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Multiple Kernel Clustering With Neighbor-Kernel
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Abstract— Multiple kernel clustering (MKC) has been inten-
sively studied during the last few decades. Even though they
demonstrate promising clustering performance in various appli-
cations, existing MKC algorithms do not sufficiently consider
the intrinsic neighborhood structure among base kernels, which
could adversely affect the clustering performance. In this paper,
we propose a simple yet effective neighbor-kernel-based MKC
algorithm to address this issue. Specifically, we first define a
neighbor kernel, which can be utilized to preserve the block
diagonal structure and strengthen the robustness against noise
and outliers among base kernels. After that, we linearly combine
these base neighbor kernels to extract a consensus affinity matrix
through an exact-rank-constrained subspace segmentation. The
naturally possessed block diagonal structure of neighbor kernels
better serves the subsequent subspace segmentation, and in
turn, the extracted shared structure is further refined through
subspace segmentation based on the combined neighbor ker-
nels. In this manner, the above two learning processes can be
seamlessly coupled and negotiate with each other to achieve
better clustering. Furthermore, we carefully design an efficient
iterative optimization algorithm with proven convergence to
address the resultant optimization problem. As a by-product,
we reveal an interesting insight into the exact-rank constraint in
ridge regression by careful theoretical analysis: it back-projects
the solution of the unconstrained counterpart to its principal
components. Comprehensive experiments have been conducted
on several benchmark data sets, and the results demonstrate the
effectiveness of the proposed algorithm.

Index Terms— Kernel method, multiple kernel learning,
neighbor kernel, subspace segmentation.

I. INTRODUCTION

MULTIPLE kernel clustering (MKC) [1]–[6] provides
an elegant framework to group samples into clusters
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by extracting and enhancing common structure from com-
plementary information sources (base kernels). Based on the
criteria that are utilized to guide the common cluster structure
extraction, existing methods can be roughly categorized into
four branches, i.e., margin-based [1], [7], spectral clustering-
based [4], [8], [9], kernel k-means-based [3], [10]–[15], and
kernel decomposition-based [2], [16]–[21] algorithms. Among
these algorithms, margin-based methods extend the maximum
margin classification formulation [22], [23] into the field of
unsupervised learning by simultaneously assigning labels and
maximizing the margin between different clusters [1], [7].
Spectral clustering-based methods adopt cotraining and coreg-
ularization mechanisms to look for clusters that are consis-
tent across views [4], [8]. Kernel k-means-based algorithms
construct an optimal kernel that integrates intrinsic informa-
tion from all views for k-means clustering [3], [12], [24].
Comparatively, kernel decomposition-based methods factorize
the prespecified base kernels in various fashions to filter the
noisy information while extracting the shared discriminative
structure [18], [19], [21]. Given their inherent antinoise capa-
bility, kernel decomposition-based MKC algorithms tend to
provide more robust and promising performance in various
applications [2], [16], [17] and thus remain a hotspot of
research activity in the field. Our proposed algorithm in this
paper belongs to this category.

The goal of kernel decomposition-based MKC is to find an
effective method of kernel factorization that can best eliminate
the adverse effect of noise and outliers among base kernels and
extract complementary discriminative information for cluster-
ing. Under the guidance of this roadmap, the work in [2]
models this problem as a multiple undirected graph mining
task. They propose a novel linked matrix factorization (LMF)
algorithm to extract common information from multiple graphs
and filter out irrelevant information. In [17] and [21], the base
kernels are reconstructed as a combination of a shared low-
rank matrix and different sparse matrices. In this formulation,
the low-rank matrix stands for the common cluster structure,
while sparse matrices stand for different noises within base
kernels. To more appropriately model the kernel noise and
add better regularization to kernel decomposition, an �2,1-norm
and a positive semidefinite (PSD) constraint are introduced to
the objective function for the noise matrices and the low-rank
matrix in [19].

The aforementioned methods share a common assumption
that samples are approximately drawn from a common low-
dimensional space. However, in practical applications, it is
not uncommon that a given data set cannot be appropriately
represented by a single subspace. A more reasonable remedy
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is to assume that samples are polluted observations drawn
from a mixture of several independent subspaces [25]. To this
end, based on the multisubspace hypothesis, the work in [20]
proposed a subspace segmentation-based MKC algorithm.
In this method, a common consensus sparse reconstruction
matrix was optimized to reveal the intrinsic subspaces shared
by base kernels. To encourage the reconstruction matrix to
integrate more diverse information from the base kernels,
the Hilbert Schmidt independence criterion (HSIC) is utilized
as a diversity measuring term to encourage exploring the
complementarity of multiple representations in [18]. These
methods launched another substantial step to improve the
performance of MKC algorithms. However, the mentioned
models are designed globally, which implies all relationships
between any of the two components should be finely and
equally considered. Nevertheless, this setting neglects a well-
established problem in which the similarity evaluated for two
distant samples in a high-dimensional space is less reliable due
to the presence of the underlying manifold structure [26]–[31].
Furthermore, as pointed out in [32], for unsupervised tasks,
preserving the local geometric structure of data is much more
effective than preserving pairwise similarity. To this end,
several algorithms have been proposed. The work in [18]
introduces graph regularization to encourage local geometry
preservation in MKC subspace clustering methods. However,
the resultant extra hyperparameter that balances the impor-
tance of this term is not preferable in unsupervised learning
scenarios. A novel local kernel alignment-based method that
only focuses on aligning the local elements within base kernels
is proposed in [33]. However, since the base kernels can be
noisy [9], the lack of a noise elimination mechanism limits the
performance of this algorithm. In [20], by minimizing both
the �1-norm and the �2-norm of the reconstruction matrix,
the proposed formulation intrinsically enforces the method to
represent samples with nearby counterparts. However, in this
paper, the authors drew help from human experts and set the
weights of kernels manually, which limits the applicability of
the proposed algorithm.

To solve the aforementioned issues, we propose a novel
neighbor-kernel-based MKC algorithm in the framework of
subspace segmentation. Although preserving the neighborhood
relation among samples may have been presented in solving
other tasks, our work is distinguished by the following.

1) Identifying an important issue for the first time, which
has been overlooked in multiple kernel subspace seg-
mentation, and proposing an effective solution.

2) Designing a novel neighbor-kernel algorithm to solve
the resultant optimization problem and theoretically ana-
lyzing its convergence and computational complexity.
Through careful mathematical analysis, we discover
that our solution to the exact-rank-constrained least-
square regression problem is identical to the optimal
solution in [24], thus also finds the global minimizer.
The result also sheds light on the intrinsic mechanism
of exact-rank-constrained ridge regression by revealing
its relationship with the unconstrained counterpart.

3) Performing extensive experiments on both synthetic and
popular benchmark data sets that validate our identifica-
tion of the issues and the effectiveness of our solution.
Moreover, experimental results also proved the effective-
ness of our proposed neighbor kernels on improving the
performance of the existing state-of-the-art methods.

4) The proposed algorithm is readily extended to other
related multiview topics, such as multiview clustering
and subspace learning.

II. METHOD

A. Construction of the Neighbor Kernel

It is common for existing kernel-based methods to reveal
the underlying structure of data by calculating the pair-
wise similarity between samples. However, in many suc-
cessful machine learning algorithms, such as dimensionality
reduction [34], [35], clustering [16], [36], and recent feature
selection algorithms [32], [37], [38], researchers find that it
is beneficial to preserve only the reliable local geometry as a
representation of the data structure. There are two main under-
lying reasons. On the one hand, since the global nonlinear
high-dimensional structure can be finely reserved by hooking
the local geometry patches, preserving only the local similarity
among data will not degrade the capacity of the corresponding
algorithms to reveal the global data structure [34]. On the other
hand, as pointed out in [26], the similarity estimation between
relatively long-distance samples may be inaccurate since the
ambient geometry in the high-dimensional input space may be
highly folded, twisted, or curved. Moreover, even worse are the
disturbances caused by noise and outliers within data, which
can further undermine the structure of the underlying manifold,
making the long-distance similarity more unreliable. As a
consequence, in the unsupervised kernel learning scenario,
without the discriminative guidance of labels, it is a reasonable
and practical strategy to preserve only the high-confidence
local similarities for learning the intrinsic global manifold of
data.

Based on the idea of representing the global intrinsic
manifold in kernels with local structure patches, we first show
how to construct the neighbor kernel. Its construction includes
three steps, i.e., neighbor searching, kernel construction, and
normalization. In the first step, the neighbors of samples are
searched by finding the nearest k samples in the average
kernel space. It is worth noting that this operation only
requires that most of the base kernels are informative and
are complementary to each other, and it is much weaker than
the requirement of the cotraining-based methods that require
all the base kernels to be informative for clustering [4], [8].
By taking this approach, we integrate complementary infor-
mation from different base kernels to help robustly reveal the
correct neighborhood relationships among samples. Denote the
neighbor indicating matrix for a sample j as N( j ) ∈ {0, 1}S×S,
where S is the sample number of the data set, N( j )(a, b) = 1
if sample a, b are both neighbors of sample j according
to the average kernel space metric, and N( j )(a, b) = 0 if
not. Then, given a set of base kernels {Ko

i }(i = 1, · · · , p),



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: MKC WITH NEIGHBOR-KERNEL SUBSPACE SEGMENTATION 3

Fig. 1. Illustration of (a)–(c) original base kernels and (d)–(f) corresponding
neighbor kernels on UCI-Digit data set.

the corresponding neighbor kernel Ki of a base kernel Ko
i can

be formulated as

Ki =
S∑

j=1

N( j ) ◦ Ko
i

where ◦ is the Hadamard product. Through the formulation,
we can see that a neighbor kernel is constructed by extract-
ing and summing the neighbor elements of each sample in
the original kernel space. It is easy to ascertain that for
each index j , the neighbor indexing matrix N( j ) is PSD,
so the matrix

∑S
j=1 N( j ) is also PSD. As a consequence,

the constructed matrix Ki is also a kernel matrix. Finally,
we normalize the generated neighbor kernels to unit trace.

In Fig. 1, we illustrate original base kernels and the cor-
responding neighbor kernels on the UCI-Digit data, which is
a widely used benchmark in MKC. For the neighbor kernels,
the number of neighbors is fixed as 0.01∗S. For better illustra-
tion, we permute the order of the matrices to illustrate assem-
bling samples from the same category. As seen from Fig. 1,
the constructed neighbor kernels are more discriminative (with
a better block diagonal structure). Additionally, the noise
within kernels is largely suppressed. This phenomenon is more
obvious in the third kernel [see Fig. 1(c) and (f)]. Two reasons
contribute to the merits of neighbor kernels. First, since the
neighbor samples are more likely to lie in the same cluster with
each other, keeping only the neighborhood similarities may
help to maintain the essential connection while cutting off the
weak ones. Second, the complementary information extracted
from different views remedies the missing information of each
other. Since the neighbor kernels can better reveal the intrinsic
cluster structure of data sets, they can well meet the subspace
independent assumption and are thus appealing inputs to the
subspace segmentation algorithms.

B. Subspace Segmentation
Subspace segmentation, also known as subspace clustering,

is a family of methods that models a collection of data points

as the integration of noise and a union of subspaces. The goal
of these methods is to group data into clusters, with each
cluster corresponding to a subspace. In the literature of this
field, a commonly adopted formulation is

min
Z,E

‖Z‖† + λ‖E‖‡, s.t. X = XZ + E (1)

where X, E ∈ R
d×S , and Z ∈ R

S×S are the data matrix,
the noise representation matrix, and the reconstruction matrix,
respectively. Here, d is the dimensionality of the input feature
space. ‖ · ‖† and ‖ · ‖‡ indicate different norms, such as
the �1-norm, �2-norm, nuclear norm, and so on. Specifically,
in [39], the �1-norm of both the reconstruction matrix and
the noise representation matrix are minimized to extract a
sparse representation and filter noise within samples. In [40],
researchers efficiently seek the block diagonal structure of data
by minimizing the Frobenius norm of both matrices under
the assumption of subspace independence. In [41], ‖Z‖∗ and
‖E‖2,1 are minimized to categorize samples to their respective
subspaces and remove the possible outliers.

Generally, in many of the popular methods in this branch,
a common target is to filter noise and reveal the intrinsic block
diagonal structure of data [40]. Since the neighbor kernel
introduced in Section II-A possesses better block diagonal
structure and robustness against noise and outliers, using these
kernels as input largely decreases the difficulty of data recon-
struction and noise modeling. In turn, with the optimization of
subspace segmentation, the remaining noise within neighbor
kernels can be further filtered, and the cluster structure can be
refined. To make full use of the two techniques to better serve
MKC, in Section II-C, we combine them into one framework
and propose a multiple neighbor-kernel subspace segmentation
algorithm.

C. Multiple Neighbor-Kernel Subspace Segmentation
In this section, we integrate multiple neighbor-kernels

Ki (i = 1, · · · , p) with exact low-rank subspace segmen-
tation to extract complementary information from different
base kernels and achieve better clustering performance. The
formulation of our algorithm is as follows:

min
Z,µ

‖Kμ − KμZ‖2
F + α‖Z‖2

F + βµ�Mµ

s.t. rank(Z) = l, Kμ =
p∑

i=1

µi Ki ,

µ ≥ 0, ‖µ‖1 = 1 (2)

where p is the number of base kernels, l is the expected rank
of Z, M ∈ R

p×p is the centered kernel alignment-based kernel
correlation matrix [42], and µ ∈ R

p is the weight vector for
linear kernel combination. The definition of M is: Ma,b =
Tr(Ka, Kb)/(‖Ka‖F‖Kb‖F). Here, Tr(K�

a Kb) calculates the
trace of K�

a Kb. ‖Ka‖F is the Frobenius norm of Ka .
Specifically, in (2), the first term of the target function indi-

cates the self-reconstruction error of the combined kernel Kμ.
In this setting, each column of Kμ is treated as a sample.
The second term is a noise simulation term. It is utilized
to improve the robustness of Z against Gaussian noise [43].
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It can also improve the quality of the condition number for
better calculation of the matrix inverse. The third term is
the diversity-inducing term. As discussed in [12], imposing
smaller weights on the redundant kernels and improving
the variety of information sources are crucial for MKC.
To achieve this intuition, we model the kernel correlation
through matrix M and encourage the formulation to impose
higher weights on the kernels that have a smaller correlation
with others and impose smaller weights on the highly corre-
lated ones. Moreover, to enforce the samples from the same
clusters to reconstruct themselves, an exact-rank constraint is
introduced (the first constraint). As a consequence, the kernel
reconstruction matrix Z, which has integrated the information
from multiple base kernels, is forced to be block diagonal.
The unit constraint on the kernel combination coefficient µ

is introduced to discard trivial solutions. α and β are the
hyperparameters that balance the importance of the kernel
reconstruction term and the two generalization terms. In sum-
mary, through this formulation, we: 1) extract and fine-tune
the intrinsic cluster structure by calculating a common block
diagonal kernel reconstruction matrix Z through an exact-rank-
constrained subspace segmentation and 2) find the optimal
linear combination by minimizing the sample reconstruction
error and the kernel correlation.

D. Optimization Algorithm

Because the rank constraint is nonconvex and discrete,
the optimization of our proposed algorithm is difficult. In many
of the existing algorithms, for the sake of optimization sim-
plicity, a nuclear norm [44] is adopted to replace the rank
constraint as an approximation. However, as discussed in [45],
the performance will be adversely influenced due to the
inaccurate estimation. In this section, to solve the difficult
optimization problem, we design a two-step iterative optimiza-
tion algorithm with proven convergence to solve the resulting
problem in (2). In each iteration, an exact-rank-constrained
ridge regression problem and a quadratic programming (QP)
problem is solved in turn.

Update Z With Fixed µ: With µ fixed, the optimization
problem can be simplified as

min
Z

‖Kμ − KμZ‖2
F + α‖Z‖2

F, s.t. rank(Z) = l. (3)

Equation (3) can be written as

min
Z

Tr
(

AZZ� − 2K2
μZ

)
, s.t. rank(Z) = l (4)

where A = Kμ
2 + αIS and IS is an S-order identity matrix.

To eliminate the discrete and nonconvex rank constraint,
we take advantage of the exact-rank constraint and introduce
two matrices, i.e., G, H ∈ R

S×l , to replace Z as GH�.
In these matrices, H is an orthogonal matrix, i.e., H�H = I.
Then, substituting Z in (4) with GH�, we eliminate the rank
constraint and obtain the following formulation:

min
G,H

Tr(AGG� − 2Kμ
2GH�)

s.t.G, H ∈ R
S×l, H�H = I. (5)

Algorithm 1 MKC With Neighbor-Kernel Subspace
Segmentation
Input:

Base kernel set {Ko
i }p

i=1. Hyperparameters α, β. The num-
ber of nearest neighbors and the expected rank of Z.

Output:
Kernel combination weight µ and the reconstruction matrix
Z;

1: Generate the corresponding neighbor-kernel set {Ki }p
i=1

and set t = 1;
2: repeat
3: Calculate K(t) = ∑p

i=1 µ
(t)
i Ki

4: Calculate H(t) by optimizing Eq. (6);
5: Calculate Z(t) = A−1K(t)2

H(t)H(t)�;
6: Calculate µ(t) by solving the QP problem in Eq. (9);
7: t = t + 1.
8: until |Obj(t) − Obj(t−1)| < 10−4 × |Obj(t)|.

Setting the derivation of formula (5) on G to zero, we have
G∗ = A−1K2

μH. Substituting G∗ into (5), we have

max
H

Tr(H�K2
μA−1K2

μH)

s.t.H ∈ R
S×l, H�H = I. (6)

To calculate the optimal H, denoted as H∗, we perform KPCA
on K2

μA−1K2
μ and extract the eigenvectors according to the

largest l eigenvalues of the matrix. Then, substituting G∗
and H∗ back into Z, the solution of (4) can be obtained by
calculating

Z∗ = G∗H�∗ = A−1K2
μH∗H�∗ . (7)

Update µ With Fixed Z: Given Z, the original optimization
problem in (2) can be simplified as

min
µ

‖Kμ − KμZ‖2
F + βµ�Mµ

s.t.µ ≥ 0, ‖µ‖1 = 1, Kμ =
p∑

i=1

Ki · µi . (8)

Equation (8) can be rewritten as

min
µ

µ�(βM + M∗)µ, s.t. µ ≥ 0, ‖µ‖1 = 1 (9)

where M∗
ab = Tr(Ka(Z− IS)(Kb(Z− IS))�). This is a typical

QP problem with linear constraints. It can be easily solved
with the optimization toolbox in MATLAB.

We summarize our optimization algorithm for (2) in
Algorithm 1. Generally, in each iteration, the reconstruction
matrix Z and the kernel weights µ are iteratively optimized.
The algorithm stops when the variation of the objective value
of (2) (denoted as Obj) reaches a preset threshold (10−4).

E. Discussion
In this section, we first compare the solution of ridge

regression with and without the exact-rank constraint and shed
light on the intrinsic meaning of the rank constraint in the
formulation. Then, we analyze the optimality of our proposed



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: MKC WITH NEIGHBOR-KERNEL SUBSPACE SEGMENTATION 5

solution for the exact-rank-constrained ridge regression prob-
lem. Finally, we further analyze the convergence and com-
putational complexity of the proposed iterative optimization
algorithm.

1) Insight Into the Solution of Exact-Rank-Constrained
Ridge Regression: We reveal the essence of the exact-rank
constraint in ridge regression by comparing the solution with
and without the constraint. Without the rank constraint, the
formulation of (3) is simple

min
Z

‖Kμ − KμZ‖2
F + α‖Z‖2

F . (10)

Its global optimal solution can be quickly obtained by cal-
culating Z = (K2

μ + αIS)−1K2
μ = A−1K2

μ. When the rank
constraint is added, as discussed in Section II-D, the solution
of (3) becomes Z∗ = A−1K2

μH∗H�∗ . The only difference
between these two solutions is the matrix H∗H�∗ . In this term,
the multiplication of H∗ first projects the solution of ridge
regression to the informative directions to keep the discrimi-
native information for clustering and discard the within-cluster
details that might confuse the algorithm during clustering.
Then, since H∗ is orthogonal, its transpose matrix inversely
maps the samples back to its original feature space. For more
detailed information about the mechanism of backprojection,
please refer to [4]. In summary, the exact-rank constraint
in ridge regression forces the unconstrained formulation to
project its solution onto the more discriminative directions and
then back-project it to the original feature space.

2) Solution Optimality: In this section, we prove that our
solution for the exact-rank-constrained rigid regression prob-
lem is equivalent to the global minimizer of [45]. The deduc-
tion is straightforward. We simply compare the equivalence
of these two solutions by subtracting one from the other.
For the convenience of the following proof, we denote the
solution of our proposed algorithm and the solution proposed
in [45] as Z1 and Z2, respectively. Additionally, we decom-
pose the symmetric positive definite matrix A as CC� =
(UAD1/2

A )(UAD1/2
A )�, where UA is an orthogonal matrix that

contains the eigenvectors of A, and DA is a diagonal matrix
whose diagonal values are the eigenvalues of A. With these
definitions, (4) can be rewritten as

min
Z

∥∥C�Z − C−1K2
μ

∥∥2
F, s.t. rank(Z) = l. (11)

Denoting B = C−1K2
μ, according to the conclusion in [45],

the global minimizer of (11) is: Z2 = C−1�UDlV�, where Dl

consists of the largest l singular values of B given the SVD
of B = UDV�. Then, subtracting Z1 [defined in (7)] from Z2,
we have

Z1 − Z2 = C−1�
C−1K2

μH∗H�∗ − C−1�
UDlV�. (12)

According to (6), H∗ is the matrix that consists of the
eigenvectors corresponding to the largest l eigenvalues of
matrix K2

μA−1K2
μ = B�B. As a consequence, according to the

definition of V and H∗, we have Vl = H∗. Here, Vl ∈ R
S×l

is composed of the right singular vectors that correspond to
the largest l singular values of B. Denoting Vl∗ ∈ R

S×S as

the concatenation of Vl and a zero-matrix: [Vl�; 0(S−l)×S],
Z1 − Z2 can be transformed as

Z1 − Z2 = C−1�
UDV�H∗H�∗ − C−1�

UDlV�

= C−1�
UDVl∗

� − C−1�
UDlV� = 0S×S.

Since the solutions of the two methods are equal, our proposed
algorithm can also achieve the global optimal solution for (3).

3) Convergence Analysis: In this section, we prove the
convergence of the proposed optimization algorithm. To clar-
ify this point, we first define the objective function of the
optimization problem as

J (Z,µ) =
{

min
Z,µ

‖Kμ − KμZ‖2
F + α‖Z‖2

F + βµ�Mµ,

s.t .rank(Z) = l, µ ≥ 0, ‖µ‖1 = 1
}
. (13)

As seen from (13), jointly optimizing Z and µ is difficult.
Instead, in Section II-D, we developed a two-step alterna-
tive algorithm to solve it. During the optimization, we fix
one variable and optimize the other one. Specifically, in the
t th iteration, when µ is fixed as µ(t), we have proven in
Section II-E2 that our algorithm can achieve the global mini-
mizer of J (Z,µ(t)). As a consequence, we have

J (Z(t),µ(t)) ≥ J (Z(t+1),µ(t)). (14)

With fixed Z(t+1), the optimization problem J (Z(t+1),µ) is a
typical QP problem with a convex constraint [see (9)]. We can
prove the convexity of this problem by proving that M + M∗
is PSD. The PSD property of the kernel correlation matrix
M is proven in [42]. In Proposition 1, we will prove that the
matrix M∗ is also PSD.

Proposition 1: The symmetric matrix M∗ in (9) is PSD.
Proof: For any vector x ∈ R

p

x�M∗x =
p∑

a,b=1

xaxbM∗
ab

= Tr

⎛

⎝
p∑

a,b=1

xaxbKa(Z − IS)(Z − IS)�Kb

⎞

⎠

= Tr

⎛

⎝
( p∑

a=1

xaKa(Z − IS)

) ( p∑

b=1

xbKb(Z − IS)

)�⎞

⎠

=
∥∥∥∥∥

p∑

a=1

xaKa(Z − IS)

∥∥∥∥∥

2

F

≥ 0.

�
Since matrix M + M∗ is PSD, the corresponding QP

problem is convex and has a global optimal solution. Denoting
this solution as µ(t+1), we have

J (Z(t+1),µ(t)) ≥ J (Z(t+1),µ(t+1)). (15)

By combining (14) and (15), we have

J (Z(t),µ(t)) ≥ J (Z(t+1),µ(t+1)) (16)

which indicates that the objective function of our algorithm
in (13) monotonically decreases with the increase of iterations.
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Moreover, the objective function in (13) is lower bounded by
zero. Therefore, we conclude that the proposed algorithm is
theoretically guaranteed to converge to a local minimum.

4) Computational Complexity Analysis: In this section,
we provide the computational complexity analysis of our
proposed optimization algorithm. In each iteration, the cost
of updating H∗ with SVD is O(S3). Calculating Z with
(7) also has a complexity cost of O(S3). To update µ,
the time consumption of a convex linear-constrained QP
problem is O(Lp3), where L is the size of the problem
encoded as binary and p is the number of base kernels [46].
In summary, because, in each iteration, a quadratic program,
an SVD, a matrix inverse, and six matrix multiplication
operations are conducted, the total computational complexity
of our algorithm is O(t (Lp3 + S3)), where t is the number of
iterations. Through our empirical trials, we find that this value
is usually smaller than 15 in most circumstances. Compared
with kernel clustering algorithms with a single kernel or fixed
kernel weights, the proposed algorithm is less efficient due to
the extra time consumed to find appropriate kernel weights
and to perform noise filtering. However, for the sake of
the proposed simple optimization algorithm, it is still more
efficient than other local sample adaptive MKC algorithms,
such as localized multiple kernel k-means (LMKKM) [10],
and comparable to those fast algorithms, such as robust
multiple kernel k-means (RMKKM) (with a time complexity
of O(S2 dp+(S3+S2+S)pt) [11]) and robust MKC (RMKC)
[with a time complexity of O((S2 p + S3)t)]. Here, d is the
feature dimension in the original feature space.

III. EXPERIMENTS

In this section, to evaluate the effectiveness of our proposed
MKC algorithm, especially the efficacy of the neighbor ker-
nels, four experiments are designed. In the first experiment,
we construct a synthetic data set to test the robustness against
noise and outliers of the proposed neighbor kernel. Second,
we compare our proposed algorithm with nine state-of-the-
art MKC algorithms on real-world data sets to evaluate its
performance. Then, we test the sensitivity of the algorithm
against the main hyperparameters. Finally, we apply neighbor
kernels to the existing MKC algorithms and test the capacity
of the proposed kernel on enhancing the performance of these
methods.

Following the settings in [42], we centralize each base
kernel and then normalize it to keep the diagonal elements
of these kernels as one. In our experiments, three widely
used criteria, i.e., accuracy (ACC), normalized mutual infor-
mation (NMI), and purity, are adopted to evaluate the perfor-
mance of the compared MKC methods. For the methods that
output a unified kernel matrix, we conduct kernel k-means
to evaluate their performance. For the methods that output an
affinity matrix or a reconstruction matrix Z, spectral clustering
with the input of (|Z| + |Z�|)/2 will be adopted to conduct
clustering. For all algorithms, we repeat each experiment
50 times with random initialization to reduce the effect of
randomness caused by k-means and report the best result.

A. Evaluation of the Effectiveness of Neighbor Kernels
In this section, a synthetic data set is constructed to evaluate

the robustness of the proposed neighbor kernels against noise
and outliers. The main idea of the experiment is to compare
the performance variation of the original kernels and the
corresponding neighbor kernels when noise within the data
increases. The synthetic data are generated by three steps.
First, we generate 600 unit samples evenly with the standard
normal distribution from three independent subspaces, each
of which is extended by four independent components. As a
consequence, the original synthetic data set is a 12-D data set
with 600 samples and three categories. We repeat the same
operation three times to simulate three different views of the
samples. After that, we randomly add white Gaussian noise
N(0, 1) to 40% of randomly selected samples in each view.
The energy level of the noise is increased from 0.05 to 0.5 to
simulate both noise and outliers within data. Finally, we gen-
erate two kernels for each view. One is a linear kernel and
the other is a Gaussian kernel with the bandwidth equal to
the average distance among samples in the corresponding
view. As a consequence, there are six original kernels in
each data set. The synthetic neighbor kernels are constructed
according to the description in Section II-A.

To compare the discriminative capacity and the robustness
of original kernels and neighbor kernels, we report the perfor-
mance of the single best kernels and the average kernels for
comparison. Specifically, in the single best kernel selection
mechanism, we conduct kernel k-means on each kernel alone
and report the best performance. In the average kernel combi-
nation mechanism, the base kernels are combined linearly with
equal weights to integrate information from different views for
clustering. We repeat the experiment ten times to alleviate the
influence of randomness, and the average result is reported in
the experiment.

Fig. 2 shows the performance of the compared algorithms.
From the variation curves, we can clearly find several consis-
tent observations as follows.

1) The performance of all the compared methods decreases
with the increase of noise magnitude. However, compar-
atively, methods using neighbor kernels perform consis-
tently better than those using original kernels in both the
single best kernel and the average kernel methods.

2) In the front part of the curves, which corresponds
to experimental results with relatively low-level noise,
the performance of the average neighbor kernel main-
tains a 20% advantage over the second-best method,
indicating good robustness against noise.

3) In the latter part of the curves, the gaps between
different methods decrease since the noise in samples
gradually dominates the distribution, making some of
them become outliers in the data set.

Nevertheless, even in this circumstance, the neighbor-kernel-
based methods still outperform the original kernel counter-
parts, indicating good robustness against outliers.

In general, the proposed neighbor kernels are robust against
noise and outliers because of the intrinsic weighting mecha-
nism of the kernels. By keeping the more reliable similarities
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Fig. 2. Clustering performance comparison between original kernels and neighbor kernels against the variation of the noise level. In this figure, the yellow,
orange, brown, and blue dotted lines indicate the performance of the average neighbor kernel, best single neighbor kernel, average original kernel, and best
single original kernel, respectively.

Fig. 3. Illustration of the variation of average kernels (first row) and average
neighbor kernels (second row) against different magnitudes of noise. The noise
level increases from 0.1 to 0.5.

TABLE I

BENCHMARK DATA SETS

among neighbors and abandoning those that go beyond the
observation of samples (because of the sample distribution
or noise, and so on), the neighbor kernels are able to keep
the most reliable information and filter the less confident
portion. To better illustrate this point of view, we further
record the variation of the synthetic average kernel and the
average neighbor kernel against the increase of the noise level.
As seen from Fig. 3, the added noise quickly undermined the
standard average kernel and corrupted the cluster structure of
those kernels (starting from noise level 0.1). Comparatively,
the proposed average neighbor kernel performs more robustly
against the injected noise information, with a higher robustness
bar and smaller influence.

B. Comparison With the State-of-the-Art Algorithms
In this section, to verify the effectiveness of our pro-

posed algorithm on real-world data, we compare it with nine

Fig. 4. Visualization of the revealed cluster structure of the compared algo-
rithms with t-SNE [51] on the BBCSport data set. (a) SB-KKM. (b) MKKM.
(c) RMKKM. (d) LMKKM. (e) RMSC. (f) RMKC. (g) MKKM-MR.
(h) LAMKC. (i) Proposed.

state-of-the-art MKC algorithms on 11 popular benchmark
data sets. These data sets are collected from various appli-
cations, including natural language processing (BBCSports2)1

protein function prediction (ProteinFold and PsortPos)2 image
recognition (Flower1023 Caltech101mit)4 and video analy-
sis (CCV).5 The sample, kernel, and cluster numbers of the
data sets range from 554 to 8189, 2 to 69, and 3 to 102,
respectively. All these data sets form abundant and compre-
hensive testing environments for the compared algorithms. It is
worth noting that, in this paper, we even try to utilize our
proposed algorithm to fuse the features generated by different

1http://mlg.ucd.ie/datasets/bbc.html
2http://www.raetschlab.org/suppl/protsubloc
3http://www.robots.ox.ac.uk/ṽgg/data/flowers/102/
4http://www.vision.caltech.edu/Image_Datasets/Caltech101/
5http://www.ee.columbia.edu/ln/dvmm/CCV/
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TABLE II

ACC, NMI, AND PURITY COMPARISON OF DIFFERENT CLUSTERING ALGORITHMS ON 11 BENCHMARK DATA SETS. BOLDFACE:
BEST PERFORMANCE AMONG ALL COMPARED ALGORITHMS. ITALICS: SECOND-BEST PERFORMANCE

deep learning architectures to serve for clustering. In the
experiment, we choose Flower 17 as a representative. Specifi-
cally, we extract the final fully connected layers of three pre-
trained deep convolutional neural networks, i.e., AlexNet [47],
VGG [48], and GoogLeNet [49], and construct three linear
kernels. The detailed information of all the data sets is listed
in Table I.

The compared algorithms include average multiple
kernel k-means (A-MKKM), single best kernel k-means
(SB-KKM), multiple kernel k-means (MKKM) [50],
RMKKM [11], LMKKM [10], robust multiview spectral
clustering (RMSC) [17], RMKC [19], multiple kernel
k-means clustering with matrix-induced regularization
(MKKM-KR) [12], and MKC with local kernel alignment
maximization (MKC-LKAM) [33]. All the MATLAB
implementations of the compared algorithms are downloaded
from web pages or acquired from the corresponding authors.
The parameter settings of these algorithms also follow the
suggestion of the corresponding literature. Regarding our
method, the constrained rank value and the importance of
the Frobenius term are fixed as 0.1S and 10(−4)‖K∗

avg‖F in
all the experiments, respectively. Here, Kavg is the average
neighbor kernel. The other two parameters, i.e., the kernel

TABLE III

AVERAGE COMPUTATIONAL TIME CONSUMPTION

OF THE COMPARED ALGORITHMS

diversity balancing term and the number of neighbors are
set with grid search in a small range of {2−8, 2−2, 22, 26},
and {0.01, 0.03, 0.09, 0.11}, respectively. Note that the
memory consumption of the LMKKM algorithm is directly
proportional to (S × p)2 [10], where S and p are the sample
number and the base kernel number, respectively. It is easy
to run out of memory when the data possess a large number
of samples and base kernels. As a consequence, the result of
LMKKM is not provided on the Nonpl data set.

Results and Analysis: We summarize the clustering perfor-
mance of the compared methods in items of three metrics,
i.e., ACC, NMI, and purity, on the 11 data sets in Table II. For
the computational time comparison, in Table III, we report the
average time consumption of the compared algorithms of ten
data sets on which the results of all algorithms are available.
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Fig. 5. Sensitivity testing. The sensitivity of the kernel diversity balancing term β (left three columns) and the neighbor number k (right three columns) are
tested. The first and the second row correspond to the results on MultiFeature and UCI-Digit, respectively. The unit of k is S, i.e., the total sample number
of a data set. (a) and (g) ACCU. (b) and (h) NMI. (c) and (i) Purity. (d) and (j) ACCU. (e) and (k) NMI. (f) and (l) Purity.

This testing is based on the Ubuntu 16.04 operating system
with i7 8700K CPUs, 64-Gb memory, and the MATLAB
2018a environment. Moreover, to provide a more direct and
concrete evaluation of the clustering results of different meth-
ods, we adopt t-SNE [51] to visualize the sample distribution
generated by the compared algorithms on a representative data
set (BBCSports). From the table and the figures, we have the
following observations.

First, although many compared algorithms perform reason-
ably well, in most of the data sets, our proposed algorithm still
outperforms the other state-of-the-art algorithms. It reflects
the superior performance of the proposed algorithm in a
variety of applications. Moreover, the good performance of
MKKM-MR [12] and RMSC [17] indicates the importance
of increasing the information diversity and enhancing the
shared cluster structure with the low-rank constraint in MKC,
respectively. Comparatively, generating sample-specific kernel
weights tends to be more memory-consuming but has a
limited performance improvement in the compared data sets.
Second, in the proposed algorithm, the learned affinity matrix
performs comparable to, if not better than, the learned kernel
in most of the circumstances. This phenomenon indicates the
effectiveness of the integrated subspace segmentation on fine-
tuning the cluster structure of the linearly combined kernel.
Third, the average kernel and the single best kernel provide
two strong benchmark methods and they perform even better
than many of the well-designed MKC algorithms in many
data sets. This supports our intuition of selecting the average
kernel as the metric to determine the neighbors of samples.
Fourth, the trial of constructing base kernels with a deep neural
network generated features that achieved a large performance
enhancement against the competitors using manually designed
base kernels (approximately 10% improvement on average on
ACC against the results reported in [33]).

Regarding the computational consumption, the results
reported in Table III are consistent with the analysis in
Section II-E4. As can be seen, in addition to significantly
improving the clustering performance of existing state-of-the-
art algorithms, such as RMKKM [11], LMKKM [10],

RMSC [17], RMKC [19], MKKM-MR [12], and
LAMKC [33], the proposed algorithm does not significantly
increase the computational cost. In Fig. 4, by observing the
cluster structure revealed by different algorithms, we can
find that the clusters generated by our algorithm are more
compact and separable than those of the others. RMSC also
provides a good performance, which is consistent with the
result in Table II.

C. Convergence and Sensitivity
To test the sensitivity of our proposed algorithm against the

hyperparameters, in this section, we report the performance
variation curves of two parameters, i.e., the kernel diversity
balancing term β and the number of neighbors k. The ACCU,
NMI, and purity variational curves of these two parameters
are compared with the second-best performance on the corre-
sponding data sets. As seen in Fig. 5, our proposed algorithm
is stable against the variation of parameters and remains better
than the second-best algorithm in a large range, indicating the
effectiveness and stability of our proposed algorithm.

In Fig. 5, two different tendencies are witnessed regard-
ing the performance variation against the neighbor numbers.
Specifically, equivalent or better performance was achieved
when larger k is adopted on the MultiFeature data set. How-
ever, this tendency reverses on the UCI-Digit data set. Differ-
ent properties of data sets cause this phenomenon. Generally,
if including more neighbors can provide more useful informa-
tion than indiscriminative information, the performance will
increase. However, if more noise is included, the performance
will decrease.

Fig. 6 shows the convergence of the proposed algorithm by
plotting the objective value in each iteration. As observed, this
value is monotonically decreased, and the algorithm usually
converges in less than 15 iterations.

D. Applying Neighbor Kernels on Other Methods
Previous experiments have verified that the proposed neigh-

bor kernel preserves a better block diagonal structure and is
more robust to noise and outliers. In this section, we show
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Fig. 6. Objective value of our algorithm at each iteration. The results on
(a) UCI-Digit, (b) MultiFeature, and (c) Flower102 data sets are reported.

Fig. 7. Illustration of performance enhancement when neighbor kernels are
applied to the existing state-of-the-art MKC algorithms.

that this kernel can be easily utilized as a plug-in compo-
nent to help enhance the performance of the existing state-
of-the-art methods. Specifically, to conduct the experiment,
we simply compare the performance of the state-of-the-art
MKC algorithms with original base kernels and with neighbor
kernels as base kernels. In Fig. 7, the bar chart illustrates the
average NMI of eight representative data sets, i.e., BBCSport,
Caltech101-MIT, Flower17-DL, UCI MultiFeatures, Plant,
ProteinFold, PsortPos, and UCI-Digit. From the figure, we can
clearly observe a large performance boost on the state-of-the-
art algorithms when the original kernels are replaced with the
neighbor kernel. It is worth noting that many of the listed
algorithms are designed with powerful noise eliminating and
block diagonal structure extraction mechanisms. For example,
in RMKKM [11], the introduced �2,1-norm is effective in
reducing the adverse effect of outliers; in RMKC, the low-
rank and sparse decomposition setting can effectively extract
the discriminative structure from multiple kernels [17], and
so on. However, the proposed neighbor kernel still improves
the performance of these algorithms to a preferable extent,
indicating strong complementarity between the state-of-the-art
algorithms and the neighbor kernels.

IV. CONCLUSION

In this paper, we proposed a neighbor-kernel-based sub-
space segmentation algorithm to better reveal the intrinsic
cluster structure shared by the base kernels and eliminate
the adverse effect of noise and outliers in MKC. Specifically,
we first introduced a novel kernel denoted as neighbor kernel,
which possesses a better block diagonal structure preservation
capacity and robustness against noise and outliers. Based on

the neighbor kernel, we utilized an exact-rank-constrained
subspace segmentation algorithm to further refine the hidden
clustering structure among samples. An iterative algorithm
with proven convergence was proposed to solve the corre-
sponding optimization problem. After that, we theoretically
revealed the intrinsic effect of the exact-rank constraint in
ridge regression, i.e., it back-projects the solution of the uncon-
strained problem to its principal components. Experiments on
both synthetic and real-world data sets verified the superior
performance of our proposed algorithm against other state-of-
the-art MKC methods. The experimental results also indicated
that the proposed neighbor kernels could be easily applied to
enhance the performance of the existing MKC algorithms in a
plug-and-play manner. In the future, we plan to integrate the
process of neighbor extraction into the pipeline of MKC and
find the most reasonable neighbors according to the optimal
kernel combination.
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