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On Spectral Efficiency for Multiuser MISO Systems
under Imperfect Channel Information

Quang-Doanh Vu, Le-Nam Tran, Senior Member, IEEE, and Markku Juntti, Fellow, IEEE

Abstract—We consider downlink transmission whereby a mul-
tiantenna base station simultaneously transmits data to multiple
single-antenna users. We focus on slow flat fading channel where
the channel state information is imperfect, the channel estimation
error is unbounded and its statistics are known. The aim is to
design beamforming vectors such that the sum rate is maximized
under the constraints on probability of successful transmission
for each user and maximum transmit power. The optimization
problem is intractable due to the chance constraints. To this
end, we propose an efficient solution drawn upon stochastic
optimization. In particular, we first use the step function and
its smooth approximation to get an approximate nonconvex
stochastic program of the considered problem. We then develop
an iterative procedure to solve the stochastic program based on
the stochastic successive convex approximation framework. The
numerical results show that the proposed solution can achieve
remarkable sum rate gains compared to the conventional one.

Index Terms—MISO, beamforming, imperfect channel estima-
tion, sum rate, stochastic optimization.

I. INTRODUCTION

Improving spectral efficiency is one of the main tasks in
wireless communications because the demand on data traffic is
always growing while the spectrum resource is scarce. Multi-
user multi-antenna transmissions is one of the key techniques
to achieve high spectral efficiency. The efficiency of multi-
user multi-antenna relies on the availability of channel state
information (CSI), i.e., the performance would degrade with
the presence of uncertain CSI [1]. In reality, getting perfect
(i.e., error-free) CSI is very difficult [2]. Thus it is essential to
take into account the CSI uncertainty in beamforming design.

There are two main CSI uncertainty models, namely, de-
terministic model and stochastic model [3]. The determinis-
tic model uses deterministically-bounded additive uncertainty
sets, i.e., the actual channel is assumed to lie in prespecified
bounded sets centered at the estimated channels. This model
is useful for the systems where the channels are estimated and
quantized at receivers, which are then fed back to transmitters,
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e.g., the frequency division duplex (FDD) systems where the
channel reciprocity of uplink and downlink does not hold.
On the other hand, the stochastic model assumes that the
error parts are random variables [4]. This model is appropriate
for the systems with uplink–downlink reciprocity (e.g., TDD
systems) where transmitters can estimate users’ channels via
the pilot signals received on the uplink.

Herein, we focus on the stochastic CSI error model and
on the long-term performance. The reason for considering
the stochastic model is that it can properly represent sev-
eral types of CSI error such as the error caused by the
minimum mean squared error estimator [5] or time delay in
reciprocity-based channel estimation [3], [4]. For the long-
term performance, a popular approach is focusing on sum
ergodic data rate [6]–[8]. This approach can achieve good
average performance, but, it is inapplicable to slow fading
channel and delay-sensitive users since the codeword should
be sufficiently long to experience all possible fading states [9,
Chap. 4]. Alternatively, for such applications, the outage-based
approach, i.e., transmission with some outage probability, is
more suitable [9], [10]. The challenge of such an approach is
to handle the chance constraints resulting from guaranteeing
some predefined outage probability threshold. A possible so-
lution is to approximate the chance constraints using bounded
uncertainty sets, then to solve the approximate problem using
worst-case robust optimization [4], [11]–[13]. However, this
approach is often too conservative, possibly leading to poor
performance [12]. For the problem of power minimization,
there are other approaches to deal with chance constraints
based on the Bernstein-type inequality, decomposition-based
large deviation inequality [12], or offset approximation [14].
However, these approaches are not applicable to the sum rate
maximization problem considered in this paper because the
data rates are the design parameters.

Recently, stochastic optimization was successfully used for
the problem of power minimization with outage constraint
in multiuser downlink multiple-input single-output (MISO)
systems [15, Example 2]. Therein, it was numerically shown
that the stochastic optimization approach can outperform other
existing methods in terms of power efficiency. However, it
remains to be seen whether such an optimization approach
can lead to an efficient solution for the spectral efficiency
maximization problem, since the structures of which are
different from those in [15, Example 2]. One of the goals
in this paper is to understand the potential spectral efficiency
gains that an stochastic approach can provide over related
existing methods, which was not reported in [15] .

In this paper, we consider multiuser downlink MISO sys-
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tems where the CSI is imperfect. We aim at designing
beamforming vectors at the base station (BS) so that the
spectral efficiency is maximized under the outage probability
constraints for each user. Inspired by the recent success of
stochastic optimization on the problem of power minimization
with outage constraint [15], and outage minimization [16], we
develop an efficient solution to the considered problem based
on the stochastic successive convex approximation framework
[15]. Towards this end, the outage probability constraints are
approximated using the Heaviside step function and its smooth
approximation. This leads to a stochastic nonconvex program,
which is then solved by an iterative procedure following the
stochastic successive convex approximation framework. At
each iteration of the algorithm, only conic quadratic programs
are solved with the computational cost is O(M3.5), where
M is the number of antennas at the BS. Finally, we provide
extensive numerical results demonstrating that the proposed
algorithm can significantly outperform the existing method
using bounded uncertainty set and robust optimization.

Notation: Bold lower and upper case letters represent vec-
tors and matrices, respectively; ‖a‖ represents the `2 norm of
a; |a| represents the absolute value of a; Ca×b represents the
space of complex matrices of dimensions given in superscript;
CN (0, a) denotes a complex Gaussian random variable with
zero mean and variance a; Re(·) and Im(·) represent real
and image part of the argument, respectively; E{·} denote the
expectation operator; AT and AH stand for normal transpose
and Hermitian of A, respectively; IM represents an M ×M
identity matrix; Pr {A} denotes probability of event A; ∇f
denote the gradient of f . Notation 〈a,b〉 denotes the inner
product of the two vectors, and notation [x;y] stands for the
vector obtained by staking vertically x and y. Other notations
are defined at their first appearance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system where a BS equipped with M anten-
nas simultaneously transmits data to U single-antenna users.
Let hk ∈ C1×M denote the channel (row) vector between the
BS to user k, and vk ∈ CM×1 denote the beamforming vector
for user k. Then the signal received at user k is

yk = hkvkxk + hk

(∑U
t=1,t6=kvtxt

)
+ zk (1)

where xk is the normalized transmitted data symbol for user
k, i.e., E{|xk|} = 1, ∀k, and zk ∼ CN (0, σ2

k) is the additive
white Gaussian noise (AWGN) at user k.

We suppose that the channel is flat and slow fading, and the
CSI at the BS is imperfect while the users has perfect CSI. In
particular, the channel is modeled as [4], [12]

hk = h̄k + θk

where h̄k ∈ C1×M is the estimated channel vector, and θk ∈
C1×M is a channel error random vector following probability
distribution Pk, which is assumed to be known [4], [12]. Then
the signal-to-interference-plus-noise ratio (SINR) at user k is

γk(v;θk) =
vH
kHk(θk)vk∑U

t=1,t6=kv
H
t Hk(θk)vt + σ2

k

(2)

where v , [v1; ...;vU ], and Hk(θk) , (h̄k + θk)H(h̄k +
θk). Let rk = log(1 + µk), µk ≥ 0, be the data rate for
user k. Due to the channel estimation error, the transmission
rate is determined such that the probability of successfully
transmission is high. Let us denote by φ ∈ (0, 1) the predefined
successful threshold transmission for a user. Then the problem
of maximizing the sum rate reads

maximize
v,µ

∑U
k=1

log(1 + µk) (3a)

subject to Pr {γk(v;θk) ≥ µk} ≥ φ, ∀k (3b)

||v||2 ≤ P̄ , µk ≥ 0, ∀k (3c)

where µ , [µ1, ..., µU ], and P̄ is the maximum transmit power
at the BS. Note that the quantity log(1 + µk) may not be
achievable due to the imperfect CSI. We explain in detail how
to compute the achievable rate at the text corresponding to
Fig. 2 in Section IV. As discussed, the approaches based on
the ergodic capacity might achieve better average performance
[6]–[8], [17]. However, they are not suitable to quasi-static
channels considered in this paper [9].

The challenge in solving (3) is due to the chance constraint
(3b) which is computationally intractable [18]. For µk is fixed
which is the case for the problem of power minimization
subject to the outage constraints, we can find tractable ap-
proximations of (3b) when θk has a circularly symmetric
complex Gaussian distribution, by using sphere bounding,
the Bernstein-type inequality, or decomposition-based large
deviation inequality together with semidefinite relaxation [12].
However, for problem (3), these approaches are inapplicable,
since µk is a variable. Popular existing approaches to solving
(3) are based on robust optimization [19]. In particular, sphere
bounding is used to turn (3b) into semi-infinite constraints [4].
Then a tractable safe approximation is achieved by treating
error vector θk at the numerator and the denominator of
γk(vk;θk) independently [11], [19], [20]. However, the appli-
cation of the such approach is restricted to the specific case of
distribution of θk, i.e. circularly symmetric complex Gaussian
distribution. Also, the performance of such a conservative
method is significantly degraded. We present below an efficient
solution to (3) by means of stochastic optimization.

III. PROPOSED ALGORITHM BASED ON STOCHASTIC
OPTIMIZATION

For the ease of exposition, we convert (3) into
the real-domain. Let us introduce some notations
ṽk = [Re(vk); Im(vk)], ṽ = [ṽ1, ..., ṽU ], H̃k(θk) =
[Re(Hk(θk)),−Im(Hk(θk)); Im(Hk(θk)),Re(Hk(θk))].
Then, we can rewrite the SINR at user k as

γ̃k(ṽ;θk) =
ṽT
kH̃k(θk)ṽk∑U

t=1,t6=kṽ
T
t H̃k(θk)ṽt + σ2

k

.

A. Approximate Stochastic Program of (3)
As the first step, we approximate (3) into a stochastic

program. To do so, we rewrite the chance constraint (3b) using
the Heaviside step function. In particular, we have

1 (fk(ṽ, µk;θk)) =

{
1 if fk(ṽ, µk;θk) ≥ 0

0 otherwise
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where fk(ṽ, µk;θk) = ṽT
kH̃k(θk)ṽk −

µk

(∑U
t=1,t6=kṽ

T
t H̃k(θk)ṽt + σ2

k

)
. Then constraint (3b)

is equivalently rewritten as [21, Lemma 1.3]

Eθk∼Pk
{1 (fk(ṽ, µk;θk))} ≥ φ.

The Heaviside step function is discontinuous at zero. A
common way to overcome this issue is to use a smooth
approximation [15], [16]. We note that there are several
smooth approximations of the Heaviside step function. Here,
we use the logistic function as the smooth approximation
function, since it is simple, continuously differentiable and
efficient [16], which is given by [22]

1 (fk(ṽ, µk;θk)) ≈
gk(ṽ, µk;θk) = 0.5 + 0.5 tanhκ(fk(ṽ, µk;θk)))

where κ is the accuracy parameter, i.e., a larger κ corresponds
to a sharper transition. In practice, parameter κ should be tuned
for striking the balance between the approximation accuracy
and numerical stability. Finally, the approximate stochastic
program of (3) is

maximize
ṽ,µ

∑U
k=1

log(1 + µk) (4a)

subject to Eθk∼Pk
{gk(ṽ, µk;θk)} ≥ φ, ∀k (4b)

ṽTṽ ≤ P̄ , µk ≥ 0, ∀k. (4c)

which is a nonconvex constrained stochastic optimization
problem.

B. The Iterative Procedure

We now apply the stochastic successive convex approxima-
tion framework to achieve an efficient solution to (4) [15],
which is an iterative procedure in nature. In each iteration,
a new sample of channel errors is generated, then the ex-
pectations of random functions are replaced by their convex
surrogate ones which contain the information of the past as
well as new samples. After that the resulting approximate
convex problem is solved to determine the direction in which
the parameters are updated.

Let us consider the iteration n where the sample of
channel error vectors {θ(n)

k }k are randomly generated fol-
lowing probability distribution {Pk}k. Let (ṽ(n),µ(n)) be
the current iterate. As a key step, we form the convex
approximation of (4b) using the recursive formula. In par-
ticular, we first construct the sample surrogate function of
gk(ṽ, µk;θ

(n)
k ) at point (ṽ(n), µ

(n)
k ). To do so, we have

the derivative of gk(ṽ, µk;θk) given as ∇gk(ṽ, µk;θk) ,
[∇ṽgk(ṽ, µk;θk);∇µk

gk(ṽ, µk;θk)] where

∇ṽk
gk(ṽ, µk;θk) = 2ĝk(ṽ, µk;θk)H̃k(θk)ṽk (5)

∇ṽtgk(ṽ, µk;θk) = −2µkĝk(ṽ, µk;θk)H̃k(θk)ṽt,∀t 6= k
(6)

∇µk
gk(ṽ, µk;θk) =

− ĝk(ṽ, µk;θk)
(∑U

t=1,t6=kṽ
T
mH̃k(θk)ṽt + σ2

k

)
(7)

and ĝk(ṽ, µk;θk) = 0.5κ(1 − tanh2 κ(fk(ṽ, µk;θk))). Then
the sample surrogate function is obtained by the first order
approximation of gk(ṽ, µk;θ

(n)
k ) at point (ṽ(n), µ

(n)
k ) as

g̃k(ṽ, µk; ṽ(n), µ
(n)
k ;θ

(n)
k ) = gk(ṽ(n), µ

(n)
k ;θ

(n)
k )

+
〈
∇gk(ṽ(n), µ

(n)
k ;θ

(n)
k ), [ṽ;µk]− [ṽ(n);µ

(n)
k ]
〉

− ρk||[ṽ;µk]− [ṽ(n);µ
(n)
k ]||2 (8)

where ρk > 0; here the quadratic regularizing term is added
to make g̃k(ṽ, µk; ṽ(n), µ

(n)
k ;θ

(n)
k ) strongly concave [15, As-

sumption 4]. Finally, we have the convex approximation of
(4b) given as

G
(n)
k (ṽ, µk) , (1− α(n)

k )G
(n−1)
k (ṽ, µk)

+ α
(n)
k g̃k(ṽ, µk; ṽ(n), µ

(n)
k ;θ

(n)
k ) (9)

in which α
(n)
k ∈ (0, 1] is a weighting factor. The

important property of the formula in (9) is that, with
suitably chosen {α(n)

k } (specified later in Alg. 1), we
can have G

(n)
k (ṽ(n), µ

(n)
k ) → Eθk∼Pk

{
gk(ṽ(n), µ

(n)
k ;θk)

}
and ∇G(n)

k (ṽ(n), µ
(n)
k ) → ∇Eθk∼Pk

{
∇gk(ṽ(n), µ

(n)
k ;θk)

}
when n→∞ [15, Proposition 1].

By the arguments above, we arrive at the convex approxi-
mate problem solved at iteration n given as

maximize
ṽ,µ

∑U
k=1

log(1 + µk) (10a)

subject to G
(n)
k (ṽ, µk) ≥ φ, ∀k (10b)

ṽTṽ ≤ P̄ , µk ≥ 0, ∀k. (10c)

If problem (10) is infeasible, the following problem is solved
to determine the update direction

maximize
ṽ,µ,t

t subject to G
(n)
k (ṽ, µk) ≥ φ+t,∀k, (10c). (11)

We note that problem (11) is always feasible and the objective
is bounded. Let (ṽ?,µ?) denote the optimal solution of (10)
or (11), then the next iterate (ṽ(n+1),µ(n+1)) is given by

ṽ(n+1) = (1− β(n))ṽ(n) + β(n)ṽ?, (12)

µ(n+1) = (1− β(n))µ(n+1) + β(n)µ? (13)

where β(n) is the update step size. In summary, the proposed
algorithm is outlined in Alg. 1.

C. Convergence Analysis

We discuss the convergence of Alg. 1 following closely
the arguments in [15]. First, we justify that problem (3)
satisfies the conditions on the feasible set and expectation
functions presented in [15, Assumption 1], which are re-
quired to establish the convergence. Let us consider the set
SB = {(ṽ,µ)|0 ≤ µk ≤ B, ∀k, ||ṽ||2 ≤ P̄} where B > 0.
Given some finite B, SB is compact and convex. We note that
with B is large enough, we can equivalently rewrite (4) as
maximize
(ṽ,µ)∈SB

∑U
k=1

log(1 + µk) subject to (4b). This can also

be applied in (10) and (11). In addition, we can observe from
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Algorithm 1 The proposed algorithm

1: Initialization: an initial point (ṽ(0),µ(0)), set n = 0,
0.5 < τ1 < τ2 ≤ 1.

2: repeat
3: Generate sample {θ(n)

k }k independently following
{Pk}k.

4: Update α(n)
k = (1 +n)−τ1 ,∀k, and β(n) = (1 +n)−τ2 .

5: Update G(n)
k (ṽ, µk) following (9).

6: Compute (ṽ?,µ?) (by solving (10) or (11))
7: Compute (ṽ(n+1),µ(n+1)) following (12) and (13)
8: n := n+ 1
9: until stopping criteria is met

(5), (6), and (7) that gk(ṽ, µk;θk) is continuously differen-
tiable on SB . Moreover, we recall that 0 ≤ gk(ṽ, µk;θk) ≤ 1.
So gk(ṽ, µk;θk) is uniformly bounded. Also, we have

||∇ṽk
gk(ṽ, µk;θk)|| ≤ κ

√
P̄ ||H̃k(θk)||

||∇ṽtgk(ṽ, µk;θk)|| ≤ κB
√
P̄ ||H̃k(θk)||,∀t 6= k

|∇µk
gk(ṽ, µk;θk)| ≤ 0.5κ(P̄ ||H̃k(θk)||+ σ2

k)

In practice, the magnitude of channel gain is bounded and so is
||H̃k(θk)||. Consequently, the first derivative of gk(ṽ, µk;θk)
is uniformly bounded. Similarly, we have

∇2gk(ṽ, µk;θk) = ∇ĝk(ṽ, µk;θk)(∇fk(ṽ, µk;θk))T

+ ĝk(ṽ, µk;θk)∇2fk(ṽ, µk;θk). (14)

From this, we can determine a finite bound for each term in
the right hand side of (14), leading to the property that second
order derivative of gk(ṽ, µk;θk) is uniformly bounded. We
skip the details for the sake of brevity.

Now, let {(ṽ(n),µ(n))} be the iterates generated by Alg.
1. According Theorem 1 in [15], if the step size β(0) is
significantly small and (ṽ(0),µ(0)) is a feasible point of (4),
then every limiting point of {(ṽ(n),µ(n))} which satisfies
the Slater condition is almost surely a stationary point of
(4). For our considered problem, we can get a feasible point
(ṽ(0),µ(0)) of (4) by generating values of elements in µ(0)

sufficiently small.

D. Computational Complexity

In each iteration, problem (10) needs to be solved. We note
that the objective function of (10) can be equivalently rewritten
as a geometric mean, i.e. (

∏U
k=1(1 +µk))1/U . Thus, problem

(10) can be represented by a conic quadratic program [23].
Consequently, the worst case computational cost for solving
(10) by a generic interior point method solver is O(M3.5)
[24]. In the case that problem (10) is infeasible, problem (11)
is solved. The computational cost order for (11) is same as
that for (10).

In the systems where the number of antennas at the BS is
large, using an interior point solver to solve (10) may be com-
putationally expensive. A possible approach overcoming this
issue is to use the alternating direction method of multipliers
for parallel processing, i.e., splitting the large-scale problem

(10) into smaller-scale subproblems which can be computed
in parallel [25]. Another possible approach is to adopt first-
order methods, whose per-iteration computational complexity
is cheap, since only first-order information is used [26].

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
Alg. 1. We first consider simulation configuration based on
that in [12], [15]. In particular, the estimated channel vectors
are generated as h̄k ∼ CN (0, (1 − δ2)IM ),∀k; the channel
error vectors are set as θ

(n)
k ∼ CN (0, δ2IM ),∀k where δ2

represents the estimate error level which is specified in the
experiment. Unless otherwise stated, we take the parameters
as follows. The noise variance is σ2

k = 1,∀k. The maximum
transmit power at the BS is P̄ = 20 dB. The number of
antennas at the BS is M = 20. The probability of successful
transmission is set as φ = 0.9. We take τ1 = 0.9, τ2 = 0.91,
and ρk = 10−4,∀k. The accuracy parameter is κ = 0.85.
The number of iterations of Alg. 1 is set as 3000. The convex
subproblems are solved using the solver MOSEK (version 9.1)
[27]. The codes are executed on a 64-bit laptop with 16 Gbyte
RAM and Intel CORE i5.

We consider the solution based on the robust optimization
as a baseline scheme. In particular, given φ, constraint (3b)
is approximated by guaranteeing that the transmission is
successful for all channel error vectors θk inside the ball
Bk = {θk|λ ≥ ||θk||2} where λ = δ2

2 Φ−1
χ2
2M

(φ) and Φ−1
χ2
2M

is the inverse cumulative distribution function of the Chi-
square random variable with 2M degrees of freedom [4].
With {Bk}k, the robust-based method in [11] is used to
obtained the solution. We note that the robust approach based
on [11] is also an iterative procedure (developed based on
alternating optimization). There are two semidefinite programs
needed to be solved in each iteration [11, Theorem 6]. The
worst case computational cost solving these two programs
by a generic interior point solver with respect to the number
of transmit antennas are O(M4.5) and O(M2.5). Thus the
computational complexity of the robust approach scales faster
with M compared to Alg. 1. We also provide the result for
the ideal case that the CSI is perfectly known, for which we
use the solution developed in [28].

In Fig. 1, we plot the value of objective function of (4)
achieved by Alg. 1 over the total run time of the solver
(Fig. 1(a)) and number of iteration (Fig. 1(b)) for two random
channel realizations. We also provide the achieved sum rate of
the perfect CSI, and robust approach solutions. As we can see
that Alg. 1 can converge to a higher sum rate compared to the
conventional robust approach. Here, the beamforming vectors
and transmit data rate are achieved by Alg. 1 are feasible for
all users in the two channels.

In Fig. 2, we numerically investigate the average achieved
sum rate of Alg. 1 with different level of CSI uncertainty. For
each setting, the considered schemes are averaged over 2000
random channel realizations. For calculating sum rate, if the
obtained transmit rate and beamforming vectors are infeasible
for a user, then the rate corresponding to the user is zero (i.e.
treated as unsuccessful transmission). We can observe from the
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Figure 1. The achieved objective value of (4) by Alg. 1 over the total solver
run time and number of iterations with two channel realizations. We take
δ2 = 0.01.
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Figure 2. The average achieved spectral efficiency (SE) of the considered
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figure that Alg. 1 significantly outperforms the robust approach
in term of spectral efficiency in all cases of considered network
settings. This is because the robust approach is conservative
resulting from the worst case design. Specifically, the problem
formulated using the robust optimization approach is still
intractable. In order to have an efficient solution, a tractable
approximation of the problem was employed. Following the

Table I
THE MAXIMUM OUTAGE PROBABILITY (IN PERCENT) AMONG THE USERS

CORRESPONDING TO THE RESULTS IN FIG. 2.

δ2 0.01 0.05 0.1 0.15 0.2 0.25 0.3
U = 4 0.5 8.7 9.3 6.4 4.0 2.80 1.75
U = 6 0.2 2.55 2.3 1.5 1.25 1.0 0.95
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Figure 3. The average achieved spectral efficiency (SE) of the considered
schemes with different numbers of users. We take δ2 = 0.01.
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Figure 4. The average achieved spectral efficiency (SE) of the considered
schemes with the channel error vectors {θk} are uniformly distributed in
predefined balls. We take U = 4.

concept of worst-case robust optimization, the approximation
is obtained using conservative bounds, which likely degrades
the performance of the approach. We can also observe from
the figure the impact of the level of channel estimation error on
the spectral efficiency: the larger the estimation error variance
the smaller the achieved spectral efficiency. This is reasonable
since more resource is required in order to compensate the
uncertainty when the estimation error variance increases.

In Table I, we show the outage probability corresponding
to the results in Fig. 2 to numerically verify whether the
probability constraints in (3b) are satisfied by Alg. 1. Since
there are multiple users, only the largest outage probability
(among the users) for each system setting is provided. We
can see that the outage probability corresponding to Alg. 1 is
less than 10% in all cases. This means the constraints in (3b)
are satisfied since we set φ = 0.9. Also, we can observe that
the the largest outage probability is not the same for different
values of δ2 and U . This is because the outage constraints are
approximated by functions {gk(ṽ, µk;θk)}k which depend on
U and {θk}k. Thus, for a given κ, the outage probability could
change when U and δ2 vary.

Fig. 3 shows the performance of the considered schemes
as the function of the number of users with δ2 = 0.01. We
can observe that the performance of all considered schemes
increase when U increases, which comes from the multiuser
diversity gain. Again, we can observe that Alg. 1 achieves
significant spectral efficiency gains compared to the robust
approach with all considered numbers of users.

In Fig. 4, we consider another channel estimation error
model which is a result of the quantization [29]. In particular,
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Figure 5. The average achieved spectral efficiency of the considered schemes
over Rician fading over different level of channel estimation error.

the channel error vector θk is assumed to be uniformly
distributed in the ball B̃k = {θk|δ2 ≥ ||θk||2}. Consequently,
the ball corresponding to outage parameter φ considered in
the baseline scheme is Bk = {θk|δ2 M

√
φ ≥ ||θk||2} [29,

Eq. (24)]. We take τ1 = 0.92, τ2 = 0.96. Fig. 4 shows
the average spectral efficiency of the considered schemes with
different levels of estimation error. Similar to the estimation
error with Gaussian distribution, we can observe in Fig. 4 that
Alg. 1 outperforms the robust approach in all cases. Also, the
performance of both schemes reduce when δ2 increases.

We now evaluate the performance of Alg. 1 over Ri-
cian fading. In particular, let K denote the power ratio be-
tween the line-of-sight (LoS) and non-line-of-sight (NLoS)
components. Let us denote by ȟk the mean corresponding
to the LoS component, which is generated as [ȟk]m =√

K
1+K

ej(m−1)π sinϕk where ϕk ∈ [0, 2π) represents the angle-
of-departure. Then, the estimated channel vectors are gener-
ated as h̄k ∼ CN (ȟk,

1−δ2
1+K

IM ),∀k, and the estimation error
vectors are set as θ

(n)
k ∼ CN (0, δ2

1+K
IM ),∀k [5]. We observe

that, given δ2 with larger K, Alg. 1 and the robust approach
achieves better performance. This is because the uncertainty
level reduces with K. Also, similar to the Rayleigh fading, the
proposed algorithm outperforms the existing solution in all
cases of δ2 and K.

V. CONCLUSION

We have investigated the multiuser downlink MISO systems
where the channel uncertainty is modeled following some
probability distribution. In particular, we have focused on
designing beamforming vectors and transmit data rate such
that the spectral efficiency is maximized under the constraints
on maximum transmit power at the BS and the outage proba-
bility for each user. Towards a tractable formulation, we have
approximated the chance constraints using smooth approxi-
mate function of the Heaviside step function, then arrived at
a nonconvex stochastic program. After that we have devel-
oped an iterative procedure to find efficient solutions based
on the stochastic convex approximation framework. Finally,
we have provided extensive numerical results showing that
the proposed approach can achieve better spectral efficiency
compared to the existing approach using robust optimization.
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