
0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A Controlled Experiment with Novice Developers
on the Impact of Task Description Granularity on

Software Quality in Test-Driven Development
Itir Karac, Member, IEEE, Burak Turhan, Member, IEEE, and Natalia Juristo, Member, IEEE,

Abstract—Background: Test-Driven Development (TDD) is an iterative software development process characterized by
test-code-refactor cycle. TDD recommends that developers work on small and manageable tasks at each iteration. However, the ability
to break tasks into small work items effectively is a learned skill that improves with experience. In experimental studies of TDD, the
granularity of task descriptions is an overlooked factor. In particular, providing a more granular task description in terms of a set of
sub-tasks versus providing a coarser-grained, generic description.
Objective: We aim to investigate the impact of task description granularity on the outcome of TDD, as implemented by novice
developers, with respect to software quality, as measured by functional correctness and functional completeness.
Method: We conducted a one-factor crossover experiment with 48 graduate students in an academic environment. Each participant
applied TDD and implemented two tasks, where one of the tasks was presented using a more granular task description. Resulting
artifacts were evaluated with acceptance tests to assess functional correctness and functional completeness. Linear mixed-effects
models (LMM) were used for analysis.
Results: Software quality improved significantly when participants applied TDD using more granular task descriptions. The effect of
task description granularity is statistically significant and had a medium to large effect size. Moreover, the task was found to be a
significant predictor of software quality which is an interesting result (because two tasks used in the experiment were considered to be
of similar complexity).
Conclusion: For novice TDD practitioners, the outcome of TDD is highly coupled with the ability to break down the task into smaller
parts. For researchers, task selection and task description granularity requires more attention in the design of TDD experiments. Task
description granularity should be taken into account in secondary studies. Further comparative studies are needed to investigate
whether task descriptions affect other development processes similarly.

Index Terms—Test-driven development, programming task description, controlled experiment, empirical software engineering,
crossover experiment, software quality, requirement granularity

F

1 INTRODUCTION

Test-Driven Development (TDD) is an iterative software
development process characterized by the test-code-refactor
cycle (also known as the red-green-refactor cycle) [1]. In each
cycle, a micro feature is implemented by following these
steps:

• Choose a small feature to implement during the cycle
• Write a unit test for the chosen feature
• Write only the code necessary to pass the newly added

test
• Verify that all test, including the added one, pass
• Refactor to improve internal quality
Proponents of TDD claim that this process promotes

both internal and external product quality, as well as de-
veloper productivity. Since its popularization in the early
2000s, TDD has been the focus of many empirical studies
that have investigated its effectiveness [2], [3], [4], [5], [6],
[7], [8].

• I. Karac, is with the M3S Research Unit, University of Oulu, Finland
E-mail: itir.karac@oulu.fi.

• B. Turhan is with Monash University, Australia
E-mail: burak.turhan@monash.edu.

• N. Juristo is with Escuela Tecnica Superior de Ingenieros Informaticos,
Universidad Politecnica de Madrid, Spain
E-mail: natalia@fi.upm.es.

Manuscript received November 15, 2015

However, the empirical evidence has been mixed re-
garding the effects of TDD [9], [10], [11], [12], [13], [14].
This may be due in part to the diverse study contexts
that have affected the choice and control of factors such
as, participant selection (e.g., students or professionals),
programming tasks, and the design and execution of the
study. Clarifying the impact of such factors is necessary to
resolve inconsistent findings and attain a more comprehen-
sive understanding of the TDD process.

Among these factors, the programming tasks employed
as experimental objects and the extent they represent real-
world software development projects are considered rele-
vant for the external validity of studies [15], [16]. Accord-
ingly, attributes such as complexity, size, and duration have
been taken into account to characterize and categorize the
tasks [9], [10], [13], [17]. However, how the task is described
has been an overlooked aspect. Even when the same task
is used, various studies will differ with respect to the
granularity of requirements. For example, in [18] and [2],
the task was represented, in a finer-grained manner. It was
broken up into a list of sub-tasks, each corresponding to a
small feature and altogether building up the end-product.
In contrast, a coarser-grained representation was used in
[19]. The same task was presented, but without an explicit
breakdown. The level of granularity in presenting a task



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

is important for TDD, because choosing a small feature and
maintaining short development cycles are key elements of
the process. In fact, the significance of short development
cycles is not unique to TDD; it is also recognized in the Agile
development paradigm. Alistair Cockburn, a co-author of
the Agile Manifesto [20], asserts that “Agile developers apply
micro-, even nano-incremental development in their work”.
He demonstrates in his well-known Elephant Carpaccio
exercise how developers can break stories into thin, vertical
slices with an analogy to slicing an elephant into slices as
thin as carpaccio [21]. In the context of TDD, the significance
of short development cycles and its contribution to software
quality is also supported by empirical evidence [4]. How-
ever, novice practitioners are not able to maintain a steady
and fast rhythm as well as experts in applying TDD [5].

In light of the significance of this characteristic of the
TDD process, providing a task description with more gran-
ular requirements may facilitate the developers in focusing
on smaller tasks, and as a result to working in shorter cycles.
Hence, the granularity of the task description may directly
impact the development process and its outcome. An un-
derstanding of the interaction between the task description
and the TDD process will provide further insight in the
dynamics of TDD. Furthermore, the understanding of this
interaction is critical from an experimental point of view,
as such an interaction poses a major threat to the internal
validity of empirical studies in which the development
process itself is under investigation.

The goal of this study is to investigate the impact of task
description granularity on the outcomes of TDD. A specific
outcome of interest is software quality which is assessed on
the basis of functional correctness and functional complete-
ness characteristics identified in the ISO/IEC 25010 Product
Quality Model [22].

Research Question: Does task description granular-
ity impact functional correctness and functional com-
pleteness of the software developed by novice devel-
opers using TDD?

The contributions of this study are threefold:
1) Provides a thorough analysis of a controlled experiment

in an academic setting to understand the performance
of novice TDD developers with respect to task de-
scription granularity (A replication package is available
online at [23])

2) Demonstrates of the impact of task description granu-
larity on software quality created with TDD

3) Provides empirical evidence on the importance of task
selection in TDD experiments

We believe, these contributions will have two major impacts:
1) Calls attention (in practice and education) to the non-

triviality of the “choose a small task” step of the TDD
process for novice developers

2) Provides insight on factors that impact TDD experi-
ments for consideration when designing future studies

Such insight will be beneficial for practitioners, educators
and researchers. Not only is it important to refine our un-
derstanding of the dynamics of TDD, but it is also important
to facilitate the accurate interpretation, comparison, and
aggregation of any empirical findings.

This paper is organized as follows: We introduce related
work in Section 2 and describe the experimental setting in
Section 3. The results of the data analysis are reported in
Section 4, followed by a discussion of the results in Section 5.
We assess the threats to the validity of the study in Section 6
and conclude with the possible impact of our results on
research and practice along with plans for future study in
Section 7.

2 RELATED WORK

In their empirical study on the effectiveness of TDD [2],
Erdogmus et al. divided Robert Martin’s classic Bowling
Score Keeper (BSK) [25] problem into several sub-tasks, 1

coinciding with unique sub-features of the expected end
product. Both a control group and experiment group (TDD)
were instructed to follow an incremental development ap-
proach by implementing and testing sub-tasks, one at a time.
However, the control group was asked to first implement a
sub-task and then write corresponding tests. Whereas the
experimental group, conforming to the TDD process, wrote
tests before implementing a sub-task. These measures were
taken to prevent control group participants from deferring
testing, or even omitting completely. In such a case, any
comparison of the two development methods would have
suffered from a bias due to differences in the testing effort.
The authors further discussed that task presentation, when
accompanied with corresponding acceptance test methods
for each sub-feature, facilitated a more accurate assessment
of incomplete implementations. Although the effects of this
intervention was considered with respect to validity threats,
the consideration was limited to a possible bias in pro-
ductivity due to an increase in testing overhead. However,
since task description was not explicitly a factor in the
experiment’s design, no reliable conclusion about its effect
can be inferred.

In a similar study, Munir et al. [18] conducted an ex-
periment to compare TDD and test-last development with
respect to internal and external code quality and developer’s
productivity in which they also used the BSK task. Akin to
[2], the task description was described in terms of sub-tasks
and corresponding acceptance tests were instrumental in the
measurement of the dependent variables. However, the task
was decomposed into 7 sub-tasks as opposed to 13 sub-tasks
in [2]. The rationale using a different granularity in the task
description was not made explicit, nor was this decision’s
possible effects on the study discussed.

Additional empirical studies on TDD, in which the ex-
perimental task was BSK, are summarized in Table 1. The
summary shows task description granularity, number and
type of participants, development method for the control
group, and the results of the experiment on software quality
and developer productivity. Software quality was assessed
by black-box acceptance tests and measured as the percent-
age of passed acceptance tests in all four studies. Produc-
tivity was measured as the total development time in [19]
and as the percentage of implemented sub-tasks in the other
studies. Four of these studies employed task descriptions in

1. The subtasks are referred to as user stories in [2], [6], [18], [24] and
as sliced requirements in [26]. However, since they are not in a formal
user story structure, we prefer using a more generic term.



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1
Summary of studies in which BSK was used as the experimental task

Study Task description granular-
ity

Participants Control Develop. Method Quality Productivity

Erdogmus [2] 13 sub-tasks 24 students Iterative Test-last no difference increases
George [19] no sub-tasks breakdown 12 professional pairs Waterfall increases decreases
Munir [18] 7 sub-tasks 13 professionals Iterative Test-last no difference no difference
Fucci [24] 13 sub-tasks 58 students (22 working in pairs) Iterative Test-last no difference no difference
Tosun [6] 13 sub-tasks 24 professionals Iterative Test-last no difference no difference

terms of sub-tasks, and the conclusions among the studies
are mostly consistent. However, the results of the study by
George, in which the task description did not contain a
breakdown of the task into sub-tasks, diverged from the rest.
Of course, it is not possible to attribute the disagreement
in the outcomes of these studies specifically to the use of
different task descriptions, since the studies varied in a
number of other aspects. However, it is important to note
that the task description was a facet of the study and did
have a potential impact on the outcome.

Development method is not a factor in our study. We
investigated the impact of the granularity of the task de-
scription on the quality of the software developed using
TDD. To the best of our knowledge, this impact has not been
investigated directly with empirical methods in the litera-
ture. The results of this study will provide insight regarding
this overlooked experimental factor in the literature.

Regarding a different line of research on TDD, Fucci et al.
investigated the impact of different process characteristics
of TDD on software quality and developer productivity [4].
The process characteristics considered in the study were:
the order in which tests and production code were written;
the average duration of development cycles; that duration’s
uniformity; and refactoring effort. Their study demonstrated
that the duration and the uniformity of cycles, rather than
the order in which code and tests were written, contributed
to the improvement in software quality and developer pro-
ductivity. These findings are in accordance with [5] which
showed that TDD experts exhibit shorter and more uniform
development cycles than novices. If more granular task
descriptions promote shorter development cycles, it may re-
flect this characteristic of experts. The results of these studies
constitute a basis for the conjecture that the granularity of
the task description may affect the outcome of experiments
especially in the context of TDD.

While the aforementioned studies [4], [5] suggest a pos-
itive relationship between task representation granularity
and the outcomes of TDD, it is theoretically possible that
such a representation may cognitively hinder the creative
design process of developers [27]. The notion that a problem
or situation can be presented in different forms is referred as
the framing of the concept. The effect of framing on human
cognition has been investigated in diverse domains, such as
sociology, psychology, marketing science, information sys-
tems and software engineering [28], [29]. In software engi-
neering domain, tasks can be framed as “the system shall. . . ”
requirements [30], a set of user stories [31], or a set of use-
case narratives [32]. There are many empirical studies in
software engineering investigating framing effects [33], [34],
[35], [36]. An experiment reported by Mohanani et al. [37]

demonstrated that creativity in conceptual design decreases
when the task specification is framed as ‘requirements’
compared to when it is framed as ‘ideas.’ Additionally,
evidence from the literature suggests that problem structur-
ing reduces design performance [38]. Although creativity
and design performance were not within the scope of this
study, it is worth noting that granular task descriptions that
involve more structured framing of tasks may hinder the
development process. This was taken into account when
composing our hypotheses.

3 EXPERIMENTAL SETTING

In this section, we state our research objectives and describe
in detail the experimental setting.

3.1 Research Objectives
The goal of this experiment is to investigate the impact of
task description granularity on the outcomes of TDD, specif-
ically on software quality. In accordance with the guidelines
for reporting software engineering experiments presented in
[39], we have framed our research objectives using the Goal-
Question-Metric template suggested by Basili [40]. Our goal
is to:
Analyze task descriptions
For the purpose of comparison
With respect to functional correctness and functional com-
pleteness of the software developed using TDD
From the point of view of researchers
In the context of an academic course with graduate level
students (as proxies for novice developers)

3.2 Design
The factor under investigation is task description, specif-
ically its granularity. It was examined at two levels: the
finer-grained (FG) task description and the coarser-grained
(CG) task description (regarded as the control level). The
treatment was administered by providing the participant
a task description, either finer-grained or coarser-grained.
Further details on the operationalisation and instrumen-
tation of this construct is presented later in the paper. A
repeated measurement design is used for its robustness
against variation among participants [41]. All the partici-
pants received both treatments, they were given a coarser-
grained task description for one programming task and a
finer-grained description for a second task. Consequently, the
effect of the treatment can be observed for each participant.
However, since participants receive the two treatment levels
in a specific order, an imposed order may unintentionally



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

have an effect on the outcome. Taking into account such
order effect, a crossover design is preferred. A crossover
design is a repeated measures design in which participants
are randomly assigned to different sequences of the treat-
ments [41]. As there are two levels for the treatment, there
are only two possible sequences: CG-FG (Sequence 1) and
FG-CG (Sequence 2). Participants were randomly assigned
to one of these sequences.

Further details of the experiment design is presented in
Table 2. The experiment was conducted in two periods; each
period had a duration of 2 hours and was dedicated to the
implementation of a single task. The first period is dedicated
to the Bowling Score Keeper (BSK) task and the second pe-
riod to the Mars Rover (MR) task. These programming tasks
are described in more detail in Section 3.5. The allocation
of tasks to periods, i.e. the order in which the participants
implemented these tasks, was determined randomly. This
order was the same for all participants. Accordingly, for
the two groups of participants in the experiment, the task
sequence was the same but the treatment sequence (i.e. the
task description granularity sequence) was different. The
rationale and validity of the design is discussed in detail
in Section 3.9.

TABLE 2
Experiment Design

Periods

Period 1 Period 2
Sequences Task: BSK Task: MR

Sequence 1 coarser-grained finer-grained
Sequence 2 finer-grained coarser-grained

3.3 Variables

The independent variable is Task Description Granularity
(TASK-GRA) and is operationalised by having the pro-
gramming task described at different granularity levels.
The coarser-grained task description is the control level and
the finer-grained task description, in which the task was
described in terms of sub-tasks, is the experimental level.

The software quality response variable is operationalised
by using two of the functional suitability characteristics,
functional correctness and functional completeness, identified in
the ISO/IEC 25010 Product Quality Model [22].

Functional correctness is defined as the degree to which
the functions provide the correct results with the needed
degree of precision [22]. It is measured with a metric, COR-
RECTNESS, which captures the degree to which the soft-
ware provides correct results according to the acceptance
test suite.

Functional completeness is defined as the degree to which
the set of functions covers all the specified tasks and user
objectives [22]. Functional completeness is measured with
COMPLETENESS metric which indicates the fraction of the
implemented features based on the acceptance test results.

The operationalization and instrumentation of these con-
structs are outlined in Table 3 and presented in detail in
Section 3.6.

3.4 Participants and Sampling

We used convenience sampling to recruit participants for
the experiment. Participants were graduate students at the
University of Oulu who were enrolled in a graduate-level
course on software quality and testing during 2015 fall
semester, who volunteered to participate in the study.

To characterize participants, we conducted a brief de-
mographics survey in which participants were asked to
report their experience in programming in general, Java
programming language, Eclipse IDE, unit testing, JUnit,
and TDD, using a 4-point ordinal scale (None to Novice,
Intermediate and Expert). Figure 1 presents a summary of the
survey responses.

N
o
v
ic

e
In

te
rm

e
d

ia
te

E
x
p

e
rt

N
o

n
e

N
o
v
ic

e
In

te
rm

e
d

ia
te

E
x
p

e
rt

N
o

n
e

N
o
v
ic

e
In

te
rm

e
d

ia
te

N
o

n
e

N
o
v
ic

e
In

te
rm

e
d

ia
te

N
o

n
e

N
o
v
ic

e
In

te
rm

e
d

ia
te

N
o

n
e

N
o
v
ic

e
In

te
rm

e
d

ia
te

E
x
p

e
rt

0

10

20

30

40

50

60

70

80

90

Prog. Java Unit Test. TDD JUnit Eclipse

Fig. 1. Summary of participant’s experience

Figure 1 shows that the majority of the participants iden-
tified themselves at least as novices, while a few students
declared themselves as experts in programming (10%), Java
(5%) and Eclipse IDE (5%). A small percentage of the partic-
ipants reported no experience with Java (2%), Eclipse (9%),
unit testing (22%), JUnit (28%) and TDD (31%). However,
this survey was conducted at the very beginning of the
semester and before the participants had received 5-weeks
(seven hours per week) long training consisting of lectures
and hands-on exercises in Java. During the training period,
participants attended a total of four one-hour lectures on
unit testing and TDD and 15 hours of hands-on exercise
sessions (five three-hour long sessions), in which unit testing
and test-driven development were demonstrated and prac-
ticed. In each exercise session, the topic is first introduced
and demonstrated with examples. Then, participants imple-
mented a small programming task using TDD, following
the same procedure as the experimental sessions. They were
given two hours to implement the task.

Initially, 52 students volunteered to participate in the
experiment. These participants were randomly assigned to
the two groups, corresponding to the two treatment se-



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE 3
Operationalisation of constructs and instrumentation (IV: Independent Variable, DV: Dependent Variable)

Construct Operationalisation Instrumentation

Task Description (IV) Task Description Granularity
Two sets of specifications:
- coarser-grained level task description
- finer-grained level task description

Software Quality
(DV) Functional Correctness CORRECTNESS metric

measured based on acceptance sets

(DV) Functional Completeness COMPLETENESS metric
measured based on acceptance sets

quences shown in Table 2. Although the initial assignment
was balanced, the final group sizes were 23 for Sequence 1
and 25 for Sequence 2, due to attrition.

3.5 Experimental Objects

The tasks used in the experiment were greenfield pro-
gramming exercises - that require implementation from
scratch - and are algorithmic in nature. They were of similar
complexity in terms of number of requirements and effort
needed for implementation. These exercises are popular in
the Agile community and have been previously used in
TDD studies [2], [5], [18], [26], [42], [43]. Furthermore, these
two tasks have been also used together in experiments on
TDD as they are considered to be similar [6], [44].

The first task is Bowling Score Keeper (BSK) introduced
by Robert Martin in [25]. It requires the calculation of the
endgame score of a single bowling game for one player.
Although the rules are simple, the algorithm is still com-
plicated due to special cases, when the score of a frame
depends on the score of the following throws and possible
bonus throws at the end of the game.

The second task is called Mars Rover (MR) [45], [46]. It
requires implementation of a simple application program-
ming interface that handles vertical and horizontal move-
ment of a vehicle on a rectangular grid that wraps around
the grid edges and may also contain obstacles. Additionally,
some string handling is required for parsing the input and
returning the outcome of a run.

Participants were provided task descriptions explaining
the requirements of the programming task and also an initial
project template for the Eclipse IDE, which included the
class and method definitions used in the acceptance test
suite. The purpose of these templates was to ensure that
the participants complied with the expected interface in the
acceptance tests and facilitated the application of the accep-
tance tests to the participant’s code without any adjustment.
Participants were instructed that they could extend the
structure without changing the existing class and method
definitions. The project templates and the acceptance test
suits were independent of the treatment and were the same
for both the coarser-grained and the finer-grained levels.
The project template for the BSK task contained two class
definitions and a test class stub, and the template for the MR
task contains one stub for the class definition and a second
stub for the test class.

3.6 Instrumentation

For the independent variable Task Description Granularity,
treatments at different levels were administered by using
two sets of task description documents, i.e. coarser-grained
and finer-grained descriptions. We employed the task de-
scriptions which were used in previous studies with minor
editing [2], [6], [24], [26], [42], [47]. Next, we explain and
demonstrate the differences in the task descriptions. The
complete task descriptions can be found in the replication
package [23].

In the finer-grained task description, the task was de-
composed into several small sub-tasks. Each sub-task was
presented with a name, a short description, the requirement
and an example. Furthermore, they were listed in a specific
order, so that each builds upon previous ones, facilitating
incremental implementation. Alternatively, coarser-grained
level task description presented the task as a whole without
any such decomposition and contained one example for the
BSK task and two examples for the MR task. In summary,
the difference between the finer-grained task description
and the coarser grained one was that the former was more
structured and more detailed. In summary:

• The subtasks were identified explicitly (13 subtasks for
BSK and 11 subtasks for MR)

• Each sub-task was described separately followed by at
least one example

Despite these differences in the granularity, both versions of
task specifications essentially represent the same functional-
ity, i.e. there were no missing or additional requirements.

The dependent variables Functional correctness and Func-
tional completeness were measured through acceptance test
suites. The acceptance test suites were already available,
since the same experimental objects (tasks) were employed
in previous work. However, these were not revealed to the
participants during the execution of the experiments. After
the experiment, the acceptance test suite was applied to
the programming artifacts developed by the participants.
A summary of acceptance test suits for both tasks in terms
of the number of test classes, tests, and assert statements is
presented in Table 4. The organization of the tests into test
classes was in agreement with the features of the software
and tests targeting those features. When the acceptance
test was executed, the outcomes for all assert statements
in the acceptance test suite were recorded and used in
the computation of CORRECTNESS and COMPLETENESS
metrics. CORRECTNESS was calculated as the percentage
of passing assert statements in the acceptance test suite for



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 4
Acceptance Test Suites

Task Num. of Num. of Num. of
test classes acceptance tests asserts

MR 11 52 89
BSK 13 57 64

the task according to the following formula:

CORRECTNESS =
#Assert(SUCCESS)

#Assert(ALL)
× 100 (1)

#Assert(SUCCESS) denotes the number of successful
assert statements when the acceptance test suite is ap-
plied to the program developed by the participant and
#Assert(ALL) denotes the total number of assert state-
ments in the acceptance test suite. CORRECTNESS is mea-
sured with a ratio scale in [0, 100]

COMPLETENESS was computed as the percentage of the
covered features in the program developed by the partici-
pant. A feature was considered to be covered if there was
at least one passing assert statement in the test class corre-
sponding to that feature. The number of covered features
were calculated according to Equation 2.

#Cov. Features =
∑
i

{
1 #ASSERTi(SUCCESS) ≥ 1
0 otherwise

(2)
where #ASSERTi(SUCCESS) indicates that the number of
successful assert statements in the test class corresponding
to the ith feature. Accordingly, COMPLETENESS was calcu-
lated as shown in Equation 3.

COMPLETENESS =
#CoveredFeatures

#Features
× 100 (3)

where #Features indicates the total number of features
and it was 13 for the BSK task and 11 for the MR task as
shown in Table 4. COMPLETENESS was measured with a
ratio scale in [0, 100]

The allocated time for implementation of the task was
fixed at two hours for each task. Therefore, development
time was not taken into consideration in the evaluation of
CORRECTNESS and COMPLETENESS.

3.7 Hypotheses

We have formulated our research question in two hypothe-
ses denoted as HCor and HCom which correspond to COR-
RECTNESS and COMPLETENESS respectively. The follow-
ing formulations specify the null and alternative hypotheses
for each:

• HCor0 Task description granularity does not have an
effect on CORRECTNESS. (Null Hypothesis)
HCor1 Task description granularity has an effect on
CORRECTNESS.

• HCom0 Task description granularity does not have an
effect on COMPLETENESS. (Null Hypothesis)
HCom1 Task description granularity has an effect on
COMPLETENESS.

Both of the hypotheses are formulated as two-tailed since
we don’t have theoretical or empirical support to presume
a direction for the effect.

In addition to these main hypotheses, we performed
additional tests to confirm assumptions related to construct
and internal validity of the study, i.e., to check the validity
of the assumptions of statistical tests.

3.8 Analysis Approach
We employed linear mixed-effects models (LMMs) for the
data analysis. LMMs is the proposed analysis method for
crossover experiments in software engineering in [48] as
it can handle correlated data resulting from repeated mea-
surements and allows the modeling of variability among
participants.

In a typical use of LMMs for analyzing experimental
data, a model predicting the dependent variable is formu-
lated in terms of the experimental factors as fixed effects
and the participants as random effects [49]. In this study, the
treatment Task Description Granularity, as the primary focus
of investigation, is a fixed effect. Additionally, in accordance
with our experimental design presented (see Table 2), TASK
and SEQUENCE are also considered as fixed effects2 and
participants are random effects. An LMM specified in this
manner, referred to as a random intercept model, facilitates
hypothesis testing for the significance of the fixed effects
while accounting for possible correlation between the mea-
surements from the same participant and varying baselines
for different participants. In common LMM notation, this
model is expressed as:

DV ∼ TASK GRA+ TASK + SEQUENCE

+ (1|PARTICIPANT ) (4)

Based on this model the statistically significant effects are
first determined using Type II Wald tests. Next, the factors
that are not significant are dropped and the effect sizes
are investigated according to the formulations for crossover
design studies given in [50] based on the reduced model.

Additionally, the validity of the fitted models are con-
firmed by carrying out pos-thoc model diagnostics to check
whether the underlying assumptions for the mixed-effects
models are satisfied [51]. The normality of the errors are
checked with Shapiro-Wilk test and visual inspections of
the histogram, normal Q-Q plot, and boxplot of residuals.
When there is considerable deviation from normality, trans-
formations (such as, square root, arcsine, logarithmic) of
response variables are used. To ensure the independence of
the residuals from the factors, fitted values versus residuals
plots are examined.

The model fit is evaluated based on goodness of fit
measures such as the Akaike’s information criterion (AIC),
the Schwarz’s Bayesian information criterion (BIC), and the
log-likelihood. Additionally, the variance explained by the
model is evaluated in terms of marginal R2m which quan-
tifies the variance explained only by the fixed factors and
conditional R2c which quantifies the variance explained by

2. We are not interested in the main effects of Task and Sequence, but
we introduce them as fixed effects, enforced by the repeated measure
design of the experiment, to account for their potential effects in
determining the main effect of Task Description Granularity



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

the fixed and random factors [52]. Next, alternative models
are considered, which include other fixed factors such as
the participant’s experience level in programming, Java, unit
testing, and TDD. The model fit is then assessed with respect
to these alternative models by performing statistical tests
based on the log-likelihood ratio.

The analysis was conducted in RStudio environment [53]
using the R programming language [54]. LMM computa-
tions were carried out using the nlme package for R [55]. For
effect size analysis, the emmeans package3 and R package
provided with [50] was utilized. The M uMIn package4 was
used to compute the variance explained by the model.

3.9 Evaluation of Design Validity
A crossover design was suitable for our purposes, as it
requires fewer participants compared to parallel designs
to achieve similar power. Secondly, since each participant
received the treatment at both levels, the effect of the treat-
ment was a within-subject factor and was less sensitive to
variation among participants [48]. Furthermore, this design
allowed the investigation of any effects that may have been
caused by the order of the treatments received or carryover.
Even though such effects were not expected in this study,
the chosen design allowed this exploration.

The validity of a crossover design may be exposed to
threats due to carryover, fatigue, order, and practice effects.
Since the experiment was conducted in the context of a
graduate-level course, students participated in five weekly
hands-on exercise sessions prior to the experimental ses-
sions and the experiment was conducted under the same
conditions fatigue or practice were not likely to have had a
major effect.

Regarding carryover or an order effect, the difference
between the levels of treatment was the granularity of
task descriptions. Since our participants were students, they
were accustomed to implementing programming assign-
ments based on task descriptions provided to them. It is
unlikely, that their performance in the second period would
be unduly influenced by the previous task description con-
dition. We investigated the order in the analysis to verify
this presumption.

Furthermore, in order to evaluate the validity of the find-
ings with respect to other threats to validity, we conducted
surveys immediately after each experimental session. In
these surveys, participants were asked to evaluate the diffi-
culty of the tasks and the adequacy and comprehensibility
of the task descriptions. The responses were gathered with a
5-point Likert scale. Additionally, participants assessed how
much they complied with the TDD process on a scale of 0 to
100. The results of this evaluation are presented in Section 5
and Section 6.

3.10 Experiment Execution
The experiment was conducted within the context of a
graduate-level course in University of Oulu over eight
weeks. Before the experiment, we prepared the develop-
ment environment, experimental objects, and data collection

3. https://cran.r-project.org/web/packages/emmeans
4. https://cran.r-project.org/web/packages/MuMIn/

tools and trained participants on TDD and related concepts.
The development environment, Eclipse IDE (Release Luna)
and JUnit (Version 4), was prepared on the computers in the
university computer labs. The same environment was used
for both training and experimental sessions. Additionally,
task descriptions, project templates for Eclipse, and GitHub
repositories for programming tasks were prepared. For data
collection, survey forms for demographic information, task
evaluation, and self-assessment of performance were pre-
pared on Google Docs. Also, small scripts were prepared
to retrieve the source code and related log files from the
GitHub repository of each participant.

The experiment was conducted following the training, in
two periods that were one week apart. Briefly, the protocol
for each experiment session was as follows:

• Participants obtained project template provided for the
task from the GitHub repository

• Task descriptions were handed out to participants
• The task was implemented (two hours)
• Participants submitted their implementation to Github
• Survey for task and performance assessment were com-

pleted by participants
• Participants’ code and related files were retrieved from

their Github repositories and saved to local storage
• Participants’ responses to the survey were downloaded

from Google Docs
Following the experimental sessions, acceptance test

suites were applied to the programs developed by the par-
ticipants and CORRECTNESS and COMPLETENESS metrics
were computed as described in Section 3.6.

The experimental package is available online for other
researchers to replicate our experiment [23].

4 RESULTS

In this section, we report the results of the data analysis. For
each response variable, we present the descriptive statistics
and the plots depicting data, followed by the results of the
statistical data analysis conducted using linear mixed-effects
models, and the discussion on model validity and fit.

4.1 Functional Correctness
4.1.1 Descriptive Statistics
Table 5 presents the descriptive statistics for CORRECT-
NESS at coarser-grained and finer-grained levels of Task De-
scription Granularity. The mean value for CORRECTNESS
at the finer-grained level was 47.7 with a 95% confidence
interval of [38.26, 57.14]. At the coarser-grained level, both
the mean value (31.64) and limits of 95% confidence inter-
val ([24, 39.28]) were much smaller compared to the finer-
grained level. The trimmed mean values are in accordance
with mean values. Dispersion at both levels were consider-
ably large compared to the means. Additionally, the wide
range, 91.0 for coarser-grained and 100.0 finer-grained, indi-
cated a great amount of variability among the participants.
This is also apparent in violin plots presented Figure 2.
The range and the interquartile range was larger for the
finer-grained level. Skewness and excess kurtosis measures
indicated approximately symmetric but flatter distributions
for the finer-grained level and moderately right-skewed but
a more normal-like distribution for the coarser-grained level.

https://cran.r-project.org/web/packages/emmeans
https://cran.r-project.org/web/packages/MuMIn/


0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 5
Descriptive statistics for CORRECTNESS

statistic coarser-grained finer-grained

Mean (Std. Err.) 31.64 (3.8) 47.70 (4.69)
95 % CI for mean (24, 39.28) (38.26, 57.14)
5% Trimmed Mean 30.54 47.50
Median 23.44 42.97
Std. Deviation 26.33 32.47
Min.- Max. 0 - 90.62 0 - 100.00
Range 90.62 100.00
Interquartile Range 31.23 56.25
Skewness 0.85 0.24
Kurtosis -0.36 -1.26

0

10

20

30

40

50

60

70

80

90

100

coarser−grained finer−grained

Task Description Granularity

C
O

M
P

L
E

T
E

N
E

S
S

Fig. 2. Violin plots for CORRECTNESS at both levels of Task Description
Granularity. Data points are indicated as dots grouped into bins of
width 5. Horizontal lines within the plots indicate 0.25, 0.50, and 0.75
quantiles.

In Figure 3, the boxplots for CORRECTNESS at both
levels of Task Description Granularity are shown separately
for different tasks (a) and for different sequences (b). Fig-
ure 3a reveals that the improvement in CORRECTNESS
for the finer-grained task description was consistent across
both tasks, but the magnitude of the improvement was
considerably larger for the MR task. Another observation
is that the mean and the variance of CORRECTNESS are
much smaller for the MR task. It should be noted that the
comparison of CORRECTNESS at the coarser-grained and
finer-grained levels for a given task was a between-subject
comparison since the participants implemented each task
only once. Nevertheless, these observations suggest that
task may have had an impact on CORRECTNESS. Simi-
larly, Figure 3b presents the boxplots for CORRECTNESS
at coarser-grained and finer-grained levels separately for Se-
quence 1 and Sequence 2. Sequence 1 was the group of
participants who first implemented the BSK task using the
coarser-grained task description, and then the MR task using
the finer-grained task description. Sequence 2 was the group
of participants who implemented the BSK task first, but
using the finer-grained task description, and then the MR task

using the coarser-grained task description. The plot indicates
an interaction between the sequence and the relationship
between Task Description Granularity and CORRECTNESS.
For Sequence 2, the mean CORRECTNESS improved with
the finer-grained task description. CORRECTNESS at the
finer-grained level had a smaller mean but a larger median
value for Sequence 1. However, it should be noted that the
comparison of CORRECTNESS for different Task Description
Granularity levels within a sequence was a between-subject,
between-task comparison. Hence, the complex interaction
may be due to the variation among the participants and
tasks.

4.1.2 Linear Mixed-Effects Model
The statistical analysis of CORRECTNESS was conducted
using an LMM as outlined in Section 3.8. We first present
the model, the results of the statistical tests for effects, and
the model diagnostics. To ensure that the assumptions of the
LMM are satisfied, a square root transformation was applied
on CORRECTNESS.

The final LMM for CORRECTNESS (Formula 5) included
terms for Task Description Granularity and Task as fixed
factors and Participant as a random factor. The Sequence term
was dropped from the base model given in Formula 4 be-
cause it was found to be not significant (F1,46 = .35, p = .57)

sqrt(CORRECTNESS) ∼ TASK GRA+ TASK

+ (1|PARTICIPANT ) (5)

TABLE 6
Estimates of fixed effects for CORRECTNESS

Parameter Estimate Std. Err. 95% Conf. Interval

Intercept 6.26 0.40 (5.47, 7.05)
TASK GRA:FG 1.25 0.35 (0.55, 1.95)
TASK:MR -2.49 0.35 (-3.19, -1.79)

The parameter estimates for fixed effects and the con-
fidence intervals are given in Table 6. The parameter
TASK GRA:FG denotes that the coefficient corresponds to
the finer-grained level, i.e. the coarser-grained level was taken
as the baseline. In the same manner, TASK:MR indicates that
the BSK task was considered as the baseline. The interpreta-
tion of these estimates should be done carefully, keeping
in mind that they are computed based on transformed
values of CORRECTNESS. For TASK GRA, the estimate
1.25 indicates that CORRECTNESS for the finer-grained task
descriptions was higher compared to the coarser-grained task
descriptions. But due to the data transformation, the mag-
nitude of the difference cannot be inferred accurately based
on the value of the parameter. Nonetheless, the confidence
interval (0.55, 1.95) which contains only positive values,
verifies the direction of the effect, namely an increase in
CORRECTNESS for finer-grained task descriptions. For the
second fixed factor TASK, the estimate −2.49 indicates that
CORRECTNESS was higher for the BSK task, which is in
accordance with the plots in Figure 3a.

4.1.3 Hypothesis Tests
The significance of the effects of Task Description Granularity
and Task in this model were investigated using the Wald test



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

BSK MR

coarser−gra. finer−gra. coarser−gra. finer−gra.

0

10

20

30

40

50

60

70

80

90

100

Task Description Granularity

C
O

M
P

L
E

T
E

N
E

S
S

(a) Task

Sequence 1 Sequence 2

coarser−gra. finer−gra. coarser−gra. finer−gra.

0

10

20

30

40

50

60

70

80

90

100

Task Description Granularity

C
O

M
P

L
E

T
E

N
E

S
S

(b) Sequence

Fig. 3. Boxplots for CORRECTNESS shown separately for different tasks and sequences. Data points are indicated as dots grouped into bins of
width 5. Horizontal lines within the plots indicate 0.25, 0.50, and 0.75 quantiles

and the results are presented in Table 7. The null hypothesis
that the coefficient of the term corresponding to a predictor
is zero in the model was rejected for both factors at a signifi-
cance level (p < .01). Hence, Task Description Granularity and
Task had significant effects on CORRECTNESS and HCor 0 is
rejected.

TABLE 7
Tests of fixed effects for CORRECTNESS

Source Numerator Denominator F Sig.
df df

TASK GRA 1 46 12.98 .001
TASK 1 46 51.49 < .001

4.1.4 Effect Size

10

20

30

40

50

60

coarser−grained finer−grained

Task Description Granularity

E
s
ti
m

a
te

d
 M

a
rg

in
a

l 
M

e
a

n
s

BSK MR Overall

Fig. 4. Profile plots of estimated marginal means for CORRECTNESS

The effect size of Task Description Granularity was inves-
tigated firstly by evaluating the Estimated Marginal Means
(also known as the Least Square Means) after transforming

the fitted values back to the original scale. The results
presented in Figure 4 reveal that the predicted average in-
crease in CORRECTNESS with finer-grained task descriptions
was similar for both tasks. The estimated marginal means
of CORRECTNESS for coarser-grained and finer-grained task
descriptions are 25.13 (SE = 3.56) and 39.24 (SE = 4.45)
respectively, indicating a 56.15% increase. Additionally, two
standardized effect size measures for crossover design were
computed according to the formulation given in [50]. The
standardized effect size comparable to the independent
groups design (gIG = 0.50) and standardized effect size
comparable to the repeated measures design (gRM = 0.71)
indicate a medium to large effect.

4.1.5 Model Validity and Fit
The validity of the model was established by first construct-
ing a model aligned with the experiment design and then
dropping the factors that were not significant as described
in Section 3.8. Secondly, post-hoc model diagnostics were
carried out to check whether the underlying assumptions
for the mixed-effects models were valid for the final fitted
model. Finally, the model fit was evaluated.

Diagnostics for the model specified in Formula 5 was
carried out by inspecting residuals of the model. An ap-
proximately symmetric distribution around zero (M=1.53×
10−16) and a linear trend in the normal Q-Q plot of resid-
uals indicated that the residuals were normally distributed
which was also verified by the Shapiro-Wilk test. The null
hypothesis that the residuals follow a normal distribution
cannot be rejected (W = 0.99, p = .16). The predicted values
versus residuals plot did not indicate any major deviations
from a linear form and also showed relatively constant
variance across the fitted range. The diagonal line of points
was most likely caused by the the small cluster of zeros in
the data. The slight increase in variance to the right of the
center was likely a result of having fewer observations in
these predicted areas. Hence, the observed variance doesn’t
necessarily indicate an issue with the specification of the
model.



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 8
Comparison of alternative models for CORRECTNESS

Model for CORRECTNESS Variance explained Model fit Comparison of models

No Fixed factors R2m R2c AIC BIC LL Test df LL ratio p-value

1 1 0.00 % 12.4 % 475.84 483.53 -234.92 3
2 TASK GRA 5.88 % 24.09 % 471.00 481.26 -231.50 1 vs 2 4 6.84 < .001
3 TASK GRA + TASK 25.68 % 63.45 % 438.01 450.83 -214.01 2 vs 3 5 34.99 < .001
4 TASK GRA + TASK + SEQUENCE 26.08 % 63.45 % 439.66 455.05 -213.83 3 vs 4 6 0.35 .555
5 TASK GRA + TASK + EXP PROG 27.86 % 63.46 % 438.12 453.50 -213.06 3 vs 5 6 1.90 .169
6 TASK GRA + TASK + EXP JAVA 32.15 % 63.48 % 434.16 449.55 -211.08 3 vs 6 6 5.85 .016
7 TASK GRA + TASK + EXP JAVA + EXP UT 32.15 % 63.48 % 436.16 454.11 -211.08 6 vs 7 7 0.00 .978
8 TASK GRA + TASK + EXP JAVA + EXP TDD 32.18 % 63.48 % 436.14 454.09 -211.07 1 vs 6 8 0.02 .875

The model fit was assessed as explained in Subsec-
tion 3.8. The alternative models were built using forward
selection starting from the model with only the random
factor. The factors considered were the experimental factors,
i.e. TASK GRA, TASK, and SEQUENCE, followed by the
control factors related to the participants’ experience in pro-
gramming (EXP PROG), the Java programming language
(EXP JAVA), unit testing (EXP UT) and TDD (EXP TDD).
In addition to the fixed factors, all of the models included
participants as a random factor to reflect the repeated
measures design. These models are listed in Table 8 along
with model fit statistics, i.e. conditional and marginal R2,
the Akaike’s information criterion (AIC), the Schwarz’s
Bayesian information criterion (BIC) and log-likelihood (LL)
statistic. Model 3 in this table corresponds to the LMM
described in Formula 5. The fraction of total variance ex-
plained by this model was 63.45%, where the fixed factors
TASK GRA and TASK accounted for 25.68% of the total
variance. The subsequent models exhibited a slightly larger
R2m but very similar R2c values, which suggests that the
additional control factors in these models explain the part
of the variance that was already accounted for in Model
3 by the Participant random factor. The largest increase in
R2m was attained by Model 6, which includes also the
participant’s Java experience level. These observations were
verified by statistical tests performed for pairs of nested
models based on the log-likelihood ratio. The results of these
tests, reported in Table 8 under a comparisons of models
header, confirm that Model 3 and Model 6 were significantly
better (p < .05) than the models nested within them.
Nevertheless, the results of hypothesis tests about fixed
factors and effect sizes reported in previous subsections
hold because the parameter estimates for TASK GRA and
TASK with Model 6 are the same as Model 3 (up to three
significant digits).

4.2 Functional Completeness

4.2.1 Descriptive Statistics
Descriptive statistics for COMPLETENESS are presented in
Table 9. The mean COMPLETENESS value for coarser-grained
level of Task Description Granularity (M = 43.66) was smaller
than the finer-grained level (M = 57.52). The trimmed
mean values were close to mean values for both levels
whereas the median was considerably lower than the mean
value at the coarser-grained level. However, this seemingly
large difference between the mean and the median of the

TABLE 9
Descriptive statistics for COMPLETENESS

statistic coarser-grained finer-grained

Mean (Std. Err.) 43.66 (4.45) 57.52 (4.43)
95 % CI for mean (34.71, 52.61) (48.61, 66.43)
5% Trimmed Mean 43.09 58.20
Median 30.77 54.55
Std. Deviation 30.81 30.72
Min.- Max. 0 - 100 0 - 100
Range 100 100
Interquartile Range 47.38 53.85
Skewness 0.41 -0.18
Kurtosis -1.00 -1.21

COMPLETENESS metric corresponded to a difference of
only one unit in the measurement of the number of covered
features. Hence, it did not necessarily suggest asymmetry
and the skewness value (0.44) did not indicate extreme
asymmetry. The distributions for the two levels were similar
with respect to dispersion and were both flatter compared
to a normal distribution. Although the skewness was in
opposite directions, the deviation from symmetry was not
large. Figure 5 shows the violin plots for COMPLETENESS
at each Task Description Granularity level, which can be
seen in further detail for tasks and sequences separately
in Figure 6. Observations for COMPLETENESS were in
agreement with the observations made for CORRECTNESS;
the improvements in COMPLETENESS with finer-grained
task description was consistent across tasks, whereas for
different sequences, the effect was in opposite directions.

4.2.2 Linear Mixed-Effects Model

The statistical analysis of COMPLETENESS was conducted
in the same manner as CORRECTNESS while using the
arcsine transformation to ensure that the assumptions of
LMM were satisfied.

The final COMPLETENESS model (Formula 6) included
terms for Task Description Granularity and Task as fixed
factors and Participant as a random factor. The Sequence term
was dropped from the base model given in Formula 4 be-
cause it was found not to be significant (F1,46 = .43, p = .52)

arcsin(COMPLETENESS) ∼ TASK GRA+ TASK

+ (1|PARTICIPANT )
(6)



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0

10

20

30

40

50

60

70

80

90

100

coarser−grained finer−grained

Task Description Granularity

C
O

M
P

L
E

T
E

N
E

S
S

Fig. 5. Violin plots for COMPLETENESS at both levels of Task Descrip-
tion Granularity. Data points are indicated as dots grouped into bins of
width 5. Horizontal lines within the plots indicate 0.25, 0.50, and 0.75
quantiles.

The estimates for these coefficients and confidence inter-
vals are given in Table 10, which indicated an increase
in COMPLETENESS with the finer-grained task description.
Additionally, COMPLETENESS is lower for the MR task
compared to the BSK task, which is also in accordance with
the findings for CORRECTNESS.

TABLE 10
Estimates of fixed effects for COMPLETENESS

Parameter Estimate Std. Err. 95% Conf. Interval

Intercept 1.76 0.13 (1.52, 2.01)
TASK GRA:FG 0.33 0.11 (0.11, 0.54)
TASK:MR -0.66 0.11 (-0.88, -0.44)

4.2.3 Hypothesis Tests
Results of the Wald tests for fixed effects are presented in
Table 11. As for the case of CORRECTNESS, both Task and
Task Description Granularity had significant effects (p < .01).
Hence, HCom 0 is rejected at (p = .004).

TABLE 11
Tests of fixed effects for COMPLETENESS

Source Numerator Denominator F Sig.
df df

TASK GRA 1 46 9.04 .004
TASK 1 46 37.03 < .001

4.2.4 Effect Size
The Estimated Marginal Means of COMPLETENESS for
coarser-grained and finer-grained task descriptions were 42.98
and 59.40 respectively. The increase in COMPLETENESS
was 38.20% which was smaller compared to the increase

in CORRECTNESS. Figure 7 depicts the profile plots of
estimated marginal means separately for the BSK task and
the MR task, revealing that the size of the effect was similar
for both tasks. The standardized effect size comparable to
independent groups design, (gIG = 0.43), suggested a close
to medium size effect. Standardized effect size comparable
to repeated measures design was (gRM = 0.57).

4.2.5 Model Validity and Fit
To verify the validity of the LMM method, the normality
of the residuals for COMPLETENESS was tested with the
Shapiro-Wilk test. As this condition was not met for COM-
PLETENESS, the data was transformed using an arcsine
transformation. For the transformed data, the null hypoth-
esis of the Shapiro-Wilk test that the residuals follow a
normal distribution was rejected (W = 0.98, p = .002).
Visual inspection of the histogram, the normal Q-Q plot, and
the boxplot of residuals did not indicate a major deviation
from normality. The mean residual value was 1.53× 10−16,
the normal Q-Q plot followed a linear trend except for a
slight deviation at the endpoints, which are explained by
the bounded nature of the response variable in [0, 100]. The
deviation did not likely affect the validity, since inference
for the fixed effects under the assumption of independent
normally distributed errors with constant variance have
been shown to be robust when the errors are either non-
Gaussian or heteroscedastic [56]. The assessment of model
fit was carried out in the same manner as described for
CORRECTNESS and the results, summarized in Table 12,
were in agreement with the findings for CORRECTNESS.
Specifically, the trend for the variance explained was similar,
the increase in R2m was largest among the control factors
when EXP JAVA was included, and Model 3 and Model
6 were significantly better than the models nested within
them according to the log-likelihood tests. Consequently,
the conclusion that the additional control factors explained
the part of the variance that was already accounted for
in Model 3 by the Participant random factor also holds
for COMPLETENESS. Furthermore, the parameter estimates
for TASK GRA and TASK with Model 6 were the same as
Model 3 (up to three significant digits). Hence, the results of
hypothesis tests about fixed factors and effect sizes reported
in previous subsections based on Model 3 remain valid.

5 DISCUSSIONS

Both the task description granularity and the task had
significant impacts on software quality in the use of TDD
(i.e. their tests resulted in significant effects with medium
to large effect sizes). At first glance, these results seem intu-
itive. First, the significance of task description granularity is
informative for both TDD practitioners and experimenters,
as it provides insight into the dynamics of this method
and highlights an over-looked factor in experiments, i.e.
choosing small tasks to work on. Second, the impact of the
task was interesting as the tasks were of similar difficulty
in this study. Hence, the reasons of observed differences
warrants further attention.

The primary factor investigated in this study was the
task description granularity rather than the task itself. Em-
ployment of two different tasks was necessary due to the



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

BSK MR

coarser−gra. finer−gra. coarser−gra. finer−gra.

0

10

20

30

40

50

60

70

80

90

100

Task Description Granularity

C
O

M
P

L
E

T
E

N
E

S
S

(a) Task

Sequence 1 Sequence 2

coarser−gra. finer−gra. coarser−gra. finer−gra.

0

10

20

30

40

50

60

70

80

90

100

Task Description Granularity

C
O

M
P

L
E

T
E

N
E

S
S

(b) Sequence

Fig. 6. Boxplots for COMPLETENESS shown separately on different tasks and sequences. Horizontal lines within the plots indicate 0.25, 0.50, and
0.75 quantiles.

TABLE 12
Comparison of alternative models for COMPLETENESS

Model for COMPLETENESS Variance explained Model fit Comparison of models

No Fixed factors R2m R2c AIC BIC LL Test df LL ratio p-value

1 1 0.00 % 22.14 % 244.30 251.99 -119.15 3
2 TASK GRA 4.38 % 30.84 % 240.64 250.89 -116.32 1 vs 2 4 5.67 .017
3 TASK GRA + TASK 19.56 % 61.02 % 215.19 228.01 -102.60 2 vs 3 5 27.44 < .001
4 TASK GRA + TASK + SEQUENCE 20.11 % 61.02 % 216.76 232.15 -102.38 3 vs 4 6 0.43 .510
5 TASK GRA + TASK + EXP PROG 22.19 % 61.03 % 215.09 230.48 -101.55 1 vs 2 6 2.10 .150
6 TASK GRA + TASK + EXP JAVA 29.18 % 61.06 % 209.02 224.40 -98.51 1 vs 2 6 8.17 .004
7 TASK GRA + TASK + EXP JAVA + EXP UT 29.19 % 61.06 % 211.01 228.96 -98.50 2 vs 3 7 0.01 .908
8 TASK GRA + TASK + EXP JAVA + EXP TDD 29.18 % 61.06 % 211.01 228.96 -98.51 1 vs 2 7 0.01 .940

30

40

50

60

70

coarser−grained finer−grained

Task Description Granularity

E
s
ti
m

a
te

d
 M

a
rg

in
a

l 
M

e
a

n
s

BSK MR Overall

Fig. 7. Profile plots of estimated marginal means for COMPLETENESS

repeated measurement design of the experiment. These
tasks, the Bowling Score Keeper and the Mars Rover API,
were selected from previous empirical studies on TDD, in
which they were considered to be of similar difficulty [4],
[6], [26]. Therefore, the observed effect of the task on the
outcome was unexpected and needs further consideration.

It should be noted that participants delivered higher quality
software in the first experimental period for which the
Bowling Score Keeper was the task that was randomly
chosen. Thus, the learning effect didn’t account for the
observed difference and other plausible explanations were
explored. First, the comparability of these tasks from the
participants’ perspective was explored based on the re-
sponses to a self-assessment questionnaire conducted after
each experimental period. In these questionnaires, partici-
pants were asked to evaluate the difficulty of the tasks and if
the task description was comprehensible and adequate. The
responses were measured with a five-point Likert scale and
compared using the Mann-Whitney-Wilcoxon test. No sta-
tistically significant (at the .05 level) difference in difficulty
of the task or comprehensibility and adequacy of the task
description was found between the tasks. This conclusion
didn’t change when the comparison was done separately
for coarser-grained and finer-grained task descriptions. Thus,
these two tasks were considered to be of similar difficulty,
not only by researchers, but also by participants.

We also considered process conformance to TDD. One
possible explanation was that the participants were able to
apply TDD better on the BSK task and attain higher software
quality. To test this hypothesis, we analyzed the responses
in the post-task self-assessment questionnaire that asked
how much they were able to comply to TDD process. No



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

statistically significant (at .05 level) difference was detected
between the responses for the two tasks. As this analysis
was based on the participants’ subjective assessment on
their conformance to TDD, the conclusion needs to be val-
idated using objective process conformance measures (for
further mitigation actions we took on this issue, please see
Section 6, threats to internal validity). As Fucci et al. [4]
states, the TDD process is characterized not only by the
order in which tests are written but also by the granularity
and uniformity of the micro-cycles. Furthermore, the inves-
tigation of the participants’ compliance to TDD based on
these dimensions may shed light on the difference between
the two experimental tasks. These results not only provide
empirical evidence to support that task selection is impor-
tant in software engineering experiments, but also indicate
characteristics other than the task difficulty may effect the
results of the experiments and need to be taken into account
beyond the external validity of the findings.

To elaborate more on the task description granularity
factor, let us revisit the most distinctive characteristics of
TDD which are: 1) writing tests before the production
code; 2) iterative development with very small develop-
ment cycles and 3) a great deal of refactoring. Among
these, the unconventional “write tests before production
code” principle of TDD leads to the perception that TDD
is equivalent to test-first development and downplays the
importance of the micro-cyclic nature of this development
technique. However, this feature assures that the focus is
on one simple, well-defined sub-task at a time. In order to
comply with the TDD process completely, developers need
to decompose the task into smaller sub-tasks. This doesn’t
necessarily mean that a decomposition must be readily
on hand before starting the implementation. But, at each
iteration, the developer needs to choose the next small sub-
task to implement, based on his/her problem solving skills.
Hence, the fact that participants achieve higher software
quality with more granular task descriptions suggest that
breaking down the task into smaller work items is not
straightforward for novice developers. In a sense, TDD
assumes the possession of this skill by developers, rather
than facilitating it.

Young professionals or software engineering students
may not have acquired the proper skills and experience
to identify small enough subtasks in an iterative manner.
As supported by our findings, they attain better software
quality with TDD when the task description enables them
to identify and choose subtasks for each development cycle.
For experienced professionals, writing tests before produc-
tion code may be instrumental in focusing them on one
small feature at a time and working in small development
cycles. However, for novice developers, the ability to choose
a small tasks is likely to be more dominant in determining
the outcome of TDD.

In the context of TDD experiments, our findings raise
serious concerns. First, manipulating the granularity of the
task description poses a threat to the internal validity of the
experiments since task description was shown to influence
the observed outcome. Second, in the secondary studies not
only the characteristics of the task, but the granularity of the
task descriptions needs to be taken into account for accurate
aggregation of the findings of primary studies. While finer

grained task descriptions fulfill the “choose a simple task“
step of TDD, experiment participants exposed to coarser
grained task descriptions had to break down bigger tasks
ito smaller ones on their own, and the results were likely
affected by their ability to do so.

6 THREATS TO VALIDITY

In this section we discuss potential threats to validity rel-
evant to our study, based on the classification provided in
Wohlin et al. [16].

6.1 Construct Validity
The constructs used for the dependent variables in the study
and the corresponding measures were well-defined and
used in previous studies. Still, our experiment may suffer
from mono-method bias since each construct was defined
in terms of a single measure. To mitigate this threat, the
measures used in previous studies were chosen. The study
did not suffer from mono-operation bias since two separate
tasks, BSK and MR, were used.

Design threats to construct validity are discussed sepa-
rately in Section 3.9.

6.2 Internal Validity
The manipulation of task description granularity was per-
formed by providing separate task descriptions for the
different levels of granularity. In order to confirm that this
had not caused any confounding factors such as the lack
of either comprehension of the task or the adequacy of
the specifications for any group, we conducted a survey
immediately after the task was completed. We asked the
participants to evaluate the task specifications in terms of
adequacy and comprehensibility. The responses were gath-
ered with a 5-point Likert scale. For both of the attributes,
we observed that the median values for coarser-grained and
finer-grained task descriptions were the same. The results
remain unchanged when the median values were computed
separately for each task.

Since the scope of this study was TDD, the participants’
ability to follow TDD process was also relevant for the
validity of the findings. As a precaution, we provided
training on TDD and related concepts before conducting the
experiment. Furthermore, we evaluated TDD conformance
based on two independent assessments, participant’s self
assessment obtained with the post-task survey, and assess-
ment with the Besouro Tool [57] using the TDD conformance
metric described in [4], [6]. Furthermore, we repeated the
statistical analysis after removing data points that did not
meet the minimum criteria for TDD conformance which
was set at 25%. Based on this criteria and the two as-
sessments methods, we investigated two selection schemes.
In the first scheme, data points which met the minimum
conformance criteria for at least one of the assessments, i.e.
self-assessment or assessment with Besouro, were selected.
In the second and more strict selection scheme, a data point
was selected only if both of the assessments exceeded the
minimum criteria. When we repeated the statistical analysis
with these two selection schemes, we obtained the same
results for the hypothesis tests. Hence, our conclusions were
not sensitive to the data points with low TDD conformance.



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

6.3 External Validity

The experiment was conducted in an academic setting in
the context of a graduate level course, limiting the ability
to generalize the results to industrial practice. This was
partly by design, since our hypothesis focused on novice
developers.

The tasks used in the experiment were simple tasks with
a two hour implementation duration. Hence, the generaliza-
tion to more complex real-life tasks is limited. However, if
even with simple tasks, the task description granularity has
an effect on the outcome of TDD, it is reasonable to expect
that it will also have an effect on more complex tasks.

Even though the tasks chosen for the experiment were
seemingly similar in complexity, the effect of the task was
significant for both of the dependent variables. The fact that
the effect of treatment was the same for both tasks suggests
that the results can be generalized to tasks with similar
complexities.

6.4 Conclusion Validity

The analysis was carried out with LMMs, following the in-
structions on how to analyze crossover experiments in [48].
The underlying distributional assumptions of LMMs are
that the errors are independent of the random effects and
follow a normal distribution with mean zero and a constant
variance across different levels of the fixed effects. It should
be noted that the the objective of using LMMs to analyze
experimental data is not to construct a predictive model, but
to test the hypotheses about fixed effects. In this case, the
random effects were only included to obtain reliable infer-
ence on the fixed effects by taking within-subject correlation
into account.

The detailed model diagnostics and validity of the mod-
els, discussed for each response variable separately in the
results section, do not indicate a severe violation of the
assumptions. Moreover, it has been shown that the esti-
mates of the fixed effects are robust to violations of the
above-mentioned distributional assumptions, except when
the error variance depends on a covariate included in the
model that interacts with time [56]. To verify this, the
existence of an interaction between Task and Task Description
Granularity was checked formally with statistical tests and
rejected (F1,45 = .35, p = .56 for CORRECTNESS and
F1,45 = .43, p = .52 for COMPLETENESS).

Additionally, we checked results for LMMs on response
variables without any transformations for which the nor-
mality assumption was clearly violated. The conclusion of
the hypothesis tests did not change for the models which
confirms the robustness of the fixed estimates against vi-
olations of the normality assumptions. We concluded that
the results obtained based on the models specified with
Formula 5 and Formula 6 were valid.

7 CONCLUSIONS

In this paper, we investigated an overlooked aspect of TDD,
which states that developers need to work on small and
manageable tasks at each iteration. This is an assumption
that is usually taken for granted. However, the ability of
a developer to break tasks into small work items is a skill

that is developed with experience. Hence, we hypothesized
that the level of detail (i.e., finer-grained vs. coarser-grained)
in the provided specifications could have an effect on the
quality of the produced code, i.e. functional correctness
and functional correctness. Moreover, theory from other
disciplines support that this is an issue worth investigating
(as discussed in Section 2).

We conducted a controlled experiment with graduate
students as proxies for novice developers and detected sig-
nificant effects for the task description granularity and the
task itself, on the response variables. Based on our results,
we derived the following conclusions that are relevant for
both practitioners and researchers:

• The ability to have problem-solving and divide-and-
conquer skills to break specifications into smaller work
items is an important practical skill, at least in the
context of TDD.

• The analysis and interpretation of the results of exper-
iments should account for the potential impact of the
experimental tasks used.

For practitioners, specifically for novices, we emphasize
that it is an essential skill to have the ability to break larger
work items into smaller ones in order to produce more
work of higher quality. For managers of teams consisting of
novice developers, we recommend training novices in this
regard or pairing them with seniors from whom they can
learn. Whenever possible, providing specifications as small
sub-tasks, rather than larger chunks of generic features,
would be beneficial in terms of improving the quality of
the outcomes. These recommendations that are based on
empirical evidence are also aligned with recommendations
from practitioners, e.g. the elephant carpaccio analogy.

For researchers, we recommend considering the impact
of programming tasks used in experimental investigations.
Our results suggest that they might have an impact on the
results, at least in the context of TDD experiments.

Though problem solving skills are part of the curriculum
for introductory level programming courses, we recom-
mend software engineering educators put explicit emphasis
on the topic and provide practical exercises aiming to equip
students with the ability to break down big problems into
smaller ones.

Our findings raise further questions: Is the impact of
task description granularity specific to TDD? Or is it similar
for other development processes? It is possible that these
findings can be applicable to other development techniques
of an iterative nature. Further research on other iterative
development processes are needed to test this hypothesis.
In particular, comparative studies on development methods
that consider factors like task description granularity would
be useful to determine how specific the impact is to TDD.
Therefore, we plan to extend our experimental design to
incorporate iterative test-last (ITL) development in future
studies.

ACKNOWLEDGMENTS

This work was partially funded by Academy of Finland
Project 278354 and Spanish Ministry of Science, Innovation
and Universities research grant PGC2018-097265-B-I00.



0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

REFERENCES

[1] K. Beck, Test-Driven Development By Example. Addison-Wesley,
2003.

[2] H. Erdogmus, M. Morisio, and M. Torchiano, “On the Effective-
ness of the Test-First Approach to Programming,” IEEE Transac-
tions on Software Engineering, vol. 31, no. 1, pp. 226–237, mar 2005.

[3] L. Madeyski, “The impact of Test-First programming on branch
coverage and mutation score indicator of unit tests: An experi-
ment,” Information and Software Technology, vol. 52, no. 2, pp. 169–
184, 2010.

[4] D. Fucci, H. Erdogmus, and B. Turhan, “A Dissection of Test-
Driven Development : Does It Really Matter to Test-First or to
Test-Last?” IEEE Transactions on Software Engineering, vol. 6, no. 1,
pp. 1–20, 2015.

[5] M. M. Müller and A. Höfer, “The effect of experience on the
test-driven development process,” Empirical Software Engineering,
vol. 12, no. 6, pp. 593–615, aug 2007.

[6] A. Tosun, O. Dieste, D. Fucci, S. Vegas, B. Turhan, H. Erdogmus,
A. Santos, M. Oivo, K. Toro, J. Jarvinen, and N. Juristo, “An
industry experiment on the effects of test-driven development on
external quality and productivity,” pp. 1–43, dec 2016.

[7] L. Madeyski, Test-Driven Development - An Empirical Evaluation of
Agile. Springer, 2010.

[8] S. Romano, D. Fucci, G. Scanniello, B. Turhan, and N. Juristo,
“Findings from a multi-method study on test-driven develop-
ment,” Information and Software Technology, vol. 89, pp. 64–77, 2017.

[9] H. Munir, M. Moayyed, and K. Petersen, “Considering rigor and
relevance when evaluating test driven development: A systematic
review,” Information and Software Technology, vol. 56, no. 4, pp. 375–
394, apr 2014.

[10] Y. Rafique and V. B. Mi, “The Effects of Test-Driven Development
on External Quality and Productivity: A Meta-Analysis,” IEEE
Transactions on Software Engineering, vol. 39, no. 6, pp. 835–856,
2013.

[11] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep, and H. Erdog-
mus, “What Do We Know about Test-Driven Development?” IEEE
Software, vol. 27, no. 6, pp. 16–19, nov 2010.

[12] B. Turhan, L. Layman, M. Diep, H. Erdogmus, and S. Forrest,
“How Effective Is Test-Driven Development?” in Making Software
What Really Works, and Why We Believe It, A. Oram and G. Wilson,
Eds. O’Reilly Media, 2010, ch. 12, pp. 207–219.

[13] W. Bissi, A. G. Serra Seca Neto, M. C. F. P. Emer, A. G. S. S. Neto,
and M. C. F. P. Emer, “The effects of test driven development on
internal quality, external quality and productivity: A systematic
review,” Information and Software Technology, vol. 74, pp. 45–54, jun
2016.

[14] I. Karac and B. Turhan, “What Do We (Really) Know about
Test-Driven Development?” IEEE Software, vol. 35, no. 4, pp.
81–85, jul 2018. [Online]. Available: https://ieeexplore.ieee.org/
document/8405634/

[15] D. Sjoeberg, J. Hannay, O. Hansen, V. Kampenes, A. Kara-
hasanovic, N.-K. Liborg, and A. Rekdal, “A survey of controlled
experiments in software engineering,” IEEE Transactions on
Software Engineering, vol. 31, no. 9, pp. 733–753, sep 2005. [Online].
Available: http://ieeexplore.ieee.org/document/1514443/

[16] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: an introduction.
Springer-Verlag, 2000, vol. 15.

[17] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide to
controlled experiments of software engineering tools with human
participants,” Empirical Software Engineering, vol. 20, no. 1, pp. 110–
141, 2015.

[18] H. Munir, K. Wnuk, K. Petersen, and M. Moayyed, “An ex-
perimental evaluation of test driven development vs. test-last
development with industry professionals,” Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering - EASE ’14, pp. 1–10, 2014.

[19] B. George, L. Williams, and W. L. George B., “An initial investi-
gation of test driven development in industry,” Proceedings of the
ACM Symposium on Applied Computing, pp. 1135–1139, 2003.

[20] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries,
J. Kern, B. Marick, R. C. Martin, S. Mallor, K. Shwaber, and
J. Sutherland, “The Agile Manifesto,” The Agile Alliance, Tech.
Rep., 2001.

[21] A. Cockburn, “Elephant Carpacio,” 2014. [Online].
Available: http://web.archive.org/web/20140329203040/http://
alistair.cockburn.us/Elephant+carpaccio

[22] “ISO/IEC 25010:2011 Systems and software engineering – Systems
and software Quality Requirements and Evaluation (SQuaRE) –
System and software quality models,” International Organization
for Standardization ISO/IEC JTC 1/SC 7, Tech. Rep., 2011.
[Online]. Available: https://www.iso.org/standard/35733.html

[23] “Experiment Replication Package,” Online: https://figshare.com/
s/4882c0d634f9d821ef81, 2019, doi: 10.6084/m9.figshare.7957652.

[24] D. Fucci and B. Turhan, “A Replicated Experiment on the
Effectiveness of Test-First Development,” in 2013 ACM /
IEEE International Symposium on Empirical Software Engineering
and Measurement, no. February 2011, 2013, pp. 103–112.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6681343

[25] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Pearson Education, 2003. [Online]. Available: https:
//books.google.com/books?id=0HYhAQAAIAAJ{&}pgis=1

[26] O. Dieste, A. M. Aranda, F. Uyaguari, B. Turhan, A. Tosun,
D. Fucci, M. Oivo, and N. Juristo, “Empirical evaluation of
the effects of experience on code quality and programmer
productivity: an exploratory study,” Empirical Software
Engineering, vol. 22, no. 5, pp. 2457–2542, feb 2017. [Online].
Available: http://link.springer.com/10.1007/s10664-016-9471-3

[27] P. Ralph, “The illusion of requirements in software development,”
Requirements Engineering, vol. 18, no. 3, pp. 293–296, 2013.

[28] C. Gonzalez, J. Dana, H. Koshinob, and M. Just, “The framing
effect and risky decisions: Examining cognitive functions with
fmri,” Journal of Economic Psychology, vol. 26, no. 1, pp. 1–20, 2005.

[29] R. Mohanani, I. Salman, B. Turhan, P. R. Marı́n, and P. Ralph,
“Cognitive Biases in Software Engineering: A Systematic Mapping
and Quasi-Literature Review,” CoRR, vol. abs/1707.0, 2017.

[30] “IEEE recommended practice for software requirements specifica-
tions,” IEEE Std 830-1998, 1998, doi: 10.1109/IEEESTD.1998.88286.

[31] K. Schwaber, Agile Project Management with Scrum. Redmond,
WA: Microsoft Press, 2004.

[32] A. Cockburn, Writing Effective Use Cases, 1st ed. Addison-Wesley
Professional, 2000.

[33] A. Borgida, J. Mylopoulos, and R. Reiter, “On the frame problem in
procedure specifications.” IEEE Trans. Software Eng., vol. 21, no. 10,
pp. 785–798, 1995.

[34] C. M. Gray, S. Yilmaz, S. Daly, C. M. Seifert, R. Gonzalez et al.,
“Supporting idea generation through functional decomposition:
An alternative framing for design heuristics,” in Proceedings of the
2015 International Conference on Engineering Design (ICED), 2015,
pp. 309–318.

[35] T. L. Griffith and G. B. Northcraft, “Cognitive elements in the
implementation of new technology: Can less information provide
more benefits?” MIS Quarterly, vol. 20, no. 1, pp. 99–110, 1996.

[36] S. S. Khan, R. L. Kumar, M. J. Khouja, and K. Zhao, “Narrow
framing effects on real options: the case of it application portfo-
lios.” in ICIS, R. Sabherwal and M. Sumner, Eds. Association for
Information Systems, 2010, p. 186.

[37] R. Mohanani, B. Turhan, and P. Ralph, “Requirements framing
affects design creativity,” IEEE Transactions on Software Engineering,
2019, doi: 10.1109/TSE.2019.2909033.

[38] P. Ralph and R. Mohanani, “Is requirements engineering
inherently counterproductive?” in TwinPeaks@ICSE, M. Galster
and M. Mirakhorli, Eds. IEEE, 2015, pp. 20–23. [Online].
Available: http://dblp.uni-trier.de/db/conf/icse/twinpeaks2015.
html#RalphM15

[39] A. Jedlitschka and D. Pfahl, “Reporting guidelines for controlled
experiments in software engineering,” 2005 International Sympo-
sium on Empirical Software Engineering, ISESE 2005, pp. 95–104,
2005.

[40] V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge
through families of experiments,” IEEE Transactions on
Software Engineering, vol. 25, no. 4, pp. 456–473, 1999.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=799939

[41] D. Raghavarao and L. Padgett, Repeated Measurements and
Cross-Over Designs. Wiley, 2014. [Online]. Available: https:
//books.google.fi/books?id=t58yAwAAQBAJ

[42] D. Fucci, B. Turhan, and M. Oivo, “Impact of Process Conformance
on the Effects of Test-driven Development,” Proceedings of the
8th ACM/IEEE International Symposium on Empirical Software

https://ieeexplore.ieee.org/document/8405634/
https://ieeexplore.ieee.org/document/8405634/
http://ieeexplore.ieee.org/document/1514443/
http://web.archive.org/web/20140329203040/http://alistair.cockburn.us/Elephant+carpaccio
http://web.archive.org/web/20140329203040/http://alistair.cockburn.us/Elephant+carpaccio
https://www.iso.org/standard/35733.html
https://figshare.com/s/4882c0d634f9d821ef81
https://figshare.com/s/4882c0d634f9d821ef81
10.6084/m9.figshare.7957652
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6681343
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6681343
https://books.google.com/books?id=0HYhAQAAIAAJ{&}pgis=1
https://books.google.com/books?id=0HYhAQAAIAAJ{&}pgis=1
http://link.springer.com/10.1007/s10664-016-9471-3
10.1109/IEEESTD.1998.88286
10.1109/TSE.2019.2909033
http://dblp.uni-trier.de/db/conf/icse/twinpeaks2015.html#RalphM15
http://dblp.uni-trier.de/db/conf/icse/twinpeaks2015.html#RalphM15
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=799939
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=799939
https://books.google.fi/books?id=t58yAwAAQBAJ
https://books.google.fi/books?id=t58yAwAAQBAJ


0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2920377, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Engineering and Measurement, pp. 10:1—-10:10, sep 2014. [Online].
Available: http://dl.acm.org/citation.cfm?id=2652524.2652526

[43] B. Estácio, F. Zieris, L. Prechelt, and R. Prikladnicki, “On the
randori training dynamics,” Proceedings of the 9th International
Workshop on Cooperative and Human Aspects of Software Engineering
- CHASE ’16, pp. 44–47, 2016. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2897586.2897603

[44] I. Salman, A. T. Misirli, and N. Juristo, “Are Students
Representatives of Professionals in Software Engineering
Experiments?” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1. IEEE, may 2015, pp.
666–676. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7194615

[45] “Java Tutorial Through Katas: Mars Rover,” 2014.
[Online]. Available: https://technologyconversations.com/2014/
10/17/java-tutorial-through-katas-mars-rover/

[46] “Mars Rover Exercise.” [Online]. Available: https://archive.
codeplex.com/?p=marsroverexercise

[47] D. Fucci, G. Scanniello, S. Romano, M. Shepperd, B. Sigweni,
F. Uyaguari, B. Turhan, N. Juristo, and M. Oivo, “An External
Replication on the Effects of Test-driven Development Using
a Multi-site Blind Analysis Approach,” in Proceedings of the
10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement - ESEM ’16. New York, New
York, USA: ACM Press, 2016, pp. 1–10. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2961111.2962592

[48] S. Vegas, C. Apa, and N. Juristo, “Crossover Designs in Software
Engineering Experiments: Benefits and Perils,” IEEE Transactions
on Software Engineering, vol. 42, no. 2, pp. 120–135, feb 2016.

[49] J. C. Pinheiro and D. M. Bates, Mixed effects models in S
and S-Plus, 2000. [Online]. Available: http://www.amazon.com/
Mixed-Effects-Models-S-S-Plus/dp/0387989579

[50] L. Madeyski and B. Kitchenham, “Effect sizes and their
variance for AB/BA crossover design studies,” Empirical
Software Engineering, pp. 1–36, dec 2017. [Online]. Available:
http://link.springer.com/10.1007/s10664-017-9574-5

[51] J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team,
“nlme: Linear and Nonlinear Mixed Effects Models,” 2018.
[Online]. Available: https://cran.r-project.org/package=nlme

[52] S. Nakagawa and H. Schielzeth, “A general and simple method
for obtaining R2 from generalized linear mixed-effects models,”
Methods in Ecology and Evolution, 2013.

[53] RStudio Team, “RStudio: Integrated Development Environment
for R,” Boston, MA, 2015. [Online]. Available: http://www.
rstudio.com/

[54] R Core Team, “R: A Language and Environment for Statistical
Computing,” Vienna, Austria. [Online]. Available: https://www.
r-project.org

[55] J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team,
nlme: Linear and Nonlinear Mixed Effects Models, 2018, R package
version 3.1-137. [Online]. Available: https://CRAN.R-project.
org/package=nlme

[56] H. Jacqmin-Gadda, S. Sibillot, C. Proust, J.-M. Molina,
and R. Thiébaut, “Robustness of the linear mixed
model to misspecified error distribution,” Computational
Statistics & Data Analysis, vol. 51, no. 10, pp. 5142–
5154, 2007. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S016794730600185X

[57] K. Becker, B. D. S. C. Pedroso, M. S. Pimenta, and R. P. Jacobi, “Be-
souro: a framework for exploring compliance rules in automatic
TDD behavior assessment,” Information and Software Technology,
2014.

Itir Karac is a Ph.D. candidate and a researcher
in the Empirical Software Engineering (M3S) re-
search unit at the University of Oulu, Finland.
She received her B.Sc. degree in Mathematics
and her M.Sc. degree in Computer Engineering
from Boğaziçi University, Turkey. Her research
interests include empirical software engineering
and software analytics. She is a member of
IEEE.

Burak Turhan, PhD (Bogazici), is an Asso-
ciate Professor in Cyber Security & Systems at
Monash University. His research focuses on em-
pirical software engineering, software analytics,
quality assurance and testing, human factors,
and (Agile) development processes. Dr. Turhan
has published over 100 articles in international
journals and conferences, received several best
paper awards, and secured research funding for
multiple large scale projects. He has served on
the program committees of over 30 academic

conferences, on the editorial or review boards of several journals in-
cluding IEEE Transactions on Software Engineering, Empirical Software
Engineering and the Journal of Systems and Software, and as (co-)chair
for PROMISE’13, ESEM’17, and PROFES’17. He is currently a steering
committee member for ESEM, and a member of ACM, ACM SIGSOFT,
IEEE and IEEE Computer Society. For more information please visit:
https://turhanb.net.

Natalia Juristo has been a full professor of
software engineering with the School of Com-
puter Engineering at the Technical Univer-
sity of Madrid, Spain, since 1997. She was
awarded a FiDiPro (Finland Distinguished Pro-
fessor Program) professorship at the Univer-
sity of Oulu, between 2013-2018. In 2009,
Natalia was awarded an honorary doctor-
ate by Blekinge Institute of Technology in
Sweden. She has been member of sev-
eral Editorial Boards, including Transactions

on SE, Journal of Empirical Software Engineering and Soft-
ware magazine. For additional details and information please visit:
http://www.grise.upm.es/htdocs/miembros/natalia/index.php

http://dl.acm.org/citation.cfm?id=2652524.2652526
http://dl.acm.org/citation.cfm?doid=2897586.2897603
http://dl.acm.org/citation.cfm?doid=2897586.2897603
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7194615
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7194615
https://technologyconversations.com/2014/10/17/java-tutorial-through-katas-mars-rover/
https://technologyconversations.com/2014/10/17/java-tutorial-through-katas-mars-rover/
https://archive.codeplex.com/?p=marsroverexercise
https://archive.codeplex.com/?p=marsroverexercise
http://dl.acm.org/citation.cfm?doid=2961111.2962592
http://www.amazon.com/Mixed-Effects-Models-S-S-Plus/dp/0387989579
http://www.amazon.com/Mixed-Effects-Models-S-S-Plus/dp/0387989579
http://link.springer.com/10.1007/s10664-017-9574-5
https://cran.r-project.org/package=nlme
http://www.rstudio.com/
http://www.rstudio.com/
https://www.r-project.org
https://www.r-project.org
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
http://www.sciencedirect.com/science/article/pii/S016794730600185X
http://www.sciencedirect.com/science/article/pii/S016794730600185X
https://turhanb.net

