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A Procedure and Guidelines for Analyzing
Groups of Software Engineering Replications

Adrian Santos, Sira Vegas, Markku Oivo and Natalia Juristo

Abstract—Context: Researchers from different groups and institutions are collaborating on building groups of experiments by means
of replication (i.e., conducting groups of replications). Disparate aggregation techniques are being applied to analyze groups of
replications. The application of unsuitable techniques to aggregate replication results may undermine the potential of groups of
replications to provide in-depth insights from experiment results. Objectives: Provide an analysis procedure with a set of embedded
guidelines to aggregate software engineering (SE) replication results. Method: We compare the characteristics of groups of replications
for SE and other mature experimental disciplines such as medicine and pharmacology. In view of their differences, the limitations with
regard to the joint data analysis of groups of SE replications and the guidelines provided in mature experimental disciplines to analyze
groups of replications, we build an analysis procedure with a set of embedded guidelines specifically tailored to the analysis of groups
of SE replications. We apply the proposed analysis procedure to a representative group of SE replications to illustrate its use. Results:
All the information contained within the raw data should be leveraged during the aggregation of replication results. The analysis
procedure that we propose encourages the use of stratified individual participant data and aggregated data in tandem to analyze
groups of SE replications. Conclusion: The aggregation techniques used to analyze groups of replications should be justified in
research articles. This will increase the reliability and transparency of joint results. The proposed guidelines should ease this endeavor.

Index Terms—Replication, Statistical Analysis, Aggregated Data, Individual Participant Data, Narrative Synthesis.

✦

1 INTRODUCTION

Experiments are commonplace in SE [1]–[3]. Still, two main
shortcomings usually have an impact on their suitability
for evaluating the effectiveness of SE technologies [3]: (1)
sample sizes are usually small [4], and (2) results are only
generalizable to the configuration of the experimental set-
tings [5].

With the aim of increasing the reliability and general-
izability of individual experiment results, SE researchers
are working on building groups of experiments by means
of replication (conducting groups of replications) [6]–[10].
By collaborating with each other (e.g., sharing experimental
material, and assisting each other during the design, execu-
tion and/or analysis phase of experiments, etc.), researchers
are able to increase the sample size, as well as evaluate
the effects of the treatments under different settings. This
should increase the reliability of results and their generaliz-
ability to different contexts and populations [11].

Groups of replications provide some advantages for
evaluating the effectiveness of SE treatments [12]–[16]: (1)
access to raw data provides for the use of consistent pre-
processing and analysis techniques to analyze each exper-
iment, thereby increasing the reliability of joint conclu-
sions; (2) researchers conducting groups of replications may
limit the changes made across the replications in order
to increase the internal validity of joint conclusions; (3)
joint conclusions are not affected by the detrimental effects
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of publication bias, as groups of replications do not rely
on already published results; (4) consistent measurement
instruments can be used across replications in order to
measure participant characteristics with identical methods
and scales and, possibly, stratify the results according to
such characteristics.

According to a systematic mapping study (SMS) that
we undertook [17], five techniques are being applied to
aggregate groups of SE replications (listed from most to
least used): narrative synthesis, aggregated data, mega-trial
or stratified individual participant data, and aggregation
of p-values. According to the literature of mature exper-
imental disciplines like medicine and pharmacology [18],
[19], some aggregation techniques are more suitable than
others depending on the characteristics of the group of
replications. We observed similar findings when applying
the aggregation techniques to analyze a stereotypical group
of SE replications [20] (a small group of replications with
small and dissimilar sample sizes, opportunistic participant
recruitment, different types of subjects, identical experi-
mental designs and response variable operationalizations,
and heterogeneous results [17]). The applied aggregation
technique definitely had a big impact on the reliability of
joint conclusions [20].

In view of this, the aim of this study is to answer the
following main research question:

• How should groups of SE replications be aggre-
gated?

To answer this question, we performed a literature
review in mature experimental disciplines (medicine and
pharmacology) to learn about the techniques applied to
aggregate replication results. Along the way, we also noticed
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some (more profound than expected) differences between
groups of replications in SE and medicine. This led to a
subsequent literature review of studies with similar circum-
stances to SE in the fields of medicine, social research, ed-
ucational research and econometrics. In view of the results,
we tailored a procedure, with a set of embedded guidelines,
to facilitate the aggregation of results in groups of SE
replications. We apply the proposed procedure to analyze
a group of replications in order to illustrate its use.

This article extends our prior work (i.e., [17], [20]) in
several ways: (1) by identifying differences between the char-
acteristics of groups of replications in the fields of SE and
medicine and how such differences may impact the aggre-
gation techniques used to analyze groups of SE replications;
(2) by proposing a step-by-step procedure to analyze groups
of SE replications that takes into account such differences
and the typical limitations regarding joint data analysis of
groups of SE replications; (3) by providing a hands-on tutorial
with mathematical formulae and R code snippets to analyze
a stereotypical group of SE replications; (4) by providing a
discussion and further pointers to references indicating how to
analyze groups of replications with different experimental
designs.

The take-away messages of this research are:

• Random-effects models should be preferred over fixed-
effects models, especially because many variables may
impact SE experiment results, changes are frequent
across SE replications, and heterogeneous results are
commonplace. Differences between groups of repli-
cations in medicine and SE make it inappropriate to
directly apply medical guidelines to the analysis of
groups of SE replications. In particular, the applica-
tion of fixed-effects models and traditional statistical
thresholds (e.g., the traditional p-value of 0.05) in
order to detect heterogeneity and moderators does
not appear to provide guarantees in SE.

• Avoid narrative synthesis [21], aggregation of p-
values [22] and mega-trial individual participant data
(IPD-MT) [23], and use aggregated data (AD) [24] and
stratified individual participant data (IPD-S) [25] in tan-
dem instead. AD and IPD-S appear to be the most suit-
able techniques for analyzing groups of SE replica-
tions. AD provides intuitive visualizations to convey
joint results and straightforward statistics to quantify
heterogeneity. IPD-S increases the interpretability of
joint results and offers greater statistical flexibility.

• Strive to identify both experiment-level moderators1 and
participant-level moderators. AD and IPD-S appear
to be good at identifying experiment-level modera-
tors. IPD-S appears to be preferable for identifying
participant-level moderators.

• Use the following four-step procedure to analyze a
stereotypical group of SE replications: (1) describe the
characteristics of the participants using appropri-
ate descriptive statistics and visualizations; (2) use
consistent statistical techniques to pre-process, de-
scribe and analyze the data of each replication; (3)
select suitable aggregation techniques to provide

1. Variables that cause an effect to differ across contexts [26].

joint conclusions; and (4) conduct exploratory anal-
yses to identify experiment-level moderators2 and
participant-level moderators3.

The paper has been organized as follows. In Section 2
we provide the background of this study. In Section 3 we
outline the research method that we followed to elaborate
the proposed analysis procedure, and present the stereotyp-
ical group of replications that we will use to illustrate its
application. In Section 4 we show the differences between
groups of replications in medicine and SE. Then, in Section 5
we outline the most common limitations with regard to joint
data analysis of groups of SE replications. In Section 6 we
provide an overview of the four-step analysis procedure that
we propose to analyze groups of SE replications. In Sections
7, 8, 9 and 10 we detail each of the steps of the procedure that
we apply to the illustrative group of replications. We outline
the threats to validity of this study in Section 11, and provide
further pointers for the analysis of groups of SE replications
with different experimental designs in Section 12. We relate
our research to other SE research in Section 13. Section 14
states our conclusions.

2 BACKGROUND

2.1 Replication

The relevance of replication has been widely acknowledged
in SE [27], [28]. Replication has been coupled in SE with the
concept of applying a similar experimental procedure to the
one applied in a previous baseline experiment on a different
sample of participants to generate new raw data [29], [30].

However, two different concepts need to be set apart:
replication and reproducibility—or reproduction of results.
Researchers who want to reproduce results apply the same
analysis procedure followed by the original experimenters
to the original raw data with the aim of getting the same re-
sults [31]. Therefore, reproduction has to do with re-analysis
of raw data from the baseline experiment [31]. Replications
generate new raw data —and results— that can be later
combined with the outcomes of other replications to provide
joint conclusions. This research focuses on replication.

Different types of replications can be conducted. Accord-
ing to Gomez et al. [32], replication types vary along a con-
tinuum: from exact replications, following exactly the same
experimental configurations as their baseline experiments,
to conceptual replications, where the only thing that the
replications have in common are the baseline experiment
research questions and objectives. Somewhere in between
these two extremes lie other replication types, where dif-
ferent elements of the baseline experiment configurations
remain unchanged [33].

Laboratory packages were proposed to ease replication
across research groups and institutions [34]. Laboratory
packages contain relevant information needed to replicate
an experiment [35]. With a laboratory package, an external
group of researchers can reproduce the settings of a baseline

2. Characteristics of the experiments that may be impacting the
results, such as the programming language or experimental session
length of the experiments.

3. Characteristics of the participants that may be impacting the re-
sults, such as participant programming or Java experience.
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experiment, and gather new raw data from a different
sample of participants. In addition to sharing laboratory
packages, experimenters conducting groups of replications
may also collaborate with each other through face-to-face
or Internet meetings to plan, design, execute and/or an-
alyze their experiments [36]. This close collaboration may
increase the chances of getting similar results across the
replications—as experimenter interaction is expected to as-
sure more similar experimental procedures. This should
increase the reliability of joint conclusions [22].

Despite even the hardest efforts to conduct exact replica-
tions, conflicting results may still pile up [22], [37]. It is then
that first-hand knowledge of experiment configurations and
participant characteristics plays a central role. If such infor-
mation is known, it is easier to hypothesize on the variables
that may be behind divergent results. In turn, this is useful
for hypothesizing on experiment-level or participant-level
moderators that may be influencing the results. It is the
above flexibility that leads this research to focus on groups
of replications.

2.2 Groups of Replications
We conducted a SMS with the aim of learning what ag-
gregation techniques are being used to analyze groups of
SE replications [17]. We identified a total of 39 groups of
replications that share certain characteristics:

• They are either conducted by individual researchers or
by groups of researchers working in close collaboration
across one or multiple research groups, universities
and/or institutions. As such, researchers have access
to the raw data of all the replications.

• They are formed opportunistically. In other words, a
priori plans are not typically set for building groups
of replications; each replication comes into being
individually without a defined protocol at the incep-
tion of the group. As a consequence, replications are
aggregated —generally after having being published
individually— to either increase the reliability of
the findings or to elicit moderators (e.g., assessing
how the technologies perform for different types of
subjects).

• Most groups of replications are composed of three to
five replications evaluating the performance of a binary
treatment (e.g., Method A vs. Method B) on a contin-
uous outcome of interest (e.g., productivity measured
as LOC per hour). Replications are usually small4,
have dissimilar sample sizes, evaluate the performance
of the treatments for different types of subjects (e.g.,
professionals vs. students), have identical experimental
designs and response variable operationalizations5, and
provide heterogeneous results.

2.3 Aggregation Techniques
Five aggregation techniques have been used in groups
of SE replications [17]: narrative synthesis, AD, IPD-MT,

4. Out of consistency with other SE authors [38], small sample size
refers throughout this article to experiments involving fewer than 30
subjects.

5. Therefore, internal and construct threats to validity are not miti-
gated or new ones cannot be identified.

IPD-S and aggregation of p-values. Thirty-five percent of
the groups of replications use more than one aggregation
technique. However, they usually serve different purposes:
one for providing joint conclusions, and a different one for
eliciting moderators. Thus, the groups of SE replications
never compare the results achieved with different aggrega-
tion techniques for the same objective.

In the following, we review the aggregation techniques
used in groups of SE replications starting with the most, and
ending with the least, popular.6 To do this, we rely on the
results of the SMS that we undertook [17].

Narrative synthesis was used to analyze 46% (18 out
of 39) of the groups of replications [17]. In narrative syn-
thesis (also known as semi-quantitative aggregation [22]),
replication results (in either p-value or effect size terms)
are combined textually to provide a summary of results.
For example, it is common in SE to analyze each replica-
tion individually using a t-test or a Wilcoxon test and to
then provide a textual summary of results of the replica-
tions as follows: ”...while the results are statistically signifi-
cant/large/negative in experiments X, Y and Z, they are not
in experiment M. This difference of results could have been
caused by H, N or K moderator variable...”.

AD—commonly known as meta-analysis of effect sizes
in SE [24]—was used to analyze 38% (15 out of 39) of
the groups of replications [17]. In AD, all replication effect
sizes are first computed from summary statistics, such as
means, variances or sample sizes—or from experiment sta-
tistical test results—and then combined by means of a meta-
analysis model [22]. Two different types of meta-analysis
models can be fitted: fixed-effects models or random-effects
models [22]. Fixed-effects models assume that all the exper-
iments estimate a common population effect size and, thus,
differences across experiment results arise due to the natural
variation of results (i.e., due to the different participant
samples in the experiments). On the other hand, random-
effects models assume that differences across experiment
results arise not just from the natural variation of results,
but also from a real heterogeneity of effects. In other words,
random-effects models estimate a distribution of population
effect sizes rather than a common population effect size.

IPD-MT was used to analyze 33% (13 out of 39) of
the groups of replications [17]. In IPD-MT, the raw data
of all the experiments are analyzed jointly as if the raw
data came from one big experiment. Since IPD-MT depends
on the availability of raw data, researchers typically first
analyze each replication individually [23] to later perform
IPD-MT by pooling and analyzing the raw data of all the
replications applying the same statistical test that was used
for performing the individual analyses.

IPD-S was used to analyze 15% (6 out of 39) of the
groups of replications [17]. In IPD-S all experiment raw
data are analyzed jointly by acknowledging the experiment
where the raw data come from. As in AD, two types of IPD-
S models can be fitted: fixed-effects models and random-
effects models. Commonly used fixed-effects models are
linear regression models (e.g., ANOVA) with two factors:

6. The respective percentage use of the aggregation techniques sum
more than 100% because 16 groups of replications used more than one
aggregation technique.
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Experiment and Treatment [19]. Commonly used random-
effects models are linear mixed models with two factors:
Experiment and Treatment [19].

Aggregation of p-values was used to analyze 7% (3
out of 39) of the groups of replications [17]. In aggrega-
tion of p-values, one-sided p-values from all replications are
pooled together by means of a statistical model such as
Fisher’s or Stouffer’s method [22]. Note that p-values can
be either available directly (have been previously reported)
or computed by researchers (raw data available from each
replication is first analyzed to calculate the p-values).

3 RESEARCH METHOD

We began our research by studying the recommendations
and guidelines provided in medicine and pharmacology
to analyze—and report—groups of replications (i.e., multi-
center clinical trials [39]). We resorted to the medical and
pharmacological literature because of their longstanding
experimental tradition and because SE researchers have
previously looked to these disciplines for advice on how
to analyze individual experiments [5], [40], how to conduct
systematic literature reviews [24] or how to conceptualize
new research paradigms, such as evidence-based software
engineering [41] and so on.

Particularly, we began studying the recommendations
and guidelines promoted by the Cochrane Association [42],
the American Food and Drug Administration [43], the
guidelines for analyzing multicenter clinical trials (MCTs)
provided by the International Conference on Harmonization
[44], the PRISMA-IPD statement of the EQUATOR Network
framework [45], and the CONSORT statement for reporting
randomized controlled trials [46]. These guidelines for ana-
lyzing MCTs are mature and have been widely used. Some
have been in use for over 20 years [44] and others have been
referenced thousands of times [46].

The above guidelines contain a number of terms (e.g.,
multicenter, treatment-by-center interaction, etc.), and con-
cepts (e.g., individual participant data, aggregated data,
etc.) that we used to drive a subsequent literature review.
Throughout the literature review, we came across numerous
references to the statistical techniques that can be used to
analyze MCTs [15], [25], [47]–[49], meta-analysis [19], [22],
[50], hierarchical linear models [18], [51]–[53], and study
protocols [54].

After studying the above references, we identified some
differences between MCTs and groups of SE replications.
According to the meta-analysis and hierarchical linear mod-
els literature that we examined, these differences had sta-
tistical consequences with respect to results aggregation.
This led to another literature review where we discovered
studies evaluating data under circumstances more typical of
SE: small number of replications with small and unbalanced
sample sizes. We found a number of studies from medicine
[55], [56], social research [57], educational research [58] and
econometrics [59] studying exactly this. In Section 4 we out-
line the differences between groups of SE replications and
MCTs, and the statistical consequences of such differences.

After this second literature review, where we learned
about the statistical consequences of the differences between
groups of SE replications and MCTs, we revisited the groups

of replications that we identified during the SMS reported
in [17]. We compiled a list of four common limitations with
regard to joint data analysis in groups of SE replications. We
outline these limitations in Section 5.

We developed guidelines to tackle these limitations. We
created a four-step analysis procedure with an identical
structure to those commonly followed in medicine [42]–[46].
We embedded the guidelines within Steps 3 and 4 of the
analysis procedure that we propose (i.e., providing either
joint conclusions, or moderator effects, respectively). Before
going any further, however, we should clarify that we do not
aim to propose an all-encompassing cookbook procedure to
analyze all groups of SE replications. Our procedure can be
seen as a set of minimum criteria needed to analyze a stereo-
typical group of SE replications (i.e., with the characteristics
outlined in Section 2). In Section 6 we discuss the steps of
the proposed analysis procedure, the objectives of each step,
the medical guidelines recommending the respective steps,
and how we adapted each step to SE by acknowledging
differences between MCTs and groups of SE replications,
and their common limitations with regard to joint data
analysis.

Finally, we outline each of the steps of the proposed pro-
cedure. We apply the procedure to analyze a representative
group of SE replications to illustrate the procedure.

The chosen group of replications focuses on test-driven
development (TDD). One research question drives the group
of replications: How does TDD affect quality compared to
Iterative-Test-Last (ITL)?

The main independent variable across all replications is the
development approach, with TDD and ITL as treatments.
ITL is defined as the reverse-order approach of TDD (fol-
lowing Erdogmus et al. [60]).

All experiments have an identical experimental design: an
AB repeated-measures design [5] (where subjects first apply
ITL, and then TDD at a later date). The dependent variable
within the group of replications is quality. We measured
quality as the percentage of test cases that successfully pass
from a battery of test cases that we built for measuring
participant solutions. Specifically, we measured quality as
follows:

QLTY =
#Test Cases(Pass)

#Test Cases(All)
∗ 100%

A total of four replications were run: three at a multina-
tional online security products company (i.e., F-Secure H,
F-Secure K and F-Secure O), and one at UPV, a Spanish
university. Six, 11, 7 and 33 subjects participated in each
replication, respectively.

The characteristics of this group of replications are
typical in SE: a small number of replications (i.e., four
replications, the median number of replications within SE
groups) evaluating the performance of a binary treatment
(i.e., ITL vs. TDD) on a continuous7 outcome of interest, with
identical response variables and experimental designs, small
and dissimilar sample sizes, different types of subjects (i.e.,
professionals and students) with common knowledge (i.e.,

7. Although the data are measured on a percentage scale (i.e., 0 to
100%), the approach taken throughout this study is to consider the data
as continuous as the total number of test cases is large (i.e., greater than
30 [61]).
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week-long training on slicing, unit testing, ITL and TDD)
and development culture (test last), using the same environ-
ment (i.e., Java, JUnit, Eclipse) and showing heterogeneous
results.

4 DIFFERENCES BETWEEN GROUPS OF SE
REPLICATIONS AND MCTS

After studying the guidelines and recommendations on
analyzing MCTs in medicine and pharmacology, we were
skeptical about their direct application for analyzing groups
of SE replications due to some relevant differences between
MCTs and groups of SE replications.

For example, MCTs use controlled experiments (par-
ticipants are randomly assigned to treatments), while
quasi-experiments (where assignment to treatments is non-
random) are common in SE. Quasi-experimental designs
usually create less compelling support for counterfactual
inferences [62]. Quasi-experimental control groups may dif-
fer from the treatment condition in many systematic (non-
random) ways other than the presence of the treatment.
Many of these differences could be alternative explana-
tions for the observed effect and should be ruled out by
researchers in order to get a more valid estimate of the
treatment effect. By contrast, with random assignment, re-
searchers do not have to think about all these alternative
explanations.

Additionally, MCTs tend to have detailed protocols spec-
ifying the experimental settings under which all the experi-
ments are to be run and the set of procedures that are to be
strictly adhered to during the execution of the experiments
[19], [44], [63]. On the contrary, groups of SE replications
are usually created ad hoc [17]. In fact, changes are usu-
ally made opportunistically across the replications which
are then aggregated to either provide joint results or to
investigate moderators. Unfortunately, the changes typically
made across SE replications may result in an unexpectedly
large variation of results (i.e., statistical heterogeneity of
results [22]). In practical terms, if statistical heterogeneity
materializes, then this is taken as evidence that the treat-
ments may be performing differently across the experiments
[22]. It may be misleading in this case to apply fixed-effects
models to aggregate the results [19], [22]—as is typically
the case in medicine [19], [43], [64]—. This is because, un-
like random-effects methods, fixed-effects models provide a
common effect rather than a distribution of effects as a joint
conclusion [19], [22]. The joint conclusions of fixed-effects
model may be especially misleading if results reverse across
the experiments [19], [22]—as the averaged effect may not,
ultimately, be representative for all the experiments.

We put the absence of protocols in groups of SE replica-
tions down to experimental research in SE being less mature
than in medicine. Therefore, we regard this as a temporary
difference since we expect SE researchers to be convinced by
the advantages of developing standardized protocols (e.g.,
increased internal validity of results [39], [65]) and adopt
them when conducting groups of replications.

Besides, stringent and random selection criteria are typ-
ically set to recruit the participants in MCT experiments
designed to assess the efficacy of new treatments [44], [46],

[63], like specific blood pressure parameters, lack of co-
morbid conditions, etc. [44], [46], [63]. This ensures consis-
tent results across sites and helps to minimize the risk of
confounding effects impacting results [19]. Contrariwise, SE
replications rarely set stringent selection criteria for recruit-
ing participants. Instead, participants are usually recruited
using convenience sampling. Unfortunately, the different
characteristics of the participants across the experiments
may result in statistical heterogeneity. Once again, this is
an obstacle to the application of fixed-effects models for
analyzing groups of SE replications. We think that there are
two grounds for the absence of strict recruiting criteria in
groups of SE replications. First, SE experimental research
is less mature and has not yet developed standardized
measurement instruments to classify—and include/exclude
participants—in SE experiments [66]. Second, there are dif-
ferences between the domains of SE and medicine, where SE
researchers rarely have the luxury of dismissing participants
or an ample array of potential participants. Since we do not
expect this to change in the short term, we consider this
difference as permanent.

Also, MCTs commonly undertake a planning phase
where both participant-level and experiment-level sample
sizes are calculated [43], [46], [63]. Participant-level sam-
ple sizes define how many subjects are needed, whereas
experiment-level sample sizes define how many replications
are needed if is only plausible to allocate X subjects to
each experiment. This ensures balanced sample sizes across
the experiments and proper statistical power for detecting
true population effect sizes. On the contrary, sample size
estimation phases are rarely undertaken in SE (considering
that only one group of SE replications [67] provided any
sample size requirements calculation [17]). Instead, a small
number of replications with small and dissimilar (i.e., con-
venient) sample sizes are usually run and then aggregated.
This sample size estimation phase is feasible within the
broader population to which medicine interventions apply
as opposed to SE experiments where the population is
more restricted. This more contrived sampling frame may
prevent groups of SE replications from satisfying statistical
power requirements. This places several limitations on the
use of fixed-effects models to analyze groups of SE replica-
tions. First, fixed-effects models fit many parameters. For
example, parameter estimates may be potentially biased
in ANOVA models including an experiment factor, where
a different parameter is fitted for each experiment [19],
due to experiment-level sample size limitations. Second,
groups of SE replications tend to have dissimilar sample
sizes. This may prevent fixed-effects models achieving the
statistical power to detect true treatment effects [55], [68].
We think that the failure in groups of SE replications to pay
attention to sample size calculations may be due both to SE
experimental research being less mature than medicine and
to different participant recruitment opportunities between
the SE and medicine domains. Therefore, it is regarded as a
permanent difference.

Finally, the small sample sizes and number of replica-
tions in groups of SE replications also impact the detectabil-
ity of moderators [19], [47], [69]. In particular, larger sample
sizes are usually required to detect moderators than to
detect treatment effects [69]. Therefore, it may not be feasible
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TABLE 1
Differences between MCTs and groups of SE replications and statistical consequences.

Multicenter Control Trials groups of SE replications Statistical consequence
 Identical experimental configurations ✗ Opportunistic changes across replications - Risk of heterogeneity
 Rigid & random participant selection criteria ✗ Convenience sampling - Risk of heterogeneity
 Balanced & adequate sample sizes ✗ Unbalanced & small sample sizes - Low precision & power of fixed effects
 Appropriate overall sample size ✗ Small overall sample size - Inability to detect moderators

in groups of SE replications to get p-values lower than
0.05 in order to claim that there are statistically significant
moderator effects. This is especially worrying in the case
of experiment-level moderators, as, in most cases, only a
few data points are available for moderator detection. It
may not be feasible to identify moderators in groups of
SE replications unless statistical significance thresholds are
adapted (e.g., by increasing them from 0.05 to 0.10 [19]).
Unfortunately, this comes at the cost of a larger proportion
of statistical errors [19], [70]. In our opinion, the inability
of groups of SE replications to detect moderators may be
due both to SE experimental research being less mature
than medicine (as, after all, moderators could be identified
if sample size calculations were made [71]) and differences
between SE and medicine (again, in terms of resources).
Therefore, it is regarded as a permanent difference.

Table 1 summarizes the differences between MCTs and
groups of SE experiments, and the statistical consequences
of such differences for joint data analysis.

5 LIMITATIONS OF GROUPS OF SE REPLICATIONS

We designed an analysis procedure that is identical to the
steps followed in medicine and pharmacology to analyze
and report MCTs [42]–[46], [54]. We adapted this procedure
to groups of SE replications taking into account their typical
characteristics in order to overcome common limitations
with regard to joint data analysis. After revisiting the groups
of SE replications that we identified in our SMS [17], we
came up with a list of four major limitations regarding joint
data analysis practices. In the following, they are reviewed
one by one.

Limitation 1: Fifty-three percent of the groups of SE
replications use either narrative synthesis or aggregation of
p-values to aggregate replication results [17]. Even though
we agree with the use of narrative synthesis and aggregation
of p-values when the raw data and summary statistics are
unavailable or when response variables are incompatible
[21], [72], we are skeptical about their use when the raw
data are available and the replications have identical designs
and response variables [17]. In the last analysis, access to
the raw data may offer the possibility of providing more
informative joint conclusions than just a textual summary of
results (narrative synthesis) or a joint p-value (aggregation
of p-values).

Limitation 2: Thirty-three percent of the groups of SE
replications were analyzed by means of IPD-MT [17]. This
technique may provide misleading results if participants are
more similar within replications than between replications
(e.g., when the replications are either run with professionals
or with students), or if sample sizes are unbalanced across

the treatments and/or replications (e.g., if the replications
have different sample sizes and there are missing data).

Limitation 3: Thirty-eight percent of the groups of SE
replications were analyzed by means of AD with standard-
ized effect sizes (such as Cohen’s d or the Pearson correla-
tion) [17]. Even though AD with standardized effect sizes
can be used to aggregate experiment results in systematic
literature reviews (as access to summary statistics or to
standardized effect sizes may be guaranteed), we question
its use alone when the raw data are available and replications
have identical response variable operationalizations8. This
is because standardized effect sizes overlook the response
variable scales, and, thus, may affect the interpretability
of joint conclusions. For instance, how relevant is a joint
Cohen’s d of 0.3? On the contrary, if the replications have
identical response variable operationalizations and access
to the raw data is guaranteed—as is typically the case in
groups of SE replications [17]—, it may be possible to apply
IPD-S [13]–[15] and, thus, interpret results in natural units.
This practice has already been applied in SE [26], [75], [76]
and can lead to more informative joint conclusions.

Limitation 4: SE researchers rarely acknowledge the
limitations of the exploratory analyses that they undertake
for identifying moderators. Besides, they usually identify
moderators textually (e.g., ”as the results are ’statistically
significant/positive’ in Experiment 1 and not in Experiment
2, this difference between the results could be due to mod-
erator variable X” [17]).

6 PROCEDURE FOR ANALYZING GROUPS OF
REPLICATIONS

We propose the adoption of a four-step procedure to analyze
groups of SE replications.

Step 1. Describe the participants. We propose to start by
describing the participants of the replications. The objectives
of this step are not only to describe the population to which the
results should be generalized, but also to suggest plausible
sources of heterogeneity that may arise when providing joint
conclusions [44], [46]. This step can be further broken down
into two main activities:

• As typical in MCTs, we propose to start by providing
summary statistics to describe the characteristics of the
participants [44], [46].

• We adapt this step to SE by rounding out the sum-
mary statistics with a profile plot [77] showing the

8. Groups of SE replications seldom justify the selected aggregation
technique [17]. Nevertheless, there appears to be evidence that AD and
stratified IPD tend to provide similar results with regard to the provi-
sion of joint conclusions [14], [73]. The identification of participant-level
moderators, however, is a different matter, where stratified IPD comes
out on top [74].
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characteristics of the participants averaged across the
replications (see Figure 1, Section 7).

Step 2. Analyze individual replications. We propose
to pre-process, describe and analyze the data of each repli-
cation with consistent statistical techniques. The objectives
of this step are to provide descriptive statistics to ease the
incorporation of results into prospective studies (e.g., by
facilitating the recalculation of effect sizes [22]), identify
patterns across replication results, and ensure that statistical
heterogeneity is not introduced by the different methods used to
analyze the replications [78]. This step can be further broken
down into three main activities:

• As in MCTs [44]–[46], [54], we propose to provide
summary statistics and visualizations (e.g., box plots or
violin plots) to describe the data of each replication
and use consistent pre-processing steps to remove
outliers or replace missing data [79], [80].

• We adapt this step to SE by rounding out the sum-
mary statistics and box plots with a profile plot [77]
showing the mean of the treatments across the repli-
cations (see Figure 3).

• We analyze each replication with consistent analyses
(e.g., t-test, ANOVA, etc. [44], [46], [54]). This ensures
consistency of results across the replications and
eases the integration of results in later phases.

Step 3. Aggregate the results. Following analysis guide-
lines for MCTs [44]–[46], the results of the individually
analyzed replications are aggregated to arrive at joint conclu-
sions. The objective of this step is to increase the reliability of
joint conclusions. We adapt this step to SE by proposing three
guidelines, each specifically tailored to address Limitations
1-3 discussed in Section 5:

• Guideline 1 draws upon arguments from groups of
data analysis experts in mature experimental disci-
plines [43]–[45], [63] and the latest recommendations
provided by statistical reformers and associations
[37], [81], [82] to suggest avoiding the use of narrative
synthesis and aggregation of p-values to provide
joint conclusions.

• Guideline 2 recommends avoiding IPD-MT by de-
fault. Identical advice has been already provided in
mature experimental disciplines such as medicine
and pharmacology [45], [49], [69], [83], [84].

• Guideline 3 draws on arguments from various re-
sources regarding linear mixed models [18], [51],
references comparing the performance of IPD-S and
AD [13], and articles comparing the performance of
various IPD-S models [85] to encourage the use of
both AD and IPD-S in tandem to analyze groups of SE
replications. A similar recommendation has already
been provided in mature experimental disciplines
such as medicine and pharmacology [73], [86].

We also adapt this step to SE by proposing the use of
random-effects models (rather than the fixed-effects models
typically used in MCTs [19], [43]) in the two activities
into which this step is divided: apply AD and apply IPD-
S. Similar advice to this has also been given under similar
circumstances in other disciplines such as the social sciences
[22], [87], [88].

Step 4. Conduct exploratory analyses. As in MCTs
[45], [46], [54], [86], [89], exploratory analyses should be
conducted after providing joint conclusions. The objective
of this step is to identify experiment-level and participant-level
moderators that may be behind the statistical heterogeneity
commonly present in groups of SE replications. We adapt
this step to SE by developing three new guidelines to
address Limitation 4 discussed in Section 5. To do this, we
rely on the recommendations provided in references on data
analysis in the social sciences, biology, and medicine:

• Guideline 4 provides guidance on how to identify
experiment-level moderators by means of AD and
IPD-S [12], [47], [70], [83], [89], [90].

• Guideline 5 provides guidance on how to identify
participant-level moderators by means of IPD-S [47],
[70], [74], [83], [89].

• Guideline 6 outlines the limitations of exploratory
analyses [19], [37], [45], [46], [70], [86], [89].

We also adapt the procedure for identifying moderators
to SE by suggesting an increase in the statistical significance
threshold from 0.05 to 0.10—at the greater risk of a larger
proportion of statistical errors [19]. We also suggest that
less attention be paid to p-values, evaluating instead the
relevance of moderator effect sizes—and their respective
95% CIs. These recommendations account for the typically
low number of replications and small sample sizes of groups
of SE replications, which are an obstacle to moderator
detection [17]. The latter two adaptations are used again
in the first two activities of this step: identify experiment-
level moderators and identify participant-level moderators and
acknowledged in the last activity of this step, acknowledge
limitations of exploratory analyses.

Table 2 summarizes the steps of the procedure that
we propose for analyzing groups of SE replications, the
objectives of each step, and their associated activities. Table
3 links each of the proposed steps with the guidelines
from medicine recommending the respective step, and the
adaptation that we made for SE.

In the next four sections we outline the four steps of
the procedure that we propose for analyzing groups of SE
replications. For illustrative purposes, we apply the respec-
tive step to analyze the stereotypical group of replications
described in Section 3. As Step 1 (i.e., describe the par-
ticipants) and Step 2 (i.e., analyze individual replications)
require no further explanation, we merely apply the steps
to analyze the illustrative group of replications in Sections 7
and 8. As Step 3 (i.e., aggregate the results) and Step 4 (i.e.,
conduct exploratory analysis) embed a set of guidelines that
require further explanation, we first develop the guidelines
and then go on to illustrate their application to the group of
replications in Sections 9 and 10.

7 STEP 1: DESCRIBE THE PARTICIPANTS

Activity 1.1. Provide summary statistics. The provision of
summary statistics of the characteristics of the participants
offers information about the population to which the results
are to be generalized.

Example. Table 4 shows the means and standard devi-
ations of participant programming, Java, unit testing and
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TABLE 2
Procedure for analyzing groups of SE replications and objectives.

Step Objectives Activity

1. Describe participants - Inform about the population under assessment 1.1. Provide summary statistics
- Hypothesize on possible sources of heterogeneity 1.2. Provide profile plot

2. Analyze individual
replications

- Ease incorporation of results into prospective studies 2.1. Provide summary statistics and visualizations
- Identify patterns across replication results 2.2. Provide profile plot
- Avoid heterogeneity due to different analysis procedures 2.3. Perform consistent individual analyses

3. Aggregate results - Maximize informativeness of joint conclusions 3.1. Apply AD
3.2. Apply IPD-S

4. Conduct exploratory
analyses

- Identify experiment-level moderators 4.1. Identify experiment-level moderators

- Identify participant-level moderators 4.2. Identify participant-level moderators
4.3. Acknowledge limitations of exploratory analyses

TABLE 3
Mapping of proposed procedure steps to references in medicine and adaptations made for SE.

Step Recommended in... Adaptation to SE Adapted from...
1. Describe participants [44], [46] Provide profile plot [77]
2. Analyze individual
replications [44]–[46], [54] Provide profile plot [77]

3. Aggregate results [43]–[46], [49]

Avoid narrative synthesis & aggregation of p-values [37], [63], [81], [82]
Avoid IPD-MT [69], [83], [84]
Use AD & IPD-S in tandem [13], [18], [51], [73], [85], [86]
Use random-effects models [19]

4. Conduct exploratory
analyses

[45]–[47], [54],
[86], [89]

Use AD & IPD-S to assess experiment-level moderators [12], [70], [83], [90]
Use IPD-S to identify participant-level moderators [70], [74], [83]
Acknowledge limitations of exploratory analyses [19], [37], [70]
Increase statistical threshold [17], [19]
Evaluate effect size and 95% CI [17]

JUnit experience (measured by self-assessment as inexpe-
rienced, novice, intermediate and expert) across the repli-
cations. We do not find any clear patterns for averaged
participant-level characteristics (e.g., averaged experience
levels for F-Secure O and F-Secure H participants alternate
between programming and Java) across replications.

TABLE 4
Descriptive statistics for participant characteristics.

Experiment Prog. Java Unit JUnit
F-Secure H 3.67 (0.52) 2.33 (1.21) 2.17 (0.98) 2.17 (1.17)
F-Secure K 2.91 (0.70) 1.82 (0.87) 1.64 (0.5) 1.27 (0.47)
F-Secure O 3.29 (0.76) 2.71 (1.11) 2.71 (0.76) 2 (0.82)
UPV 2.36 (0.57) 1.88 (0.60) 1.04 (0.20) 1 (0)

Activity 2.1. Provide profile plot. The provision of a
profile plot showing the mean experience of the participants
across replications may enhance the understandability of
the summary statistics, help to convey the variability of
participant characteristics across replications, ease the iden-
tification of patterns in the characteristics of the participants
across experiments, and help to identify potential sources of
heterogeneity.

Example. Figure 1 shows the profile plot of the illus-
trative group of replications. Figure 1 indicates that there
is an observable decreasing trend in averaged participant
experience across replications: participants have relatively
more experience with programming and Java than with unit
testing or JUnit across all the replications. There appears
to be a noticeable heterogeneity of averaged participant
experience. This may result in statistical heterogeneity when
providing joint conclusions.

Fig. 1. Profile plot for subject experience.

Summary of example. A heterogeneous group of devel-
opers participates within the group of replications, with the
most senior developers at F-Secure H and F-Secure O, and
the junior at UPV.

8 STEP 2: ANALYZE INDIVIDUAL REPLICATIONS

Activity 2.1. Provide summary statistics and visualiza-
tions. The summary statistics and box plots provide in-
formation about the distribution of the data, facilitate the
incorporation of results into prospective studies, and mini-
mize the heterogeneity of results due to the application of
different analysis techniques.

Example. Table 5 shows the descriptive statistics for
QLTY with ITL and TDD across all replications. The respec-
tive box plots—and violin plots—are shown in Figure 2.

As Figure 2 shows, TDD appears to outperform ITL in all
replications. However, while the difference in performance
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TABLE 5
Descriptive statistics for QLTY: ITL vs. TDD.

Experiment Treat. N Mean Corr SD Median

F-Secure H ITL 6 30.71 0.59 36.58 24.16
TDD 6 40.23 33.43 35.34

F-Secure K ITL 11 22.17 0.42 20.44 17.98
TDD 11 35.42 35.40 22.41

F-Secure O ITL 7 16.05 0.52 20.81 7.87
TDD 7 68.97 31.53 81.03

UPV ITL 31 33.38 0.47 39.79 6.74
TDD 29 77.16 21.04 83.93

Fig. 2. Box plot and violin plot: ITL vs. TDD.

between ITL and TDD is small for F-Secure H and F-Secure
K, the difference appears to be larger for F-Secure O and
UPV. Noticeable—and similar—correlations appear to have
materialized among the QLTY scores of the participants
across replications (i.e., correlations around 0.5). This will
result in greater statistical power (i.e., smaller effect size
variances) when analyzing each replication and calculating
their respective effect sizes [37], [91]. Finally, some data
points (at the bottom of the distributions) for F-Secure O
or UPV may be considered outliers. However, due to the
already small sample sizes of the replications and missing
data for UPV (two participants have data for TDD only, and
another two have none), we do not remove any potential
outlier from the data analysis.

Activity 2.2. Provide profile plot. A profile plot to
complement the descriptive statistics provides a bird’s eye-
view of the data and helps identify patterns in results.

Example. A profile plot showing the mean QLTY score
per treatment across replications is provided in Figure 3.

Fig. 3. Profile plot: ITL vs. TDD.

As Figure 3 shows, TDD appears to outperform ITL
across all replications as observed in the violin plot above.
The extent to which TDD outperforms ITL varies widely

across replications (see the different slopes of the lines).
The different slopes indicate that there may be heterogeneity
in the group of replications. Besides, there is no apparent
pattern between ITL and TDD mean QLTY scores: the
larger improvements with TDD over ITL (see the lines with
the highest slopes) are achieved in the replications with
the lowest and highest ITL mean scores (i.e., UPV and F-
Secure O replications, respectively). By chance, they are the
replications with the most novice and senior developers,
respectively. Thus, we cannot hypothesize, in principle, on any
moderator that may be impacting results.

Activity 2.3. Perform consistent individual analyses.
An analysis of the replications with consistent statistical
methods ensures that differences across experiment results
are not due to the use of different analysis procedures.

Example. Since all replications have an identical AB
repeated-measures experimental design [5], we analyze each
of them with a dependent t-test [92]. Table 6 shows the
results of the individual t-tests performed.

TABLE 6
Individual analyses: ITL vs TDD.

Experiment Estimate 95% CI p-value
F-Secure H 9.52 (-19.58, 38.62) 0.483
F-Secure K 13.26 (-7.26, 33.77) 0.193
F-Secure O 52.91 (30.44, 75.39) <0.001
UPV 42.31 (29.02, 55.62) <0.001

As Table 6 shows, TDD outperforms ITL in all replica-
tions. Besides, the difference in performance between TDD
and ITL is large and statistically significant for F-Secure O
and UPV but not for F-Secure H and F-Secure K.

Summary of example. TDD outperforms ITL in all repli-
cations. However, the extent to which TDD outperforms ITL
seems largely dependent upon site.

9 STEP 3: AGGREGATE THE RESULTS

In Sections 9.1, 9.2 and 9.3, we outline the three guidelines
that we propose to overcome the most common limita-
tions of groups of SE replications when providing joint
conclusions. The description includes its application to the
illustrative group of replications.

9.1 Avoid narrative synthesis and aggregation of p-
values
9.1.1 Perils of narrative synthesis and aggregation of p-
values
Although p-values are commonly used to evaluate the statis-
tical significance of results, numerous criticisms have been
made with respect to their inappropriate use across the
sciences [93], [94]. The dichotomization of evidence possibly
arising as a result of the indiscriminate use of statistical
thresholds (such as 0.05 [94]), and the inability of p-values
to convey the relevance of results (because they confound
sample size and effect size [93]) are just two well-known
criticisms of p-values [93]. As effect sizes and 95% CIs can
also be used to assess the statistical significance of results
(i.e., if the 95% CI of the effect size does not cross 0,
then results are statistically significant), some authors have
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suggested that effect sizes and 95% CIs should be used
instead of p-values [37], [81], [82].

Bearing this in mind, neither narrative synthesis nor
aggregation of p-values appear to be suitable for providing
joint conclusions in groups of SE replications: narrative
synthesis yields neither an effect size nor a p-value (it merely
provides a textual summary of results), whereas aggregation
of p-values provides a joint p-value but not an effect size.

Narrative synthesis and aggregation of p-values have
another shortcoming: narrative synthesis weights each repli-
cation subjectively, while aggregation of p-values weights
each replication within the joint conclusion identically [22].
Both types of weighting may be undesirable in groups of
replications with different sample sizes. For example, larger
(in principle, more precise) replications may have a greater
weight than small replications within the joint conclusion,
industrial (in principle, more representative) replications
may have a greater weight than academic replications,
and higher quality experiments may have a greater weight
within the joint conclusion, etc.

Finally, narrative synthesis has another relevant short-
coming when providing joint conclusions. Very often non-
significant results lead to a joint statistically significant
result [22]. However, the joint conclusion of narrative syn-
thesis would be non-significant if there are more non-
significant results than significant results (as non-significant
is the winner [22]). Narrative synthesis has been known
since the 1980s to have low statistical power [22], [95].

9.1.2 Application to the illustrative group of replications

Narrative synthesis is simply applied by providing a textual
summary of results of the replications (i.e., their effect sizes
and p-values [22]).

To apply narrative synthesis to the illustrative group of
replications, the procedure is as follows: ”...even though
TDD outperformed ITL in all the replications, the ex-
tent of such outperformance was largely dependent upon
site. Besides, the difference in performance between TDD
and ITL was statistically significant only for F-Secure O
and UPV. Thus, conflicting results materialized in terms
of statistical significance: two replications provided non-
significant results, while two others provided significant
results. As an identical number of replications point in
opposite directions—i.e., non-significant vs. significant, no
final claims can be made about the statistical significance of
results. More replications are needed to argue the statistical
significance, and practical relevance of results.”

Aggregation of p-values procedures typically involve
[19], [22]: (1) the individual analysis of each replication with
a one-sided statistical test; and (2) the later combination of
the resulting p-values by a statistical technique like Fisher’s
method.

We first analyzed each replication independently by
means of a one-sided dependent t-test [92]. Then, we used
Fisher’s method [22] to pool together the p-values of all the
replications. The result is a statistically significant difference
between TDD and ITL as a joint conclusion (χ̃2=47.13; df=8;
p <0.001). Thus, the difference in performance between
TDD and ITL is statistically significant in at least one replica-
tion. However, this was already known before aggregating

the results (as F-Secure O and UPV’s results were already
statistically significant).

Summary of example. Neither narrative synthesis nor
aggregation of p-values provide informative joint conclu-
sions. Narrative synthesis fails to provide a joint effect size
or p-value and is not able to provide final claims since there
are two significant results versus two non-significant results
in our example. Aggregation of p-values fails because it
provides a joint conclusion that was already known before
results aggregation.

9.1.3 Guideline 1: Avoid narrative synthesis and aggrega-
tion of p-values
Avoid narrative synthesis and aggregation of p-values to
provide joint conclusions.

What impact may this guideline have on the findings
of joint analyses of groups of SE replications? More infor-
mative joint conclusions could have been obtained for 53%
of the groups of replications (i.e., groups that applied either
narrative synthesis or aggregation of p-values, see Section 5).
Not applying weak aggregation techniques should enhance
the findings of groups of SE replications.

9.2 Avoid IPD-MT
9.2.1 Perils of IPD-MT
IPD-MT should be avoided on two grounds. First, it may be
underpowered compared to an identical IPD-S model includ-
ing a factor accounting for the experiment [55], [96]. In other
words, IPD-MT may provide a statistically non-significant
result when it should be statistically significant. Second,
IPD-MT may provide biased results [69], [97] when data
are unbalanced across treatments and replications (which
may be the case in groups of replications with missing data
and different sample sizes) and subjects are more similar
within, than between, replications (which may be the case
when either professionals or students participate in the
replications). Here we illustrate the perils of IPD-MT with an
intuitive extreme example where it provides a biased result.
Like Kraemer’s example to illustrate the perils of IPD-MT
[69], we produce our example by means of simulation [37].

Particularly, let us simulate two hypothetical replications
comparing the performance of two technologies (e.g., Tech-
nology A vs. Technology B) on a continuous outcome of
interest (e.g., quality). For simplicity’s sake, let us suppose
that the replications have an identical experimental design:
an AB between-subjects design (i.e., a design where each
participant is assigned to either Technology A or B). It is
straightforward to simulate a group of replications with
such characteristics using random draws from the data
distributions that simulate the quality scores achieved with
Technologies A and B across the replications [37]. Each
random draw will represent the quality score achieved by
a hypothetical (i.e., simulated) participant. SE data may
follow a myriad of data distributions [38]. For illustrative
purposes, we simulate the performance of Technologies A
and B with normal distributions [37], although many other
data distributions could have been used and have obtained
the same results [37]. Table 7 shows the normal distributions
that we use to simulate the performance of Technologies A
and B across the replications, and the sample sizes of each
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of the groups (i.e., the number of participants assigned to
either Technology A or B) across the replications.

TABLE 7
Example: two simulated replications.

Technology A Technology B

Exp. 1 QLTY N (20, 102) N (30, 102)
Sample Size 90 10

Exp. 2 QLTY N (60, 102) N (70, 102)
Sample Size 10 90

As Table 7 shows, we aim to simulate two highly unbal-
anced replications (i.e., 90 subjects assigned to Technology
A, and 10 to Technology B in Experiment 1, and vice
versa in Experiment 2). Additionally, we aim to simulate
a circumstance where the mean difference in performance
between Technologies B and A is expected to be around 10
in both replications (i.e., 30-20 in Experiment 1 and 70-60 in
Experiment 2), and the participants are more similar within,
than between, replications (as they achieve either much
larger or much smaller scores with either Technology A or B
depending upon the replication in which they participate).
These are the exact circumstances under which IPD-MT
provides biased results.

As the difference in performance between Technologies
B and A in both replications is around 10, we would expect
the difference in performance to be similar for joint results.

We analyzed the data with both IPD-S and IPD-MT (i.e.,
ANOVA models that did not did not include Experiment as
a factor, respectively). IPD-S provides an estimate close to
the expected (M = 9.55). IPD-MT provides an estimate that
deviates from the expected (M = 41.17). This is because
IPD-MT does not take into account the experiment that is
the source of the data and, instead, assumes that all the
data come from a single ”big” experiment. As such, IPD-
MT is unaware that most subjects contributing towards
the mean quality score with Technology A (90/100) come
from Experiment 1 (with mean scores of 20), whereas most
subjects contributing towards Technology B (90/100) come
from Experiment 2 (with mean scores of 70). As a result, the
unbalance of subjects across the treatments and the dissim-
ilarities of participant scores across the replications distort
IPD-MT results (i.e., by providing a much larger difference
of results than expected). The larger the unbalance across
treatments and/or sample sizes across the replications, the
more biased IPD-MT results will be.

9.2.2 Application to the illustrative group of replications
To apply IPD-MT, the raw data of all replications are
pooled together as if they come from one big experiment
and then the same statistical model as used to analyze each
experiment individually is applied [49], [69], [83].

We apply a dependent t-test to analyze the raw data
of all the replications together. IPD-MT provides a joint
estimate equal to M = 33.67 and a p-value<0.001. Thus, the
difference in performance between TDD and ITL is large—
insofar as QLTY ranges from 0 to 100—and statistically
significant.

To apply IPD-S, raw data from all replications are
pooled together, and then two factors —Treatment and

Experiment— are used [49], [69], [83]. In other words, a lin-
ear regression model (e.g., ANOVA) that takes into account
the source of the raw data is fitted.

We applied an ANOVA with Treatment and Experiment
as factors to analyze the raw data of the illustrative group
of replications. IPD-S provides a joint estimate equal to
M = 34 and a p-value<0.001. Thus, the difference in per-
formance between TDD and ITL is large—insofar as QLTY
ranges from 0 to 100—and statistically significant.

So, both IPD-MT and IPD-S provide similar results in
the illustrative group of replications (i.e., a large and statis-
tically significant result). This is because data are perfectly
balanced within replications (as the replications are AB
repeated-measures designs), missing data have a relatively
low impact on results (as just a few subjects have missing
data for UPV), and subject scores are similar across the
replications—note that the mean scores for ILT are clustered
around 25 (see Figure 3, Section 8). However, this cannot be
guaranteed in all circumstances.

9.2.3 Guideline 2: Avoid IPD-MT
Avoid IPD-MT due to its potential to provide biased or
underpowered results.

What impact may this guideline have on the findings
of joint analyses of groups of SE replications? Thirty-three
percent of the groups of replications (i.e., where IPD-MT
was applied to provide joint conclusions, see Section 5)
could have arrived at less biased and less underpowered
joint conclusions. Not applying IPD-MT should enhance the
findings of groups of SE replications.

9.3 Use AD and IPD-S in tandem for joint analysis

9.3.1 Benefits of using AD plus IPD-S
AD and IPD-S are complementary in some respects. While
AD provides certain advantages for analyzing groups of SE
replications, IPD-S provides others. Some of the advantages
of AD over IPD-S are:

• AD can be used to analyze groups of replications
with different response variables (e.g., by computing
standardized effect sizes such as Cohen’s d [22]). On
the contrary, IPD-S can only be applied whenever
identical response variable scales are used [13], [19].
Thus, if response variables change across the replica-
tions, AD may be the only available option.

• AD provides intuitive visual summaries of results (i.e.,
forest plots) that have been commonly used in SE to
synthesize the findings of experiments gathered by
means of systematic literature reviews [24]. On the
contrary, less standardized visualizations are avail-
able for IPD-S (e.g., 95% CI plots, error bars, etc. [37]).
Thus, the appeal and familiarity of forest plots in SE
is a plus for AD over IPD-S.

• AD is useful for interpreting the heterogeneity of results
with straightforward statistics and tests (e.g., the I2

statistic and the Q-test [22]). Besides, rules of thumb
are also available for interpreting the I2 statistic (i.e.,
25%, 50% and 75% for small, medium, and large het-
erogeneity, respectively [22]). On the contrary, IPD-
S may require either: (1) the standard deviation of
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results to be contrasted against the joint result; or
(2) fixed-effects models (such as ANOVA) to be used
with Treatment by Experiment interaction terms to
be able to claim that results are heterogeneous when
the interaction is statistically significant [19]. How-
ever, we do not encourage the latter procedure in
groups of SE replications, which are typically small.
Therefore, this method of heterogeneity detection
would be underpowered [19].

On the other hand, IPD-S has some advantages over
AD:

• IPD-S can simultaneously assess the difference in
performance between the treatment and the control
group (like AD), as well as the performance of the
control group in order to weight their relative size in
natural units. For example, if the difference in per-
formance between the means of the treatment group
and the control group is equal to 20, and the mean
performance of the control group is equal to 20, then
the treatment doubles the performance of the control.
On the contrary, AD commonly relies on standard-
ized effect sizes (e.g., Cohen’s d [22]) to convey the
difference in performance between the treatment and
control. This may affect the interpretability of results:
how relevant is a Cohen’s d of 0.3?

• IPD-S can simultaneously assess the effect of multiple
factors and their interactions on results (e.g., the effects
of the treatments, the tasks, and their interaction in
ANOVA models [5]). On the contrary, AD is com-
monly used to perform pairwise comparisons between
treatments (e.g., Treatment A vs. Treatment B [22]).
Thus, IPD-S is more flexible than AD for analyzing
groups of replications when multiple factors are of
interest or the results depend upon interaction terms
(e.g., when the effects of the treatment reverse de-
pending upon the task being developed).

• Some IPD-S models such as LMMs can be used to an-
alyze groups of replications with missing data—provided
that the data can be assumed as missing at random
[18]. On the contrary, the calculation of effect sizes—
and their respective variances—using AD rests on
the assumption of complete observations (otherwise,
it would not be possible to compute the variances
of some effect sizes for repeated-measures designs
[22]). If there are missing data, researchers perform-
ing AD to calculate effect sizes and their respective
variances may have to either exclude participants
with missing data or rely on advanced imputation
techniques for their inclusion (see Section 12). Thus,
if there are drop-outs or protocol deviators across the
replications, IPD-S models such as LMMs may come
in handy [98].

Therefore, the application of both techniques in tan-
dem takes advantage of the strengths of each one. Re-
garding the type of model to be used, both AD and IPD-
S are statistical procedures that deliver a weighted average
of experiment results as a joint conclusion [19], [22]. The
weight—or contribution—of each experiment towards the
joint conclusion is proportional to either the sample size of

the experiment—if a fixed-effects model is used—or to the
sample size of the experiment and the statistical heterogeneity of
results (i.e., the variation of results that cannot be explained
by natural variation)—if a random-effects model is used
[18], [22].9 Besides, if results are more heterogeneous, the
weights of all the experiments within the joint conclusion
will be more alike. Intuitively, as each experiment may be
estimating a potentially different effect size when there is a
large heterogeneity of results, smaller experiments are still
informative about the distribution of effect sizes (as their
effect sizes are also feasible). In turn, both small and large
experiments tend to be regarded as being more equally
informative in random-effects models (even though larger
experiments have a slightly greater weight within the joint
conclusion [22]).

As the heterogeneity of results is commonplace in SE
experiments [99]–[103], many factors may have an impact
on SE experiment results [11], and experimental changes,
opportunistic recruitment of participants and different types
of subjects (e.g., professionals vs. students) are typical in
groups of SE replications (see Section 2), we recommend
relying by default on random-effects models to provide joint
conclusions.

Specifically, if using AD we suggest the use of random-
effects meta-analysis models [22]. If using IPD-S, we suggest
the use of linear mixed models (LMMs) [18].

9.3.2 Application to the illustrative group of replications
Activity 3.1. Apply AD. The application of AD requires
calculating the effect sizes—and corresponding variances—
of the replications from their summary statistics. They are
then pooled using a random-effects meta-analysis model
[22].

Example. First, we calculate Cohen’s ds—and corre-
sponding variances—of the replications from their summary
statistics (i.e., sample sizes, means, standard deviations, and
correlations between ITL and TDD [22]). As four subjects at
UPV have missing data, their data have to be discarded—as
they did not provide complete observations for the corre-
lation between ITL and TDD [22]. Then, we pool together
all Cohen’s ds using a random-effects meta-analysis model
[22]. Figure 4 shows the forest plot of the meta-analysis.

Fig. 4. Forest plot: ITL vs. TDD.

As Figure 4 shows, TDD outperforms ITL in all repli-
cations. Additionally, the joint effect size (M = 0.90) is
large—according to rules of thumb [22]—and statistically
significant (as the 95% CI does not cross 0). Besides, there
is, according to rules of thumb, a medium (I2 = 67.8%)

9. Assuming a common variance across all replications.
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heterogeneity of results [22]. Thus, moderators should be
identified to explain the detected heterogeneity of results.

Activity 3.2. Apply IPD-S. IPD-S is straightforward to
apply. It is sufficient to fit a LMM with two factors: Treat-
ment and Experiment, considering Treatment as a random
effect across the experiments [18], [19].

Example. To analyze the illustrative group of replications
with IPD-S, we pool the raw data of all the replications
together and then analyze them using a LMM. Table 8 shows
the results of the LMM.

TABLE 8
LMM results.

Factor Estimate 95% CI p-value
ITL 27.44 (13.08, 41.79) <0.001
TDD 56.27 (22.12, 90.42) <0.001
MDiff 28.83 (9.72, 47.93) 0.004
sdDiff 16.09

As Table 8 shows, the difference in performance between
TDD and ITL is relevant (MDiff = 28.83) and statistically
significant (p=0.004). Looking at the difference in perfor-
mance between TDD and ITL (i.e., MDiff ) and the effect of
the control approach (i.e., ITL), we reach the conclusion that
TDD doubles the performance of ITL (i.e., 56.27/27.44). Unlike
AD, participants with missing data have been included to
provide joint conclusions [18]. Finally, the standard devi-
ation of the differences between TDD and ITL across the
replications (i.e., sdDiff ) is relatively large compared with
the overall difference (i.e., MDiff ): 16.09/28.83=0.56. This
suggests that there is heterogeneity. Thus, moderator effects
should be identified to explain the observed heterogeneity
of results.

Summary of example. AD indicated that there is a
large—and statistically significant—joint effect size with
medium heterogeneity. Also, AD was able to visualize that
TDD outperformed ITL across all the replications. IPD-S
showed that TDD doubled the performance of ITL. It also
meant that we could include missing data when providing
joint conclusions and confirm the statistical significance of
results observed with AD.

9.3.3 Guideline 3: Use AD and IPD-S

• Use AD and IPD-S in tandem to provide joint re-
sults. Use AD because of its intuitive visualizations
(i.e., forest plots) and straightforward heterogeneity
statistics. Use IPD-S because of its ability to convey
joint results in natural units, and its flexibility for
analyzing replications with missing data.

• Use random-effects models by default to provide joint
conclusions. Particularly, use LMMs [18] for IPD-
S, and random-effects meta-analysis models [22] for
AD.

What impact may this guideline have on the findings of
joint analyses of groups of SE replications? Adherence to
this guideline may have potentially resulted in more intu-
itive joint conclusions for 38% of the groups of replications
(i.e., groups that only applied AD with standardized effect
sizes to provide joint conclusions, see Section 5).

10 STEP 4: CONDUCT EXPLORATORY ANALYSES

In Sections 10.3, 10.1 and 10.2, we outline the three guide-
lines that we propose to overcome the most common limi-
tations of groups of SE replications for identifying modera-
tors. The description includes its application to the illustra-
tive group of replications.

10.1 Use AD plus IPD in tandem to identify experiment-
level moderators

The identification of experiment-level moderators increases
knowledge of software development. We suggest applying
both AD and IPD-S in tandem to identify experiment-level
moderators. The benefits of using AD plus IPD in tandem
have already been discussed in Section 9.3.1. Therefore, we
will not repeat our arguments here.

10.1.1 Application to the illustrative group of replications
Activity 4.1. Identify experiment-level moderators. To
identify experiment-level moderators with AD, perform
either a sub-group meta-analysis for categorical moderators
or a meta-regression for continuous moderators. To identify
experiment-level moderators with IPD-S, fit LMMs with
interaction terms [18], [19].

Example. We run an AD sub-group meta-analysis to
assess the effect of the type of subject (i.e., professionals vs.
students) on results. Figure 5 shows the forest plot for the
sub-group meta-analysis that we performed. Table 9 shows
the result of the sub-group meta-analysis.

Fig. 5. Forest plot: professionals vs. students.

TABLE 9
Sub-group meta-analysis: professionals vs. students.

Group N Estimate 95% CI I2

Professionals 3 0.77 (-0.13, 1.68) 70.8%
Students 1 1.24 (0.72, 1.76) 0
Difference - 0.47 (-0.58, 1.52) -

As Table 9 shows, both professionals (M = 0.77) and
students (M = 1.24) perform better with TDD than with
ITL. However, the difference in performance between stu-
dents and professionals (M = 0.47) is relevant—medium
according to rules of thumb [22]. In other words, students
appear to benefit more from TDD than professionals. How-
ever, despite the relevance of the moderator effect, there was
a wide 95% CI. To be precise, the 95% CI ranges from a
medium and negative effect (i.e., -0.58) to a large and positive
effect (1.52). This results in a non-statistically significant
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moderator effect due to the small number of replications
analyzed. Thus, more replications are needed to increase the
precision of experiment-level moderator effects.

Finally, we complement the results of AD with the find-
ings of IPD-S. To do this, we run a LMM with interaction
terms [18], [19]. Table 10 shows the results of the LMM that
we performed.

TABLE 10
LMM experiment-level moderators: professionals vs. students.

Interaction Estimate 95% CI p-value
Type:Students 16.32 (-37.16, 69.55) 0.545

As Table 10 shows, the difference in performance be-
tween students and professionals with TDD appears to be
large (M = 16.32)—at least compared with the difference
in performance between TDD and ITL in the main analysis
(M = 28.83). In view of this, students appear to perform
around 60% (i.e. 16.32/28.83) better than professionals using
TDD. However, this should be further substantiated with
more replications as the 95% CI ranges from negative to
positive results (95% CI = (−37.16, 69.55)). Again, the
group of replications is too small to detect experiment-level
moderators.

Summary of example. Students appear to benefit more
than professionals from TDD. But four replications with 6,
11, 7 and 33 subjects are not enough to detect the effect.

10.1.2 Guideline 4: Use AD and IPD-S to Identify
Experiment-Level Moderators

Use AD and IPD-S in tandem to assess experiment-level
moderators.

What benefit may this guideline have on joint analysis
practices for groups of SE replications? Forty-two percent
of the groups of replications (i.e., groups that adopted a
textual approach to eliciting experiment-level moderators,
see Section 5) could have achieved more transparent moder-
ator effects in groups of SE replications. Using AD plus IPD
in tandem to identify experiment-level moderators should
enhance the findings of groups of SE replications.

10.2 Use IPD to identify participant-level moderators

New knowledge is also gained by identifying participant-
level moderators.

10.2.1 Benefits of using IPD to identify participant-level
moderators

IPD-S is better than AD at identifying participant-level mod-
erators [47], [104]. This is because AD may be underpowered
if the averaged participant characteristics do not vary much
across the replications [15], [104] and subject to ecological
bias when identifying participant-level moderators (i.e., the
average effect may not be representative of the effect on
the population) [15], [47], [105]. This may result in mis-
leading conclusions. Thus, as is already common practice
in medicine [47], [74], we recommend relying by default on
IPD-S models to identify participant-level moderators.

10.2.2 Application to the illustrative group of replications
Activity 4.2. Identify participant-level moderators. To iden-
tify participant-level moderators with IPD-S, it is sufficient
to fit LMMs with interaction terms [47], [74]. As Fisher
et al. [47], [74] noted, special attention should be paid to
separating the variance of moderator effects within and
between experiments.

Example. We ran a series of LMMs with interaction
terms to assess the effect of participant experience with
programming, Java, unit testing or JUnit on results. Table
11 shows the results of the LMMs. Figure 6 shows the
regression plot for the moderator effects.

TABLE 11
LMM participant-level moderators: participant experience.

Interaction Estimate 95% CI p-value
Programming 15.76 (0.49, 31.04) 0.04
Java 3.85 (-8.13, 15.83) 0.52
Unit testing 11.79 (-5.95, 29.54) 0.18
JUnit 11.07 (-6.26, 28.41) 0.20

Fig. 6. LMM interactions: participant-level moderators.

As Figure 6 shows, the more experienced participants
are with programming, Java, unit testing or JUnit, the more
TDD outperforms ITL. In other words, TDD appears to
perform better for more experienced developers and vice
versa. Additionally, as Table 11 shows, the significance
level for programming experience was lower than 0.1—the
significance threshold that we recommended for identifying
moderators (see Section 10). Thus, in principle, programming
experience may be moderating the effects of TDD on quality.
However, this information should be regarded with caution
because there were inflated Type I error rates (due to the
execution of a total of five exploratory analyses) and a wide
95% CI interval (varying from 0.49, an almost negligible
effect, to 31.04, a large effect). Thus, the results may be
spurious. Finally, participant experience with programming
may also be confounded with other variables (e.g., the age
of the developers, their experience with Java, etc.).

Summary of example. Participant experience with pro-
gramming appears to moderate TDD effects.

10.2.3 Guideline 5: Use IPD-S to Identify Participant-Level
Moderators
Use IPD-S to identify participant-level moderators.

What benefit may this guideline have on the findings of
joint analyses of groups of SE replications? Seventy-five per-
cent of the groups of replications (i.e., groups that adopted
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a textual approach to eliciting participant-level moderators
or did not elicit participant-level moderators, see Section
5) could have detected more transparent moderator effects
in groups of SE replications. The use of IPD to identify
participant-level moderators should enhance the findings of
groups of SE replications.

10.3 Acknowledge limitations of exploratory analyses
The limitations of exploratory analyses should be acknowl-
edged.

10.3.1 Limitations of exploratory analyses
Exploratory analyses have three limitations:

• They are unable to provide cause-effect relationships be-
cause replications are designed exclusively to study
the effects of the treatments on the response vari-
ables. Thus, it is impossible to establish the cause-
effect relationships of other variables (e.g., moder-
ators) on the response variables. In SE terms, it is
risky to claim that the programming language is the
reason for the different results detected using differ-
ent programming languages across two replications.
Note that other variables than the programming lan-
guage, such as different participant characteristics,
for example, may be the real cause for this difference
in the results. If any cause-effect claims are to be
made about moderators, experiments assessing such
questions have to be undertaken beforehand. For
instance, a new experiment where participants are
randomly assigned to either one or other program-
ming language could serve to identify whether the
programming language is the cause of the effects on
the results.

• They increase the risk of committing statistical errors.
Many statistical analyses are typically run to identify
moderators (e.g., one per moderator [15]), which
inflates the Type I error rates. In other words, spu-
rious statistical significant results may emerge out of
multiple testing merely by chance. Such inflated Type
I error rates may need to be corrected with multiple
comparison correction procedures (such as the Bon-
ferroni correction [70]). However, this is troublesome
in groups of SE replications: on top of their already
small sample sizes and the small number of replica-
tions (and, thus, poor moderator detectability), even
more demanding statistical thresholds are set for
identifying moderators. For instance, according to
the Bonferroni correction, a statistical threshold of
0.05/3 may be needed to detect moderators and as-
sess three different moderators—one per analysis—.
Because of the limitations of groups of SE replications
in this regard, we recommend either: (1) setting a
statistical threshold of 0.1 to identify moderators—
despite the heightened probability of committing
statistical errors, or (2) focusing more on the mag-
nitude and sign of moderator effects—and their cor-
responding 95% CIs—rather than on their statistical
significance.

• Moderator effects can be confounded if multiple simultane-
ous changes are made across replications. For example, if

both the programming language and the unit testing
tool change simultaneously across two replications,
it may be misleading to claim that differences across
replication results are solely due to the programming
language. The difference in the results may be due to
the programming language, the IDE, or a mixture
of both. Another typical case of confounding is to
claim that differences across replication results are
induced by the subject type when different types of
subjects are evaluated across two replications (e.g.,
professionals vs. students) and the replications pro-
vide different results. In particular, other variables
may also be behind the difference in results such as
age (e.g., professionals may be older than students),
motivation (e.g., students whose grades are at stake
may be more motivated than professionals), treat-
ment conformance (e.g., professionals may deviate
from the procedure more than students [106]), some
threats to validity may materialize in some replica-
tions and not in others (e.g., drop-outs, missing data,
fatigue), etc.

Researchers running joint analyses of groups of repli-
cations should acknowledge the limitations of exploratory
analyses in their papers.

10.3.2 Application to the illustrative group of replications
Activity 4.3. Acknowledge limitations of exploratory anal-
yses. To acknowledge the limitations of exploratory anal-
yses, it suffices to check through and adapt the list of
limitations that we outlined in Section 10.3.1 to the group of
replications—and moderators—that are to be investigated.

Example. We plan to investigate the effect of one
experiment-level moderator (i.e., type of subject, students
vs. professionals) and four participant-level moderators (i.e.,
experience with programming, Java, unit testing, and JU-
nit) on results. We acknowledge that none of the above
moderators may be the real reason behind the detected
heterogeneity of results, and other confounding variables
may also be responsible for the detected difference in results.
For instance, students appeared to be more motivated than
professionals, students adhered more closely to the TDD
process, professionals were older than students, etc. Also,
we acknowledge that the chance of achieving spurious
statistically significant results increases because we intend
to run five data analyses (i.e., one per moderator, following
Fisher’s approach [47]) [70]. This may invalidate the conclu-
sions reached. Thus, we will only use exploratory analyses
as a way of motivating further research and never to draw
definite conclusions [89].

Summary of example. The group of replications is too
small for making definite claims about the results regarding
subject type. Additionally, results for programming experi-
ence may be spurious due to the wide 95% CI that material-
ized. Finally, programming experience may be confounded
with other variables (e.g., age of the participants, experience
with Java, etc.).

10.3.3 Guideline 6: Acknowledge Limitations of Exploratory
Analyses
Separate exploratory analyses from the main analysis and
acknowledge their limitations.
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What benefit may this guideline have on the findings
of joint analyses of groups of SE replications? Thirty-eight
percent of the groups of replications that did not perform
exploratory analyses (see Section 5), and 88% of the groups
of replications that did not acknowledge the limitations
of exploratory analyses could have identified informative
moderator effects in groups of SE replications. The per-
formance of exploratory analyses and acknowledgment of
their limitations should enhance the findings of groups of
SE replications.

11 THREATS TO VALIDITY

We focused on the aggregation of quantitative results. What
about qualitative results (e.g., text transcripts, etc.)? Throughout
this article we focused exclusively on the aggregation of
quantitative results into joint conclusions. We acknowledge
that this limits the applicability of our guidelines. How-
ever, we decided to focus on quantitative results because
SE experiments are usually coupled with the acquisition
and analysis of this type of results [2], [3], [5] and most
of the groups of replications uncovered by our SMS only
aggregated quantitative results [17]. For an overview of the
methods that can be used for aggregating qualitative —
or qualitative and quantitative results—into joint conclu-
sions, we refer interested readers to Cruzes and Dyba [107]
and Kitchenham et al. [3]. They discuss meta-ethnography,
narrative synthesis, qualitative cross-case analysis, thematic
analysis, meta-summary, vote counting, grounded theory,
content analysis, case survey, qualitative comparison anal-
ysis, aggregated synthesis, realist synthesis, meta-synthesis
and meta-study. The aggregation of qualitative and quanti-
tative results is discussed in [21], [108], [109].

We used only one analysis procedure. Are there any limitations
to the way in which we tailored it to SE? Like [19], [22], we
acknowledge that it is unfeasible to provide definite guid-
ance on aggregation techniques and statistical models for
use across the board—independently of the characteristics
of the data or the intentions of the analyst (e.g., to provide
joint results or to identify moderators)—. However, we tried
our best to provide tailored statistical advice for aggre-
gating the results of groups of SE replications considering
their common characteristics and the limitations on joint
data analysis based on the guidelines typically followed in
medicine and pharmacology to analyze MCTs [43]–[45], [63]
and our understanding of the statistical methods that can
be used in circumstances that are typical of groups of SE
replications—at least according to well-known references in
medicine, pharmacology, and the social sciences [15], [19],
[57]–[59]. We acknowledge that this is only a first approxi-
mation towards tailoring a definite analysis procedure and
that further research is needed in order to provide more
evidence on the suitability of the analysis procedure for
analyzing groups of SE replications.

We gathered the references on data analysis opportunistically.
Might not this introduce bias? Unfortunately, we could not
systematically gather references on the topic of how to an-
alyze MCTs—or groups of replications with characteristics
typical in SE—: the number of articles retrieved from online
databases with the terms ”aggregation” and ”experiments”

was unmanageable. Thus, we acknowledge that our guide-
lines may be open to bias. However, we made every effort
to consult reliable resources on the topic of aggregation of
experiment results from both mature experimental disci-
plines, such as medicine and pharmacology, and other areas,
such as social research, education and econometrics. We also
strove to embed guidelines providing the results not only of
single aggregation techniques but also of different aggrega-
tion techniques applied in tandem (see the recommendation
to use IPD-S and AD in tandem). This should reduce the
potential bias that may have been introduced due to the
non-systematic selection of references on data analysis.

We selected random-effects models over fixed-effects models.
Are there not any limitations to this advice? Contrary to
medicine, where fixed-effects models are encouraged for
use by default [19], [43], [64], we recommend the use of
random-effects models instead [19], [22], [87]. This is a
controversial recommendation: some authors from other
disciplines suggest that a minimum of five [49], ten [58],
[110], fifteen or even more experiments [57], [58], [111] are
needed to obtain reliable variance parameter estimates in
random-effects models. However, we recommend the use of
random-effects models by default as SE is commonly con-
cerned with providing joint results (i.e., differences between
means) rather than making inferences on variance parame-
ters. Additionally, random-effects models tend to provide
more conservative results than fixed-effects models (i.e.,
95% CIs tend to be wider with random-effects models [19],
[50], [65]), and random-effects models produce identical re-
sults to fixed-effects models when there is no heterogeneity
[22]. Finally, sensitivity analyses assessing the robustness of
results to the specification of fixed-effects models—rather
than random-effects models—can also be run in groups of
SE replications [22]. We refer interested readers to Thabane
et al. [112].

We did not check the statistical assumptions of the statistical
tests used (t-tests, LMMs). Is this not a limitation? As usual
after analyzing the data of individual experiments [5], it
is also necessary to check the statistical assumptions of
the statistical tests used after aggregating the results [18],
[51]. For example, if LMMs are fitted to analyze the data,
then the normality assumption needs to be checked [19],
[51]. We acknowledge that SE data may be not normal and
concede that there are more advanced statistical methods for
analyzing non-normal data (see Section 12). However, we
resorted to t-tests and LMMs in this article because they are
robust to departures from normality [113], [114], especially
with larger sample sizes—as is the case when the raw data
of all the replications are pooled together— [115]. In any
case, as model diagnostics procedures are standard across
the disciplines, we refer interested readers to specialized
literature on the topic [18], [19], [51], [116].

We use only one illustrative group of replications. Is the analy-
sis procedure applicable in other cases? For reasons of space, we
illustrated the application of the analysis procedure to only
one group of replications. We admit that this places some
limitations on the generalizability of the analysis procedure.
However, we tried to select what is, according to the results
of a previous SMS addressing this issue, a representative
group of SE replications [17]. Accordingly, we expect our
guidelines to be applicable to the analysis of a large per-
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centage of groups of SE replications. Additionally, we also
provide further references in Section 12 indicating how to
analyze groups of replications with different experimental
designs and data characteristics.

12 ALTERNATIVE EXPERIMENTAL DESIGNS

As typical in groups of SE replications, this article analyzes
a group of replications where all the replications have an
identical experimental design: an AB within-subjects design
(i.e., a design where the participants apply first Treatment A
and then Treatment B in a later session [5]). It is straight-
forward, based on our procedure, to analyze groups of
replications where all the experiments have an identical AB
between-subjects design (i.e., a design where the participants
are randomly assigned to either Treatment A or B): (1)
for IPD-S, it is sufficient to remove the repeated-measures
structure at participant level [19]; (2) for AD, it is sufficient
to adapt the effect size variance formulae to the between-
subjects design [22]. Besides, as groups of replications with
AB between-subjects designs are commonplace in medicine,
there is no shortage of references indicating how to analyze
such designs with both IPD-S [15], [19], [47] and AD [22].

Whenever groups of replications contain a mixture of AB
between-subjects designs and AB within-subjects designs,
researchers can still use LMMs with the IPD-S approach to
provide joint conclusions—as LMMs can account for repli-
cations with missing data, provided that they are missing
at random (e.g., when it is possible to tell from the experi-
mental design whether the subject data will or will not be
missing in a specified experimental session [97], [117], [118]).
AD can also be used for analyzing mixtures of AB between-
subjects designs and AB within-subjects designs [91]: it is
sufficient to calculate a consistent pooled standard deviation
for standardizing Cohen’s d (typically the average standard
deviations of Treatments A and B) and then select the appro-
priate variance formulae depending upon the experimental
design (i.e., a within-subjects or between-subjects design
[91]). As experiments with different experimental designs
may be estimating different true effect sizes [91], however,
exploratory analyses investigating the difference of results
across experimental designs [91], [112] (e.g., by means of a
sub-group meta-analysis [22]) should be used.

Throughout this article, we analyzed experiments whose
response variable was measured on a continuous scale, which
is typical in SE [17]. Also, we relied on the statistical tests
that we ran being robust to departures from normality
[113], [114]. Still, researchers may question the reliability of
their inferences if data largely depart from the normality
assumption [38]. If this is the case, researchers may resort
to data transformation (e.g., Box-Cox transformations) to
make the normality assumption hold and then apply IPD-
S or AD to provide joint conclusions [70]. Researchers may
also resort to more advanced statistical techniques such as
bootstrapping to provide inferences with both IPD-S [119],
[120] and AD [121]. Finally, researchers applying AD can
also use non-parametric effect sizes such as Cliff’s delta to
provide joint conclusions [38]. Eventually, if data do not
meet the homogeneity of variances assumption, researchers
can opt for generalized least squares (GLS) models under

the IPD-S umbrella (because they can accommodate differ-
ent variance terms per treatment [122]) or Glass’s delta—
rather than Cohen’s d—under the AD umbrella [123].

Also, response variables may be measured on a non-
continuous scale (e.g., binary, count, etc. [70]). In this case,
generalized linear mixed models (GLMMs) may be more
appropriate than LMMs for analyzing the data with IPD-
S [70]. We refer interested readers to Zuur et al. [122],
[124] for an accessible introduction to the topic using the
R programming language. Pautz et al. [125] and Fritz et al.
[126] provide illustrative examples of how to calculate effect
sizes—to be later combined with AD—for non-continuous
response variables.

In multilevel data structures typical of groups of SE
replications—where subjects are nested within replications
and subjects can be measured several times (once or more
per treatment) throughout the experiment—, data are typ-
ically correlated within clusters (i.e., clusters of both repli-
cations and participants [19]). This correlation needs to be
taken into account when analyzing the data (i.e., by includ-
ing the clustering units as either fixed factors or as random
factors with the selection of appropriate variance-covariance
matrices [19]). Throughout this article, we relied on ran-
dom factors—for both participants and replications—and
the variance-covariance matrix used by the lme R function
when fitting LMMs: the unstructured variance-covariance
matrix [127]. With this variance-covariance matrix, both the
treatment and control (e.g., ITL in the illustrative group
of replications) effects are assumed to be correlated across
the replications [127]. If this does not hold, however, other
variance-covariance matrices may be more suitable for ana-
lyzing the group of replications (e.g., by assuming indepen-
dent treatment and control approach effects). For an acces-
sible introduction to the topic, we refer interested readers to
Finch et al. [127] and Zuur et al. [122].

Finally, missing data can materialize in SE experiments
due to drop-outs or protocol deviators. Under these cir-
cumstances, researchers may resort to LMMs under the
IPD-S umbrella to aggregate results (LMMs can be used to
analyze groups of replications with missing data as long
as data are missing at random [98]). They may also rely
on imputation methods (e.g., single imputation, multiple
imputation, etc. [79]) to analyze the data with other IPD-S
models that do not permit the inclusion of missing data (e.g.,
repeated-measures ANOVA) or AD. Whichever procedure
is finally selected for handling missing data, sensitivity
analyses should be conducted to ensure that the results are
robust to the missing data procedure specification [112]. We
refer interested readers to Little et al. [80] and Schafer and
Graham [79].

13 RELATED WORK

To the best of our knowledge, no previous attempts have
been made in SE to provide guidelines for analyzing groups
of SE replications—when researchers have access to the
raw data and first-hand knowledge of the settings and
participant characteristics. However, some previous articles
already discussed the suitability of various research synthe-
sis methods for combining published results. For instance, in
the late 1990s, Pickard et al. [128] outlined the advantages
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and disadvantages of meta-analysis of effect sizes [22],
Fisher’s method (i.e., an aggregation of p-values technique
[22]) and vote-counting (i.e., a form of narrative synthesis
procedure [22]) for aggregating the results of a series of
case studies. However, Pickard et al. [128] aggregated the
results of case studies whose raw data were accessible—
because they argued that the effect size that they used
(i.e., the Pearson correlation coefficient [22]) needed to be
computed from the raw data to guarantee the consistency
of results across the studies [128]. Ultimately, Pickard et al.
also acknowledged that meta-analysis could be performed
as long as study reports provided appropriate summary
statistics to backcalculate the necessary effect sizes [128].

Ever since, meta-analysis has been tightly coupled in
SE with the concept of synthesizing the results of already
published studies (i.e., typically with standardized effect
sizes such as Cohen’s d and AD) [3], [101], [129]–[131]. To
do this, researchers should backcalculate appropriate effect
sizes from study reports, and, if the studies are not very
dissimilar, use either fixed-effects models or random-effects
models for combination [3], [100], [101], [130]. However,
disparate advice with regard to the use of meta-analysis can
be found in the SE literature. For example, while Pickard et
al. [128] acknowledge that meta-analysis is only appropriate
when the studies are homogeneous enough—or when the
heterogeneity across the studies can be clearly attributed to
certain conditions [128]—, Miller et al. [129] indicate that
identical studies (e.g., replications using identical materials)
may result in ”strong correlations” affecting the reliability
of the joint conclusions. This view has also been backed
up by others in the SE community [28]. At the same time,
and given the commonly heterogeneous results reported
in the literature and the myriad variables that typically
change across SE studies, Miller et al. [129] finally conclude
that ”...the heterogeneity of current empirical results is a major
limitation to our ability to apply meta-analytic procedures...”.

Due to the limitations of meta-analysis and the particu-
larities of SE studies, other SE researchers have proposed
the use of other aggregation techniques for synthesizing
already published empirical study results [3], [130], [132].
Briefly, such techniques commonly involve some sort of
vote-counting technique (e.g., counting positive vs. negative
results, small vs. large results, etc.), or the application of
different aggregation techniques (e.g., meta-analysis, vote-
counting, etc.) depending upon the characteristics of the
studies being aggregated (number of available studies, num-
ber of changes made across the studies, etc. [130]).

Similar concerns about the limitations of meta-analysis
have been also raised in other disciplines over the years
[89], [133], [134]. The overall consensus nowadays seems
to be that meta-analysis of effect sizes (i.e., AD) should
be preferred over narrative synthesis or vote counting
techniques—at least for aggregating quantitative results
[12], [16], [22], [134]. Also, the meta-analysis of raw data
(i.e., IPD-S) outperforms AD in some circumstances (e.g., in
terms of statistical flexibility or for identifying participant-
level moderators [13], [63], [74]). Still, the debate about
the limitations of meta-analysis techniques and research
synthesis is ongoing [134].

14 CONCLUSIONS

Researchers from different groups and institutions are col-
laborating on the construction of groups of replications in
SE. Applying unsuitable aggregation techniques to analyze
groups of SE replications may undermine their potential to
provide in-depth insights from experiment results.

We learned about the recommendations and guidelines
used to analyze and report groups of replications in mature
experimental disciplines such as medicine and pharmacol-
ogy [43], [44], [63]. Unfortunately, such guidelines could
not be directly imported for the analysis of groups of SE
replications because of the noticeable differences between
groups of replications in SE and medicine that we came
across (i.e., in terms of the number of changes made across
the replications, participant heterogeneity, statistical power,
etc.).

We designed an analysis procedure with a set of em-
bedded guidelines to analyze the stereotypical group of SE
replications [17]. To do this, we adopted the same basic
structure typically followed in medicine and pharmacology
for analyzing groups of replications. However, we adapted
the steps to the characteristics of groups of SE replications,
and their common limitations with regard to joint data
analysis. The analysis procedure that we propose outlines
a minimum set of steps that may potentially increase the in-
formativeness of joint conclusions and moderator effects. It
all boils down to providing appropriate descriptive statistics
and visualizations to ease the interpretation and incorpora-
tion of results into prospective studies, as well as taking
advantage of the raw data to provide joint conclusions
and identify moderators. AD and IPD-S—random-effects
models—are crucial for this purpose. Table 12 shows a sum-
mary of how to use the aggregation techniques proposed in
our procedure.

To wrap up, we encourage SE researchers analyzing
groups of replications to justify their aggregation techniques
and, more importantly, to transparently report the statistical
models and the raw data that they used to provide joint
conclusions and identify moderators. With the aim of eas-
ing the application of the analysis procedure and with a
view to reproducibility, the supplementary material of this
article includes the step-by-step commented R code and
raw data—with the associated R notebook—that led to the
results reported throughout this article. In addition, we offer
a more technical tutorial including R code snippets, dataset
descriptions, and mathematical formulae to complement
the understanding of the R code that we provide. All the
supplementary material is also available at figshare (URL:
https://doi.org/10.6084/m9.figshare.7583909.v7). We hope
this encourages others to give the analysis procedure a go.
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TABLE 12
Summary of aggregation techniques to be used.

AD IPD-S

Recommended for
- Results aggregation - Results aggregation
- Experiment-level moderators - Experiment-level moderators

- Participant-level moderators

When can be used

- RV metrics can be different - RV metrics are identical
- Complete observations - Allows missing data
- Effect sizes (or raw data to calculate them) - Raw data are available
are available

How should be used - Fit random effects models - Use Linear Mixed Models (LMMs)
- Fit random effects models

How should be used
for moderator analyses

Use either: - Fit LMMs with interaction terms

- Sub-group meta-analysis for categorical
moderators

- Increase statistical significance threshold to 0.1
- Pay less attention to p-values and focus on effect
sizes and 95% CIs- Meta-regression for continuous moderators - Run one analysis per moderator

SUPPLEMENTARY MATERIAL

Supplementary material 1: Raw data (XLSX 13 kb).
Supplementary material 2: Characteristics (XLSX 9 kb).
Supplementary material 3: R code (R 17 kb).
Supplementary material 4: R notebook (Rmd 20 kb).
Supplementary material 5: R Tutorial (PDF 316 kb).
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