4074

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

How Templated Requirements Specifications
Inhibit Creativity in Software Engineering

Rahul Mohanani*, Paul Ralph™,

Burak Turhan, Senior Member, IEEE, and Vladimir Mandi¢”, Member, IEEE

Abstract—Desiderata is a general term for stakeholder needs, desires or preferences. Recent experiments demonstrate that
presenting desiderata as templated requirements specifications leads to less creative solutions. However, these experiments do not
establish how the presentation of desiderata affects design creativity. This study, therefore, aims to explore the cognitive mechanisms
by which presenting desiderata as templated requirements specifications reduces creativity during software design. Forty-two software
designers, organized into 21 pairs, participated in a dialog-based protocol study. Their interactions were transcribed and the transcripts
were analyzed in two ways: (1) using inductive process coding and (2) using an a-priori coding scheme focusing on fixation and critical
thinking. Process coding shows that participants exhibited seven categories of behavior: making design moves, uncritically accepting,
rejecting, grouping, questioning, assuming and considering quality criteria. Closed coding shows that participants tend to accept given
requirements and priority levels while rejecting newer, more innovative design ideas. Overall, the results suggest that designers fixate

on desiderata presented as templated requirements specifications, hindering critical thinking. More precisely, requirements fixation
mediates the negative relationship between specification formality and creativity.

Index Terms—Cognitive bias, software design, fixation, critical thinking, requirements, requirements engineering, protocol analysis

1 INTRODUCTION

IFFERENT organizations initiate new software projects in

many different ways. For teams developing consumer
applications and enterprise systems, however, the initiation
process often seems to include:

e speaking with prospective users and other stake-
holders about their needs, wants, preferences, etc.;

e synthesizing stakeholders’ opinions into some
documents;

e determining the main features that the product will
have; and

e creating mock-ups and diagrams illustrating the
main features and user interfaces.

These activities can be sequential, parallel, in different
orders and performed by the same or different people. Never-
theless, it raises an obvious question—what kind of documents
are best for synthesizing stakeholders’ opinions? Different
areas of research seem to have reached different conclusions.

e Rahul Mohanani is with the Fortiss, 80805 Munich, Germany.
E-mail: rahul mohanani@gmail.com.

o Paul Ralph is with the Faculty of Computer Science, Dalhousie University,
Halifax, NS B3H 1W5, Canada. E-mail: paul@paulralph.name.

o Burak Turhan is with the M3S Group, University of Oulu, 90570 Oulu,
Finland, and also with the Faculty of IT, Monash University, VIC, Aus-
tralia. E-mail: turhanb@computer.org.

o Viadimir Mandi¢ is with the Faculty of Technical Sciences, University of
Novi Sad, Novi Sad 21000, Serbia. E-mail: vladman@uns.ac.rs.

Manuscript received 31 August 2020; revised 16 August 2021; accepted 11 Sep-
tember 2021. Date of publication 14 September 2021; date of current version 17
October 2022.

(Corresponding authors: Rahul Mohanani and Burak Turhan.)

Recommended for acceptance by N. Bencomo.

Digital Object Identifier no. 10.1109/TSE.2021.3112503

The more positivist side of requirements engineering
(RE) research tends to assume that software projects have
discoverable and documentable requirements, and that
understanding these requirements is critical for designing
good software systems [1], [2]. It seeks to elicit unambigu-
ous, consistent, complete, feasible, traceable and verifiable
requirements [3]. Good requirements specifications should
lead to good software designs [4] because meeting require-
ments is what ‘good” means.

Contrastingly, the more naturalistic side of RE, as well as
research in human-computer interaction, user—centred
design, and the interdisciplinary design literature tends to
assume that:

e software projects do not have discoverable and docu-
mentable requirements (cf. [5]);

e stakeholders do not even have stable, retrievable
preferences (cf. [6]); and

e products have numerous stakeholders who do not
agree on the problem(s) to solve or how the product
should solve them (cf. [7]).

Forcing vague, unstable, conflicting preferences into unam-
biguous, consistent requirements specifications encourages
designers to converge prematurely on oversimplified prob-
lems and inappropriate solutions [8]. Eliciting templated
requirements specifications should therefore lead to designs
that satisfy contracts but not users, which is antithetical to
user—centred design.

Our previous work showed that presenting a set of
desiderata as templated requirements specifications led to
less creative product designs than presenting exactly the
same desiderata as uncertain ideas. [9], [10]. However,
experiments like these are not suitable to explore cognitive
mechanisms underlying causal effects, so we have evidence

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7018-8836
https://orcid.org/0000-0001-7018-8836
https://orcid.org/0000-0001-7018-8836
https://orcid.org/0000-0001-7018-8836
https://orcid.org/0000-0001-7018-8836
https://orcid.org/0000-0002-7411-0857
https://orcid.org/0000-0002-7411-0857
https://orcid.org/0000-0002-7411-0857
https://orcid.org/0000-0002-7411-0857
https://orcid.org/0000-0002-7411-0857
https://orcid.org/0000-0003-1511-2163
https://orcid.org/0000-0003-1511-2163
https://orcid.org/0000-0003-1511-2163
https://orcid.org/0000-0003-1511-2163
https://orcid.org/0000-0003-1511-2163
https://orcid.org/0000-0001-6996-2222
https://orcid.org/0000-0001-6996-2222
https://orcid.org/0000-0001-6996-2222
https://orcid.org/0000-0001-6996-2222
https://orcid.org/0000-0001-6996-2222
mailto:rahul.mohanani@gmail.com
mailto:paul@paulralph.name
mailto:turhanb@computer.org
mailto:vladman@uns.ac.rs

MOHANANI ET AL.: HOW TEMPLATED REQUIREMENTS SPECIFICATIONS INHIBIT CREATIVITY IN SOFTWARE ENGINEERING

that the presentation of desiderata affects creativity but
we don’t know how. This raises the following research
question.

Research question: How do fixation and critical thinking
explain reduction in design creativity when desiderata are pre-
sented as templated requirements specifications?

Here, fixation means the tendency of the designers to pay
excessive and undue attention to the given problem by read-
ily converging on an available or known solution (cf. [11]);
critical thinking is defined as “disciplined thinking that is
clear, rational, open-minded, and informed by evidence” [12].
Design creativity, for our purposes, denotes the originality and
practicality of new product concepts. Desiderata are proper-
ties of a real or imagined system that are wanted, needed or
preferred by one or more project stakeholders [13]. We use this
term because it helps us remember that the set of things a
stakeholder wants and the set of things needed for a system to
succeed do not always coincide. While requirements specification
is defined as “a statement that identifies a capability or func-
tion that is needed by a system in order to satisfy its customer’s
needs” [14], templated requirements specification (TRS) is require-
ments specification written in a specific syntactic structure
using a restricted (controlled) natural language [15], in this
case, for example, “The system shall facilitate diet planning” .

Next, we review existing literature (Section 2). Then, we
describe our research design including data collection and
analysis (Section 3), followed by the results (Section 4). Sec-
tion 5 discusses the theoretical framework and summarizes
the study’s implications and limitations. Section 6 concludes
the paper with a summary of its contributions.

2 BACKGROUND

This section summarizes the major concepts involved in this
study: desiderata, task structuring, creativity and fixation.

2.1 The Concept of Desiderata

In the most extreme positivist view of RE, requirements are a
property of the environment, which are motivated by the
desires, wants and needs of the stakeholders [16], [17].
Requirements analysts elicit them, and success means fulfill-
ing them. Since social reality is real and objective, require-
ments exist in the world, waiting to be discovered. Project
success means meeting and satisfying the requirements.

In the naturalistic view of RE and the constructivist view
of product design, requirements do not exist in an objective
reality [5], [18], [19] waiting to be discovered. Reality is
socially constructed. Stakeholders usually have unstable,
unreliable, conflicting desiderata [6], [20] and use different
processes and representations to express their opinions.
Research in RE has tried to organize and manage these con-
flicts and inconsistencies among stakeholders to elicit
requirements. Some of the techniques include the View-
Points—a framework that facilitates capturing, representing
and organizing multiple stakeholders’ viewpoints and per-
spectives [21], conflicts and goal-modelling [22] and Abst-
Finder—a tool that helps finding abstractions and textual
ambiguity in natural language text [23]. Project success then
means delivering benefits to stakeholders [24]. Fundamen-
tally, RE is about establishing a balance between the positivist

4075

approach where desiderata are considered as a singular truth
embodied in the form of a formal specification, and the natu-
ralistic approach where requirements are a product of the
conflicts and contradictory viewpoints of the stakeholders
involved (cf. [25]).

Practically, the main difference in the above discussion is
what happens when a stakeholder demands that the system
has some property or fills some need. In the positivist view,
the optative speech act of demanding manifests a require-
ment [26]. In the multi-perspective constructivist view, the
stakeholder’s demand is just an opinion of note; the
demanded property may be a necessary condition for suc-
cess, irrelevant, or even prevent success. This manuscript
assumes the latter.

2.2 Task Structuring

Problems are often conceptualized on a spectrum of well-
structured to ill-structured. “Well-structured problems are
constrained problems with correct or convergent solutions
that require the application of a limited number of rules and
principles within well-defined parameters; whereas, ill-
structured problems possess multiple solutions and fewer
parameters that are less manipulable and contain uncer-
tainty about the concepts, rules, and principles that are nec-
essary for the solution, the way they are organized and
which solution is best” [27, p. 65]. A body of empirical
research shows that task structure is negatively associated
with design performance (cf. [28] for summary). “Over-con-
centration (over-structuring) on problem definition does not
necessarily lead to successful design outcomes” [29, p. 439]
for at least four reasons:

1) less specific goals reduce cognitive load [30], which
leads to more learning;

2) less specific task framing results in more creative sol-
utions [31];

3) designers often fixate on experience [32] or on an ini-
tial set of ideas [33]; and

4) designers often process whatever little information they
have and quickly assimilate it into the problem schema,
improving their understanding of the problem [34].

Perhaps unsurprisingly, then, our recent experiments
showed that presenting desiderata as TRS reduced creativ-
ity [9], [10]. We hypothesized that presenting desiderata as
TRS triggers a specific cognitive bias, which we call require-
ments fixation. Fixation broadly refers to the tendency to
“disproportionately focus on one aspect of an event, object,
or situation, especially due to self-imposed or imaginary
obstacles” [11, p. 5]. Requirements fixation, then, is the ten-
dency to attribute undue confidence and importance to
desiderata presented as TRS. We use the term requirements
fixation to allude to similarity to design fixation: the well-
established tendency for designers to generate solutions
very similar to given examples [35] or existing artifacts [36].

Although the precise mechanism by which increasing
task structure reduces design performance and creativity
remains unclear, design expertise seem to moderate the rela-
tionship. Expert designers tend to resist initial problem fram-
ing (e.g., given TRS) and proceed via an improvised,
solution-focused approach [37]. Expert designers consider

4076

all problems ambiguous and ill-structured, focusing on solu-
tion generation rather than analysing the given problem [29],
[38]. On the other hand, novice designers often treat ill-struc-
tured problems as well-structured, thereby compromising
the potential for creative solutions [39]. However, recent
research suggests that novice designers as compared to more
experienced designers, are less fixated on the problem
domain and, hence, are able to generate highly creative solu-
tions [40], [41].

2.3 Creativity

RE is a creative process [42], [43], where analysts and multi-
ple stakeholders collaborate to make sense of a problematic
situation and conceptualize a common mental model of a
possible system [44]. In RE, creativity enhancing workshops
(e.g., [45]) are extensively used to provide clarity for
requirements identification [46], [47] and generate novel
and creative requirements [48], [49]. In these workshops,
creativity is often linked with divergent thinking [50], i.e.,
exploring multiple and diverse solutions to a given prob-
lem. While Brainstorming helps in generating most number
of requirements, Hall of Fame approach (viz., [51]) helps in
developing multiple creative requirements [52]. In another
study, interactive collaboration techniques employed dur-
ing the workshops helped in generating more creative
requirements[48]. In a nutshell, requirements can be under-
stood as entities that encapsulate the results of creative
thinking about the system being developed [53].

Research in RE also focuses on ways to discover and gen-
erate creative requirements by leveraging the way in which
problem situations and early ideas are represented. One
study preferred using user stories to explore novel ideas,
which were then used to measure the personality traits and
creative potential of the participants influencing their crea-
tive abilities [54]. In another study, high-level goals, repre-
sented as goal models (viz., [55]), were combined with
creativity enhancing techniques to explore and generate cre-
ative requirements [56]. Integrating the concept of combina-
tional creativity (viz. [57]) with use cases (e.g., [58]) and
creativity enhancing framework (e.g., [59]) are also used to
discover and develop creative requirements.

Creativity, itself, is a poorly-understood, multi-dimen-
sional construct [60], [61]. However, creativity research can be
organized into the “Six P’s” (viz.,[62], [63]), as follows: 1) cre-
ativity’s underlying cognitive process; 2) the creative product;
3) the person (or personality) doing the creative work; 4) the
place (or context) of the creative work; 5) stimulating creative
thinking (or persuasion) and 6) improving creative potential.

Here, we are primarily concerned with product creativity.
Product creativity is entails two dimensions: (1) novelty or
originality [64], [65] and (2) practicality or usefulness [66],
[67]. Therefore, we conceptualize creativity as the ability of
a designer to choose both novel and practically useful fea-
tures, graphical elements and aesthetic properties of a soft-
ware system.

2.4 Fixation

Cognitive biases are systematic deviations from optimal rea-
soning [68]. Since software engineering involves lots of rea-
soning, cognitive biases help to explain common problems

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

in software design [69], [70], testing [71], [72], requirements
engineering [73], [74] and project management [75].

Fixation is a cognitive bias in which “blind adherence to
a set of ideas or concepts limit[s] the output of conceptual
designs” [32]. Several experiments have demonstrated
design fixation—the tendency for designers to generate sol-
utions very similar to given examples [32], [35] or existing
artifacts [36]. The cognitive mechanisms underlying design
fixation are not well understood. However, [35] suggest that
designers may fixate on a known but limited set of ideas or
an existing body of knowledge, and classify design fixation
into three broad categories:

1) Unconscious adherence—designers depend too
heavily on ideas encoded in long term memory, some-
times due to heavy load on working-memory.

2) Conscious blocking—designers dismiss new ideas
due to over-dependence and confidence on their old
ideas or past experience.

3) Intentional resistance—designers intentionally resist
new ideas to designs that were previously successful.

Meanwhile, design fixation is moderated by several factors:

1) The domain; for instance, mechanical engineers fix-
ate more than industrial designers [76];

2) examples—common examples causes more fixation
than unusual or rare examples [77];

3) defixating instructions—explicit instructions to
avoid features of given or existing artifacts [78];

4) providing good quality examples than flawed or no
examples lead to better design performance [79];

5) product dissection activities [80]; and

6) physical prototyping [81].

SE research shows that inconsistency in requirements speci-
fications may reduce premature commitment [82]. More gen-
erally, the way a task is communicated or presented may also
cause fixation [83], [84]. This is related to the framing effect—
“the tendency to give different responses to problems that
have surface dissimilarities but are formally identical” [85,
p- 88]. Desiderata can be presented in many different forms,
including TRS, personas, scenarios, use cases and require-
ments statements. We can think about these forms as different
ways of framing a design task, and task framing affects design
performance [9], [10], [86].

While, the underlying cognitive mechanisms that
reduces creativity of design concepts due to TRS are not yet
well explored, our recent experiments in SE (e.g., [9], [10])
suggest a typical behavior where designers tend to shut
down their creative potential by further inflating the high
importance and confidence connoted by the TRS.

3 RESEARCH DESIGN

3.1 Dialog-Based Protocol Analysis

To answer our research question, we need real-time insight
into software designers’ cognitive processes. Think-aloud
protocol analysis is a research methodology in which partic-
ipants verbalize thought sequences. Researchers analyze
participants” words for insight into their thinking. Research-
ers assume that “any concurrent verbalization produced by
a subject while solving a problem is a direct representation

MOHANANI ET AL.: HOW TEMPLATED REQUIREMENTS SPECIFICATIONS INHIBIT CREATIVITY IN SOFTWARE ENGINEERING

4077

Participants arrive at

1

Participants sign the consent Participants are given the

rPa_rtj amts Participants are ict v
c1pqtn 4 are paired based on scheduled time, briefed on form, fill in demographic task document and blank
fecrutte availability the study questionnaire templates
A A

(: The task 1s timed for 60 mmutes
Reporting Closed coding Process coding Recordmgs are and parumpants are instructed to
transcribed think aloud
- w

Fig. 1. Overview of the data collection and analysis process.

of the cognitive functioning (i.e., mental processes) of the
subject’s working memory” [87].

However, verbalizing our thought process probably
changes those thought processes in imperceptible ways. We
can mitigate this limitation using dialog-based protocol analy-
sis [88], in which participants work in pairs or groups, and we
analyze their natural dialog instead of a forced monologue.

Protocol analysis is common in design studies [89], psy-
chology (e.g., [87]), medicine (e.g., [90]) and software engi-
neering [88], [91]. We see protocol studies as most consistent
with a critical realist philosophy of science (cf. [92]).

3.2 Purpose and Scenario

The purpose of this study is to determine why presenting
desiderata as TRS reduces design creativity. To do so, we
observe participants in a simulation of a situation where a
software team is given a set of TRS and then asked to design
an appropriate application. Although RE and high-level
designing are increasingly merged (e.g., [93], [94], [95]),
such situations arise often in outsourcing arrangements
(where the outsourcer provides a questionable require-
ments specification and expects the team to develop mock-
ups without much access to prospective users or client rep-
resentatives). In our experience, many software teams that
have stakeholder access still have specifications forced
upon them by clients, management, marketing or other
stakeholders. Fig. 1 summarizes our research protocol.

An alternative question—whether modeling desiderata
as TRS harms creativity in teams that both create the TRS
and then design the product—is potentially fruitful avenue
of future work. We did not attempt such a simulation
because it is inconsistent with the prior experiments we are
attempting to re-examine and entails numerous unresolved
methodological problems [96, section 1.3].

3.3 Participants and Pairing
We recruited a convenience sample of 18 professional soft-
ware developers (14 men, 4 women) from Company X,
which develops web and mobile applications for govern-
ment agencies, corporations and educational institutions.
Company X has 30 employees, with a typical project dura-
tion of 2-3 years. We selected Company X because it was
willing to participate due to close ties to one of the authors.
These participants had a mean age of 31 years (o = 5.65).

Meanwhile, we recruited 24 post-graduate students (21
male, 3 female) enrolled in the information processing sci-
ence program at the first author’s university. Student partic-
ipants had a mean age of 23 years (¢ = 6.07). They received
extra credit in one of their courses for participating.

While professional participants had a mean work experi-
ence of 5.6 years, student participants had a mean work

experience of 2.3 years. All participants had at least 1 year
of experience in software design. However, none of the par-
ticipants had any experience with developing health and fit-
ness applications—the domain used here. Participants were
paired based on availability. Each pair comprised either
two professionals or two students.

3.4 Execution of the Study

The study was approved by the University of Auckland
Human Participants Ethics Committee (UAHPEC), New
Zealand. We facilitated and supervised the data collection
from September to December, 2016, at Company X's office
for the professionals and at the students” university. Every
participant—pair was scheduled an individual session in a
quiet room. On arrival, the study was described and partici-
pants signed a consent form and completed a demographic
questionnaire.

We used the same task as our previous experiments [9],
[10]. The task document listed 25 desiderata presented as
TRS and organized into five priority levels: high, high—
medium, medium, medium-low and low. Each TRS began
with “The system shall” (consistent with [3]) and phrased
as, for example, “The system shall measure calorie intake”, “The
system shall recommend activities” and so on. Crucially, many
of the desiderata presented in this task are ill-considered,
inconsistent or over-complicated. The TRS was compiled to
engender skepticism.

The participants were also given identical design tem-
plates comprising blank, mobile screen-sized boxes in por-
trait and landscape orientations with space for written
explanations. Participants were then asked to generate con-
ceptual designs of a health and fitness mobile application.
Participants could use as many templates as needed. The
participants were encouraged to discuss their thoughts
while creating designs.

The first author acted as facilitator for both groups. Ses-
sions were limited to 60 minutes at Company X's request.
Students were also limited to 60 minutes for consistency.
During each session, the facilitator took notes, reminded
participants to stick to English and prompted participants
who made design moves without discussion.

We piloted the study once to check the recording equip-
ment. No subsequent changes were made to the task or the
study procedure. All task documents including the TRS and
their qualities are available in our replication package (see
Section 7).

3.5 Data Collection and Analysis

The sessions were transcribed by the first author. Although
we did not correct participants’ grammar or malapropisms,
we removed verbal static (e.g., “um”, “ah”, “uh”). We refer

4078

to each transcript by a unique identifier starting with a ‘P".
P1-P9 are the professionals; P10-P21 are the students.

We envisaged the data analysis in two phases: 1) induc-
tive process coding to explore the cognitive mechanisms
used by the participants; 2) deductive closed coding using
concepts from existing literature to re-analyze the data
through a specific theoretical lens. We used NVIVO (www.
gsrinternational.com) to organize, analyze and visualize the
qualitative data. The coding process is briefly described as
follows:

1) The first author performed process coding of all the
transcripts (see Section 3.5.1).

2) The second and the third author audited process
coding.

3) The auditing resulted in renaming some of the codes
(e.g., doing design was renamed to making moves);
some codes were combined together or rejected alto-
gether (e.g., avoiding options and rejecting moves were
combined to rejecting design moves).

4) The first and the second author performed closed
coding of one transcript together to ascertain the
coding scheme (see Section 3.5.2).

5) The first author then coded the rest of the transcripts.

6) The second and the third author audited closed
coding.

7) The auditing resulted in minor changes such as add-
ing new codes to the instances of fixation or critical
thinking (e.g., rejecting design moves was added to
fixation).

3.5.1 Process Coding

We began by analyzing the data using inductive process cod-
ing [97]. That is, we coded each transcript line-by-line using
gerunds (i.e., words ending with ‘-ing’). Each assigned label
reflected the action contained in dialogues that shared simi-
lar characteristics (e.g., accepting requirements, discussing
design moves). As the analysis progressed, some labels were
reworded, subsumed by other similar labels or dropped. All
codes that conveyed a particular process (i.e., action) were
further categorized together to form themes, where a theme
was seen as a high level conceptualization of multiple labels
grouped together [98]. The saturation point was reached by
the 14™ transcript, i.e. no new labels or themes emerged on
from the remaining seven transcripts.

3.5.2 Closed Coding

Our previous experiments suggested the tendency of partic-
ipants to get fixated on desiderata when presented as TRS.
The effects of fixation can be minimized by a critical evalua-
tion of the problem situation. Any attempt to critically eval-
uate the TRS should help participants to avoid fixating on
the given TRS. Therefore, we applied an a priori coding
scheme to compare instances of fixation against instances of
critical thinking. Here, fixation refers to instances where
participants: 1) accept aspects of the task (i.e., requirements,
priority levels) without any discussion or reflection; 2)
adopt properties of known examples without any discus-
sion or reflection; or 3) reject, without any discussion or
reflection, new ideas that diverge from given task structure

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

or known examples. Critical thinking meanwhile refers to
instances where participants critically evaluate or deviate
from task parameters or known examples. In other words, if
participants question something, but then accept it, we label
it as critical thinking. We then counted these instances and
compared.

4 RESULTS

This section presents the results from both analyses.

4.1 Process Coding

Process coding produced seven themes, each of which we
interpret as a distinct cognitive activity. Table 1 summarize
the evidence for each themes, while the complete analysis is
available in our replication package (see Section 7).

4.1.1 Making Design Moves

A design move is a change to a design description [99]. Con-
sidering and making design moves was the participants’ most
frequent activity. We found a total of 48 instances in fourteen
groups where participants willingly tried to come up with
multiple design ideas, reflected on those ideas and then
made a move by selecting the most optimum one. However,
participants in nine groups made design moves only intend-
ing to satisfy all the given requirements without assessing or
reflecting on them. Out of these, six groups only tried to
meet the requirements prioritized as high or high-medium.

4.1.2 Uncritically Accepting

We observed participants uncritically accepting their initial
design ideas and aspects of the task (e.g., requirements, pri-
ority levels) without any discussion or reflection. Partici-
pants were keen to adopt and force features of existing
examples into their design concepts without assessing the
existing designs. We observed imbalances in the pairs
where Partner A would immediately accept Partner B’s
ideas, while Partner B would unthinkingly reject Partner
A’s ideas whenever they diverged from Partner B’s ideas.

4.1.3 Rejecting

Another pattern that emerged was the tendency of partici-
pants to explicitly reject any requirements or design ideas for
various reasons (e.g., ambiguity, difficulty). Moreover, par-
ticipants appeared reluctant to satisfy requirements priori-
tized as low or medium-low and requirements about which
they had no knowledge. Participants would either temporar-
ily ignore a high-priority requirement, or would perma-
nently dismiss a requirement. When participants reject
requirements, they often did so without any discussion,
reflection or evaluation. Thirteen pairs explicitly rejected any
idea or design move that diverged from their first design
concept. We observed both uncritically accepting initial
ideas (as discussed above) and uncritically rejecting new
ideas that diverge from initial ideas.

4.1.4 Grouping

Fourteen of the pairs made sense of the desiderata by group-
ing requirements they perceived as similar. Out of these,

www.qsrinternational.com
www.qsrinternational.com

MOHANANI ETAL.:

HOW TEMPLATED REQUIREMENTS SPECIFICATIONS INHIBIT CREATIVITY IN SOFTWARE ENGINEERING

TABLE 1
Summary of Process Coding Analysis

Theme Example labels Example quotations and dialogues
Making de- Discussing design “OK, you're on the intake page or seeing just the intake, and then you will have a small button.”
sign moves moves “A-ha, so it could be like..” “icon, something like this..” “Yeah” (P15)
Generating multiple de- “We can add into the ‘diet screen” an option to recommend.” “Or rather it should be over
sign options here...you select and you search.” (P2)
Making moves “We can have help me button to propose exercise. And eat this meal or skip, best practice to
reach goal” “The BMR is calculated after this segment screen you have all the information” (P2)
Uncritically ~ Accepting features of “You have all the history, in one click. And here you have, most of the fitness apps like FitBit
accepting existing examples have this, so, why not use it?” “Yeah, okay” (P2)
Accepting priorities “If we have to design an app that shows all these five requirements that are on a high priority,
we would probably want to have all the data on one screen” (P16)
Accepting requirements “So now we have requirement number 5, to provide workout history and performance analysis”
“Yeah, that could be on the main page that given history and performance analysis” (P11)
Rejecting Rejecting design moves “I just thought we could split the screen and it shows you the current activity and any previous
activities” “No, it can still show the previous one. Let’s stick to this way for now” (P16)
Rejecting requirements “So on to requirement 10, we shouldn’t consider much on this one?” “Yeah.. it’s more like a
due to no knowledge system requirement, I don’t know...let's move on” (P13)
Rejecting specifications ~ “Well the analysis screen would be the most complicated one. I don’t think we have time for
due to time constraints that now” “Yeah, let’s check other ones” (P6)
Grouping Grouping seemingly “So recommend recipes and recommend workouts and recommend diet food, all could be
similar requirements groped as one. They all say recommend” “Yeah, okay” (P11)
Grouping as input-type ~ “We put a dashboard feature” “like for input data” “Yeah, let’s group them as input data” (P1)
data
Grouping requirements ~ “The first two high priority tasks of measuring calorie intake and what user eats and drinks is
of same priority level the same thing” “That’s true” “So those are kind of easy to put together...” (P15)
Questioning Questioning priority “The system must allow the user to plan workout...this isn’t very important. Shall track speed
levels and distance..this is very important” “Me too” (P21)
Questioning existing “They FitBit app have sensors and they can do precise measuring.. running is based on GPS.”
examples “Yeah, maybe we should do something else. GPS is not always good and reliable.” (P3)
Questioning require- “We don’t have to include all the. But, why would someone, why would you listen to music?”
ments (P2)
Assuming Assuming on behalf of “How we will measure calories in it. Will user write?” “Maybe he will write” “Okay, I suppose”
the users (P9)
Assuming relative im- “Now, what is the most important thing to the user, to know the amount of calories or what he
portance actually ate? I think the calories are the most important than other ones here” (P8)
Assuming time limita- “This cannot be done in one hour.” “No definitely not. I'm not sure, if I have an idea” (P6)
tions
Considering Consistency “Have a graph that tells the amount of workout and sleep” “That maintains consistency” (P9)
quality Usability “I think this screen must be very easy and quick to use. It just can’t be a massive calendar” (P12)
criteria Responsiveness “Or you can make it like, responsiveness, more like on smaller screens to change the design, so

I make it for that one.” “Maybe we could make it smaller” (P5)

4079

eight groups were based on the priority levels provided,
others on other sorts of similarity. For example, grouping
given requirements as non-functional features or as pop-up
notifications. Subsequent design moves appear to be
informed by these groups. The tendency of participants to
focus on grouping only high priority requirements while
avoiding the low priority ones (we observed a total of 47 such
instances) can be related to participants’ uncritical acceptance
of priority levels and task presentation more generally.

4.1.5 Questioning

While participants often uncritically accepted aspects of the
task (see Section 4.1.2), they questioned others. Here, question-
ing refers to critically appraising something. Questioning is
related to but distinct from rejecting. Sometimes participants

questioned something before rejecting it; other times partici-
pants questioned something before accepting it; and other
times participants rejected something without really ques-
tioning it first. Typically, one participant would raise doubts
about a something (e.g., requirements, priority levels, exist-
ing examples). The pair would then discuss and come to a
consensus about accepting or rejecting the concept. Partici-
pants also backtracked on their earlier design moves based
on their evolving understanding of the task.

4.1.6 Assuming

Eleven pairs made explicit assumptions about the task. These
assumptions were basically cognitive shortcuts that partici-
pants used to help them create designs easily with minimal
information processing. We consider these assumptions as a

4080

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

TABLE 2

Closed Coding Analysis
Pairs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Total
Category 1: Fixation
Accepting early ideas 37 11 21 10 21 10 42 50 34 19 24 32 17 22 27 16 39 14 24 31 16 517
Accepting reqs 0 2 4 5 10 12 5 3 7 6 14 8 23 8 7 12 15 7 8 5 7 178
Accepting priorities 28 5 3 9 7 117 2 9 5 8 7 4 6 7 9 9 11 2 4 145
Accepting features of existingexamples 3 6 12 - 3 2 2 5 3 3 4 7 3 5 4 2 4 - 2 3 6 79
Rejecting design moves 2 5 4 2 - 7 4 2 - - - 2 1 - 2 - - 2 6 2 4
Trying to satisfy all reqs 13 2 1 - 3 - 4 2 - - - 2 - - - - - 4 - - 22
One participant accepts others decision. - - - - - 5 - - - - - 3 - - 6 - 14
Trying to satisfy high priority reqs 21 - - -1 -1 - 2 - - - - - 1 - 1 - 1 10
Total instances of fixation 67 36 48 21 43 47 60 74 50 39 47 55 57 40 44 40 67 31 57 47 36 1006
Category 2: Critical thinking
Discussing design moves 4 15 8 2 9 9 4 16 13 12 19 7 5 12 17 3 11 14 5 8 6 199
Generating multiple design options - 95 1 2 1 6 5 3 - - 5 - - - 2 2 1 - 4 2 48
Questioning priority levels - 2 2 - - - - -3 - 1 - - 3 - 3 14
Backtracking on earlier decisions - - - -2 -1 3 - 2 - - -1 - - - - - - 2 1
Questioning available technology -2 - -1 - 1 - - - - -1 1 - - 2 - 1 - 9
Questioning existing examples 2 - 2 - - -1 - - - - - - -1 - - - - 6
Generating innovative ideas -2 - - -2 - -1 - - - - - - - - e 5
Questioning reqs -2 2 - - - - - - - - - - - - - - - - - 4
Questioning client’s needs S T T 2
Total instances of critical thinking 6 30 21 5 14 12 12 25 17 14 22 12 6 14 18 5 14 20 5 13 13 298

deviation from the real or the observable facts. Participants
appeared to speculate and derive at rather specific conclu-
sions about how they perceived the requirements, instead of
making actual sense of the problem situation. Five groups
unreasonably perceived high priority requirements as more
important than other low priority ones (e.g., counting calories
as more important than recommending workouts); while
other groups would over-estimate the effort required by creat-
ing self-imposed time-constraints. Participants also assumed
arequirement (e.g., workout recommendation) was non-func-
tional and jumped to conclusions about the complexity of ini-
tial design ideas.

4.1.7 Considering Quality Criteria

While planning the designs, participants would often
express the need for certain aesthetic qualities for their solu-
tion designs. Participants in nine groups explicitly tried to
change or alter their design moves for various quality crite-
ria including usability, consistency of user experience, sys-
tem responsiveness, speed, stability and aesthetics.

4.2 Closed Coding

This section presents the results of our closed coding. We
identified 1006 instances of fixation compared to 298 instan-
ces of critical thinking. Table 2 presents the list of labels clas-
sified in each category and the corresponding number of
instances of each label. Below, we briefly discuss each cate-
gory and interpret our findings.

4.2.1 Fixation

All of the participants showed a tendency to agree and to
accept instantaneously aspects of the task. We found 178
instances of participants accepting requirements without
question and 145 cases of accepting priority levels without
question. Participants appeared to accept task structure

without any discussion of or reflection on the importance or
the validity of the given desiderata. We also found 41
instances where pairs explicitly rejected new design ideas
because they diverged from the initial design ideas.

Moreover, we found 517 instances where participants
expressed complete confidence and extensively favored their
initial (i.e., early) ideas by avoiding any speculation, discus-
sion or reflection. We observed 79 cases across 19 pairs where
participants tried to conceptualize their solution designs
based on either a successful example or their previous expe-
rience. For example, “And also, kind of integration with Spotify
or, another provider like Pandora like in other health fitness app I
have come across” “We should do exactly that” (P1).

In 22 instances, participants said or implied that the sys-
tem should satisfy all of the requirements; in ten instances
participants said or implied that the system should satisfy
at least all of the high and medium-high priority require-
ments. This is surprising because the requirements are
intentionally dubious (as explained in Section 3.4).

4.2.2 Critical Thinking

We found substantially fewer instances where participants
attempted to think about the task parameters critically. In
199 instances pairs critically discussed design moves. How-
ever, these discussions were mainly about planning and
organizing the way the application would look, and less
about selecting the best option from multiple design options
or assessing the importance of the given requirements. We
observed eleven instances in six pairs of backtracking on
their earlier design decisions. Such instances were charac-
terized by participants reflecting on their initial design deci-
sion, followed by discussing alternative ideas and then
selecting the one perceived as most appropriate. Some par-
ticipants explicitly tried to generate multiple design options.
We found very few instances where participants critiqued

MOHANANI ET AL.: HOW TEMPLATED REQUIREMENTS SPECIFICATIONS INHIBIT CREATIVITY IN SOFTWARE ENGINEERING

TABLE 3
Differences Between Students and Professionals
Professionals Students

Mean instances of fixation 49.67 46.67
Mean inst. of critical-thinking 15.87 13
Range (fixation) 21-74 31-67
Range (critical thinking) 5-30 5-22
Fixation ratio’ 0.76 0.78

or reflected on the specific aspects of the task itself. Six pairs
questioned priority levels with 14 instances; only two pairs
expressed overall doubts about the requirements with four
instances.

Similarly, we found nine instances of participants ques-
tioning the available technology and six instances of chal-
lenging existing examples. (Note: we did not provide
examples; participants looked up examples on their own
during the study.) Only three groups attempted to generate
ideas that were not evident from the task materials, found
in similar applications or generated by other groups. Only
one pair expressed the need to consult the client to clarify
specific ambiguous requirements.

4.2.3 Differences Between Students and Professionals

Table 3 summarizes the differences between the professio-
nals and the students. Professionals had more instances of
both fixation and critical thinking than students; however,
these differences are not statistically significant (Indepen-
dent samples t-tests with effect size via Cohen’s d; fixation:
t=0.49,p = 0.63,d = 0.23 + 0.87; critical thinking: ¢ = 0.91,
p =0.37,d = 0.42 + 0.89). Moreover, the ratio of fixation to
critical thinking ' is almost identical (0.76 professionals ver-
sus 0.78 for students). In other words, both students and
professionals seem about equally susceptible to fixation.

Surprisingly, months of development experience is posi-
tively correlated with fixation (Pearson correlation; r = 0.528;
p = 0.014)—see Fig. 2—but uncorrelated with critical think-
ing (r = —0.93;p = 0.689). In other words, more experienced
developers were more prone to fixation. While these are post
hoc tests on convenience samples, the results question the
idea that fixation is limited to amateurs or that experience
naturally mitigates it.

5 DISCUSSION AND IMPLICATIONS

5.1 Theory

Previous work [9], [10], [31] showed that presenting desider-
ata as TRS diminished creativity, which undermines SE suc-
cess. The purpose of this study is to investigate how
presenting desiderata as TRS diminishes creativity; that is,
the cognitive mechanism mediating the previously estab-
lished causal relationship. The results of this study suggest
that providing designers with TRS induces requirements fix-
ation and hinders critical thinking, thereby negatively affect-
ing creativity (see [9], [10]); as shown in Fig. 3—see Table 4
for construct definitions.

1. F/(F + C) where F' is the mean number of actions associated with
fixation and C' is the mean number of actions associated with critical
thinking.

4081

Legend:

M Professionals

@ Students

sl
—_
)
"-C" 200
= 2001
: o "
|]
£ nE
=
o
1]
=
©
=
©
£ 100 ®
1] | | ®
=]
- L |
° @
@
. .
=] @
() T L T T L 1 T
20 30 40 50 &0 70 80

Instances of Fixation

Fig. 2. Scatterplot of experience (months) versus fixation (instances).

The simulation reported above shows that participants
given TRS have many more instances of fixation than critical
thinking. Furthermore, we identified several indicative
behaviours for both fixation and critical thinking—the labels
in Table 2. For example, unthinking acceptance of TRS indi-
cates requirements fixation; questioning the reasonableness
of priority levels indicates critical thinking.

5.2 Implications

The interplay between fixation, critical thinking, creativity
and the presentation of desiderata as TRS has numerous
implications for SE professionals, researchers, and educators.

For professionals, the best way to present desiderata
involves trade-offs among many criteria including clarity,
understandability, flexibility, modifiability and, of course,
creativity ([100], [101]). Where creativity is a priority, avoid
TRS and over-structuring, over-simplifying and over-ratio-
nalizing problem statements. Try to present desiderata in
ways that encourage skepticism and critical thinking. Infor-
mation presented to the designers should ideally be less-
structured and easily modifiable. In contrast, a clear, well-
structured TRS might help in high correctness of code,
which can increase the possibility of success of a software
developed for mission- or safety-critical domains.

For researchers, it is critical to abandon the naive view
that analysts elicit requirements and that design transforms
them into appropriate system features. This view obscures
the actual relationship between RE and design, which
remains contested and poorly understood. SE occurs in com-
plicated situations where stakeholders disagree on system

Requirements

+ fixation — Software
Specification ! — 4 ftwar
formality — Creativity engineering
™| Critical % success

thinking

Fig. 3. Theoretical framework
Note: Boxes indicate constructs; arrows indicate causality; plus and
minus signs indicate direction of effect.

4082 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022
TABLE 4
Theoretical Concept Definitions
Concept Definition

Specification formality
Requirements fixation
Critical thinking

Creativity

Software engineering success

The degree to which the problematic situation is presented clearly and precisely.

The tendency to rely too heavily on given desiderata when designing a software system.

“Disciplined thinking that is clear, rational, open-minded, and informed by evidence” [12].

“production of novel and useful ideas by an individual or small group of individuals working together” [60].
Net impact of a system on stakeholders over time [24].

goals and desired features [20]. Analysts and users co-con-
struct evanescent preferences rather than eliciting firm and
robust requirements [6]. Design is a creative, improvised,
non-deductive process in which designers imagine new sys-
tems rather than rearrange old ideas [102]. Expert designers
in other fields resist initial problem frames and solution con-
jectures; they do not deliver requirements in a box-checking
manner [39]. Serious questions regarding how best to record
and present desiderata remain unanswered. For now; how-
ever, we are confident that presenting desiderata in an TRS
hinders creativity by inducing fixation and hindering critical
thinking.

Making concrete recommendations for SE education is
more difficult. Obviously, courses that present an outdated,
positivist view of RE should be updated. Non-empirical leg-
acy concepts such as the waterfall model and project trian-
gle should be replaced with evidence-based concepts and
theories. Beyond that, we want to recommend teaching a
host of underrepresented subjects including design think-
ing, creativity techniques and theories of cognitive biases.
However, SE curricula are already tight. Perhaps a more
tractable approach is to transition students to less and less
structured assignments as they advance. More open-ended
assignments with ambiguous goals, conflicting stakeholder
preferences, ill-structured problems and incomplete specifi-
cations should help prepare students for more realistic soft-
ware contexts.

5.3 Quality Criteria and Threats to Validity

We see protocol studies as most consistent with critical real-
ism [103]. Critical realism is a body of philosophical work
that attempts to solve Hume’s problem of induction by
merging a realist ontology with a relativist ontology. Critical
realism is fundamentally different from both positivism and
constructivism. Positivism (and falsificationism) view reality
as observer-independent, objective, measurable and charac-
terized by universal, deterministic, counterfactual, causal
laws. Constuctivism, meanwhile, views reality as observer-
dependent, subjective and devoid of universal laws because
knowledge is context-dependent. Positivism embraces (epis-
temological) realism; Constructivism embraces epistemolog-
ical and ontological relativism.

In contrast, critical realism blends a realist ontology
(“transcendental realism”) with a relativist epistemology
(“critical naturalism”). In other words, critical realism
assumes that the phenomena that scientists study are real
whether they can be directly observed (e.g., people, length,
Mars) or not (e.g., electrons, creativity, quasars). But because
social reality resists experimental closure and is rich in unob-
servable properties, reality is only imperfectly and
“probabilistically apprehensible”. Rather than discovering

causal laws, scientists therefore construct explanations based
on “generative mechanisms”—the powers objects have to
influence each other.

Since critical realism is fundamentally different from posi-
tivism and constructivism, it has different evaluation criteria,
namely—"“ontological appropriateness”, “contingent val-
idity”, multivocality, “trustworthiness”, “analytic general-
ization” and “construct validity” [104]. These criteria do not
map neatly into either positivist criteria (internal validity,
external validity, etc.) or constructivist criteria (credibility,
transferability, etc.)

Critical realism is ontologically appropriate because the
whole point of a protocol study is to explore cognitive phe-
nomena that are real but cannot be observed directly. Contin-
gent validity is the degree to which the study explores
generative mechanisms rather than deterministic causal
laws. Again, here we are explicitly concerned with exploring
the generative mechanism that accounts for design creativity.

Multivocality—the degree to which research integrates
diverse perspectives—is typically achieved through data tri-
angulation, which is difficult in a protocol study. Our dia-
logue-based approach allows us to examine the statements
of each half of a participant-pair, as well as directly observ-
ing and comparing pairs. However, we cannot corroborate
our findings against independent data sources such as
archival records, like in a case study. Moreover, brain scans
are not yet sophisticated enough to cross-check the infer-
ences we make from participant’s verbalizations.

Trustworthiness refers to the chain of evidence from
observations to conclusions (see Tables 1 and 2) and the
ability of an independent researcher to audit or replicate the
findings. We provide as much detail of our analysis process
as possible within space limitations, and all of the materials
necessary to run an identical study with new participants.
However, for privacy reasons, we cannot publish the full
transcripts of the design sessions and therefore an indepen-
dent researcher cannot directly audit our coding.

As we refined the conceptualization of themes, we often
renamed or merged multiple themes and their correspond-
ing labels. For example, the theme expressing values was
renamed to considering quality criteria and merged with an
earlier theme non-functional requirements, and the labels dis-
cussing alternative ideas was renamed to discussing design
plans. Despite much refining of labels, the themes and their
relationships stabilized early and remained stable. The fre-
quencies of the labels (i.e., fixation and critical thinking) in
Table 2 are unweighted and do not provide evidence of the
total number of ideas gained or lost due to one instance of
critical thinking and fixation respectively. In other words,
one instance of fixation might be more or less important
than one instance of critical thinking for creativity.

MOHANANI ET AL.: HOW TEMPLATED REQUIREMENTS SPECIFICATIONS INHIBIT CREATIVITY IN SOFTWARE ENGINEERING

Moreover, since creativity is only one of the many antece-
dents of SE project success [24], less constrained and restrictive
presentations of desiderata may also undermine success
through some other mechanisms, e.g., legal or mission/safety
critical constraints. Furthermore, TRS could affect creativity
through mechanisms other than those considered in this study.

Analytic generalization refers to generalizing from obser-
vations to theory, rather than from a sample to a population.
We generalize from observations of designers to the theory
shown in Fig. 3.

A protocol study is non-statistical, non-sampling
research, using a convenience sample of participants com-
pleting a particular task in a particular environment. Our
participants were mostly male, non-native English speakers
working in English, completing a single, artificial task, in an
unfamiliar design domain, in an artificial environment,
using artificial task materials, while being watched. All of
these factors may have affected our resulted in unknown
ways. Results cannot be statistically generalized to different
people, other tasks, other environments, or other ways of
representing desiderata (e.g., user stories, goal models).

Construct validity refers the degree to which the opera-
tionalization and measurement of constructs supports sci-
entific inferences. The only constructs in this study are
fixation and critical thinking, which we operationalize by
having an expert judge identify them. However, this label-
ing process is intrinsically subjective, so another analyst
might label the data differently. We mitigated this threat
by having the second and third authors review the first
author’s coding, leading to numerous revisions and clarifi-
cations. However, a different research team might still pro-
duce different labeling.

5.4 Future Research Directions
We see several promising avenues for future work:

1) Experimentally comparing different representations
(e.g., user stories, use cases, code) of the same desid-
erata to determine which representation is most effec-
tive to foster creativity in different circumstances;

2) creating techniques, tools and practices for model-
ling and managing ambiguity and conflict; and

3) using eye-tracking or protocol analysis to study what
professionals attend to and ignore while designing
software.

Moreover, requirements fixation is just one of several
cognitive biases that may hamper creativity in software
design. Future work should investigate related cognitive
phenomena including;:

1) Confirmation bias—attending disproportionately to
information that confirms our current beliefs [72].

2) Miserly information processing—the tendency to
avoid deep or complex information processing [85]

3) Conceptual fixation—considering only one or a
small number of solution concepts [35].

4) Design fixation—sticking too closely to given or
known examples [105].

While confirmation bias, miserly information processing,
conceptual fixation and design fixation have all been studied

4083

extensively, little work has investigated their effects on soft-
ware design in particular [106].

6 CONCLUSION

In summary, desiderata are things that project stakeholders
prefer, want or need in a software system. Desiderata can be
presented in many ways (e.g., templated requirements speci-
fications, user stories). Previous research showed that pre-
senting desiderata as templated requirements specifications
led to less creative designs. We therefore conducted a dialog-
based protocol analysis to investigate the cognitive mecha-
nism by which templated specifications affects design creativ-
ity. We analyzed the data in two ways: inductive process
coding and closed coding. Process coding revealed seven
kinds of design actions: making design moves, uncritically
accepting, rejecting, grouping, questioning, assuming and
considering quality criteria. Closed coding showed that
actions associated with requirements fixation are significantly
more frequent than actions associated with critical thinking.

These results suggest that presenting desiderata more
restrictively as templated requirements specifications is
associated with less critical evaluation of task structure and
less critical thinking. In other words, templated require-
ments specifications inhibit design creativity because
designers get fixated on desiderata presented (i.e. written)
restrictively, well-structured and constrained language, hin-
dering critical thinking.

This paper therefore makes three main contributions: (1)
it advances a theory that explains the (previously estab-
lished) relationship between templated requirements speci-
fications and design creativity; (2) it elaborates the concept
of requirements fixation; (3) it presents a simple taxonomy
of software design actions. However, our results do not
indicate that requirements analysis is useless or that more
analysis is counterproductive to creativity. The paper just
attempts to present the underlying cognitive mechanisms
explaining the effects of presenting desiderata in a very spe-
cific way—as templated requirements specifications—on
design creativity.

While previous experimental research has demonstrated
that presenting desiderata as templated requirements specifi-
cations reduces design creativity, our current research
explores the underlying cognitive mechanisms that explain
this relationship. The results of this study indicate that, given
templated requirements specifications, software designers do
not proceed as we might hope. Designers should carefully
evaluate each desideratum before accepting or rejecting it for
articulable reasons. Our observations suggest that designers
tend neither to critically evaluate requirements nor to reject
questionable ones.

7 DATA AVAILABILITY

A comprehensive replication package including all the task
documents (i.e., a list of prioritized TRS, demographic ques-
tionnaire and blank design template) and the results of the
process coding analysis with example quotes are stored in
the Zenodo open data archive [107]. (Note: we do not
include the transcribed recordings in the replication pack-
age to maintain the anonymity of the participants).

4084

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

ACKNOWLEDGMENTS

This work was supported by the HPY: Research Foundation
grant (HPY:n Tutkimussaatio Apurahat), 2016.

REFERENCES

[1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]
(171
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

T. Chow and D.-B. Cao, “A survey study of critical success fac-
tors in agile software projects,” J. Syst. Softw., vol. 81, no. 6,
pp. 961-971, 2008.

R. Schmidt, K. Lyytinen, and P. C. Mark Keil , “Identifying soft-
ware project risks: An international delphi study,”]. Manage. Inf.
Syst., vol. 17, no. 4, pp. 5-36, 2001.

IEEE Computer Society. Software Engineering Standards Com-
mittee and IEEE-SA Standards Board, “IEEE recommended prac-
tice for software requirements specifications,” Std. 830-1998,
Inst. Elect. Electron. Eng., Piscataway, NJ, USA, 1998.

J. Mund, D. M. Fernandez, H. Femmer, and]J. Eckhardt, “Does
quality of requirements specifications matter? Combined results
of two empirical studies,” in Proc. Int. Symp. Empirical Softw. Eng.
Meas., Beijing, China, 2015, pp. 1-10.

P. Ralph, “The illusion of requirements in software devel-
opment,” Requirements Eng., vol. 18, no. 3, pp. 293-296, 2013.

S. Lichtenstein and P. Slovic, The Construction Of Preference.
Cambridge, U.K.: Cambridge Univ. Press, 2006.

P. Rodriguez, E. Mendes, and B. Turhan, “Key stakeholders’
value propositions for feature selection in software-intensive prod-
ucts: An industrial case study,” IEEE Trans. Softw. Eng., vol. 46,
no. 12, pp. 1340-1363, Dec. 2020.

T.Sedano, P. Ralph, and C. Péraire, “The product backlog,” in Proc.
41st Int. Conf. Softw. Eng., Montreal, Canada, 2019, pp. 200-211.

R. Mohanani, P. Ralph, and B. Shreeve, “Requirements fixation,”
in Proc. 36th Int. Conf. Softw. Eng., Hyderabad, India, 2014,
pp- 895-906.

R. Mohanani, B. Turhan, and P. Ralph, “Requirements framing
affects design creativity,” IEEE Trans. Softw. Eng., vol. 47, no. 5,
pp- 936-947, May 2021.

P. Ralph, “Toward a theory of debiasing software devel-
opment,” in Proc. EuroSymp. Syst. Anal. Des., Gdansk, Poland,
2011, pp. 92-105.

Dictionary.com, “Critical thinking,” Accessed: Jul. 10, 2019.
[Online]. Available: https://www.dictionary.com/browse/
critical-thinking,

F. P. Brooks Jr, The Design of Design: Essays from a Computer Scien-
tist. Boston, MA, USA: Pearson Educ., 2010.

A. T. Bahill and F. F. Dean, “The requirements discovery proc-
ess,” in Proc. INCOSE Int. Symp., 1997, pp. 340-347.

C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated
checking of conformance to requirements templates using natu-
ral language processing,” IEEE Trans. Softw. Eng., vol. 41, no. 10,
pp. 944-968, Oct. 2015.

M. Jackson, “The world and the machine,” in Proc. 17th Int. Conf.
Softw. Eng., 1995, pp. 283-283.

D. L. Parnas and J. Madey, “Functional documents for computer
systems,” Sci. Comput. Program., vol. 25, no. 1, pp. 41-61, 1995.

P. Ralph, “The two paradigms of software development
research,” Sci. Comput. Program., vol. 156, pp. 68-89, 2018.

J. A. Goguen and M. Jirotka, Requirements Engineering: Social and
Technical Issues. London, U.K.: Acad. Press, 1994.

P. Checkland and J. Scholes, “Soft systems methodology: A thirty
year retrospective,” Syst. Res. Behav. Sci., vol. 17, no. S1, pp. 11-58,
2000.

B. Nuseibeh, J. Kramer, and A. Finkelstein, “Viewpoints: Mean-
ingful relationships are difficult!” in Proc. 25th Int. Conf. Softw.
Eng., 2003, pp. 676-681.

A. Van Lamsweerde , R. Darimont, and E. Letier, “Managing
conflicts in goal-driven requirements engineering,” IEEE Trans.
Softw. Eng., vol. 24, no. 11, pp. 908-926, Nov. 1998.

L. Goldin and D. M. Berry, “Abstfinder, a prototype natural lan-
guage text abstraction finder for use in requirements elicitation,”
Autom. Softw. Eng., vol. 4, no. 4, pp. 375-412, 1997.

P. Ralph and P. Kelly, “The dimensions of software engineering
success,” in Proc. 36th Int. Conf. Softw. Eng., Hyderabad, India,
2014, pp. 24-35.

C. Potts and W. C. Newstetter, “Naturalistic inquiry and require-
ments engineering: Reconciling their theoretical foundations,” in
Proc. 3rd IEEE Int. Symp. Requirements Eng., 1997, pp. 118-127.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

M. Jackson and P. Zave, “Domain descriptions,” in Proc. IEEE
Int. Symp. Requirements Eng., 1993, pp. 56-64.

D. H. Jonassen, “Instructional design models for well-structured
and iii-structured problem-solving learning outcomes,” Educ.
Technol. Res. Develop., vol. 45, no. 1, pp. 65-94, 1997.

P. Ralph and R. Mohanani, “Is requirements engineering inher-
ently counterproductive?,” in Proc. IEEE/ACM 5th Int. Workshop
Twin Peaks Requirements Architecture, 2015, pp. 20-23.

N. Cross, “Expertise in design: An overview,” Des. Stud., vol. 25,
no. 5, pp. 427-441, 2004.

J. Wirth, J. Kiinsting, and D. Leutner, “The impact of goal speci-
ficity and goal type on learning outcome and cognitive load,”
Comput. Hum. Behav., vol. 25, no. 2, pp. 299-305, 2009.

T. B. Ward, M. J. Patterson, and C. M. Sifonis, “The role of speci-
ficity and abstraction in creative idea generation,” Creativity Res.
J., vol. 16, no. 1, pp. 1-9, 2004.

D. G.Jansson and S. M. Smith, “Design fixation,” Des. Stud., vol. 12,
no. 1, pp. 3-11,1991.

R. Guindon, “Knowledge exploited by experts during software
system design,” Int. |. Man-Mach. Stud., vol. 33, no. 3, pp. 279-304,
1990.

C. Kruger and N. Cross, “Solution driven versus problem driven
design: Strategies and outcomes,” Des. Stud., vol. 27, no. 5,
pp- 527-548, 2006.

R. J. Youmans and T. Arciszewski, “Design fixation: Classifica-
tions and modern methods of prevention,” Artif. Intell. Eng. Des.
Anal. Manuf., vol. 28, no. 2, pp. 129-137, 2014.

R. A. Finke, “Imagery, creativity, and emergent structure,” Con-
sciousness Cogn., vol. 5, no. 3, pp. 381-393, 1996.

O. Akin et al., “Expertise of the architect,” Expert Syst. Eng. Des.,
pp- 173-196, 1988.

N. Cross, K. Dorst, and N. Roozenburg, “Research in design
thinking,” in Proc. Workshop Meeting Held Fac. Ind. Des. Eng., 1992.
N. Cross, “Design cognition: Results from protocol and other
empirical studies of design activity,” in Design Knowing and
Learning: Cognition in Design Education. Oxford, U.K.: Elsevier,
2001, pp. 79-103.

A. Niknafs and D. Berry, “The impact of domain knowledge on
the effectiveness of requirements engineering activities,” Empiri-
cal Softw. Eng., vol. 22, no. 1, pp. 80-133, 2017.

G. Mehrotra and D. M. Berry, “How to benefit from newbies’
domain ignorance in software development projects,” Sci. Com-
put. Program., vol. 204, 2021, Art. no. 102593.

N. Maiden, S. Jones, K. Karlsen, R. Neill, K. Zachos, and A.
Milne, “Requirements engineering as creative problem solving;:
A research agenda for idea finding,” in Proc. IEEE 18th Int.
Requirements Eng. Conf., 2010, pp. 57-66.

N. Maiden and A. Gizikis, “Where do requirements come
from?,” IEEE Softw., vol. 18, no. 5, pp. 10-12, Sep./Oct. 2001.

S. Chakraborty, S. Sarker, and S. Sarker, “An exploration into the
process of requirements elicitation: A grounded approach,” J.
Assoc. Inf. Syst., vol. 11, no. 4, 2010.

K. Schmid, “A study on creativity in requirements engineering,”
Softw. Technik-Trends, vol. 26, no. 1, pp. 20-21, 2006.

B. Crawford, C. L. de la Barra, R. Soto, and E. Monfroy, “Agile
software engineering as creative work,” in Proc. 5th Int. Workshop
Co-operative Hum. Aspects Softw. Eng. 2012, pp. 20-26.

N. Maiden, A. Gizikis, and S. Robertson, “Provoking creativity:
Imagine what your requirements could be like,” IEEE Software,
vol. 21, no. 5, pp. 68-75, Sep./Oct. 2004.

R. Horowitz, “Creative problem solving in engineering design,”
PhD. Diss., Tel-Aviv Univ., Tel Aviv, Israel, 1999.

L. Nguyen and G. Shanks, “A framework for understanding cre-
ativity in requirements engineering,” Inf. Softw. Technol., vol. 51,
no. 3, pp. 655-662, 2009.

J. Guilford, “Three faces of intellect,” in Teaching Gifted Students:
A Book of Readings, Boston, MA, USA: Allyn & Bacon, 1965,
pp. 469-479.

M. Michalko, Thinkertoys: A Candbook of Creative-Thinking Techni-
ques. Manhattan, NY, USA: Random House Digital, Inc., 2006.

R. B. Svensson and M. Taghavianfar, “Selecting creativity techni-
ques for creative requirements: An evaluation of four techniques
using creativity workshops,” in Proc. IEEE 23rd Int. Requirements
Eng. Conf., 2015, pp. 66-75.

N. Maiden, S. Manning, S. Robertson, and]. Greenwood,
“Integrating creativity workshops into structured requirements
processes,” in Proc. 5th Conf. Des. Interactive Syst. Process. Prac.
Methods Techn., Cambridge, MA, USA, 2004, pp. 113-122.

https://www.dictionary.com/browse/critical-thinking,
https://www.dictionary.com/browse/critical-thinking,

MOHANANI ET AL.: HOW TEMPLATED REQUIREMENTS SPECIFICATIONS INHIBIT CREATIVITY IN SOFTWARE ENGINEERING

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

[75]

[76]
(771

(78]

P. K. Murukannaiah, N. Ajmeri, and M. P. Singh, “Acquiring cre-
ative requirements from the crowd: Understanding the influen-
ces of personality and creative potential in crowd RE,” in Proc.
IEEE 24th Int. Requirements Eng. Conf., 2016, pp. 176-185.

A. van Lamsweerde, “Goal-oriented requirements enginering: A
roundtrip from research to practice [enginering read engineering,”
in Proc. 12th IEEE Int. Requirements Eng. Conf., 2004, pp. 4-7.

J. Horkoff, N. Maiden, and J. Lockerbie, “Creativity and goal
modeling for software requirements engineering,” in Proc. ACM
SIGCHI Conf. Creativity Cogn., 2015, pp. 165-168.

M. A. Boden, The Creative Mind: Myths and Mechanisms. Hove,
U.K.: Psychology Press, 2004.

N. Maiden and S. Robertson, “Integrating creativity into require-
ments processes: Experiences with an air traffic management
system,” in Proc. 13th IEEE Int. Conf. Requirements Eng., 2005,
pp. 105-114.

T. Bhowmik, N. Niu, A. Mahmoud, and]. Savolainen,
“Automated support for combinational creativity in require-
ments engineering,” in Proc. IEEE 22nd Int. Requirements Eng.
Conf., 2014, pp. 243-252.

T. M. Amabile, “A model of creativity and innovation in organ-
izations,” Res. Organizational Behav., vol. 10, no. 1, pp. 123-167,
1988.

R. Mohanani, P. Ram, A. Lasisi, P. Ralph, and B. Turhan,
“Perceptions of creativity in software engineering research and
practice,” in Proc. 43rd Euromicro Conf. Softw. Eng. Adv. Appl.,
2017, pp. 210-217.

R. J. Sternberg, Handbook of Creativity. Cambridge, U.K.: Cam-
bridge Univ. Press, 1999.

M. Rhodes, “An analysis of creativity,” Phi Delta Kappan, vol. 42,
no. 7, pp- 305-310, 1961.

J. A. Plucker and M. C. Makel, “Assessment of creativity,” The
Cambridge Handbook of Creativity, Cambridge, U.K.: Cambridge
Univ. Press, 2010, pp. 48-73.

R. E. Mayer, “22 fifty years of creativity research,” Handbook of
Creativity, Cambridge, U.K.: Cambridge Univ. Press, 1999.

H. H. Christiaans, “Creativity as a design criterion,” Commun.
Res. |, vol. 14, no. 1, pp. 41-54, 2002.

H. G. Nelson and E. Stolterman, The Design Way: Intentional
Change in an Unpredictable World: Foundations and Fundamentals of
Design Competence. Englewood Cliffs, NJ, USA: Educ. Technol.
Pub., 2003.

A. Tversky and D. Kahneman, “Judgment under uncertainty:
Heuristics and biases,” Science, vol. 185, no. 4157, pp. 1124-1131,
1974.

A. Tang and Antony, “Software designers, are you biased?,” in
Proc. 6th Int. Workshop Sharing Reusing Architectural Knowl., New
York, NY, USA, 2011, pp. 1-8.

C. Mair and M. Shepperd, “Human judgement and software
metrics,” in Proc. 2nd Int. Workshop Emerging Trends Softw. Met-
rics, New York, NY, USA, 2011, pp. 81-84.

I. Salman, B. Turhan, and S. Vegas, “A controlled experiment
on time pressure and confirmation bias in functional software
testing,” Empirical Softw. Eng., vol. 24, no. 4, pp. 1-35,
2018.

G. Calikli and A. Bener, “Empirical analyses of the factors affect-
ing confirmation bias and the effects of confirmation bias on soft-
ware developer/tester performance,” in Proc. 6th Int. Conf.
Predictive Models Softw. Eng., Timisoara, Romania, 2010, pp. 1-11.
G. J. Browne and V. Ramesh, “Improving information require-
ments determination: a cognitive perspective,” Inf. Manage.,
vol. 39, no. 8, pp. 625645, 2002.

N. Chotisarn and N. Prompoon, “Forecasting software damage
rate from cognitive bias in software requirements gathering and
specification process,” in Proc. IEEE 3rd Int. Conf. Inf. Sci. Technol.,
Jiangsu, China, 2013, pp. 951-956.

M. Jorgensen and S. Grimstad, “Software development estima-
tion biases: The role of interdependence,” IEEE Trans. Softw.
Eng., vol. 38, no. 3, pp. 677-693, May 2012.

A.T. Purcell and J. S. Gero, “Design and other types of fixation,”
Des. Stud., vol. 17, no. 4, pp. 363-383, 1996.

M. Perttula and P. Sipila, “The idea exposure paradigm in design
idea generation,” J. Eng. Des., vol. 18, no. 1, pp. 93-102, 2007.

E. G. Chrysikou and R. W. Weisberg, “Following the wrong foot-
steps: Fixation effects of pictorial examples in a design problem-
solving task,” J. Exp. Psychol. Learn. Memory Cogn., vol. 31, no. 5,
pp- 1134-1148, 2005.

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]
[97]

[98]

[99]
[100]

[101]

[102]
[103]

[104]

[105]

4085

Z. Lujun, “Design fixation and solution quality under exposure
to example solution,” in Proc. IEEE 2nd Int. Conf. Comput. Control
Ind. Eng., 2011, pp. 129-132.

C. Toh, S. Miller, and G. Kremer, “Mitigating design fixation
effects in engineering design through product dissection
activities,” in Proc. Des. Comput. Cogn., Dordrecht, The Nether-
lands, 2014, pp. 95-113.

R. J. Youmans, “The effects of physical prototyping and group
work on the reduction of design fixation,” Des. Stud., vol. 32, no. 2,
pp- 115-138, 2011.

B. Nuseibeh, S. Easterbrook, and A. Russo, “Leveraging inconsis-
tency in software development,” Computer, vol. 33, no. 4, pp. 24-29,
2000.

D. Zahner, J. V. Nickerson, B. Tversky, J. E. Corter, and J. Ma, “A
fix for fixation? Rerepresenting and abstracting as creative pro-
cesses in the design of information systems,” Artif. Intell. Eng.
Des. Anal. Manuf., vol. 24, no. 2, pp. 231-244, 2010.

J. Kim and H. Ryu, “A design thinking rationality framework:
Framing and solving design problems in early concept gener-
ation,” Hum. Comput. Interact., vol. 29, no. 5-6, pp. 516-553, 2014.
K. E. Stanovich, What intelligence Tests Miss: The Psychology of
Rational Thought. New Haven, CT, USA: Yale Univ. Press, 2009.
E. I. Karac, B. Turhan, and N. Juristo, “A controlled experiment
with novice developers on the impact of task description granu-
larity on software quality in test-driven development,” IEEE
Trans. Softw. Eng., vol. 47, no. 7, pp. 1315-1330, Jul. 2021.

K. A. Ericsson and H. A. Simon, Protocol Analysis: Verbal Reports
as Data. Cambridge, MA, USA: MIT Press, 1984.

S. Xu and V. Rajlich, “Dialog-based protocol: An empirical
research method for cognitive activities in software engineer-
ing,” in Proc. Empirical Softw. Eng., Noosa Heads, Australia, 2005.
K. Dorst and J. Dijkhuis, “Comparing paradigms for describing
design activity,” Des. Stud., vol. 16, no. 2, pp. 261-274, 1995.

A. Hashem, M. T. Chi, and C. P. Friedman, “Medical errors as a
result of specialization,” J. Biomed. Inf., vol. 36, no. 1-2, pp. 61-69,
2003.

J. Hughes and S. Parkes, “Trends in the use of verbal protocol
analysis in software engineering research,” Behav. Inf. Technol.,
vol. 22, no. 2, pp. 127-140, 2003.

J. Mingers, “Realizing information systems: Critical realism as an
underpinning philosophy for information systems,” Inf. Organi-
zation, vol. 14, no. 2, pp. 87-103, 2004.

E. D. Canedo and R. P. da Costa, “The use of design thinking in
agile software requirements survey: A case study,” in Proc. Int.
Conf. Des. User Exp. Usability, 2018, pp. 642-657.

C. Vetterli, W. Brenner, F. Uebernickel, and C. Petrie, “From
palaces to yurts: Why requirements engineering needs design
thinking,” IEEE Internet Comput., vol. 17, no. 2, pp. 91-94,
Mar./Apr. 2013.

N. Carroll and I. Richardson, “Aligning healthcare innovation
and software requirements through design thinking,” in Proc.
IEEE/ACM Int. Workshop Softw. Eng. Healthcare Syst., 2016,
pp. 1-7.

P. Ralph, “Fundamentals of software design science,” Ph.D.
Diss., Univ. British Columbia, Vancouver, BC, USA, 2010.

J. Saldana, The Coding Manual for Qualitative Researchers. London,
U.K.: Sage Pub. Ltd., 2015.

D. S. Cruzes and T. Dyba, “Recommended steps for thematic
synthesis in software engineering,” in Proc. Int. Symp. Empirical
Softw. Eng. Meas., Banff, AB, Canada, 2011, pp. 275-284.

M.-L. Chiu, “Design moves in situated design with case-based
reasoning,” Des. Stud., vol. 24, no. 1, pp. 1-25, 2003.

L. A. Belady and M. M. Lehman, “A model of large program
development,” IBM Syst.]., vol. 15, no. 3, pp. 225-252, 1976.

D. M. Berry, “The inevitable pain of software development: Why
there is no silver bullet,” in Proc. Int. Workshop Radical Innov.
Softw. Syst. Eng. Future, 2002, pp. 50-74.

D. A. Schon, The Reflective Practitioner: How Professionals Think in
Action. London, U.K.: Basic Books, 1984.

M. Archer, R. Bhaskar, A. Collier, T. Lawson, and A. Norrie, Crit-
ical Realism: Essential Readings. London, U.K.: Routledge, 2013.

M. Healy and C. Perry, “Comprehensive criteria to judge validity
and reliability of qualitative research within the realism para-
digm,” Qual. Market Res. Int.]., vol. 3, no. 3, pp. 118-126, 2000.

R. J. Youmans, “Design fixation in the wild: Design environ-
ments and their influence on fixation,” |. Creative Behav., vol. 45,
no. 2, pp. 101-107, 2011.

4086

[106]

[107]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

R. Mohanani, I. Salman, B. Turhan, P. RodrA-guez, and P. Ralph,
“Cognitive biases in software engineering: A systematic map-
ping study,” IEEE Trans. Softw. Eng., vol. 46, no. 12, pp. 1318-1339,
Dec. 2020.

R. Mohanani, P. Ralph, B. Turhan, and V. Mandic, “How tem-
plated requirements specifications inhibit creativity in software
engineering (Replication Package),” 2021. [Online]. Available:
https:/ /doi.org/10.5281/zenodo.4678669

Rahul Mohanani received the BEng degree from
Mumbai University, the MSc degree from Lancaster

Burak Turhan (Senior Member, IEEE) received
the PhD degree from Bogazici University. He is
currently a professor of software engineering with
the University of Oulu and an adjunct professor of
research with the Faculty of IT, Monash Univer-
sity. His research interests include empirical soft-
ware engineering, software analytics, quality
assurance and testing, human factors, and agile
development processes. He is currently a senior
associate editor for Journal of Systems and Soft-
ware, an associate editor for ACM Transactions

University, and the PhD degree from Oulu Univer-
sity. He is currently a senior scientist with Fortiss
GmbH, Munich and an adjunct assistant professor
of software engineering with IlIT Delhi. He has
authored or coauthored in premier venues, includ-
ing the ACM/IEEE International Conference on
Software Engineering and IEEE Transactions on
Software Engineering. His research interests
include intersecting empirical SE, human aspects,
and design thinking.

Paul Ralph received the BSc or BComm degree
from Memorial and the PhD degree from British
Columbia. He is currently an award-winning scien-
tist, an author, a consultant, and a professor of soft-
ware engineering with Dalhousie University. His
research interests include empirical software engi-
neering, human-computer interaction, and project
management. He is a member of the IEEE Trans-
actions on Software Engineering review board and
the chair of the ACM Paper and Peer Review Qual-
ity Task Force.

on Software Engineering and Methodology, and Automated Software
Engineering, an editorial board member of Empirical Software Engineer-
ing, Information and Software Technology, and Software Quality Jour-
nal. He is a senior member of ACM.

Vladimir Mandi¢ (Member, IEEE) received the
MSc degree in electrical engineering from the Uni-
versity of Novi Sad, Serbia and the PhD degree in
information processing science and SE from the
University of Oulu, Finland. He is currently an assis-
tant professor of SE with the University of Novi Sad,
Serbia. His research interests include software pro-
cess improvement, empirical software engineering,
goal-driven measurement approaches, technical
debt, and value-based software engineering.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

https://doi.org/10.5281/zenodo.4678669

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

