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Abstract—We investigate the effect of considering realistic
propagation conditions different from classical Rice and Rayleigh
fading on wireless physical layer security. Specifically, we study
how the superposition of a number of dominant specular waves
and diffusely propagating components impacts the achievable se-
crecy performance compared to conventional assumptions relying
on the central limit theorem. We derive analytical expressions for
the secrecy outage probability, which have similar complexity
to other alternatives in the literature derived for simpler fading
models. We provide very useful insights on the impact on physical
layer security of (i) the number; (ii) the relative amplitudes and
(iii) the overall power of the dominant specular components. We
show that it is possible to obtain remarkable improvements on the
system secrecy performance when: (a) the relative amplitudes of
the dominant specular components for the eavesdropper channel
are sufficiently large compared to those of the eavesdropper’s
channel eavesdropper, and (b) the power of Bob’s dominant
components is significantly larger than the power of the Eve’s
dominant components.

Index Terms—generalized fading channels, mm-Wave, N-wave
with diffuse power fading model, physical layer security.

I. INTRODUCTION

T
HE fifth-generation (5G) of mobile networks aims to

raise the capacity and performance of communication

systems to unprecedented levels, including ultra-high data

rates, ultra-wide radio coverage, massive simultaneously con-

nected devices and ultra-low latencies. The new scenarios of

wireless systems under the umbrella of 5G include mm-Wave,

device-to-device, machine-type, and vehicular communica-

tions, among many others [1]. In particular, recent investiga-

tions have shown that none of the well-established fading mod-

els (e.g., Rayleigh, Rician and Nakagami-m) present accurate

fit with field measurements in mm-Wave communications [2].

One of the reasons for such mismatch relies in the fact

that classical fading models heavily rely on the central limit

theorem (CLT), which assumes a sufficiently large number

of multipath waves arriving at the receiver ends – and such

conditions are not always met [3].

In the last years, some efforts have been oriented to formu-

late more accurate channel models that overcome such limi-
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tation. Among them, stochastic fading models that explicitly

discern between the individual multipath waves classically re-

garded as line-of-sight (LOS) components have been proposed

as a way for bridging the gap between CLT-based approaches

and purely ray-based models. Durgin’s two-wave with diffuse

power (TWDP) [4] and its generalization in [5] are known to

improve the fit to field measurements in different scenarios

including mm-Wave set-ups [2, 6], compared to conventional

small-scale fading models.

On the other hand, a myriad of challenges must still be

overcome so that 5G converges into a reliable, safe and

efficient system. One of the most critical aspects is related

to the security of information transmission, given that 5G is

designed to support rather diverse applications. As a conse-

quence, highly confidential and vulnerable data is expected

to be transmitted in future 5G and beyond networks, which

because of their wireless nature are sensitive to eavesdropping.

Regarding this, physical layer security (PLS) [7] emerges as a

promising solution to complement traditional security systems

by taking advantage of the random nature of wireless channels

to provide lightweight and efficient solutions for increasing the

security level in some applications [8, 9].

The physical layer security performance in wireless chan-

nels is a rather well-investigated topic in the literature. Never-

theless, because of the intricate nature of physically-motivated

wireless fading models, available results are restricted to some

special cases [10, 11] on which only two specular components

are considered. Very recently, it was suggested in [12] that the

inability to achieve perfect secrecy in wireless channels was

an artifact due to the consideration of the CLT assumption.

Hence, the impact of the number of multipath waves arriving

at the receiver ends, as well as their relative amplitudes, has

a dramatical effect on the secrecy performance. However, the

results in [12] considered only the limit case of a total absence

of diffuse fading, and the derivation of analytical expressions

for the secrecy performance metrics was not possible for a an

arbitrary number of waves.

In this paper, we investigate the PLS performance in a

wireless set-up, by assuming that the received signal is built

from the superposition of an arbitrary number N of dominant

multipath waves, plus some additional diffuse components –

this will be referred to as N-wave with diffuse power (NWDP)

fading, for which some formulations have been recently pro-

posed in order to deal with its rather unwieldy nature [13, 14].

Our goal is to perform a fine-grain characterization of the role

of individual multipath waves on the secrecy performance,

and to support our findings with analytical results. We derive

http://arxiv.org/abs/2002.05206v2
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exact expressions for the secrecy outage probability (SOP)

for an arbitrary number of dominant waves at the desired

and eavesdropping ends, as well as simplified approximations

that become asymptotically tight in the high signal-to-noise

ratio (SNR) regime. Some useful insights for improving the

secrecy performance in this scenario will be derived, which are

inherently linked to the underlying propagation mechanisms

and characteristics captured by the NWDP fading model. The

main contributions of this paper are as follows:

• An exact closed-form expression for the SOP in terms

of well-know functions for the classical Wyner’s channel

model under NWDP fading.

• A high SNR approximation of the SOP is also derived,

which can be used straightforwardly in the context of

PLS. The merits of such expression are: (i) when γE is at

high SNR regime, it is highly tight to the exact SOP; (ii)
it notably reduces the computational effort concerning

the exact SOP. This fact helps to the wireless system

designers when requiring quick evaluation of security

risks.

• Some useful insights into the system are also provided

through the asymptotic analysis based on the exact ana-

lytical expression of the SOP.

The remainder of this paper is organized as follows. System

and channel models are described in Section II. Section III

derives closed-form expressions for (i) the SOP; (ii) a high

SNR regime of the SOP; (iii) the asymptotic behaviour of the

SOP over NWDP fading channel. Section IV shows illustrative

numerical results and discussions. Finally, concluding remarks

are provided in Section V.

Notation: Throughout this paper, f(Z)(z) and F(Z)(z) de-

note the probability density function (PDF) and the cumu-

lative distribution function (CDF) of a random variable Z .

E [·] denotes expectation, Pr {·} denotes probability, and |·|
denotes the absolute value. In addition, Ln(·) denotes the

Laguerre polynomial [15, Eq. (22.2.13)], Γ(·) denotes the

gamma function [15, Eq. (6.1.1)]; γ(·, ·), the lower incomplete

gamma function [15, Eq. (6.5.2)]; 2F1 (·, ·; ·; ·), denotes the

hypergeometric function [15, Eq. (15.1.1)], and (·)(·) is the

Pochhammer symbol [15, Eq. (6.1.222)].

II. SYSTEM MODEL

We consider the classic Wyner’s wiretap channel as depicted

in Fig. 1, where a legitimate transmitter Alice (A) sends confi-

dential messages to the legitimate receiver Bob (B) through the

main channel, while the eavesdropper Eve (E) tries to intercept

these messages from its received signal over the eavesdropper

channel. It is assumed that the main and eavesdropper channels

experience independent quasi-static fading. Without loss of

generality, we assume that all nodes are equipped with a single

antenna.

We express the signal at each of the receiving ends as a

superposition of N multipath waves arising from dominant

specular reflections, and M additional waves associated to

diffuse scattering:

Rexp (jθ) =
N∑

i=1

Vi exp (jθi) +
M∑

k=1

Vk exp (jθk) (1)

PSfrag replacements
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Fig. 1. Wiretap channel consisting of a legitimate pair and one eavesdropper.

Because each diffuse scatterer is able to generate several

multipath waves [16], we can safely assume that M → ∞ and

hence the diffuse component1 tends to be Gaussian distributed,

i.e.,
∑M

k=1 Vk exp (jθk) ≈ Vd exp (jθd), so that Vd is Rayleigh

distributed with E{|Vd|
2} = 2σ2 = Ω.

In (1), Vi exp(jθi) denotes the i-th specular component

having a constant amplitude Vi and a uniformly distributed

random phase θi ∼ U [0, 2π). The random phases for each

dominant wave are assumed to be statistically independent.

Let γ
∆
= γ0R

2 be the instantaneous received SNR through,

where γ0
∆
= PT/N0 is defined as the transmit SNR, with PT

being the transmit power and N0 being the mean power of

the additive white Gaussian noise. Note that γ can also be

redefined for the sake of convenience as γ = γ|h|2, where

h denotes any normalized fading channel, i.e., E{|h|2} = 1
and γ representing the average receive SNR. According to the

formulation in [13], the corresponding PDF and CDF of γ
over NWDP fading channel are:

fi(γi) =
1

γi

exp

(

−
γi
γi

) ∞∑

ni=0

Cni
Lni

(
γi
γi

)

, (2a)

Fi(γi) =

∞∑

ni=0

Cni

ni∑

ki=0

(−1)ki

ki!

(
ni

ki

)

γ

(

ki + 1,
γi
γi

)

, (2b)

where i ∈ {B,E} represents either the main channel or the

eavesdropper channel, γi is the average receive SNR at B or

E as previously stated, i.e.,

γi = γ0E
[
R2

i

]
r−ηi

i = γ0

(
Ni∑

n=0

V 2
n,i +Ωi

)

r−ηi

i , (3)

where ηi is the path-loss exponent, and ri is the propagation

distance2. The Cni
coefficient can be calculated recursively

by [13]

Cni
=

ni∑

ki=0

(−ǫi)
ki

ki!

(
ni

ki

)

u
(2ki)
Ni+1, (4)

1We note that the consideration of arbitrary N in (1) allows for individually
accounting for the effect of having multiple specular waves and largely differs
from the conventional assumptions in fading modeling, reducing only for
N = 0, 1, 2 to the Rayleigh, Rician and TWDP cases, respectively [4].

2Here, as in the LOS ball blockage model, we assume that ri lies within
a sphere of fixed radius RB. Interested readers can revise [18] for further
guidance about simplification of the LOS region as a fixed equivalent LOS
ball in mm-Wave cellular networks.
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where ǫi =
(
E
[
R2

i

])
−1

, and

u2ki

j =

ki∑

m=0

(
ki
m

)2

u
(2m)
j−1 v

(2ki−2m)
j , for j = 2, . . . , Ni + 1,

(5)

where the initial value is u2ki

1 = v2ki

1 , and

v2ki

j =

{

V 2ki

j,i , for j = 1 . . .Ni,

(1)ki
(Ωi)

ki , for j = Ni + 1.
(6)

III. SECRECY OUTAGE PROBABILITY ANALYSIS

A. Exact SOP Analysis

We consider a passive eavesdropping scenario, so that Alice

has no channel state information (CSI) of Eve’s channel.

Hence, Alice’s only choice is to encode the confidential data

into codewords at a constant rate RS. This can occur in a

practical setup where Eve is silent during all transmissions.

According to [19], the secrecy capacity is obtained as

CS =max {CB − CE, 0}

=max {log2(1 + γB)− log2(1 + γE), 0} (7)

With these considerations, secrecy is achieved only in those

instants on which RS ≤ CS, and is compromised otherwise.

In this context, the SOP is defined as the probability that the

instantaneous secrecy capacity CS falls below a target secrecy

rate threshold RS, and can be expressed as [7]

SOP = Pr {CS (γB, γE) < RS}

= Pr

{(
1 + γB
1 + γE

)

< 2RS
∆
= τ

}

= Pr {γB < τγE + τ − 1}

=

∫
∞

0

FγB
(τγE + τ − 1) fγE

(γE)dγE. (8)

Furthermore, a high SNR approximation of the SOP can be

obtained from (8) as

SOPA = Pr {γB < τγE} ≤ SOP. (9)

Substituting (2) into (8) and (9), we can obtain the SOP and

the SOPA, respectively, over NWDP fading channels in the

following Lemma.

Lemma 1. The SOP and the SOPA over NWDP fading

channels can be obtained as (10) and (11), respectively, at

the top of the next page.

Proof. See Appendix A.

Remark 1. Notice that the derived analytical expressions

for both the SOP and SOPA are expressed in terms of infinite

series representations. This is also the case of the analysis in

[11] for TWDP based on the approximate PDF in [4], which

arises as a special case of our analysis.

B. Asymptotic Analysis

To get further insights about the role of the fading param-

eters in the system performance, the main concern in this

section is to derive asymptotic closed-form expressions to

investigate the behavior of the SOP given in (8) at high-SNR

regime. Here, we assume the following scenarios: (i) both γB

and γE go to infinity, while the ratio between these SNRs

is kept unchanged3; (ii) γB → ∞ while γE is kept fixed4.

Our goal would be obtaining asymptotic expressions in the

form SOP∞ ≈ Gcγ
−Gd

B , where Gc and Gd represent the

secrecy array gain and the secrecy diversity gain, respectively.

However, as we will later see, such expressions will not be

of much practical use as in many cases, such asymptotic

does not kick in until very low probabilities are considered.

Hence, our asymptotic expressions will incorporate additional

terms on which the exponent of γB play a relevant role on

the SOP decay for practical operational values. Next, the

corresponding asymptotic expressions of the SOP over NWDP

fading channels are given in the following Lemma.

Lemma 2. The asymptotic closed-form expressions of the SOP

over NWDP fading channels for the cases in that both γB →
∞, γE → ∞, and only γB → ∞ can be obtained as (12)

and (13), respectively, at the top of the next page.

Proof. See Appendix B.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we validate the accuracy of the proposed

expressions5. for some representative cases via Monte Carlo

simulations. We define a power ratio parameter similar to

the well-known Rician K parameter, e.g., KNi

∆
=

ΩNi

Ωi

, with

ΩNi
=
∑Ni

n=0 V
2
n,i being the total average power of the

specular components. For the sake of comparison, the Rayleigh

case (i.e., NB = NE = 0) is included as a reference.

Before getting into the numerical examples, an important

remark is in order. Herein, we emphasize on providing clear

evidence to identify the impact of increasing/decreasing both

the number and the power of the dominant specular waves over

the secrecy performance. In other words, we aim to determine

to what extent it is worth that each of the individual specular

waves is treated separately, or it can be safely incorporated

into the diffuse component.

In Fig. 2, we compare the SOP as a function of γB for

different values of dominant specular components NB =

3This scenario corresponds to the case when both B and E are close to A.
4 This scenario corresponds to the case that A is very close to B and E is

located far way.
5Here, it is worth mentioning that depending on the value of the involved

channel parameters, these series require different number of terms to attain
an accurate approximation. In this context, the overall convergence speed of
these series is achieved faster for small values of both dominant rays (e.g,
NB, and NE) and power of Bob’s dominant specular components (i.e., KB

dB
).

For instance, exhaustive tests have shown that the number of terms to arrive
at the desired accuracy (e.g., 10−6) varied from 20 to 30 at Bob and from
4 to 10 at Eve, and the average elapsed times to obtain the aforementioned
accuracy were ∼ 14.1, 27.5, 81.7, 103.5, 114.6 seconds for N = 1, . . . , 5,
respectively. Moreover, the mathematical representation of the derived series
consists of well-known elementary and special functions, which can be easily
implemented in software for numerical evaluation.
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SOP =1−

∞∑

nB=0

CnB

nB∑

kB=0

(−1)kB

(
nB

kB

)(
1

γE

) ∞∑

nE=0

CnE

kB∑

q=0

1

q!

(
1

γB

)q

exp

(

−
τ − 1

γB

) q
∑

a=0

(
q

a

)

(τ − 1)
q−a

τa

×

(
1

γE

+
τ

γB

)
−1−a

Γ (1 + a) 2F1

(

1 + a,−nE; 1;
γB

γB + γEτ

)

(10)

SOPA =1−

∞∑

nB=0

CnB

nB∑

kB=0

(−1)kB

(
nB

kB

)(
1

γE

) ∞∑

nE=0

CnE

kB∑

q=0

1

q!

(
τ

γB

)q (
1

γE

+
τ

γB

)
−1−q

Γ (1 + q)

× 2F1

(

−nE, 1 + q; 1;
γB

γB + γEτ

)

(11)

SOP∞ ≈
∞∑

nB=0

CnB

nB∑

kB=0

(−1)kB

(kB + 1)!

(
nB

kB

)(
τ

γB

)kB+1 ∞∑

nE=0

CnE

nE∑

kE=0

(−1)kE

kE!

(
nE

kE

)(
1

γE

)kE+1 n∑

i=1

wi exp (li) l
kB+kE+1
i

(12)

SOP∞ ≈
∞∑

nB=0

CnB

nB∑

kB=0

(−1)kB

(kB + 1)!

(
nB

kB

)(
τγE

γB

)kB+1 ∞∑

nE=0

CnE

Γ (kB + 2)Γ (nE + 1)

nE!
2F1 (−nE, kB + 2; 1; γE) (13)
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Fig. 2. SOP vs. γB, for different numbers of dominant specular waves N by
considering balanced amplitude scenario (i.e., Vn,i = 1 for n = 1, . . . ,Ni).

For all curves, the parameter values are: RS = 1 bps/Hz, γE = 4 dB, KE

dB
=

10 dB, Ωi = 1, and Ni = N for i ∈ {B,E}. Dashed lines correspond to
asymptotic analysis by using expression (12).

NE = N, by considering the case of balanced amplitudes,

i.e., Vn,B = Vn,E ∀B, n = 1 . . .N. For this scenario,

the corresponding fading parameters are given by: KB
dB =

10 log10 (KB = KNB
) ∈ {8, 25} dBs with KE

dB = 0 dB, RS

= 1 bps/Hz, and γE = 1 dB. Note that in all instances, Monte

Carlo simulations perfectly match with our derived results.

We see that the secrecy performance does not monotonically

increase with the number of specular components; instead, we

see that the cases with NB = 1 and NB = 2 bound the secrecy

performance when the rest of parameters are fixed. This is in

coherence with the fact that for an even number of dominant

specular components of equal amplitudes, the probability of

total cancellation between them is larger than when an odd

number is considered [17]. This increases fading severity for

the desired link more relevantly for large K , which ultimately

degrades the SOP. We also see that for N = 4, the performance

is very similar than in the Rayleigh case (i.e., N → ∞).

In Fig. 3, we now evaluate the SOP vs. γB for different

numbers of dominant specular components NB = NE = N by

considering an unbalanced amplitudes scenario. For simplicity,

yet without loss of generality, the amplitudes of successive

rays are expressed in terms of the amplitude of the first dom-

inant component, as proposed in [12], that is, Vn,i = αn,iV1,i

for n = 2, . . . ,Ni, with 0 < αn,i < 1 and i ∈ {B,E}.

Considering this, we set: αn,i = αB = αE = 0.3 with

KB
dB ∈ {8, 25} dBs, KE

dB = 0 dB, RS = 1 bps/Hz, and

γE = 1 dB. Here, we investigate the impact of increasing

both the number and the power of Bob’s dominant rays for

the case of unbalanced amplitudes. We observe in all traces

that, unlike on the balanced counterpart, the SOP performance

now monotonically improves when rising KB
dB or lowering N,

regardless of whether it is even or odd. It can be observed

that a reduced number of dominant specular components at

Bob is now beneficial from a secrecy perspective. We also

see that in all cases, the SOP performance is always better

than its Rayleigh counterpart. Regarding the asymptotic be-

haviour, it can be noticed that the asymptotic plots accurately

approximate the SOP curves at high SNR regime. Additionally,

all curves have different slopes. The reason for this will be

discussed later.
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Fig. 3. SOP in terms of γB for different numbers of dominant specular waves
N, by considering unbalanced amplitude case (i.e., αn,i = αi = 0.3). For
all cases, the corresponding parameters are set to the following values: RS =
1 bps/Hz, γE = 1 dB, KE

dB
= 0 dB, Ωi = 1, and Ni = N for i ∈ {B,E}.

In Fig. 4, we evaluate both the SOP and the SOPA as a

function of γB, in order to understand the interplay between

the number of dominant specular components NB = NE = N,

the amplitude imbalance and the power of the dominant com-

ponents. We use a similar set of parameters as those in Fig. 3,

except for {αB, αE} = {0.2, 0.9}, {αB, αE} = {0.9, 0.2},

and γE = 8 dB. We now observe that the worst secrecy

performance is attained for cases where the imbalance for

the legitimate user αB is smaller than that of αE, i.e. when

αB > αE. Therefore, for the cases where αB is lower than

αE, we can obtain the desired secrecy performance (i.e., a

target SOP) for a lower average SNR at Bob. In such case,

some other interesting observations can be made: (i) the SOP

performance under NWDP fading is much better than in the

Rayleigh case, and (ii) the increase on the number of dominant

specular rays arriving at Bob is detrimental from a secrecy

perspective.

On the other hand, the worst SOP performances are

achieved for the case with (αB = 0.9, αE = 0.2), which is

explained as follows: because the amplitudes for the legitimate

link are balanced, this is translated into a more severe fading;

conversely, the unbalanced amplitudes for the eavesdropper’s

link indicate a lower fading severity compared to the Rayleigh

case. Combining the two effects, the overall SOP performance

is hence worse than when assuming Rayleigh fading for both

links.

Fig. 5 presents the evolution of the SOP as a function of

RS , considering the following channel settings: γE = 1 dB,

γB = 8 dB, KB
dB = KE

dB = 20 dB, and {αB, αE}={0.2, 0.3}.

Herein, we analyze the effect of having a different number of

dominant specular rays at both Bob and Eve over the secrecy

performance. We consider the cases NE = {2, 3} and NB =
{2, 3, 4, 5}, and for the sake of comparison, we also include

the case NB = NE. Once again we see that having a larger

number of multipath waves at the legitimate receiver in this

unbalanced scenario effectively increases channel variability,
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Fig. 4. SOP vs. γB for different numbers of dominant specular waves N

by considering unbalanced amplitude case (i.e., {αB, αE} = {0.2, 0.9} and
{αB, αE} = {0.9, 0.2}). For all curves, the values of channel parameters
are: RS = 1 bps/Hz, γE = 8 dB, KB

dB
= KE

dB
= 25 dB Ωi = 1, and

Ni = N for i ∈ {B,E}
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Fig. 5. SOP in terms of RS for different numbers of dominant specular waves
of NB = {2, 3, 4, 5} with regard to NE = {2, 3} by considering unbalanced
amplitude case (i.e., {αB, αE} = {0.2, 0.3}). For all curves, we set: γE = 1

dB, γB = 8 dB, KB

dB
= KE

dB
= 20 dB, and Ωi = 1 for i ∈ {B,E}.

which causes the SOP obtained when transmitting at a rate

RS to be increased with NB. We also see that for a fixed NB,

increasing the number of rays on the eavesdropper’s channel

is also detrimental for the SOP. This can be understood by

recalling that in the presence of a single dominant specular

component for each link and a strong LOS condition, the set-

up almost reduces to the AWGN case, for which the SOP is

zero as γB > γE. Hence, having a reduced number of rays

and a dominant component much larger than the remaining

specular waves turn out being beneficial for physical layer

security.

Next, Fig. 6 illustrates the SOP vs. γB for different numbers

of rays NB = NE = N with γE = 1 dB, KB
dB = 25 dB, and

KE
dB = 0 dB. Moreover, we set: RS = {1, 2.5} with α =
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Fig. 6. SOP vs. γB for different numbers of dominant specular waves N =

NB = NE by varying the value of RS and assuming unbalanced amplitudes
(i.e, α = {0.15, 0.30}). Also, γE = 1 dB, KB

dB
= 25 dB, and KE

dB
= 0

dB.

αB,= αE = 0.15 and α = αB,= αE = 0.30 for N = 2, . . . 4,

and N = 5, respectively. From the figure can be observed that

both the relative amplitudes and the number of the dominant

waves play a pivotal role on the secrecy performance. For

instance, we see that the decay of the SOP is rather abrupt

for α = 0.15 and N = 1, . . . , 4 regardless of the choice of

RS = {1, 2.5}. However, when both the number of rays and

the relative amplitudes of the rays are slightly increased (say

α = 0.3 and N = 5), then the SOP is dramatically impaired

and the decay is now similar to the Rayleigh case. This is in

coherence with the observations made in [12] in the limit case

of the absence of diffuse scattering, as α (NB − 1) < 1.

Finally, in Fig. 7, we plot the SOP vs. γB and the two

asymptotic results (12), (13), respectively. In all the cases,

we employ equal numbers of rays at both B and E, i.e.,

N = NB = NE, RS = 1 bps/Hz, ΩB = ΩE = 1, and

γE = 8 dB. Also, yet without loss of generality, we assume

the following cases: Case I (N = 1): Balanced amplitudes,

V1,B = V1,E = 1, and KB
dB = KE

dB = 10 dB; Case

II (N = 2): Unbalanced amplitudes, V2,i = α2,iV1,i with

V1,i = 1 for i ∈ {B,E}, α2,B = 0.2, α2,E = 0.9, and

KB
dB = KE

dB = 15 dB; Case III (N = 3): Unbalanced

amplitudes, Vn,i = αn,iV1,i with V1,i = 1 for i ∈ {B,E},

αn,i = αB = αE = 0.3 for n = 2, 3., and KB
dB = KE

dB = 10
dB. Here, our primary aim is to analyze the secrecy diversity

order of the main links in the proposed scenarios. Firstly,

based on the asymptotic expressions (i.e., (12), and (13)),

we see that the exponents for the γB terms depend on one

of the summation indexes (i.e., (kB + 1)). This suggests that

each of these terms contributes in different ways to the decay

of the SOP, which explains that the slope of the SOP is

different depending on the range of values of γB. As the

SNR is increased, it is only the first term of the series which

contributes to the SOP, revealing a diversity order of one (vide

all cases in Fig. 7). However, we can see that such diversity

order is not useful for Case II, which justifies the need
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Fig. 7. SOP vs. γB for different numbers of dominant specular waves N =

NB = NE by assuming for all cases RS = 1 bps/Hz, ΩB = ΩE = 1, and
γE = 8 dB.

of the more accurate asymptotic expressions here provided,

compared to those only relying on Gd expression. Also, we

can observe that the asymptotic analytical in (12) is tighter

than the asymptotic one given in (13).

V. CONCLUSIONS

We investigated how the explicit consideration of the inci-

dent waves arriving at the receiver ends may impact physical

layer security performance in the context of wireless fading

channels. The analytical results here presented complement

and generalize those previously reported in the literature, and

support the need of using ray-based fading models in those

situations on which a reduced number of multipath waves

are considered. The main takeaways of our work can be

summarized as: (i) abundant dominant specular rays impair

the SOP, so scenarios with a reduced number of rays arriving

at both Bob and Eve are beneficial whenever γB > γE ; (ii)
balanced amplitudes for the eavesdropper’s link and unbal-

anced amplitudes for the desired link are the most favorable

case from a PLS perspective; (iii) a significant increase on the

power of Bob’s dominant specular components with respect

to the power of Eve’s dominant specular components (i.e.,

KB >> KE), in the case of balanced amplitudes, is a worst

case scenario for secrecy performance.
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APPENDIX A

PROOFS OF LEMMA 1

A. SOP

Substituting (2) into (8), we can obtain

SOP =

∞∑

nB=0

CnB

nB∑

kB=0

(−1)kB

kB!

(
nB

kB

)
1

γE

∞∑

nE=0

CnE

︸ ︷︷ ︸

C1

×

∫
∞

0

exp

(

−
γE
γE

)

LnE

(
γE
γE

)

︸ ︷︷ ︸

I1

× γ

(

kB + 1,
(τγE + τ − 1)

γB

)

dγE.

︸ ︷︷ ︸

I1

(14)

Using [20, Eq. (8.352.1)] into (14), I1 can be rewritten as

I1 =kB!

∫
∞

0

exp

(

−
γE
γE

)

LnE

(
γE
γE

)

dγE
︸ ︷︷ ︸

I2

− kB!

kB∑

q=0

1

q!

(
1

γB

)q ∫ ∞

0

exp

(

−
γE
γE

)

︸ ︷︷ ︸

I3

× LnE

(
γE
γE

)

exp

(

−
τγE + τ − 1

γB

)

︸ ︷︷ ︸

I3

× (τγE + τ − 1)
q

︸ ︷︷ ︸

I3

dγE. (15)

Here, with the help of [20, Eq. (7.414.6)] the value of the

integral I2 can be γE when nE = 0 or zero otherwise (i.e.,

nE 6= 0). In the former case, after by performing some

algebraic manipulations, the first term of the SOP can be

simplified as C1kB!γE = 1. Next, by using [20, Eq. (1.111)],

I3 can be expressed as

I3 =

q
∑

a=0

(
q

a

)

(τ − 1)
q−a

τa exp

(

−
τ − 1

γB

)∫
∞

0

LnE

(
γE
γE

)

︸ ︷︷ ︸

I4

× γa
E exp

(

−
γE
γE

−
τγE
γB

)

dγE.

︸ ︷︷ ︸

I4

(16)

Then, by solving the corresponding integral in I4, we get

I4 =

(
1

γE

+
τ

γB

)
−1−a

Γ (1 + a)

× 2F1

(

1 + a,−nE, 1,
γB

γB + γEτ

)

. (17)

Next, by combining (14) to (17), the SOP can be formulated

as in (10), which concludes the proof.

B. SOPA

Substituting (2) into (9), we get

SOPA =

∞∑

nB=0

CnB

nB∑

kB=0

(−1)kB

kB!

(
nB

kB

)
1

γE

∞∑

nE=0

CnE

︸ ︷︷ ︸

C1

×

∫
∞

0

exp

(

−
γE
γE

)

LnE

(
γE
γE

)

︸ ︷︷ ︸

I5

× γ

(

kB + 1,
τγE
γB

)

dγE.

︸ ︷︷ ︸

I5

(18)

Again, by using [20, Eq. (8.352.1)] into (18), I5 can be

reformulated as

I5 =kB!

∫
∞

0

exp

(

−
γE
γE

)

LnE

(
γE
γE

)

dγE
︸ ︷︷ ︸

I5

− kB!

kB∑

q=0

1

q!

(
1

γB

)q

τq
∫

∞

0

exp

(

−
γE
γE

)

︸ ︷︷ ︸

I6

× LnE

(
γE
γE

)

exp

(

−
τγE
γB

)

γq
EdγE.

︸ ︷︷ ︸

I6

(19)

Here, note that I5 is equivalent to I2. Therefore, the first

term of the SOPA (i.e., C1kB!γE) once again equals unity, as

discussed in the previous proof. On the other hand, by solving

the corresponding integral in I6, yields

I6 =

(
1

γE

+
τ

γB

)
−1−q

Γ (1 + q)

× 2F1

(

−nE, 1 + q, 1,
γB

γB + γEτ

)

. (20)

Finally, by combining (18) to (20), the SOPA is reached as

in (11), which completes the proof.

APPENDIX B

PROOFS OF LEMMA 2

A. SOP∞

1) Keeping γE Fixed and γB → ∞ : In order to approx-

imate (2b) as γB → ∞, we use the following relationship

γ (a, x) ≈ xs/s as x → 0. Therefore, (2b) can be asymptoti-

cally expressed by

FB(γB) ≈

∞∑

nB=0

CnB

nB∑

kB=0

(−1)kB

(kB + 1)!

(
nB

kB

)(
γB
γB

)kB+1

.

(21)

Substituting (21) together with (2a) into (9), it follows that

SOP∞ ≈

∞∑

nB=0

CnB

nB∑

kB=0

(−1)kB

(kB + 1)!

(
nB

kB

)(
1

γE

)(
τ

γB

)kB+1

×

∞∑

nE=0

CnE

∫
∞

0

γkB+1
E exp

(

−
γE
γE

)

LnE

(
γE
γE

)

dγE
︸ ︷︷ ︸

I7

(22)
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Next, with the aid of [20, Eq. (7.414.7)] to solve the integral

in I7, the asymptotic SOP can be expressed as in (13), which

concludes the proof.

2) Both γE → ∞, γB → ∞, and Fixed Ratio γE/γB:

From (21), the asymptotic PDF of E (i.e, γE → ∞ ) is given

by

fE(γE) ≈

∞∑

nE=0

CnE

nE∑

kE=0

(−1)kE

kE!

(
nE

kE

)(
1

γE

)kE+1

γkE

E .

(23)

Substituting (21) and (23) into (9), we have

SOP∞ ≈
∞∑

nB=0

CnB

nB∑

kB=0

(−1)kB

(kB + 1)!

(
nB

kB

)(
τ

γB

)kB+1

×

∞∑

nE=0

CnE

nE∑

kE=0

(−1)kE

kE!

(
nE

kE

)(
1

γE

)kE+1

×

∫
∞

0

γkB+kE+1
E dγE

︸ ︷︷ ︸

I8

. (24)

To solve I8, one can rewrite it as

I8 =

∫
∞

0

exp (−γE) f (γE) dγE, (25)

where f (γE) = exp (γE) γ
kB+kE+1
E . Now, according to the

Gauss-Laguerre quadrature method [15, Eq. (25.4.45)], I8 can

be closely approximated by a weighted sum as

I8 ≈

n∑

i=1

wif (li) , (26)

in which li is the ith zero of the Laguerre polynomial Ln(γE)
[15, Eq. (22.2.13)], and wi = li [(n+ 1)Ln+1 (li)]

−2
.6This

completes the proof.
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