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Analysis and Optimization for Weighted Sum Rate
in Energy Harvesting Cooperative NOMA Systems

Binh Van Nguyen, Quang-Doanh Vu, and Kiseon Kim

Abstract—We consider a cooperative non-orthogonal
multiple access system with radio frequency energy
harvesting, in which a user with good channel harvests
energy from its received signal and serves as a decode-
and-forward relay for enhancing the performance of a
user with poor channel. We here aim at maximizing
the weighted sum rate of the system by optimizing
the power allocation coefficient used at the source and
the power splitting coefficient used at the user with
good channel. By exploiting the specific structure of
the considered problem, we propose a low-complexity
one-dimensional search algorithm which can provide
optimal solution to the problem. As a benchmark com-
parison, we derive analytic expressions and simple high
signal-to-noise ratio (SNR) approximations of the er-
godic rates achieved at the two users and their weighted
sum with fixed values of the power allocation and the
power splitting coefficients, from which the scaling of
the weighted sum in the high SNR region is revealed.
Finally, we provide representative numerical results to
demonstrate the validity of our results.

Index Terms—Cooperative NOMA, RF-energy har-
vesting, weighted sum rate analysis and optimization.

I. Introduction
Non-orthogonal multiple access (NOMA) transmission

is emerging as a promising multiple access technique for
the next generation of wireless networks [1]. The cor-
nerstone of NOMA is to exploit the power domain and
channel quality difference among users to achieve multiple
access. An issue rising in a NOMA system is that users
with good channel conditions can significantly strengthen
their performance, while the performance of users with

Copyright (c) 2015 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

Binh Van Nguyen is with the Institute of Research and Develop-
ment, Duy Tan University, Da Nang 550000, Vietnam. He is also with
the School of Electrical Engineering and Computer Science, Gwangju
Institute of Science and Technology, Republic of Korea. (E-mail :
binhnguyen@gist.ac.kr).

Kiseon Kim is with the School of Electrical Engineering and
Computer Science, Gwangju Institute of Science and Technology,
Republic of Korea. (E-mail : kskim@gist.ac.kr).

Quang-Doanh Vu is with the Centre for Wireless Communications,
University of Oulu, Finland. (E-mail: doanh.vu@oulu.fi).

Nguyen and Kim gratefully acknowledge the support from Elec-
tronic Warfare Research Center at Gwangju Institute of Science and
Technology, originally funded by Defense Acquisition Program Ad-
ministration (DAPA) and Agency for Defense Development (ADD).

The work of Vu was supported by the projects "Flexible Uplink-
Downlink Resource Management for Energy and Spectral Efficiency
Enhancing in Future Wireless Networks (FURMESFuN)" funded by
the Academy of Finland under Grant 31089, and "6Genesis Flagship"
funded by the Academy of Finland under Grant 318927.

bad channel conditions are relatively poor [2]. A possible
solution for this problem is combining cooperative com-
munication with NOMA to generate a cooperative NOMA
(C-NOMA) transmission scheme in which users with good
channel conditions operate as relays to strengthen the
transmission reliability for users suffering from bad chan-
nel conditions [3]-[6].

Recently, radio frequency energy harvesting (RF-EH)
has become an efficient solution to prolong the lifetime
of energy-constraint wireless communication systems [7].
The advantage of RF-EH is from the fact that RF signals
carry both information and energy at the same time, i.e.
RF-EH allows limited-power nodes to scavenge energy
and process information simultaneously [8]. There exist
two main RF-EH techniques, namely, time switching (TS)
and power splitting (PS). With TS, a receiver switches
between energy harvester and data decoder. With PS, a
receiver separates the RF signals into two parts (one for
EH and the other for decoding) by a PS coefficient. Here,
we mainly focus on PS, since PS is considered to be more
general compared to TS [9].

In C-NOMA systems, in some cases due to the limited
energy at good users, i.e. in sensors and internet-of-things
contexts, it may not be possible for good users to relay
signals toward poor users. To alleviate this issue, RF-
EH is introduced to C-NOMA systems. Representative
examples for this approach are [10]-[12]. Particularly, [10]
-[11] proposed user-pair selection schemes and analyze the
performance in terms of outage probability. In addition,
[12] investigated the problem aiming at maximizing the
achievable rate of a good user while guaranteeing the
quality-of-service requirement of a poor user.

Different from [10]-[12], in this work, we focus on
maximizing weighted sum rate of an RF-EH C-NOMA
system which has been still relatively open. It is worth
mentioning that the problem of weighted sum rate allows
to prioritize users, and thus, finds many applications
in wireless communications [13]-[14]. For examples, the
weights can be chosen by the controller (i.e. scheduler)
based on the state of the packet queues following the max-
stability policy (please refer to [14] for detail discussion);
or the controller determines the weights based on the
throughput for the users in the previous time slots for,
e.g. proportional fairness [15]. Also, the weighted sum rate
problem is encountered in network utility maximization
and cross-player control policies [16]. It should be noted
that the results presented in [12] cannot be directly applied
to our problem due to the different structures of the
two problems. Specifically, our main contributions are as
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follows.
• We consider an RF-EH C-NOMA system having a

source and two users. We formulate the problem
of weighted sum rate maximization in which power
allocation (PA) and PS coefficients are the design
parameters. The problem is non-convex whose opti-
mal solution can be found by the exhaustive two-
dimensional (2D) search. Towards a more efficient
solution, we develop an one-dimensional (1D) search
algorithm by exploiting the specific structure of the
problem.

• For a comparison benchmark, we derive closed-form
expressions and high signal-to-noise ratio (SNR) ap-
proximations of the ergodic rates achieved at the two
users and their weighted sum with fixed PA and PS
coefficients.

• We numerically demonstrate that optimized PA and
PS coefficients can significantly improves the system
performance in terms of weighted sum rate, i.e. 37.5%
enhancement when the average SNR is 30 dB and
the weight ratio is 5. On the other hand, the analysis
results reveal that the scaling of the weighted sum
rate is w1

2 log2 (SNR), where w1 is the priority weight
of the good user.

II. System Model
We consider a wireless communication system consisting

of a source, denoted by S, and two users which are associ-
ated with different channel conditions; we denote the user
with good channel by U1, and the one with bad channel
by U2. All nodes are equipped with a single-antenna and
operate in the half-duplex mode. Let h1, h2, and h3 denote
the complex channel coefficients between S and U1, S and
U2, and U1 and U2, respectively. All channels are assumed
to be independent and identically distributed Rayleigh
block fading. From the assumption about channel quality,
we have g1 ≥ g2 where gi = |hi|2.

We focus on the transmission from S to the users. The
transmission protocol includes two phases, each of length
T in time unit. In particular, let xi, i ∈ {1, 2}, be the
normalized complex signal for Ui, and PS be the transmit
power at S. In the first phase, S generates a superimposed
signal given by xS =

√
αPSx1 +

√
(1 − α)PSx2, where α

denotes the PA coefficient, and broadcasts xS to the users.
The received signal at Ui during this phase is

yi = hixS + ni (1)

where ni is the additive white Gaussian noise (AWGN)
with variance N0 at the note Ui.

User U1 uses its received signal for decoding x1, har-
vesting energy, and decoding x2. In particular, U1 divides
y1 into two parts with a PS coefficient ρ ∈ [0, 1]. The first
part given by yeh

1 = √
ρy1 is for harvesting energy, and

the second part given by yip
1 =

√
1 − ρy1 is for decoding

information. Consequently, the energy harvested at U1 is
[11]

E1 = TηρPSg1 (2)

where η denotes the energy conversion efficiency. U1 de-
codes x2 based on yip

1 , then applies successive interfer-
ence cancellation (SIC) before decoding x1. Therefore, the
signal-to-interference-plus-noise ratios (SINRs) for decod-
ing x2 and x1 at U1 are as follows

γx2
1 (α, ρ) = (1 − ρ) (1 − α)PSg1

(1 − ρ)αPSg1 + (1 − ρ)N0 + µN0
, (3)

γx1
1 (α, ρ) = (1 − ρ)αPSg1

(1 − ρ)N0 + µN0
, (4)

respectively. Here, the last term in the denominator of
γx2

1 (α, ρ) and γx1
1 (α, ρ) are due to the conversion noise

which is assumed to be AWGN with variance µN0 [17].
In the second phase, U1 uses the harvested energy E1 to

transmit x2 to U2. The signal received at U2 during this
phase is

ỹ2 =
√
ρηPSg1h3x2 + n2, (5)

where we, following recent related works, have assumed
that the harvested energy is used for information forward-
ing only, while the energy for maintaining circuit and
signal processing is neglected [10]-[12]. We suppose that
the maximal ratio combining (MRC) receiver is used at
U2 [18]. Then the SINR for decoding x2 at U2 is

γMRC
2 (α, ρ) = (1 − α)PSg2

αPSg2 +N0 + µN0
+ ρηPSg1g3

N0 + µN0
. (6)

In summary, the instantaneous achieved rates at U1 and
U2 are C1 (α, ρ) = 1

2 log2 (1 + γx1
1 (α, ρ)) and C2 (α, ρ) =

1
2 log2

(
1 + min

{
γx2

1 (α, ρ), γMRC
2 (α, ρ)

})
, respectively.

III. Weighted Sum Rate Optimization
Our aim is to maximize the weighted sum rate of the

system. Particularly, the optimization problem is formu-
lated as

maximize
α,ρ

w1C1 (α, ρ) + w2C2 (α, ρ) (7a)

subject to 0 < α < 1, 0 ≤ ρ ≤ 1, (7b)

where w1 > 0 and w2 > 0 are the priority weights.1 Here
we focus on the case w2 > w1 since the optimal solution for
the case w2 ≤ w1 is trivial, i.e. it is not difficult to justify
that the optimal solution for this case is (α = 1, ρ = 0).
A practical example for the considered scenario is that in
cellular network, the user at cell-edge suffering bad channel
conditions for a long time will be assigned a larger weight
compared to the one in near base station area for fairness
and/or stability [13]-[14].

Objective function (7a) is non-convex with respect to
the related variables. For achieving an optimal solution,
an exhaustive 2D search procedure (over α and ρ) can be
used. Clearly, doing this is highly complex and inefficient.
In the following, by looking inside the problem, we develop
a low-complexity 1D search algorithm which solves (7)
optimally.

1The weights are the given parameters which is determined by the
controllers for a specific policy, e.g. buffer stability or proportional
fairness.
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We start with an useful result stated as follows.

Lemma 1. Let (α∗, ρ∗) be an optimal of (7), then

C2 (α∗, ρ∗) = 1
2

log2
(
1 + γMRC

2 (α∗, ρ∗)
)
. (8)

Proof: The lemma can be proved by contradiction, i.e.
we first assume that there is an optimal point such that
(8) does not hold then we show that such the point does
not exist. More specifically, suppose that there exists an
optimal point (α∗, ρ∗) such that

log2 (1 + γx2
1 (α∗, ρ∗)) < log2

(
1 + γMRC

2 (α∗, ρ∗)
)
. (9)

Clearly, it must be ρ∗ > 0 due to the assump-
tion g1 ≥ g2. Now, we observe that γMRC

2 (α, ρ) and
γx2

1 (α, ρ) are increasing and decreasing functions of ρ,
respectively. And γx2

1 (α, 0) > γMRC
2 (α, 0). Consequently,

we always can find △ρ > 0 such that ρ∗ − △ρ ≥
0, and γx2

1 (α∗, ρ∗ − △ρ) = γMRC
2 (α∗, ρ∗ − △ρ). Since

γx2
1 (α∗, ρ∗ − △ρ) > γx2

1 (α∗, ρ∗), we have C2(α∗, ρ∗ −
△ρ) > C2(α∗, ρ∗). Moreover, C1(α∗, ρ∗−△ρ) > C1(α∗, ρ∗)
because γx1

1 (α, ρ) is a decreasing function of ρ. Con-
sequently, we have w1C1(α∗, ρ∗ − △ρ) + w2C2(α∗, ρ∗ −
△ρ) > w1C1(α∗, ρ∗) + w2C2(α∗, ρ∗). This means the
point (α∗, ρ∗ − △ρ) achieves a better objective value
compared to (α∗, ρ∗), which contradicts the assumption
at the beginning of the proof that (α∗, ρ∗) is an opti-
mal. This implies that, at the optimal, we always have
log2 (1 + γx2

1 (α∗, ρ∗)) ≥ log2
(
1 + γMRC

2 (α∗, ρ∗)
)
. This

completes the proof.
From Lemma 1 and the monotonicity of the logarithmic

function, we can rewrite (7) as

maximize
α,ρ

f(α, ρ) (10a)

subject to γx2
1 (α, ρ) ≥ γMRC

2 (α, ρ) (10b)
0 < α < 1, 0 ≤ ρ < 1 (10c)

where f(α, ρ) , (1 + γx1
1 (α, ρ))

(
1 + γMRC

2 (α, ρ)
)w̃2 , and

w̃2 = w2/w1. As a further step, we equivalently rewrite
(10) as

maximize
α,ρ

f(α, ρ) (11a)

subject to 0 < α < 1, 0 ≤ ρ ≤ ρ̃(α), (11b)

where ρ̃ (α) = b−
√

b2−4ac
2a , γ̄ = PS/N0, a = ηγ̄g1g3(αγ̄g1+1)

1+µ ,
b = ηγ̄g1g3(αγ̄g1+µ+1)

1+µ − (1−α)γ̄g2(αγ̄g1+1)
αγ̄g2+µ+1 + (1 − α) γ̄g1, and

c = (1 − α) γ̄g1 − (1−α)γ̄g2(αγ̄g1+1+µ)
αγ̄g2+µ+1 . The equivalence can

be proved as follows. We first note that the left hand-
side (LHS) of (10b) monotonically increases while the right
hand-side (RHS) of (10b) monotonically decreases with ρ.
In addition, when ρ = 0, the RHS is larger than the LHS
due to the assumption g1 ≥ g2. Moreover, the RHS → 0
when ρ → 1. Thus, given α ∈ (0, 1), there exists an unique
ρ̃(α) ∈ (0, 1) such that (10b) is satisfied if and only if
ρ ∈ [0, ρ̃(α)). It is noting that (10b) can be written as
aρ2 −bρ+c ≥ 0, from which we yield ρ̃(α). The new bound
ρ̃(α) in (11b) plays the important role in developing the
proposed algorithm.

Algorithm 1 The 1D search for solving (7) optimally.
1: For each α ∈ (0, 1), calculate ρ̃(α) and θ(α).
2: if θ(α) > 0 then
3: Calculate ρ̄(α) = β(α)−

√
θ(α)

qw̃2e

4: if ρ̄(α) ∈ (0, ρ̃(α)) then ρ∗(α) = ρ̄(α),
5: elseif ρ̄(α) ≤ 0, then ρ∗(α) = 0,
6: else ρ∗ = ρ̃(α∗), end if.
7: else
8: ρ∗ = ρ̃(α∗)
9: end if

10: Output: (α∗, ρ∗) = arg max
(α,ρ∗(α))

f(α, ρ∗(α))

We now focus on objective function (11a). For a given
α, (11a) reduces to a function of ρ given as

fα (ρ) , (d− eρ)
t− ρ

(p+ qρ)w̃2 (12)

where d = 1 + µ + αγ̄g1, e = 1 + αγ̄g1, t = 1 + µ, p =
1 + (1−α)γ̄g2

αγ̄g2+1+µ , q = ηγ̄g1g3
1+µ . We also introduce a function of

α given as

θ (α) = β2 − qw̃2e (dp− ept+ qw̃2td) (13)

where β (α) = 0.5qd (w̃2 − 1) + 0.5qet (w̃2 + 1). We have
an useful property of fα(ρ) stated as follows.

Proposition 1. If θ(α) > 0 and ρ̄(α) = β−
√

θ(α)
qw̃2N0v ∈ (0, 1),

when ρ increases, fα(ρ) increases until reaches a maximum
at ρ̄(α) then decreases. If θ(α) > 0 and ρ̄(α) ≤ 0, fα(ρ) is
decreasing over ρ ∈ (0, 1). Otherwise, fα(ρ) is increasing
over ρ ∈ (0, 1).

The proof of the proposition can be easily obtained via
the gradient of fα(ρ) given as

∂fα (ρ)
∂ρ

= [(d− et) (p+ qρ) + qw̃2 (t− ρ) (d− eρ)]
(p+ qρ)1−w̃2 (t− ρ)2 . (14)

The algebraic steps are skipped for the sake of brevity.
The property allows us to find the optimal value of ρ

when the optimal value α∗ is given as follows. ρ∗ = ρ̄(α∗)
if θ(α∗) > 0 and 0 < ρ̄(α∗) < ρ̃(α∗). If θ(α∗) > 0 and
ρ̄(α∗) < 0, ρ∗ = 0. Otherwise ρ∗ = ρ̃(α∗). In summary, we
outline the proposed 1D search procedure in Algorithm 1
which outputs the optimal solution of (7).

IV. Ergodic Rate Analysis

In this section, we derive the ergodic rates achieved at
the users (and their weighted sum) with fixed values of α
and ρ, which can be used as a benchmark in evaluating
the Algorithm 1.

Before going into detail, it is important to note that
the cumulative distributed function (CDF) of the ordered
variables g1 and g2 are given by Fg1 (x) = Fg̃1 (x)Fg̃2 (x)
and Fg2 (x) = 1 − [1 − Fg̃1 (x)] [1 − Fg̃2 (x)], where Fg̃1 (x)
and Fg̃2 (x) are the CDF of unordered variables g̃1 and g̃2.
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A. Ergodic Rate of U1

The ergodic rate of the U1 is expressed as follows [18]

Ce
1 = 1

2 ln (2)

∫ ∞

0

1 − FX (x)
1 + x

dx, (15)

where X = (1−ρ)αγ̄g1
1−ρ+µ , and FX (x) is given by

FX (x) = 1 −
∑

i=1,2
exp

(
−Ax

δ2
i

)
+ exp

(
−Ax

δ2
12

)
, (16)

where δ2
i = d−ϵi

i is the power of the unordered channel h̃i,
di and ϵi denote the distance and the pathloss exponent,
δ2

12 = δ2
1δ

2
2/
(
δ2

1 + δ2
2
)
, and A = (1 − ρ+ µ) / (1 − ρ)αγ̄.

Plugging (16) into (15) gives

Ce
1 = 1

2 ln (2)
∑

i=1,2,12
ψ (i) exp

(
A

δ2
i

)
Γ
(

0, A
δ2

i

)
, (17)

where ψ (1) = 1, ψ (2) = 1, ψ (12) = −1, and Γ (x, y) is
the incomplete upper Gamma function.

B. Ergodic Rate of U2

Similar to (15), we have

Ce
2 = 1

2 ln (2)

∫ ∞

0

1 − FZ (z)
1 + z

dz, (18)

where Z = min
{
γx2

1 (α, ρ), γMRC
2 (α, ρ)

}
= min {Y,W}

and FZ (z) can be approximated as

FZ (z) ≃ 1 − Pr [Y > z] Pr [W > z] , (19)

where the correlation between Y and W is ignored. It can
be readily verified that the correlation between Y and
W vanishes in the high SNR region implying that the
approximation is tight when the average SNR goes large.
The probability term Pr [Y > z] is first derived as

Pr [Y > z] =

{0, if z ≥ 1−α
α
,∑

i=1,2,12
ψ (i) exp

(
− αAz

δ2
i

(1−α−αz)

)
, if z < 1−α

α
.

(20)

Secondly, Pr [W > z] can be approximated as follows

Pr [W > z] ≃ 1 −
∫ z

0
FW1 (z − y) fW2 (y) dy, (21)

where W1 = (1−α)γ̄g2
αγ̄g2+1+µ , W2 = ρηγ̄g1g3

1+µ , and

FW1 (z) =

{
1, if z ≥ 1−α

α
,

1 − exp
(

− z(1+µ)
γ̄δ2

12(1−α−αz)

)
, if z < 1−α

α
,

(22)

fW2 (z) = 2
∑

i=1,2,12

ψ (i) B
δ2

i

K0

(
2
√
Bz

δ2
i

)
, (23)

where B = (1 + µ) /ρηγ̄δ2
3 and Kn (x) denotes the modi-

fied Bessel function of the second kind of order nth [19].
(20) is obtained by ignoring the correlation between W1
and W2 which is vanished in the high SNR region. We note
that (z − y) is always less than 1−α

α when z < 1−α
α . On

the other hand, when z ≥ 1−α
α , z−y ≥ 1−α

α if y ≤ z− 1−α
α

and z− y < 1−α
α if z− 1−α

α ≤ y ≤ z. Base on this fact, we
can further extend (21) as follows

Pr [W > z] ≃ 1 − FW2 (z)

+
∫ z

L(z)
exp

(
− (1 + µ) (z − y)
γ̄δ2

12 (1 − α− αz + αy)

)
fW2 (y) dy,

(24)

where L (z) = 0 if z < (1 − α) /α, L (z) = z − (1 − α) /α
otherwise, and

FW2 (z) = 1 − 2
∑

i=1,2,12
ψ (i)

√
Bz

δ2
i

K1

(
2

√
Bz

δ2
i

)
. (25)

Plugging (24) and (20) into (19) and (18), we obtain

Ce
2 ≃

1−α
α∫

0

1/ ln (2)
1 + z

∑
i=1,2,12

ψ (i)

√
Bz

δ2
i

K1

(
2

√
Bz

δ2
i

)

·
∑

i=1,2,12
ψ (i) exp

(
−αAz

δ2
i (1 − α− αz)

)
dz

+

1−α
α∫

0

z∫
L(z)

1/ ln (2)
1 + z

exp
(

− (1 + µ) (z − y)
γ̄δ2

12 (1 − α− αz + αy)

)

·
∑

i=1,2,12
ψ (i) exp

(
−αAz

δ2
i (1 − α− αz)

)

·
∑

i=1,2,12
ψ (i) B

δ2
i

K0

(
2

√
By

δ2
i

)
dydz, (26)

which can be readily evaluated by using Matlab or Math-
ematica. From (17) and (26), we can straightforwardly
obtain the system weighted sum rate, i.e. Ce

sum = w1C
e
1 +

w2C
e
2, with fixed values of α and ρ.

C. High SNR Analysis
To gain novel insights from our afore-presented analytic

results, we now investigate the ergodic rates in the high
SNR region.

Proposition 2. In the high SNR region, the ergodic rates
of U1 and U2 can be approximated as follows

Ce
1 ≈ 1

2 ln (2)

[
ln
(
δ2

1 + δ2
2

A

)
− χ

]
, (27)

Ce
2 ≈ 1

2
log2

(
1 + 1 − α

α

)
, (28)

where χ denote the Euler constant.

Proof: For Ce
1, we first note that Γ (0, x) = −Ei (−x),

where Ei (x) denotes the exponential integral function.
Then using the the facts that exp(x) x→0−−−→ 1 and
Ei (x) x→0−−−→ χ + ln (−x) + x, we can obtain (27).
For Ce

2, let’s first recall its instantaneous expression
C2 = 1

2 log2
(
1 + min

{
γx2

1 (α, ρ), γMRC
2 (α, ρ)

})
. Then, in

the high region of γ̄, we can readily show that γx2
1 (α, ρ) →

1−α
α < γMRC

2 (α, ρ) → 1−α
α + ρηγ̄g1g3

1+µ , from which (28) can
be obtained.
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Figure 1. Achievable rates with fixed values of α and ρ.

Proposition 2 implies that as the average SNR γ̄ in-
creases, the ergodic rate of U1 monotonically increases,
however, that of U2 is saturated. This is reasonable be-
cause as γ̄ increases, the SNR used for decoding x1 at U1
also increases, and thus, the ergodic rate of U1 increases.
On the other hand, the actual SINR used for decoding x2
is limited by the minimum of the SINRs used for decoding
x2 at U1 and U2. In addition, when γ̄ increases, the SINR
used for decoding x2 at U1 quickly converges to 1−α

α and
limits the actual SINR used for decoding x2, which makes
the ergodic rate of U2 saturated.

From Proposition 2, we have

Ce
sum = w1C

e
1 + w2C

e
2 ≈ w1

2
log2 (γ̄) , (29)

which reveals that when γ̄ → ∞, the scaling of the system
weighted sum rate is w1

2 log2 (γ̄). In other words, (29)
shows that the weighted sum rate increases log-linearly
with the increase of the average SNR γ̄.

V. Numerical Results and Discussions
We now provide representative simulated results to

validate our analysis and demonstrate the enhancement
of the system performance achieved by the proposed 1D
algorithm. In our simulations, we set η = 0.7, ϵi = 3,
T = 1, and the coordinates of source, good user, and poor
user are (0, 0), (1, 1), and (3, 0), respectively.

Figure 1 plots the ergodic rates of the considered system
with fixed values of α and ρ. The first observation is
that the analytic curve of Ce

1 follows the corresponding
simulated one excellently, while the analytic curves of Ce

2
and Ce

sum quickly converge to the corresponding simulated
curves in the medium and high SNR regions. This result
implies that our analyses on the system’s ergodic rates
are valid. Secondly, the figure confirms our finding on the
scaling of the weighted sum rate in the high SNR region.
The other interesting observation is that the ergodic rate
of U2 is saturated as the average SNR gets large, revealing
that increasing the average SNR (or equally increasing the
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Figure 3. Average value of ρ∗ and α∗ versus w̃2.

transmit power PS) cannot enhance the performance of the
user with poor channel.

Figure 2 plots the system weighted sum rates with
optimal and fixed values of α and ρ as functions of the
average SNR. We take w̃2 = {2, 5}. The figure clearly
shows that using the Algorithm 1 remarkably enhances the
weighted sum rate of the system. Particularly, at γ̄ = 30
dB, optimal values of α and ρ provides 37.5% and 18.4%
weighted sum rate enhancements with w̃2 = 5 and w̃2 = 2.
Thus, the results strongly suggest that the parameters α
and ρ should be optimized.

In Fig. 3, we illustrate the average of the optimal values
of α and ρ (i.e. E {a∗} and E {ρ∗}, respectively) versus
w̃2. An interesting observation is that as w̃2 increases,
E {a∗} reduces and approaches zero. This is due to the fact
that when w̃2 enlarges, U2 has a higher priority compared
to U1, and thus, more power should be allocated to the
transmission of x2. On the other hand, we can also observe
that E {ρ∗} increases and tends to a certain value. This
is because the rate of U2 provided in Lemma 1 is an
increasing function with ρ, and ρ∗ should be small enough
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so that the constraint (10b) is satisfied.

VI. Conclusion
We considered a C-NOMA system with RF-EH includ-

ing a source and two users. We first developed a 1D search
algorithm to optimally solve the problem of weighted sum
rate maximization respect to the power allocation α and
the power splitting coefficient ρ. Then, we derived closed-
form expressions and high SNR approximations of the
ergodic rates achieved at the two users with fixed values of
α and ρ. The numerical results demonstrated that using
the optimal values of α and ρ significantly enlarges the
system weighted sum rate, i.e. 37.5% enhancement when
the average SNR is 30 dB and the weight ratio is 5. In
addition, we revealed that the scaling of the weighted sum
rate with fixed value of α and ρ is w1

2 log2 (γ̄) in the high
SNR region.
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