given
request arrival rate. This is because if the clients has larger
privacy requirements between themselves, making a crowd that
achieves the privacy requirement against the server is done
faster.

VI. CONCLUSION

Towards supporting fast and private information acquisitions
for a large number of clients, we proposed a novel and
communication-efficient privacy protection framework of CIA.
We introduced the operational procedure of the CIA, analyzed
the CIA under various scenarios, and derived the closed-form
expressions of the average overall latency for each scenario.
Compared to the conventional individual information acqui-
sition approach, the CIA greatly reduces the overall latency
while achieving higher privacy level against the server, which
means that the privacy protection is more enhanced against
the database server. The proposed CIA is especially efficient
when there are a large number of clients in the network and
more useful when the network requires user registration so that
anonymity-based schemes can not be employed. Our future
work will be directed toward a twofold aim considering com-

putational privacy protecting methods and further enhancing
communication-efficiency via coded multicasting approach.
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