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Abstract—In dynamic time-division-duplexing (TDD) net-
works, the available resources per cell can be freely allocated
to either uplink (UL) or downlink (DL) depending on the
instantaneous traffic demand. Hence, complicated UL-DL and
DL-UL interference scenarios arise due to simultaneous UL and
DL data transmission in adjacent cells. In this paper, decen-
tralized iterative beamformer designs are obtained for several
traffic aware network optimization objectives such that only
minimal information exchange is required among the coordinated
base-stations (BSs) and user-equipments (UEs). Bi-directional
forward-backward training via spatially precoded over-the-air
pilot signaling is used to facilitate coordinated beamforming.
This allows BSs and UEs to iteratively optimize their respective
transmitters/receivers based on only locally measured reverse link
pilot measurements. Novel bi-directional beamformer training
strategies and methods for direct estimation (DE) of the stream
specific beamformers are developed for each intermediate beam-
former update in a limited and noisy pilot environment. The
proposed signaling and DE schemes allow for non-orthogonal
and overlapping pilots, which considerably reduces the resource
coordination effort. Also, the decontamination ability of the
proposed strategies are analyzed with limited pilot resources. The
numerical examples illustrate the superior system performance of
the proposed training and estimation framework in comparison
to both the traditional stream-specific channel estimation method
and an uncoordinated system.

Index Terms—dynamic or flexible TDD, coordinated beam-
forming, pilot decontamination, direct estimation, weighted queue
minimization, weighted sum rate maximization.

I. INTRODUCTION

Mobile data traffic is expected to grow exponentially in
the coming years due to ever-increasing smartphone usage,
and massive demand for online video and cloud services
[1], [2]. Future wireless mobile networks should be able to
satisfy the increasing traffic demand which is asymmetric
and bursty in nature. Consequently, small-cell deployment has
been identified as a key research direction to fulfill these
requirements. A large number of small cells with very short
coverage area can be used in addition to the traditional
macro/micro cells to deliver mobile data in high mobile data
traffic areas [3], [4]. Furthermore, asymmetric mobile data
traffic can be efficiently handled with time division duplexing
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(TDD) by allocating resources in uplink (UL) and downlink
(DL) directions based on the instantaneous traffic demand.
Hence, TDD based small-cell networks provide several ben-
efits, such as reduced complexity channel state information
(CSI) estimation using channel reciprocity, flexible handling
of dynamic traffic and easy frequency re-use planning [5], [6].

In a small cell network, imposing the same fixed UL/DL
configuration over the network would greatly limit the overall
resource utilization as the adjacent cells potentially have
different instantaneous UL/DL traffic demand. Dynamic TDD
can be used to overcome this problem by adjusting the UL/DL
mode asynchronously based on the traffic state of each individ-
ual cell [6], [7]. Moreover, 3rd generation partnership project
(3GPP) new radio (NR) standard has given special attention
to fully dynamic or flexible TDD, which is an essential 5th
generation mobile networks (5G) component [8], [9]. Conse-
quently, there is a need for the new 5G air interfaces to meet
the physical layer latency requirements without restrictions on
UL/DL slot assignment [10].

Interference management in dynamic TDD systems be-
comes more challenging as complicated interference scenarios
arise due to simultaneous UL and DL data transmission in
adjacent cells. Specifically, the DL base station (BS) trans-
mission may be interfering with the UL reception (BS-BS
interference) and the UL user equipment (UE) transmission
may be interfering with DL reception (UE-UE interference).
Previous studies on dynamic TDD have focused on com-
plicated time slot allocation algorithms that mitigate this
cross-link interference [11]–[16]. In addition to increased
spectral efficiency and improved reliability, spatial processing
via multiple-input-multiple-output (MIMO) systems provides
additional degrees of freedom to mitigate the detrimental
interference both at the transmitter and receiver. Hence, the
interference management in dynamic TDD based small-cell
deployments is more efficient when both BSs and UEs are
equipped with multiple antennas.

While the channel reciprocity can be utilized to acquire the
CSI of the UE-BS and BS-BS links, a specific challenge of
the dynamic TDD approach is to acquire the CSI between
the mutually interfering UEs. Explicit feedback of the UE-
UE channels in addition to a full CSI exchange between
BSs would be required to enable optimal beamformer design
which renders the centralized design impractical. However, the
coordinated beamformer design for dynamic TDD systems
can be carried out in a decentralized manner with the help
of bi-directional forward-backward (F-B) training via spatially
precoded over-the-air (OTA) pilot signaling [17], [18]. In this
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case, it is essential to have fast beamformer convergence to
implement these systems in practice with fading channels and
to minimize the training overhead [17], [18].

Accurate CSI estimation is essential for any beamformer
design. Hence, we need to employ distinguishable pilot se-
quences to estimate corresponding channels at the relevant
nodes. However, the number of orthogonal pilot sequences that
can be used for CSI estimation is constrained due to limited
coherence time and coherence bandwidth of the wireless chan-
nel [19], [20]. Consequently, in dense networks, the number
of orthogonal pilots is not sufficient to distinguish all possible
channels. Hence, we must reuse pilots sequences or employ
non-orthogonal pilots to estimate the CSI. This, on the other
hand, causes the so-called pilot contamination effect, where
the desired channel is polluted by other channels. Therefore,
beamformer or CSI estimation should be robust against pilot
contamination effect.

A. Prior Work

Most of the dynamic TDD studies are directed towards
distributed dynamic time slot allocation algorithms to alleviate
the cross-slot interference. For example, in [11]–[16] various
time slot allocation strategies have been proposed and com-
pared with the existing methods. In [21], small cell dynamic
TDD transmissions have been investigated for heterogeneous
networks by employing cell clustering and power control based
interference cancellation scheme. In [22], an energy efficiency
(EE) beamformer design was proposed with the cloud radio
access network assumption, which requires centralized pro-
cessing.

In the context of synchronous UL/DL1 TDD networks,
numerous centralized and decentralized beamformer designs
with different coordination assumptions have been considered
to optimize network utilities such as weighted sum rate (WSR)
maximization, EE, weighted queue minimization (WQM), and
weighted sum mean square error (WSMSE) minimization, e.g.,
in [17], [23]–[31]. In [23], [24], the WSR maximization is
carried out via WSMSE minimization and alternating opti-
mization of the transmit precoders and receivers. Furthermore,
the authors in [17] proposed a distributed CSI acquisition
framework and novel fast converging strategies for iterative
WSMSE based approach in a realistic multi-cell environment.
Therein, bidirectional F-B training using spatially precoded
pilots is employed to provide implicit exchange of inter-
mediate beamformers between BSs and UEs, assuming that
enough orthogonal pilots are available for stream specific
precoded pilots. Further convergence improvements for WSR
problem based on successive convex approximation (SCA)
methods were proposed in [26], also with additional per user
QoS/rate constraints. Recently, traffic aware transceiver design
for weighted queue minimization has been investigated in [27].
Similarly to [17], [23], [24], [26], the decentralized solution
in [27] was based on iterative evaluation of Karush-Kuhn-
Tucker (KKT) conditions of the optimization problem. The
resulting beamformer structures were shown to be very similar

1The term, Synchronous UL/DL is used refer UL/DL transmission syn-
chronously over the multicell network

to those corresponding to other optimization objectives such
as WSR maximization, WSMSE minimization, etc. However,
all the above studies assumed perfect channel estimation in
their designs.

Practical implementation of coordinated precoding and CSI
acquisition have been investigated in, e.g., [17], [32]–[35].
Moreover, the pilot contamination effect and possible ways
to mitigate this impact have been studied, e.g., in [36]–[41].
An interesting approach to mitigate pilot contamination was
proposed in [34], where direct least squares (LS) beamformer
estimation from the contaminated UL/DL pilots was investi-
gated. Moreover, there have been a few studies to mitigate
pilot contamination by using pilot reuse algorithms with the
use of channel statistics. For example, authors in [37] proposed
a pilot reuse method utilizing spatial correlation properties.
However, none of these studies consider dynamic TDD setting.

B. Contributions

Motivated by above concerns, we study several decentral-
ized beamformer designs with different optimization objectives
for multi-cell multi-user MIMO dynamic TDD systems. We
consider WQM, and its special cases, queue weighted sum rate
(QWSR) maximization and sum mean square error (SMSE)
minimization objectives with power constraints at DL BSs and
UL UEs. First, we improve the convergence properties of the
WQM approach presented in [27] by reformulating it similarly
to [26], and the problem is solved via iterative evaluation
of KKT conditions leading to a distributed algorithm. Then,
to facilitate practical implementation, we employ over-the-
air (OTA) signaling architecture as in [17], [18], [34]. More
specifically, we employ precoded pilots to exchange the inter-
mediate beamformers in both backward and forward direction
iteratively. Hence, we consider a TDD frame to carry out both
OTA bi-directional signaling and data transmission. Moreover,
several bi-directional training iterations can be embedded into
a TDD frame before the data transmission. A methodology
was proposed in [18], to implement this TDD frame structure
by adapting standardization works on 3GPP NR [9]. As the
number of OTA signaling rounds is incresed, time remaining
for the actual data transmission become shorter. Hence, the
impact of OTA training overhead is investigated via numerical
simulations. Then, we propose three different direct beam-
former estimation methods to alleviate the pilot contamination
effect. In these methods, we use the received precoded pilot
information to estimate intermediate beamformers directly
using LS based estimation without separately decorrelating
individual pilot sequences. We refer these approaches as direct
estimation (DE) methods. The DE approaches are compared
with conventional stream-specific estimation (SSE) method,
where the beamformers are constructed from the estimated
equivalent (precoded) channel vectors. In both techniques,
precoded pilot sequences are used to implicitly exchange
information on beamformers and user-specific weights. How-
ever, when non-orthogonal pilots are used for the beamformer
signaling, DE approach provides a better estimation due to
the LS based estimation gain. Furthermore, the superiority
of the DE method (versus SSE) is demonstrated analytically.
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Finally, to enhance the decontamination further, we consider a
traditional pilot reuse approach for alleviating pilot overlap. A
simple (but centralized) pilot reuse approach is proposed for
complicated dynamic TDD setup based on large-scale fading
information of the BS-UE and UE-UE channels.

Major contributions of this paper are summarized as fol-
lows:
• Fast converging iterative decentralized beamformer de-

sign is proposed for dynamic TDD system with the WQM
objective.

• The proposed design is adapted to QWSR maximization
and SMSE minimization objectives as special cases of
WQM design.

• OTA bi-directional signaling architecture is proposed to
implement beamformer designs in practice.

• Three DE-based beamformer estimation strategies are
proposed to mitigate the pilot contamination.

• The superiority of DE over SSE is proven analytically.
• A centralized pilot reuse algorithm is proposed to dy-

namic TDD setting.
• Performance of the proposed methods are studied with

numerical examples.
This article is an extended version of our previously pub-

lished conference papers [42]–[45]. In [42], [43] we investi-
gated WSR maximization problem for dynamic TDD network
by employing bi-directional signaling to facilitate iterative de-
centralized design. Then, in [44], we studied the above system
by employing non-orthogonal pilots. In [45] we investigated
pilot decontamination methods using pilot reuse algorithms
with the queue minimization objective.

C. Organization and Notation
The rest of the paper is organized as follows. Section

II presents the system model that used for the rest of the
article. In Section III, the proposed decentralized beamformer
design is presented for dynamic TDD. Training and signaling
architecture that supports decentralized beamformer design is
addressed in Section IV. Pilot decontamination using DE is
introduced in Section IV.A and three different DE strategies
are presented in Sections IV.B-D. The DE comparison with
the SSE approach is shown in Section IV.E. Pilot decontam-
ination using pilot reuse methods are discussed in Sections
IV.F. Complexity and overhead study is presented in Section
IV.G. Finally, Section V presents the numerical examples and
Section VI concludes the paper.

Notations: Cm×n denotes an m × n matrix with elements
in the complex field. Capital bold letters represent matrices,
simple bold letters represent vectors and simple letters rep-
resent scalar variables. (·)−1, (·)T, and (·)H indicate inverse,
transpose, and Hermitian of a matrix respectively. E{.} is the
expectation of a random variable. Cardinality of a discrete set
A is denoted as |A|. CN (x, y) denotes a complex Gaussian
random variable with mean x and variance y. A similar
notation is valid when the variable is a vector or matrix.

II. SYSTEM MODEL

We consider a multi-cell multi-user MIMO system operating
in dynamic TDD mode. The multi-cell network consists of

Fig. 1: Dynamic TDD system.

N BSs and K UEs. We denote the set of BS indices as
B = {1, . . . , N} while the set of UEs served by each BS i
is denoted by Ui. The number of users served by each BS
i is denoted by Ki = |Ui|. Also, the serving BS of the
user k is denoted as ik. Each UE k employs Nk antenna
elements, whereas each BS i employs Mi antenna elements.
In a given time, a subset of base stations BU ⊆ B serves
the uplink traffic and rest of the base stations BD = B \ BU
are serving the DL traffic. The maximum number of spa-
tial data streams allocated to UE k ∈ Ui is denoted by
Lk ≤ min(Mi, Nk). For notational simplicity, we define
two sets Adl = {j, l|j ∈ Ui, l = 1, . . . , Lj , i ∈ BD} and
Aul = {j, l|j ∈ Ui, l = 1, . . . , Lj , i ∈ BU}. Here, Aul and
Adl representing data stream indexing sets for the uplink and
downlink transmissions, respectively. Furthermore, we assume
the channels to be reciprocal in the UL and DL. The dynamic
TDD model is illustrated in Fig. 1.

The received signal x
(dl)
k ∈ CNk at the DL user k can be

expressed as

x
(dl)
k =

∑
{j,l}∈Adl

H
(dl)
ij ,k

m
(dl)
j,l d

(dl)
j,l

+
∑

{j,l}∈Aul

H
(ul-dl)
j,k m

(ul)
j,l d

(ul)
j,l + z

(dl)
k , (1)

where H
(dl)
ij ,k
∈ CNk×Mij is the channel matrix between the

DL BS ij and the UE k, H
(ul-dl)
j,k ∈ CNk×Nj is the interference

channel matrix between the UL UE j and the DL UE k. The
transmit precoder for lth spatial data stream of the DL UE
j ∈ Ui is denoted as m

(dl)
j,l ∈ CMi and the transmit precoder

for lth spatial data stream of the UL UE j ∈ Ui is m
(ul)
j,l ∈

CNj . Transmitted data symbols to DL UE j in lth spatial
stream and transmitted data symbols from UL UE j in lth

spatial stream are denoted as d(dl)
j,l and d(ul)

j,l , respectively. Here,
the transmit data symbols are assumed to be independent and
identically distributed with E{|d(dl)

j,l |2} = 1 and E{|d(ul)
j,l |2} =

1. We assume complex white Gaussian noise vector z
(dl)
k ∈

CNk with variance N0 per element. Similarly, the received
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signal x
(ul)
i ∈ CMi at the uplink BS i is given by

x
(ul)
i =

∑
{j,l}∈Aul

H
(ul)
i,j m

(ul)
j,l d

(ul)
j,l

+
∑

{j,l}∈Adl

H
(dl-ul)
ij ,i

m
(dl)
j,l d

(dl)
j,l + z

(ul)
i , (2)

where H
(ul)
i,j ∈ CMi×Nj is the channel matrix between user j

and UL BS i, H
(dl-ul)
ij ,i

∈ CMi×Mij is the interference channel
matrix between the DL BS ij serving user j and the UL BS i.
Also, we consider z

(ul)
i ∈ CMi to be complex white Gaussian

noise vector with variance N0 per element. Note that, due to
the channel reciprocity, H

(ul)
i,j = H

(dl)T

i,j .
To estimate the received data through lth spatial stream, DL

UE k employs a linear receiver u
(dl)
k,l ∈ CNk . Similarly, the

UL BS ik employs a linear receiver u
(ul)
k,l ∈ CMik to decode

the received data from UL user k through the spatial stream
l. Then, the estimated data at a RX2 node, corresponding
to UL/DL data transmission can be written in a common
form as d̂

(a)
k,l . Here, for DL UE k, estimated data is given

as d̂(dl)
k,l = u

(dl)H

k,l x
(dl)
k whereas for UL BS ik, the estimated

data transmitted by UE k is given as d̂(ul)
k,l = u

(ul)H

k,l x
(ul)
ik

. From
here on, for simplicity, a generic supercript ’a’ is introduced
to represent both ’DL’ and ’UL’ directions.

The mean squared error (MSE) for lth stream of for UE k
corresponding to UL/DL data detection is defined as3

ε
(a)
k,l = Ed[|d(a)

k,l − d̂
(a)
k,l |

2]

= 1− 2<(u
(a)H

k,l H
(a)
ik,k

m
(a)
k,l )+u

(a)H

k,l M
(a)
k u

(a)
k,l , (3)

where M
(a)
k is the received signal covariance matrix for UE

k. This is given for DL UE k as

M
(dl)
k =Ed[x(dl)

k x
(dl)H

k ] =
∑

{j,l}∈Adl

H
(dl)
ij ,k

m
(dl)
j,l (H

(dl)
ij ,k

m
(dl)
j,l )H

+
∑

{j,l}∈Aul

H
(ul-dl)
j,k m

(ul)
j,l (H

(ul-dl)
j,k m

(ul)
j,l )H +N0I (4)

and for UL UE k at BS ik (note that in UL, the M
(ul)
k is the

same for all k ∈ Uik ) as

M
(ul)
k =Ed[x(ul)

ik
x

(ul)H

ik
] =

∑
{j,l}∈Aul

H
(ul)
ik,j

m
(ul)
j,l (H

(ul)
ik,j

m
(ul)
j,l )H

+
∑

{j,l}∈Adl

H
(dl-ul)
ij ,ik

m
(dl)
j,l (H

(dl-ul)
ij ,ik

m
(dl)
j,l )H +N0I. (5)

The linear minimum MSE (MMSE) receiver employed for data
detection can be obtained from (3) as

ũ
(a)
k,l = (M

(a)
k )−1H

(a)
ik,k

m
(a)
k,l . (6)

When the MMSE receiver is employed, the corresponding
MSE can be obtain as

ε̃
(a)
k,l = 1− ũ

(a)
k,l

HH
(a)
ik,k

m
(a)
k,l , (7)

2RX is used to refer DL UE for DL transmission or UL BS for UL
transmission.

3Ed{.} is the expectation operation over transmit data symbols.

which is called the MMSE value of the estimated received
data corresponding to the UL/DL data transmission of user k
from spatial stream l. Finally, assuming independent detection
of data streams, we can write the signal-to-interference-plus-
noise ratio (SINR) γ(a)

k,l at RX node for DL/UL data transmis-
sion as in (8) and (9).

III. DECENTRALIZED BEAMFORMER DESIGN

The main problem in centralized dynamic TDD beamformer
design is to acquire the CSI at the centralized node. That is,
all the DL BS-UE channels, UL BS-UE channels, cross-UE
channels and cross-BS channels should be available at the cen-
tralized unit. This is a tedious task as there are lots of cross-UE
channels to be estimated and reported. Hence, decentralized
beamformer design is more suited for dynamic TDD networks,
where we can overcome the channel estimation problem by
using bi-directional OTA signaling framework [18]. In this
section, we study iterative decentralized beamformer design
for dynamic TDD. First, we generalize the WQM solution
from [27] to cover the dynamic TDD setting. Furthermore,
we reformulate the problem for improved convergence using
the ideas from [26] that were originally applied to WSR
maximization. Second, we consider some special cases of
WQM to obtain a beamformer design for QWSR maximization
and SMSE minimization. In this Section, we consider only the
algorithmic solution for the distributed framework. Practical
implementation and related imperfections are presented in
latter sections.

A. Weighted Queue Minimization

Here, weighted `q-norm queue minimization of the UL and
DL users is considered with sum transmit power constraints
at the transmitters. Let Q(dl)

k denote the number of queued
packets destined for DL user k and Q(ul)

k denote the number
of queued packets at UL user k at a given scheduling instant.
Also, we model the traffic generation in the network using
Poisson arrival process, where λ(dl)

k (τ) ∼ Pois(A
(dl)
k ) is the

generated traffic for DL user k in time instance τ . Similarly,
λ

(ul)
k (τ) ∼ Pois(A

(ul)
k ) defines the generated traffic at UL user

k at time instance τ . Here, A(dl)
k = Eτ{λ(dl)

k } and A
(ul)
k =

Eτ{λ(ul)
k } are the average number of packet arrivals in bits

for the corresponding UL/DL users. Then, the total number of
queued packets at (τ + 1)th time instant destined/available to
user k is given by

Q
(a)
k (τ + 1) =

[
Q

(a)
k (τ)−R(a)

k (τ)
]+

+ λ
(a)
k (τ), (10)

where [x]+ , max {x, 0} and R
(a)
k is the transmission rate

to user k with a = {UL,DL}. Here, R(a)
k =

∑Lk
l=1 R

(a)
k,l ,

where R(a)
k,l denotes the number of transmitted bits over the

lth spatial stream to user k. For SINR γ
(a)
k,l , the maximum rate

is bounded by R(a)
k,l ≤ log2(1 + γ

(a)
k,l ). Now, we can define the

queue deviation metric for the DL and UL as

Ψ
(a)
k = Q

(a)
k −R

(a)
k = Q

(a)
k −

Lk∑
l=1

log2(1 + γ
(a)
k,l ). (11)
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γ
(dl)
k,l =

∣∣∣∣u(dl)H

k,l H
(dl)
ik,k

m
(dl)
k,l

∣∣∣∣2
N0‖u(dl)

k,l ‖
2 +

∑
{j,n}∈Adl
{j,n}6={k,l}

|u(dl)H

k,l H
(dl)
ij ,k

m
(dl)
j,n |

2 +
∑

{j,n}∈Aul

|u(dl)H

k,l H
(ul-dl)
j,k m

(ul)
j,n |

2
(8)

γ
(ul)
k,l =

∣∣∣∣u(ul)H

k,l H
(ul)
ik,k

m
(ul)
k,l

∣∣∣∣2
N0‖u(ul)

k,l ‖
2 +

∑
{j,n}∈Aul
{j,n}6={k,l}

|u(ul)H

k,l H
(ul)
ik,j

m
(ul)
j,n |

2 +
∑

{j,n}∈Adl

|u(ul)H

k,l H
(dl-ul)
ij ,ik

m
(dl)
j,n |

2
(9)

In order to simplify the notation, let Ψ̃(a) denote a vector
with elements Ψ̃

(a)
k , α

1/q
k Ψ

(a)
k . Here, αk is the weighting

factor, used to prioritize users based on their corresponding
QoS requirements. The WQM problem can be formulated as

min.
m

(a)
k,l ,u

(a)
k,l

‖Ψ̃(dl)‖q + ‖Ψ̃(ul)‖q (12a)

s. t.
∑
k∈Ui

Lk∑
l=1

‖m(dl)
k,l ‖

2 ≤ P (dl)
i ∀i (12b)

Lk∑
l=1

‖m(ul)
k,l ‖

2 ≤ P (ul)
k ∀k, (12c)

where optimization variables are transmit precoders m
(a)
k,l

and receive combiners u
(a)
k,l . Also, P (dl)

i and P
(ul)
k are the

maximum transmit powers available at the i-th DL BS and the
k-th UL UE, respectively. Note that (12a) includes an implicit
rate constraint Q(a)

k −
∑Lk
l=1R

(a)
k,l ≥ 0 on the maximum number

of transmitted bits for each user as governed by the number
of backlogged packets [27]. The `q norm is used to provide a
trade off between the fairness and sum queue minimization.

At RX, we employ MMSE receivers. Hence, we obtain the
following relation between the MSE and the SINR [17]

ε̃
(a)
k,l = (1 + γ

(a)
k,l )−1. (13)

Therefore, we can write the user-specific rates using the user-
specific MSE values as R(a)

k =
∑Lk
l=1− log2(ε̃

(a)
k,l ). Now, we

introduce auxiliary MSE constraint as in [26] to (12) and re-
write the optimization problem as

min.
m

(a)
k,l ,u

(a)
k,l ,

t
(a)
k,l

∑
a∈

{UL,DL}

∑
k

αk

(
Q

(a)
k −

Lk∑
l=1

t
(a)
k,l log2(β)

)q
(14a)

s. t. ε
(a)
k,l ≤ β

−t(a)k,l (14b)

(12b), (12c), (14c)

where β is a predefined constant to adjust the approximation
function such that β > 0 [26]. By introducing these MSE
constraints, our objective becomes a convex function of aux-
iliary variables t(a)

k,l . However, the constraint (14b) is still in
non-convex form. The non-convexity in (14b) can be handled

iteratively by using the first-order Taylor series approximation
similarly to [26]

β−t
(a)
k,l = −K1t

(a)
k,l +K2, (15)

where K1 = β−t̄
(a)
k,l log(β) and K2 = β−t̄

(a)
k,l + t̄

(a)
k,lK1. Here,

t̄
(a)
k,l is the point of approximation. By employing the above

approximation for the MSE constraints, we can re-write the
equivalent optimaization problem as

min.
m

(a)
k,l ,u

(a)
k,l ,

t
(a)
k,l

∑
a∈

{UL,DL}

∑
k

αk

(
Q

(a)
k −

Lk∑
l=1

t
(a)
k,l log2(β)

)q
(16a)

s. t. 1− 2<(u
(a)H

k,l H
(a)
ik,k

m
(a)
k,l )

+u
(a)H

k,l M
(a)
k u

(a)
k,l ≤ −K1t

(a)
k,l +K2 (16b)

(12b), (12c). (16c)

Finally, the optimization problem (16) can be solved using
alternating optimization (AO) between the transmit and receive
beamformers. We adopt an approach based on the KKT
optimality conditions [26], [27]. Due to the independent nature
of the optimization variables, the solution can be decoupled
to calculate at RX and TX4 nodes iteratively. Therefore,
we define tasks for each coordinated nodes to implement
this distributed iterative solution. For example, the RX node
performs the task ’Receiver update’ and the TX node performs
the task ’Transmitter update’ as mentioned below.

Receiver update

Here, we present the beamformer design steps that the
RX node should be performed. To do that, all the transmit
precoders should be made available at the RX node. We begin
by fixing, the transmit precoders and solving for the receive
beamformers and the other variables (auxiliary and dual).
First, we calculate MMSE receivers u

(a)
k,l using (6). Next, the

corresponding MSE ε
(a)
k,l is obtained from (7). Then, the MSE

bounds can be solved with respect to fixed MSE ε
(a)
k,l as

t
(a)
k,l = t̄

(a)
k,l +

1

log(β − ξ)

(
1− ε(a)

k,l t̄
(a)
k,l

)
, (17)

4TX is used to refer DL BS for DL transmission or UL UE for UL
transmission.



6

where t̄(a)
k,l denotes t(a)

k,l from the previous iteration, ξ = β−θ
nζ

,
ζ ∈ R is chosen to be an approximately small constant and
θ > 1. Here, the multiplier 1

log(β−ρ) can be considered as a
step size and ξ is used for more aggressive convergence as
detailed in [26]. Then, dual variables ω(a)

k,l corresponding to
(15) are obtained as

ω
(a)
k,l = (1− ρ)ω̄

(a)
k,l (18)

+ ρ
[
αk q log2(β)

K1

(
Q

(a)
k −

Lk∑
l=1

t
(a)
k,l log2(β)

)(q−1)]+
,

where ω̄
(a)
k,l denotes fixed ω

(a)
k,l from the previous iteration.

Here, ρ ∈ (0, 1) controls the convergence and is used to
prevent overallocation. From here on, we refer to ω

(a)
k,l as

user specific weight. The calculated MMSE receivers and
user-specific weights information must be conveyed to /made
available at coordinating TX nodes, in order to the perform
’Transmitter update’ task.

Transmitter update

In the next step, we fix the MMSE receivers and solve
for the transmit precoders. At this point, we assume all
the MMSE receiver information and user-specific weights
available at the TX node (to be detailed in Section IV). The
transmit beamformers m

(a)
k,l can be derived from the first-order

optimality conditions of (14) as

m
(a)
k,l =

(
Φ

(a)
k + ν

(a)
k I

)−1

ω
(a)
k,l H

(a)H

ik,k
u

(a)
k,l , (19)

where Φ
(a)
k and ν

(a)
k are the weighted transmit covariance

matrix and the dual variable corresponding to power constraint
at the transmiter (UL UE k or DL BS ik). For DL BS ik,
Φ

(dl)
k ∀ k ∈ Uik is given by

Φ
(dl)
k =

∑
{j,l}∈Adl

ω
(dl)
j,l H

(dl)H

ik,j
u

(dl)
j,l (H

(dl)H

ik,j
u

(dl)
j,l )H

+
∑

{j,l}∈Aul

ω
(ul)
j,l H

(dl-ul)H

ij ,ik
u

(ul)
j,l (H

(dl-ul)H

ij ,ik
u

(ul)
j,l )H. (20)

Similarly, for UL user k, Φ
(ul)
k is given by

Φ
(ul)
k =

∑
{j,l}∈Aul

ω
(ul)
j,l H

(ul)H

ij ,k
u

(ul)
j,l (H

(ul)H

ij ,k
u

(ul)
j,l )H

+
∑

{j,l}∈Adl

ω
(dl)
j,l H

(ul-dl)H

j,k u
(dl)
j,l (H

(ul-dl)H

j,k u
(dl)
j,l )H. (21)

The transmit beamformers can efficiently solved from (19)
by bisection search over the dual variables ν(dl)

k and ν
(ul)
k to

satisfy the power constraints
∑
k∈Ui

∑Lk
l=1 ‖m

(dl)
k,l ‖2 ≤ P

(dl)
i

and
∑Lk
l=1 ‖m

(ul)
k,l ‖2 ≤ P

(ul)
k , respectively.

Here, we employed alternating optimization approach to
calculate the precoders and decoders. Hence, beamformers are
not optimal as they are optimized for their fixed counterparts.
Thus, we need to repeat the precoder/decoder optimization
until the estimated beamformers and/or the optimization ob-
jective have converged. This procedure is summarized in
Algorithm 1. Note that the centralized unit can get the same

solution by considering this distributed implementation as
independent subproblems, which can be solved in parallel.
However, for dynamic TDD setting, we are more interested
in the decentralized solution. Moreover, detailed signaling
structure to facilitate the iterative algorithm is explained in
Section IV.

Algorithm 1 Iterative Beamformer Design

1: Initializing feasible transmit beamformers m
(a)
k,l . . TX

2: Distribute initial transmit beamformers and prioritizing
weights αk to all RX. . TX

3: repeat
4: Estimate MMSE receivers u

(a)
k,l from (6). . RX

5: Estimate auxiliary variables t(a)
k,l , and user specific

weights ω(a)
k,l using (17) and (18). . RX

6: Distribute all MMSE receivers and user specific
weights to all TX. . RX

7: Estimate transmit precoders m
(a)
k,l from (19). . TX

8: Distribute all transmit precoders to all RX. . TX
9: until convergence.

B. Queue Weighted Sum Rate Maximization
In this section, we consider a special case of WQM assum-

ing Q(a)
k is large and q = 2. Consequently, (14) is reduced to

the following equivalent QWSR maximization problem

max.
m

(a)
k,l ,u

(a)
k,l

∑
a∈{UL,DL}

∑
k

Lk∑
l=1

αkQ
(a)
k R

(a)
k,l (22)

s.t (12b), (12c).

We can follow the same procedure as in WQM to obtain
an iterative beamformer design for the QWSR maximization
problem. Since we assume queue size to be large, we do not
need to control the over allocation of assigned rates as in (18).
Therefore, user-specific weights ω(a)

k,l are given simply as

ω
(a)
k,l =

αk log2(β)Q
(a)
k

K1
. (23)

The other beamformer and auxiliary variable updates are the
same as in WQM. Note that when Q

(a)
k = 1∀k, QWSR

objective is equivalent to WSR. Note that when β = 2,
the beamformer estimation procedure is equivalent to our
previously studied WSMSE based approach [42]–[44].

C. Sum MSE Minimization
The WQM problem can be approximated by a simple SMSE

minimizing beamformer design provided that the system op-
erates in high SNR regime with equal user priorities, the
queue sizes are large with q = 1, and there are enough
spatial degrees of freedom available such that all users can
be served concurrently. The SMSE minimization problem can
be formulated as

min.
m

(a)
k,lu

(a)
k,l

∑
a∈{UL,DL}

∑
k

Lk∑
l=1

ε
(a)
k,l (24)

s.t (12b), (12c).
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In this special case, the weight updates are not needed and
the optimal TX and RX beamformers (given fixed RX and
TX beamformers) are solved directly from (19) and (6),
respectively.

IV. TRAINING AND SIGNALING

In the previous section, we considered iterative beamformer
designs for WQM, QWSR, and SMSE objectives. In this
section, we introduced possible approaches to implement
these algorithms in practice. In all of the proposed iterative
beamformer algorithms, we need to iteratively exchange or
make available the intermediate beamformers and user-specific
weights between the coordinated nodes. However, in dynamic
TDD setup, we do not have the luxury to use a backhaul
based approach as UEs are also playing a role in beamformer
estimation. Hence, we employ F-B OTA training for the
implicit information exchange [17], [18].

In the considered F-B OTA training scheme, we employ
precoded (and weighted) pilot sequences in the forward and
backward directions. Here, the forward direction refers to
transmitters sending their training sequences, and the back-
ward direction is referring to receivers sending their training
sequences. The bi-directional training allows a fully dis-
tributed coordinated computation of transmit/receive beam-
formers without full CSI exchange over a backhaul. Further-
more, bi-directional signaling is embedded into each TDD
frame to facilitate fast iterative information exchange as shown
in Fig. 2 [18], [43].The nodes estimate their precoder/decoder
based on the received forward/backward training sequences.
Then, the estimated precoder/decoder is used for precoding the
next iteration forward/backward training. Using this approach,
we are able to practically implement the proposed beamformer
designs.

It is possible to implement TDD frame structure in Fig.
2 (Scheduling block), with the approved 3GPP NR standard
[9]. Beamformer signaling part can be implemented by con-
catenating multiple minislots together with the required guard
period (GP) [18]. Then, multiple slots can be aggregated
for data transmission. Moreover, each F-B iteration adds
signaling overhead to the system. Hence, it is better to have
a larger scheduling block to minimize the signaling overhead.
However, it is constrained by coherence time and the traffic
burstiness of the system. Note that, TDD frame should be
synchronous over the UL/DL cells during the beamformer
signaling. However, if the user scheduling remains the same
for multiple TDD frames, and if the channel is slowly fading,
the B-F training phase can use the beamformers from the
previous frame as the starting point. Then, we can have less
F-B iterations per TDD frame.

In a dense dynamic TDD network, a large number of
orthogonal pilots would be required for ideal pilot estimation.
In general, this is not possible due to the limited number
of orthogonal resources. Therefore, we have to reuse the
pilot sequences or employ non-orthogonal pilots during the
training. Thus, the desired channel can be polluted by other
user channels. This scenario is known as pilot contamination.
Hence, it is essential to study the dynamic TDD system

Frame n - 1 Data Frame n + 1F B… …

Frame n

Beamformer Signaling

Forward (F) pilots Backward (B) pilotsB B

OTA Signaling

Processing

Forward link CSI estimation

RX beamformer computation

Backward link CSI estimation

TX beamformer computation

F B

Fig. 2: TDD frame structure.

under imperfect OTA signaling conditions. Pilot contamination
can be demoted in several ways, such as allocating pilots to
minimize the pilot overlap and using clever channel estimation
algorithms [36]–[40]. In the following subsections, we study
various approaches to mitigate the pilot contamination while
supporting the original beamformer design objectives. First,
we consider three LS based strategies for direct beamformer
estimation using only the precoded pilot information. Then,
to further enhance the pilot decontamination, we propose pilot
reuse method based on the large-scale fading information. Ad-
ditionally, we analytically compare the proposed DE method
with the SSE method to prove the superior decontamination
capability of the DE approach.

A. Pilot decontamination by direct beamformer estimation

Here, we investigate the OTA signaling architecture under
imperfect pilot conditions by assuming that the pilot training
sequences used by each UE/BS are non-orthogonal, and only
the pilot training sequences of the associated in-cell users
are known to each UE/BS. As we employ non-orthogonal
overlapping pilots, the effective channels are contaminated
by interfering pilot training sequences. Therefore, they can-
not be perfectly distinguished from each other. Without this
information, we can not directly construct Φ

(dl)
k in (20) at

the DL BS ik or Φ
(ul)
k in (21) at the UL UE k in order to

estimate their transmit precoders. To overcome this problem,
we introduce three different strategies to facilitate the direct
precoder/decoder estimation by using the received precoded
training information directly without separately estimating all
individual pilots (channels). In Table I, the signaling require-
ments for the forward/backward training are summarized for
the proposed schemes. The proposed schemes are named as,
Strategy A, Strategy B and Strategy C. Strategy A is proposed
to implement exact beamformer design at both RX and TX
with the minimum number OTA signaling (one forward and
one backward training iteration per one beamformer signaling
round). Hence, a separate (quantized) feedback link is required
to transmit additional scalar weight information. Alternatively,
we propose two designs; Strategy B and Strategy C. Both
schemes use only the OTA signaling to exchange required
information. In Strategy B, similar to Strategy A, we try to
construct the beamformer design with the minimum number of
OTA signaling. However, one backward training is not enough
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TABLE I: Precoded pilots/Feedback used in each Strategy.

Strategy Forward Backward Training FeedbackTraining 1st 2nd

Strategy A m
(a)
k,l

√
ω
(a)
k,l u

(a)
k,l NA

√
ω
(a)
k,l

Strategy B m
(a)
k,l u

(a)
k,l NA NA

Strategy C m
(a)
k,l

√
ω
(a)
k,l u

(a)
k,l ω

(a)
k,l u

(a)
k,l NA

to fully reconstruct the required weighted covariance matrix
at the TX node. Hence, Strategy B follows an approximated
beamformer design. To overcome the limitation of Strategy
B and for the fully construction of the beamformer design,
we propose Strategy C with two backward training resources.
Further details on each strategy are presented in below.

B. Strategy A

In this strategy, we employ two training signals and one
feedback message for each precoder/decoder iteration. First,
forward pilots are transmitted by precoding the training se-
quence with the transmit beamformers m

(a)
k,l . Then, the RXs

estimate their MMSE receivers u
(a)
k,l and the corresponding

user-specific weights ω(a)
k,l by using the received pilot training

matrices. Next, the RX nodes use weighted MMSE receivers√
ω

(a)
k,l u

(a)
k,l as the precoders for backward training pilots.

At the same time, the RXs transmit square root of user-
specific weights

√
ω

(a)
k,l through the feedback channel. Both,

the backward pilot information and feedback information are
used to estimate the transmit precoder m

(a)
k,l at TX node. In

the following, the direct beamformer estimation procedure for
Strategy A is described in more detail.

Transmit Precoder Estimation

Let bk,l ∈ CS denote the pilot training sequence for lth data
stream of DL/UL user k, where S is the length of the pilot
sequence. For backward training, the pilots are precoded with√
ω

(a)
k,l u

(a)
k,l . Then, the received precoded pilot training matrix

of user k at DL BS ik (note that the R
(dl)
k is the same for all

k ∈ Uik ) is given by

R
(dl)
k =

∑
{j,l}∈Adl

√
ω

(dl)
j,l H

(dl)H

ik,j
u

(dl)
j,l bH

j,l

+
∑

{j,l}∈Aul

√
ω

(ul)
j,l H

(dl-ul)H

ij ,ik
u

(ul)
j,l bH

j,l + N
(dl)
ik
, (25)

where N
(dl)
ik
∈ CMik

×S is the estimation noise matrix for all
pilot symbols. Similarly, the received pilot training matrix at
UL user k, during the first backward training, is given by

R
(ul)
k =

∑
{j,l}∈Aul

√
ω

(ul)
j,l H

(ul)H

ij ,k
u

(ul)
j,l bH

j,l

+
∑

{j,l}∈Adl

√
ω

(dl)
j,l H

(ul-dl)H

j,k u
(dl)
j,l bH

j,l + N
(ul)
k , (26)

where N
(ul)
k ∈ CNk×S is the estimation noise matrix.

At DL BS ik, we recover a noisy version of Φ
(dl)
k ∀ k ∈ Uik

in (20) directly using the received composite channel informa-
tion R

(dl)
k as,

Φ̄
(dl)
k = R

(dl)
k R

(dl)H

k = Φ
(dl)
k + Ωik , (27)

where Ωik includes all the cross-terms in (25) due to non-
orthogonal pilots as well as noise. With orthogonal pilots,
Ωik would contain only estimation noise. The structure and
significance of Ωik is examined in more detail in Section IV-E.
Similarly, we can approximately construct Φ

(ul)
k in (21) at

UL user k directly using the received composite channel
information R

(ul)
k as

Φ̄
(ul)
k = R

(ul)
k R

(ul)H

k = Φ
(ul)
k + Ωk, (28)

where Ωk indicates the cross pilot interference.
With the knowledge of the received training matrices R

(a)
k ,

user-specific weights
√
ω

(a)
k,l (received via the feedback chan-

nel) and own training sequences bk,l, we can locally estimate
the transmit beamformers in a closed form expressions as

m
(a)
k,l =

(
R

(a)
k R

(a)H

k + Iν
(a)
k

)−1√
ω

(a)
k,l R

(a)
k bk,l, (29)

where the optimal ν(dl)
k and ν(ul)

k are found by bisection search
to satisfy the power constraints

∑
k∈Ui

∑Lk
l=1 ‖m

(dl)
k,l ‖2 ≤ P

(dl)
i

and
∑Lk
l=1 ‖m

(ul)
k,l ‖2 ≤ P

(ul)
k , respectively. In the ideal condi-

tions with orthogonal pilots and very high pilot SNR (or very
large S), (29) would be equal to (19).

Receive Beamformer and Weights Estimation

In the forward training, the pilots are precoded with the
transmit precoders m

(a)
k,l . Then, the received precoded pilot

training matrix at DL user k is given by,

T
(dl)
k =

∑
{j,l}∈Adl

H
(dl)
ij ,k

m
(dl)
j,l bH

j,l

+
∑

{j,l}∈Aul

H
(ul-dl)
j,k m

(ul)
j,l bH

j,l + N
(dl)
k , (30)

where N
(dl)
k ∈ CNk×S is the estimation noise matrix for all

pilot symbols. Similarly, the received precoded pilot training
matrix at UL BS ik is given by

T
(ul)
k =

∑
{j,l}∈Aul

H
(ul)
ik,j

m
(ul)
j,l bH

j,l

+
∑

{j,l}∈Adl

H
(dl-ul)
ij ,ik

m
(dl)
j,l bH

j,l + N
(ul)
ik
, (31)

where N
(ul)
ik
∈ CMik

×S is the estimation noise matrix. Then,
by using the received composite channel information T

(a)
k and

own pilot training sequence bk,l we can directly estimate the
MMSE receivers as

u
(a)
k,l =

(
T

(a)
k T

(a)H

k +N0I

)−1

T
(a)
k bk,l. (32)

Also, the RX MSE can be estimated as

ε
(a)
k,l = 1− u

(a)
k,l

HT
(a)
k bk,l. (33)
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Finally, we can estimate ω
(a)
k,l using (18) or (23) based on

our optimization objective. Note that here we assume that, for
any particular user, the forward and backward sequences are
the same. However, the forward/backward pilots can also be
designed separately.

C. Strategy B

In contrast to Strategy A, Strategy B does not require feed-
back channel to exchange the user-specific weights. Similar
to Strategy A, the forward training pilots are precoded with
the transmit precoders m

(a)
k,l . Then, the RX nodes estimate the

MMSE receivers u
(a)
k,l . Next, the estimated MMSE receivers

are used to precode the backward training pilots. The infor-
mation received from the backward training pilots is enough
to reconstruct the Φ

(a)
k at TX k/ik. However, by using locally

evaluated user-specific weights, we can only approximately
estimate the transmit precoders.

Transmit Precoder Estimation

In the backward training, the pilots are precoded with the
MMSE receivers u

(a)
k,l without weights ω(a)

k,l . The received pilot
training matrix at DL BS ik,∀ k ∈ Uik is, then, given by

R
(dl)
k,1 =

∑
{j,l}∈Adl

H
(dl)H

ik,j
u

(dl)
j,l bH

j,l

+
∑

{j,l}∈Aul

H
(dl-ul)H

ij ,ik
u

(ul)
j,l bH

j,l + N
(dl)
ik
. (34)

Similarly, the received pilot training matrix at UL user k,
during the first backward training, is given by

R
(ul)
k,1 =

∑
{j,l}∈Aul

H
(ul)H

ij ,k
u

(ul)
j,l bH

j,l

+
∑

{j,l}∈Adl

H
(ul-dl)H

j,k u
(dl)
j,l bH

j,l + N
(ul)
k . (35)

Then, we can estimate the user weights ω(a)
k,l locally by using

the first set of received composite channel R
(a)
k,1 and training

sequence bk,l at TX k/ik. To do that, first, we estimate MSE
ε
(a)
k,l locally as

ε
(a)
k,l = 1− (R

(a)
k,1bk,l)

Hm̄
(a)
k,l , (36)

where m̄
(a)
k,l is the transmit precoder estimated in the previous

iteration or the initial condition. Then, we can estimate ω(a)
k,l

using (18) or (23). Finally, we construct Φ̄
(dl)
k,1 , at DL BS ik,

as

Φ̄
(dl)
k,1 , R

(dl)
k,1 (I +

∑
j∈Uik

Lj∑
l=1

(ω
(dl)
j,l − 1)

S
bj,lb

H
j,l)R

(dl)H

k,1

=
∑
j∈Uik

Lj∑
l=1

ω
(dl)
j,l H

(dl)H

ik,j
u

(dl)
j,l (H

(dl)H

ik,j
u

(dl)
j,l )H

+
∑

{j,l}∈Adl
j 6∈Uik

H
(dl)H

ik,j
u

(dl)
j,l (H

(dl)H

ik,j
u

(dl)
j,l )H

+
∑

{j,l}∈Aul

H
(dl-ul)H

ij ,ik
u

(ul)
j,l (H

(dl-ul)H

ij ,ik
u

(ul)
j,l )H + Ωik . (37)

Similarly, at UL UE k, we construct Φ̄
(ul)
k as

Φ̄
(ul)
k,1 , R

(ul)
k,1 (I +

Lk∑
l=1

(ω
(dl)
k,l − 1)

S
bk,lb

H
k,l)R

(ul)H

k,1

=

Lk∑
l=1

ω
(ul)
k,l H

(ul)H

ik,k
u

(ul)
k,l (H

(ul)H

ik,k
u

(ul)
k,l )H

+
∑

{j,l}∈Aul
j 6=k

H
(ul)H

ij ,k
u

(ul)
j,l (H

(ul)H

ij ,k
u

(ul)
j,l )H

+
∑

{j,l}∈Adl

H
(ul-dl)H

j,k u
(dl)
j,l (H

(ul-dl)H

j,k u
(dl)
j,l )H + Ωk. (38)

It is clear that in this estimation scheme, Φ̄
(ul)
k,1 does not

contain the ideal Φ
(a)
k from (20)-(21) unlike in (37)-(38). This

is mainly due to unavailability of the user specific weights
from the interfered users. This is equivalent to assuming
ω

(a)
k,l = 1 for all non-local data streams. As in Strategy A,

with the knowledge of the received training matrices R
(a)
k,1

and own training sequences bk,l, we can estimate the transmit
beamformers directly in closed form as

m
(a)
k,l =

(
Φ̄

(a)
k,1 + Iν

(a)
k

)−1

ω
(a)
k,l R

(a)
k,1bk,l (39)

where the optimal ν(a)
k is found by bisection search similarly

to (29). The receive beamformer estimation procedure for
Strategy B is same as in Strategy A.

D. Strategy C

In this strategy, we employ three training pilots per beam-
former iteration, one in the forward direction and two consec-
utive training pilots in the backward direction. The forward
training procedure is same as strategies A and B, where we use
transmit precoders m

(a)
k,l as the pilot precoders. The RXs esti-

mate their MMSE receivers u
(a)
k,l and the corresponding user

weights ω(a)
k,l from the received pilots. In the backward phase,

the first training sequences are precoded with
√
ω

(a)
k,l u

(a)
k,l and

the second transmission pilot sequences are precoded with
ω

(a)
k,l u

(a)
k,l . The estimated pilot training matrices for the first

pilot sequence are the same as in Strategy A (25)-(26) denoted
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by R
(a)
k . The training matrix corresponding to the second

pilot sequence denoted by R
(a)
k,2 is the same except the weight

difference (
√
ω

(a)
k,l replaced with ω

(a)
k,l ). The backward pilot

information is used to estimate the transmit precoder m
(a)
k,l as

m
(a)
k,l =

(
R

(a)
k R

(a)H

k + Iν
(a)
k

)−1

R
(a)
k,2bk,l. (40)

Other expressions are derived similarly to Strategies A and B
and are omitted here to avoid repetition.

E. DE vs SSE
The signaling and training strategies proposed in previous

subsections directly estimate the beamformers (DE approach)
from the received pilot training matrices. As an alternative
implementation, we consider the SSE technique. In the SSE
method, we separately estimate each pilot, and the estimated
information is used to calculate beamformers and user weights.
Therefore, all the coordinating nodes need to know the pilot
sequences used at each node. The SSE approach can be
highly vulnerable to pilot contamination, if non-orthogonal
pilot sequences are employed for OTA signaling. However, the
DE is better suited for noisy environments and more resilient
to pilot contamination. In this section, we analyze the DE
and SSE estimation inaccuracies by considering the estimation
of Φ

(dl)
k in Strategy A. Also, without loss of generality, we

examine DL only case (Aul = ∅) in order to ease the notational
complexity.

In stream specific estimation, we assume that all pilots are
first individually estimated. Then, the covariance matrices and
beamformers are constructed from those individual parts. The
signaling model remains the same, that is, the received training
matrix is of form (25). Recall that R

(dl)
k is the same for all

k ∈ Uik . From (25), each DL BS ik = 1, . . . , B, k ∈ Uik
estimate the UE (stream) specific pilots as

f
(dl)
ik,j,l

=R
(dl)
k bj,l,∀(j, l) (41)

=

√
ω

(dl)
j,l H

(dl)H

ik,j
u

(dl)
j,l + δik,j,l,

where δik,j,l denotes the estimation noise and pilot contami-
nation corresponding to pilot sequence bj,l at BS ik. We can
immediately observe a potential downside to this. In order to
accomplish (41), BS ik has to know all pilot sequences bj,l.
Also, the amount of estimation noise and pilot contamination
gradually increase with the number of pilot sequences. Then
using all the collected stream specific estimates, the matrix
(Φ̄

(dl)
k )SSE for the SSE approach is given by

(Φ̄
(dl)
k )SSE =

∑
{j,l}∈Adl

f
(dl)
ik,j,l

f
(dl)H

ik,j,l
= Φ

(dl)
k + Kk

+ K̄k +
∑

{j,l}∈Adl

N
(dl)
ik

bj,lb
H
j,lN

(dl)H

ik
(42)

where Kk and K̄k are additional interference terms given in
(43) and (44), respectively. On the other hand, the estimation
expressions (Φ̄

(dl)
k )DE for the DE approach are given by

(Φ̄
(dl)
k )DE = R

(dl)
k R

(dl)
k

H = Φ
(dl)
k + Kk + N

(dl)
ik

N
(dl)H

ik
(45)

From the expressions in (45) and (42), we can observe that
SSE expression differs from DE case due to additional esti-
mation error term K̄k and estimated noise terms N

(dl)
ik

N
(dl)H

ik

and
∑
{j,l}∈Adl

N
(dl)
ik

bj,lb
H
j,lN

(dl)H

ik
. In order to compare DE

and SSE approaches, first, we can see that E[N
(dl)
ik

N
(dl)H

ik
] is a

diagonal matrix of size Mik×Mik with each diagonal element
equal to N0S, i.e.,

Tr(E[N
(dl)
ik

N
(dl)H

ik
]) = MikN0S. (46)

For the SSE case, we can form a symmetric matrix Cik =∑
{j,l}∈Adl

bj,lb
H
j,l with the size of S×S, where the diagonal

terms are equal to K/S. Since the matrix trace is invariant
under cyclic permutations, the following holds

Tr(E[
∑

{j,l}∈Adl

N
(dl)
ik

bj,lb
H
j,lN

(dl)H

ik
]) = MikN0K. (47)

Assuming a practical scenario where the number of users
served is larger than the available pilot resources (sequence
length), K > S, then

Tr(E[
∑

{j,l}∈Adl

N
(dl)
ik

bj,lb
H
j,lN

(dl)H

ik
]) > Tr(E[N

(dl)
ik

N
(dl)H

ik
]).

(48)

Finally, by taking the MSE of estimates (45) and (42), we can
obtain the following relationship

E[|(Φ(dl)
k )SSE −Φ

(dl)
k |

2]�E[|(Φ(dl)
k )DE −Φ

(dl)
k |

2] + K̄kK̄
H
k ,
(49)

where the inequality follows from (48) and from the fact that
K̄kK̄

H
k is a positive definite matrix. Thus, DE provides better

estimation performance than SSE in the MSE sense.

F. Decontamination via Pilot Reuse

In this section, we consider a traditional pilot reuse ap-
proach to enhance the pilot decontamination further. The
main aim is to assess how much additional gain can be
achieved by applying centralized pilot assignment as compared
to the decentralized direct estimation methods proposed in
Section IV. A simple pilot reuse approach is proposed for
complicated dynamic TDD setup based only on large-scale
fading information of the BS-UE and UE-UE channels. In
dynamic TDD networks, finding a proper utility for the pilot
assignment is challenging. For example, the received channel
information at DL UE k in the forward training phase and
received channel information at DL BS ik in the backward
training phase are contaminated with different set of BSs and
UEs. In our previous work, we introduced logarithmically
weighted interference-to-signal-ratio (ISR) based decontami-
nation method for DL only case [45]. Here, we use the same
approach but with slight modifications to cope with specific
challenges due to the dynamic TDD scenario.

In the considered heuristic method, the pilot allocation is
carried out utilizing the user specific path loss measurements
and reports. The basic idea is to reuse the same pilot for
two users when they are physically far from each other. In
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Kk =
∑

{j,l}∈Adl
{y,z}∈Adl
(y 6=j&z 6=l)

√
ω

(dl)
j,l ω

(dl)
y,zH

(dl)H

ik,j
u

(dl)
j,l bH

j,lby,z(H
(dl)H

ik,y
u(dl)
y,z )H +

∑
{j,l}∈Adl

√
ω

(dl)
j,l

(
H

(dl)H

ik,j
u

(dl)
j,l bH

j,lN
(dl)H

ik
+ N

(dl)
ik

bj,l(H
(dl)H

ik,j
u

(dl)
j,l )H

)

(43)

K̄k =
∑

{{j,l},{y,z},{s,t}}∈Adl
(s6=j&t6=l)

√
ω

(dl)
s,t ω

(dl)
y,zH

(dl)H

ik,s
u

(dl)
s,t bH

s,tbj,lb
H
j,lby,z(H

(dl)H

ik,y
u(dl)
y,z )H

+
∑

{{j,l},{y,z}}∈Adl
(y 6=j&z 6=l)

√
ω

(dl)
y,z

(
H

(dl)H

ik,y
u(dl)
y,zbH

y,zbj,lb
H
j,lN

(dl)H

ik
+ N

(dl)
ik

bj,lb
H
j,lby,z(H

(dl)H

ik,y
u(dl)
y,z )H

)
(44)

addition to BS-UE path loss measurements, we assume UE-UE
received signal strength indicator (RSSI) based measurements
are made available at BSs to avoid allocating same pilots to
severely interfering DL and UL users. In order to do that, UE
should be able to listen to received signals from both BSs and
nearby UEs. Based on the RSSI measurements, UE reports
a set of strongest measured RSSI values, both from BSs and
UEs to serving BS via a separate control channel.

To assign the pilots, we define a cost function RGp for every
orthogonal pilot p ∈ {1, ..., S} that is shared with a set of users
Gp ⊂ U as

RGp =
∑
k∈Gp

log(1 +
∑

j∈Gp/{k}

Ij/Sk) (50)

where Sk is the path gain between user k serving BS ik, and Ij
is the path gain between interfering user j and BS ik. Logarith-
mic ISR weighting is used to provide fairness such that weak
users (far from BS) are not severely penalized. Every time a
pilot is reused the cost function is increased correspondingly.
The resulting ISR value is scaled by 1 to make the utility
function always positive. Finally, the minimization problem
used for the pilot allocation is formulated as

minimize
Gp∀p

S∑
p=1

RGp

s.t Yk ∩ Gp = ∅ ∀k, p, (51)

where Yk is the set of users with shortest UE-UE distance
to user k. Finding optimal solution for above integer problem
is highly complex for large S and K. Hence, a sub-optimal
greedy method is used to solve the problem and the entire
process is summarized in Algorithm 2. First, potential cost
values for each pair are computed assuming they share the
same pilot. Then, the user pair with minimum cost is assigned
with the same pilot. Consequently, next pilot resources are
assigned to the unassigned user pairs with the minimum utility
value. Continuing this, up to 2S users are assigned. Then, the
rest of the unassigned users are allocated to pilots using the
same greedy method on the per pilot basis such a way that
corresponding pilot will not be used more than K/S+1 times.
Here, the main target is to minimize the total log weighted
pilot interference in the system. This may not accurately
match with the original traffic aware optimization objective

in Section III. However, the results show significant sum rate
improvement as compared to random pilot assignment.

Algorithm 2 Pilot Reuse Algorithm

1: Initialize :
• Define kmax = dKS e - maximum number of users that

are assigned to the same pilot.
• Find Yk for each user k and set G = ∅.

2: First phase: Assign pilots up to 2S users
3: For a = 1 : K, For b = 1 : K, If b /∈ Ya do:
4: Calculate R{a,b} for {a, b} UE pair from (50).
5: End, End, End
6: For p = 1 : S do:
7: Define set X = {{a, b} | {a, b} ⊂ U and {a, b} 6⊂ G}
8: argmin

∀{a,b}⊂X
R{a,b} → Gp = {a, b}

9: Update user assignment G = G1 ∪ ... ∪ GS
10: End
11: Last phase: Assign pilots to unassigned users
12: For c = 1 : kmax − 2, For p = 1 : S, do:
13: Define set Z = {x | Yx ∩ Gp = ∅ and x 6∈ G}
14: argmin

x∈Z
RGp∪{x} → Gp = Gp ∪ {x}

15: Update pilot assignment G = G1 ∪ ... ∪ GS
16: End End

G. Complexity and Overhead

It is important to study the complexity and associated
overhead of the proposed DE-based strategies. Therefore, in
this subsection, we look into those two concerns.

Complexity Study

Here, we study the computational complexity of the pro-
posed direct beamformer estimation methods. All strategies
have similar computational complexities. Hence, we consider
Strategy A in this study. In proposed iterative strategies, the
complexity is linearly proportional to the number of OTA
signaling rounds. Hence, we focus on one iteration only. There
are 4 types of nodes involved in computing beamformers. The
corresponding complexity at each node is as follows,
• DL BS - The dominant operation is the matrix inversion

in (29). Also, there is a dual variable which we found by
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bisection search to satisfy the power constraint. Hence,
the complexity is O(M3

i ×∆×Ki×Lk), where ∆ is the
number bisection iterations required to satisfy the power
constraint.

• DL UE - Here, the dominant operation is the matrix
product operation within the inverse matrix in (32). Hence
the complexity is O(N2

k × S).
• UL BS - The complexity due to operations in (32) is

roughly O(M2
i × (Mi + S + Lk ×Ki)).

• UL UE - The dominant complexity is coming from
the bisection iterations and the matrix inversion in (29).
Therefore, the complexity is O(N3

k ×∆× Lk).

It is obvious that BS should have a higher computational
capability compared to UEs. For the proposed strategies, for
BSs, maximum complexity requirement arise when it is in DL
mode. Which is O(M3

i ×∆×K × Lk) per one beamformer
signaling round. Also, for UEs, maximum complexity require-
ment is O(N3

k×∆×Lk), which arises when it is in UL mode.

Overhead Model

As in Fig.2, the TDD frame is divided into two portions;
1. beamformer signalling, 2. data transmission. Therefore, the
actual achievable rate of the system pretty much depends on
the beamformer training duration. Here, we can model it as,

Rac = (1− τ0
T

BIT)Rsum, (52)

where, Rac is the actual achievable sum rate and Rsum is the
achieved sum rate from the iterative algorithm after BIT bi-
directional precoder/decoder training rounds. The signaling
overhead per one signaling round is τ0

T , where τ0 and T
are the duration for a one precoder/decoder iteration and the
duration of the TDD frame, respectively. Here, we refer τ0
as the ’effective overhead duration per F-B training round ’.
Following tasks are performed during the τ0,

• Tx nodes transmit precoded pilots, which are precoded
with transmit beamformers (F-training).

• Rx nodes estimate receiver beamformers and user-specific
weights.

• Rx nodes transmit pilots using the estimated receive
beamformers as pilot precoders possibly weighted by the
user-specific weights as described in Section IV.B-D (B-
training). Moreover, in Strategy A, we utilize a separate
(quantized) feedback mechanism to exchange the scalar
weights.

• Tx nodes estimate transmit precoders.

In addition to the above tasks, a guard period is required when
the communication direction changes forward to backward
and vice-versa. However, the overhead related for exchanging
control messages such as measured RSSI values, explicit
information about the queue sizes and prioritize coefficients
is not included in this formula as the reporting period for
such messages is much longer. In numerical examples, we
investigate optimal number of bi-directional signaling rounds
required for a TDD frame with this overhead model.
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Fig. 3: 19-cell wrap-up model.

V. NUMERICAL EXAMPLES

The simulations are carried out for nineteen cell (= 19)
wrap-around model as illustrated in Fig. 3. The distances
between the BSs are considered to be 200 m and the UEs
are randomly placed at the cell edge. For all the simulations,
the path loss exponent is fixed to 3.67. The power constraint
for DL BSs and UL UEs are normalized such that P (ul)

k =

P
(dl)
i /Ki, i.e., the total cell-specific UL power is equal to the

DL power. However, we consider different power allocation in
Fig. 7. Moreover, SNR is defined with respect to the DL cell
edge user (SNR = SkP

(dl)
ik

/N0). To simplifying the study, all
the user priority weights are assumed to be αk = 1. In Fig. 8,
we examine time-correlated block fading, which is generated
using Jake’s Doppler spectrum model with the normalized
user terminal velocity tSfD = 0.01, where tS and fD are the
signaling rate and the maximum Doppler shift, respectively.
For the rest of the figures, we have used uncorrelated block
fading model. We have randomly assigned UL/DL BSs with
DL cell probability = 0.5, for all the results except in Fig. 6.
User weights αkQ

(a)
k = 1∀k are used for all results with

WSR maximization. Perfect CSIT is assumed to be available
in simulation results shown in Figs. 4–8. For the practical
channel/beamformer estimation results shown in Figs. 9–11
the pilot gain is considered to be 10dB.

The actual achievable sum rate obtained from the WSR
maximization objective versus the total overhead due to OTA
signaling is shown in top of the Fig. 4. The second figure
illustrates the convergence of the beamformer algorithm with
respect to the number of beamformer iterations. In this par-
ticular example, we assume that a single precoder/decoder
iteration consumes 1% ( τ0T = 0.01) of the frame length. Note
that, it is possible to have τ0 smaller than 0.1ms with the
proposed TDD frame structure [18]. Hence, we can obtain
τ0
T = 0.01 even with relatively short coherence time (if the
coherence time is 10 ms, we can have a TDD frame with T =10
ms). We can observe that the scenario with β = 30, ζ = 0.05
and θ = e has a better converging behaviour in comparison
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Fig. 4: Overhead and convergence comparison with cell edge SNR
= 20 dB, K = 152,Ki = 8 & Mi = 8 ∀i ∈ B, Nk = 2 ∀k.
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Fig. 5: Comparison of coordinated & uncoordinated WSR designs
with K = 152,Ki = 8 & Mi = 8 ∀i ∈ B, Nk = 2 ∀k.

to WMMSE [24] approach. Also, the coordinated system
provides considerable gain as compared to the uncoordinated
system. The uncoordinated beamformer design is introduced
as a reference, where the beamformers are calculated locally
without considering the inter-cell interference. It shows that
the achievable rate peaks, when the overhead is between
0.05 − 0.10, i.e., BIT = 5 − 10 rounds. The achieved gain
over the uncoordinated scheme is almost 100% due to the
greatly improved interference coordination. For the rest of the
figures, we will use parameters β = 30, ζ = 0.05, θ = e and
BIT = 5.

Fig. 5 illustrates the average rate of the dynamic TDD
system versus the transmit SNR considering the DL, UL
and UL/DL sum rates. Note that the results are shown after
5 precoder/decoder iterations. We can observe that the sum
rate improves for both coordinated and uncoordinated systems
with SNR up to 5 dB. After that the uncoordinated system
performance degrades due to the strong interference from the
other-cell users. However, the proposed coordinated scheme
performs well even at high SNR region. Due to user specific
power constraints, the each UL user uses all the power for
transmit beamforming. This leads to high UL-to-DL interfer-
ence, which degrades the DL user SINR and rate. Thus, the
UL users have somewhat higher rate at high SNR. Fig. 6,
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Fig. 6: Dynamic TDD system performance with the DL cell proba-
bility at cell edge SNR = 20 dB, K = 152,Ki = 8 & Mi = 8 ∀i ∈
B, Nk = 2 ∀k.
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Fig. 7: Dynamic TDD system performance with power disparity
between DL and UL transmissions at cell edge SNR = 20 dB,
Ki = 4 Mi = 8 ∀i ∈ B, Nk = 2 ∀k.

represents average rate performance of the dynamic TDD
system with given DL cell probability. Despite difficult UL-DL
interference scenarios, the sum rate is only slightly decreased
(around 5− 6%) with 0.5 DL cell probability as compared to
the DL or UL only cases.

The average rate of the dynamic TDD system against the
power disparity between DL and UL transmissions is shown
in Fig. 7. Power disparity is defined as 10 log10(P

(dl)
i /P

(ul)
k )

dB. We change the UL power while keeping DL power fixed
to obtain different disparity levels. We can observe that the UL
rate degrades and DL rate increases linearly with the power
disparity. Also, UL and DL rates show similar performance,
when the power disparity is 10dB. Similar to previous cases,
the coordinated design show 100% gain in comparison to the
uncoordinated case in all disparity levels.

In Fig. 8, we compare the proposed beamformer objectives
with respect to total backlogged packets in the system queues
for a given traffic arrival rate. As we study the system for
time-correlated fading, we can use beamformers estimated
in the previous time slot to initialize the beamformers for
the current time slot (with memory). Thus, we can improve
the beamformer convergence. Note that, this is only useful
when our objectives are WQM or QWSR maximization. In
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other objectives ’with memory’ approach works only when
every user has a large queue. Here, WQM provides better
performance with memory compared to other methods, due
to the improved convergence properties. However, QWSR
provides good performance in both ’with memory’ and ’with-
out memory’ approaches due to its fast rate of convergence.
Interestingly, (W)SR has very poor performance, since it
ignores the backlog status in the user queues altogether and
tends to assign non-zero weights ω(a)

k,l only to a subset of users
with good channel (and interference) conditions. On the other
hand, using SMSE criterion results in somewhat more fair
resource allocation as ω(a)

k,l = 1 ∀ k, l. As a result, the traffic
aware (WQM, QWSR) beamformer design can handle up to
2 − 3 or 10 times larger traffic loads than traditional (W)SR
and SMSE criteria or uncoordinated design, respectively.

In Fig. 9, the performance of the proposed bi-directional
direct beamformer estimation strategies are illustrated with the
SSE approach. In general, we do not assume any pilot coor-
dination between cells. Therefore, the user specific training
sequences in both forward and backward directions are non-
orthogonal (overlapping). However, the pilots for same cell
users can be still made orthogonal. Thus, in Fig. 9 each pilot
sequence is interfered by up to 72 partially overlapping pilot
sequences. For short sequence lengths, the received precoded
pilot matrix is heavily contaminated by pilot interference.
Especially, Strategy C does not perform well in these con-
ditions due to significant mismatch between the received pilot
matrices R

(a)
k and R

(a)
k,2 required to compute the beamformers

in (40). Strategy B is less prone to errors in updating the
weights ω(a)

k,l as they are estimated only for intra-cell users.
Therefore, it performs somewhat better than Strategy A with
short sequence lengths. However, its performance saturates
with less overlapping pilots as the user weights from other cell
users are not available. The proposed strategies A and B start
to perform reasonably well when the sequence length is longer
than 24. In general, the DE approach provides significantly
better performance than the SSE method. Moreover, due to the
improved decontamination ability discussed in Section IV-E,
it is able to provide the same sum rate as the SSE method
with much shorter (≤ 1/2) pilot sequence lengths.
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Fig. 9: Comparison of proposed DE strategies with cell edge SNR =
20 dB, N = 19,K = 76,Ki = 4 & Mi = 8 ∀i ∈ B, Nk = 2 ∀k.
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Fig. 10 illustrates the added value of centralized pilot
allocation given in Algorithm 2 for both DE and SSE methods
(both with Strategy A signaling). As expected, the centralized
pilot allocation, requiring tight resource coordination (via
backhaul) among adjacent cells, further improves the perfor-
mance of both beamformer estimation schemes. Especially, the
performance of the SSE method is greatly improved due to
minimized pilot overlap. However, an uncoordinated random
pilot allocation combined with the proposed direct beamformer
estimation framework can provide most of these gains while
requiring minimum or no coordination. Note that, in this
example, the number of data streams per user is restricted to 1.
Therefore, every stream can be allocated with an orthogonal
pilot for the bi-directional training when the pilot length is
greater than 76. Finally, In Fig 11, the performance of the
Dynamic TDD system by employing both Strategy A and pilot
reuse is illustrated for different UE/BS densities (Ki). There is
a significant rate loss for the Ki = 8 case, when the number of
pilots is less than 20. There, for number of pilots 8 - 20, sum
rate of the system is in the range of 10% - 60% in comparison
to the orthogonal system. However, note that this is due to the
severe pilot contamination of the system, where same pilot will
be shared with more than 8 users. For all the UE/BS densities,
system performance is quite satisfactory when the pilots/user
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ratio is greater than 25%.

VI. CONCLUSIONS

Multiantenna interference management for dynamic TDD
systems was investigated with several network optimization
objectives. Bi-directional OTA signaling and training frame-
work was developed to iteratively optimize the transmit and
receive beamformers both in UL and DL. Distributed fast
converging beamformer design based on the WQM criterion
was shown to be to the best approach for handling both
dynamic traffic variation and difficult interference scenarios.
Three DE strategies were proposed to alleviate the contami-
nation due to non-orthogonal and overlapping pilot allocation.
The Strategies A and B were shown to perform reasonably
well even with relatively short pilot sequence lengths. Fi-
nally, a centralized pilot allocation scheme was introduced
to further enhance the pilot decontamination. The numerical
results demonstrate that the proposed training and estimation
framework provides superior system performance over the
uncoordinated scheme for different dynamic TDD network
parameters and optimization objectives.
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