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Abstract—In recent years, patch-based face hallucination al-
gorithms have attracted considerable interest due to their effec-
tiveness. These approaches produce a high-resolution (HR) face
image according to the corresponding low-resolution (LR) input
by learning a reconstruction model from the given training image
set. The critical problem in these algorithms is establishing the
underlying relationship between LR and HR patch pairs. Most
previous methods aim to denote each input LR patch by the
linear combination of the training set in the LR space while
utilizing the combination weights to reconstruct the target HR
patch. However, this assumes that the same combination weights
should be shared between various resolution spaces, which is truly
difficult to satisfy because of the one-to-many mapping relation
between LR and HR patches. In this paper, we directly train a
series of adaptive kernel regression mappings for predicting the
lost high-frequency information from the LR patch, which avoids
dealing with the above difficult problem. During the training
process, we first establish a local optimization function on each
LR/HR training pair according to the geometric structure of
neighboring patches. The objective of local optimization can
be presented in two aspects: (1) ensure the reconstruction
consistency between each LR patch and the corresponding HR
patch; (2) preserve the intrinsic geometry between each HR
training patch and its original neighbors after the reconstruction
process. The local optimizations are finally incorporated as the
global optimization for calculating the optimal kernel regression
function. To better approximate the target HR patch, we further
propose a recursive structure to compensate for the residual
reconstruction error of high-frequency details by a series of
regression mappings. The proposed method is rather fast yet
very effective in producing HR face images. Experimental results
show that the proposed approach achieves superior performance
with reasonable computational time compared with the state-of-
the-art methods.

Index Terms—Face hallucination, low-resolution, patch-based,
kernel regression, super-resolution.

I. INTRODUCTION

ACE image is an important human feature which has been

widely applied in the field of computer vision and pattern
recognition. Consequently, a growing number of applications
have been developed and investigated according to face image
analysis, which includes detection, alignment, tracking and
recognition. These techniques play an important role in human
identification, security control, surveillance monitoring and
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digital entertainment. However, the performance of most face
analysis tasks degrades significantly when the target face
images are captured under uncontrolled conditions. Specifi-
cally, the variation in image resolution is a critical factor in
practical scenarios in which high-quality digital cameras are
not deployed because of the limitation of cost and storage
space.

Low-resolution images truly cause many restrictions in the
real-world applications with high definition requirements. It
is desirable to reconstruct high-resolution images from low-
resolution images by super-resolution (SR) algorithms [1].
According to recent SR research, these methods are classified
into two types: interpolation-based approaches [2]-[5] and
learning-based approaches [6]-[43]. The interpolation-based
approaches estimate statistical prior knowledge from natural
images to produce HR images, but there are inherent limi-
tations when dealing with the increase in the magnification
factor. In contrast, the learning-based approaches reconstruct
the final HR results with a set of LR/HR training samples. Due
to the extra information from the training set, the learning-
based approaches have the ability to achieve better visual
quality and deal with higher magnification factors. In this
paper, we mainly discuss the learning-based SR algorithms.

The pioneering work on face hallucination was proposed
by Baker and Kanade [11]. Depending on the advantages
of learning-based methods, the output HR face image can
be inferred from the corresponding LR input by a Bayesian
formulation. Due to the potential applications in face analysis,
face hallucination has become an active area of research.
Many face hallucination methods have been introduced to
produce HR images by various reconstruction models. Early
studies aimed to utilize a two-step procedure to hallucinate
LR face images. It first produced a global face image with
plausible contour but lacked vivid textures. The local detail-
s were further compensated in patch-wise. Liu et al. [15]
learned a global parametric Gaussian model to describe the
relationship between LR face images and corresponding HR
images, while the details were enhanced by local patches
using a nonparametric Markov random field (MRF) model.
Zhuang et al. [16] estimated the relationship between LR and
HR images by locality preserving projection and refined it by
radial basis function regression. Details of the hallucinated
face image were further enhanced by neighbor embedding
[12]. Park and Lee [14] reconstructed global face images by an
extended morphable model and further compensated them with
an error back-propagation method. Jia and Gong [17] utilized
a hierarchical tensor representation to achieve hallucinated
face images across multiple modalities. A local patch-based

1520-9210 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2019.2898752, IEEE

Transactions on Multimedia

multiresolution tensor was also designed to generate the local
details. Huang and He [18] applied canonical correlation
analysis (CCA) to maximize the correlation between global
LR and HR images. In the residual compensation phase, the
same model was also utilized to find a proper subspace for
patches in different resolutions. An and Bhanu [20] further ex-
tended the method in [18] by 2D-CCA, which achieved better
performance for preserving the global geometric structure and
local texture. The disadvantage of these algorithms is that a
large number of training samples is required to describe the
features of global face images in the corresponding subspace.
The performance may not be appropriate when the input LR
images share fewer common features with the training set due
to the disturbance of pose, illumination or noise, especially
for applications in real-world conditions. Usually, the artifacts
caused by global reconstruction can not be completely sup-
pressed in the compensation procedure of local details.

Considering the position information of image patches as
a constraint, Ma et al. [25] reconstructed HR face images
based on position-patches instead of the complicated two-step
model and further extended the method to adapt the application
across multiple variations [26]. From then on, a number of
face hallucination models began to produce HR face images
using training patches from the same position. Li et al. [24]
trained a couple of projections which transformed the LR and
HR patches into a latent feature subspace for estimating the
combination relationship. Huang and Wu [21] learned multiple
local linear transformations to approximate the regression
between LR and HR patches. Jung et al. [27] introduced
an ¢;-norm minimization constraint for improving the under-
determined problem in [25], which produces more stable face
SR results. Zhang and Cham [23] predicted the local feature
of face images in the discrete cosine transform (DCT) domain.
Shi et al. [32] trained position-based dictionaries for sparsely
representing local patches to enhance the high-frequency de-
tails. Wang et al. [28] incorporated a weighted adaptive sparse
regularization method to infer the combination weights of HR
patches. Jiang et al. [30] utilized the local similarity constraint
for regularizing the HR face reconstruction procedure. Zeng
and Huang [33] augmented the existing training set to improve
the quality of the final reconstructed results. In [22], Jiang
et al. represented the relationship of LR and HR patches by
a smooth regression model. The target HR patch was then
reconstructed by the corresponding LR patch through weighted
linear mapping. Liu et al. [29] devised a weight vector to
subtly tune the contribution of examples, which makes the
algorithm more robust to the influence of noise.

Due to the development of neural networks, many re-
searchers have taken advantage of deep learning to conduct
super-resolution and face hallucination tasks. Dong et al.
[34] first solved the SR problem by using a neural network
with three convolutional layers to learn the mapping function
between LR and HR images. Kim et al. [35] introduced a very
deep convolutional network for reconstructing HR images,
which significantly improves SR performance. Yu et al. [36]
investigated the probability of utilizing a generative adversarial
network to produce HR face images with better visual effects.
In [37], a transformative discriminative autoencoder was pro-

posed to deal with unaligned and noisy face images. Zhu et al.
[38] proposed a gated deep bi-network for face hallucination,
which localizes LR facial components and exploits a face
spatial prior to recover reasonable details. Song et al. [39]
generated an initial HR face image by a convolutional neural
network and further followed with an enhancement procedure
to refine the results. Cao et al. [40] employed an attention-
aware mechanism in the face hallucination task, which se-
lects preferable facial components by reinforcement learning
and further reconstructs the local details by an enhancement
network. Chen et al. [41] considered the utilization of facial
landmark heatmaps and parsing maps in the training phase
for obtaining better super-resolving results. Huang et al. [42]
proposed a wavelet-based neural network to conduct the face
hallucination task, which simultaneously takes into account
the local texture details and global topology information of
human faces. Yu et al. [43] proposed a multi-task network that
consists of upsampling branch and facial component heatmaps
estimation branch. The upsampling branch is guided by the
heatmaps in the reconstruction for preserving face structure.

Generally, most previous position-patch-based methods
[24]-[31] aim to estimate reasonable combination weights
which represent each input LR patch as a linear combination of
LR training patches. The combination relationship is employed
to produce the predicted HR patch according to the help
of corresponding HR training set. However, these methods
require a basis assumption about sharing the same combination
weights between HR and LR spaces. As shown in [44],
this strong assumption is hardly satisfied in the application.
Because of the one-to-many mapping relation between HR
and LR patches, the relationship captured from the LR space
cannot present the real situations of the HR space. Though
many algorithms have been proposed to devise various priors
for improving the tough problem, it is also challenging to
choose a suitable regularization model for better SR results.

Another category of position-patch-based face hallucination
methods [21] [22] considers the reconstruction of HR patches
as a regression problem. These methods aim to learn regression
mappings from the training set, which can be employed for
directly projecting the LR testing patches into HR patches.
The advantage is that these algorithms do not require the
assumption of combination relationship consistency between
LR and HR spaces. However, it is also very challenging to train
such a projection function since the SR reconstruction problem
is highly ill-conditioned. It is expected to further improve the
regression mapping between LR and HR patches to achieve
better reconstruction results.

In the literature [21] [22], various local linear mappings have
been trained to describe the regression relationship between
LR and HR patches. Nonetheless, it is a limitation to represent
the reconstruction procedure as linear regression because of
the low dimension of LR feature. Specifically, the whole
face image is commonly split into very small overlapped
patches to better reflect local details (e.g., only 3 x 3 for LR
case), which means that the regression relationship between
LR and HR patches is extremely under-determined. Due to
the low dimension of LR feature, the regression is mainly
influenced by the additional regularization constraint rather
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than intrinsic LR feature extracted from the LR patch. To
avoid learning the regression relationship from such a low-
dimensional feature, we first project the LR patch into a
reproducing kernel Hilbert space (RKHS) by kernel trick,
which improves the under-determined problem and obtains
more stable results. Meanwhile, the kernel function also has
the advantage of capturing the nonlinear structures of LR
patches. The nonlinear regression is more effective for making
a plausible approximation for the one-to-many relationship
between LR and HR patches.

Previously, the algorithms aimed to directly predict the
projection between LR and HR patches, or implicitly present
the relationship by the combination weights of the training
patches. None of them considers the original geometry be-
tween neighboring patches in the HR space. As we know,
the target of most regression-based algorithms [21] [22] is to
learn various projection functions with the help of training
set, which minimizes the total errors between the estimated
HR patches and the original HR patches. However, the local
relationship of the HR patches is not further considered in
these methods. An illustration is presented in Fig. 1. Though
the reconstructed HR patch is well produced to approximate
the original patch in the sense of least error, it may fail to
preserve the local geometric structure with the neighboring
patches. Thus, two image patches that are similar in the
original HR space may suffer from some differences after
the reconstruction. Actually, the degradation procedure from
HR to LR varies the local geometry of image patches, which
means that we need to recover the local relationship in
the reconstruction. It is no doubt that we can reconstruct
plausible HR patches without the constraint of local geometry.
However, artifacts may occur in the reconstruction results
since the local similarities of neighboring patches are no
longer preserved. To improve the above disadvantage, we
define local optimization for each training patch according
to the corresponding geometric structure. The optimization
function not only maintains the reconstruction consistency
for each LR patch and corresponding HR patch but also
preserves the intrinsic distances between each given sample
and its neighbors in the HR space. In this case, the proposed
method is feasible to train a reasonable regression function for
reconstructing faithful HR patches.

To better refine the target HR patch, we further utilize
a coarse-to-fine strategy to compensate for the residual re-
construction error. Since most high-frequency details are lost
in the LR image patch, it is hard to directly reconstruct
the target HR patch from the degraded LR patch using one
regression function. Similar strategies have also been adopted
in the literature [45]-[49]. Different from these approaches, the
proposed method designs a recursive structure by combining
a series of specific kernel regression mappings, which aim
to simultaneously preserve the intrinsic geometric structure
and eliminate the reconstruction error. Each kernel regression
function considers the refined result from the previous map-
ping as input to predict the residual texture information. The
intermediate reconstructed results contain more abundant high-
frequency details than the initial LR patch. Consequently, it is
suitable to gradually reconstruct the final HR image by such

The original HR samples
[0 O The reconstructed HR samples

Fig. 1. Without the constraint of local geometry, the relationship between
neighboring patches may fail to be preserved. For example, two neighboring
HR samples are presented in the above figures, which indicates that they share
similar textures in the original HR space. If the reconstruction procedure just
considers the consistency of each reconstructed sample and corresponding
HR one, regardless of the local distances between neighboring patches in
the original HR space, the reconstructed samples may suffer from a relative
large difference (such as the example in the left figure). In this case, the
two reconstructed patches represent textures with certain diversity, which is
not consistent with the real situation in the original HR space. Apparently,
the example in the right figure presents a more plausible solution for the
reconstruction, which further takes care of the distances between neighboring
patches in the optimization.

a recursive procedure.

The main contributions of this paper are presented in the
following:

e Motivated by the ability of the kernel function to capture
the nonlinear feature of the LR patch, we employ kernel re-
gression mapping for predicting the corresponding HR image
patch, which also produces more stable results than the linear
projection.

e Different from the previous algorithms that only maintain
the reconstruction consistency between each LR patch and
the corresponding HR patch, the proposed algorithm also
considers the intrinsic geometric structure between each train-
ing sample and its neighboring patches. In the reconstruction
procedure, it is critical to preserving the distances of the
neighboring patches in the HR space to achieve better results.

e To better approximate the target HR patch, we propose
a recursive structure by a series of regression mappings to
compensate for the residual reconstruction error. The coarse-
to-fine strategy further refines the high-frequency details of the
output HR image.

e The proposed algorithm is rather fast yet very effective
for producing HR face images. Experimental results show
that the proposed method achieves superior performance with
reasonable computational cost when compared with the state-
of-the-art methods.

II. RELATED WORK

As we know, the relationship between the LR observation
image and the original HR image can be represented by the
following expression:

Y=DBX+¢ (1)

where Y is the LR face image, X is the original HR face
image, B is the blurring filter for the HR image, D denotes the
down-sampling procedure and ¢ is the additive Gaussian white
noise. Define I'7 and I%; as the LR and corresponding HR
training images respectively, where the index n = 1,2... N
represents the number of samples in the training set. The task
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of face hallucination aims to reconstruct a plausible HR face
image from the corresponding LR input. Next, we will briefly
review some recent works that are relevant to the proposed
algorithm.

A. The position-patch based method

Inspired by the fact that patches from the same position of
the face image usually share similar textures, Ma et. al. [25]
considered the position prior of local patches as a constraint
for achieving superior results in the reconstruction. In their
method, face images are split into M overlapped patches based
on the position information. Let the LR and HR image patches
located on position p as l;’ and h;f, respectively. According
to the position prior, the entire training set is divided into

M groups {Lp,Hp}M where L, = [l;,...,l;\]} and

p=1’
H, = h;},...,h;\’ represent the corresponding LR and
HR training patches on position p. Meanwhile, each LR face
image Y is also split into M overlapped patches to conduct
the reconstruction procedure. Each LR image patch located
on position p can be represented as yﬁ , while it is expected
to recover the corresponding HR patch :cf with help from
the training set. Specifically, the HR patch :cf is assumed
to be obtained by a linear combination of training patches.
According to the assumption of manifold consistency between
the LR and HR spaces, the optimal combination coefficients
are estimated in the LR space by minimizing the following

function:
. 2
w, = argIIulJlIl{Hyﬁ - prpH2 + A0 (wp)} 2

where €2 (w,,) represents the regularization term. In [25], the
authors utilized an f5-norm constraint for regularizing the
combination weights, while other researchers have further
devised various regularization terms to improve the reconstruc-
tion results.

B. The linear regression based method

Recently, Jiang et al. [22] proposed a novel regression-based
method using the local structure characteristic of face images,
which learns a linear mapping function to estimate the HR
patch from the corresponding LR patch. For each image patch
at position p, the reconstruction procedure can be described
as:

zll = Ayl 3)

where A is the linear mapping function that corresponds to
the position p. The local linear regression can be learned from
the training set by:

A:argm&n{zwiHh;—Al;Hz‘i‘)\HAH%} )

where l; and h; represent the LR and HR training images,
respectively, A is the regularization parameter, and the corre-
sponding weight w; is defined by:

w; = 1/(dist(yk,10))" (5)

Here, dz’st(yﬁ , l;) represents the squared Euclidean distance
between yI% and l;, while « is the adjustable factor. Thus, the
samples that are the most similar to the input LR patch are
assigned larger weights in (4), which encourages these similar
samples to be privileged in the training phase. Compared
with the previous methods [24]-[31], this algorithm avoids
the difficult task of preserving manifold consistency in the LR
and HR spaces. One disadvantage is that it still requires to
repeat the training process for each input sample since the
weight w; is relevant to the input LR patch yﬁ, which will be
further improved in the proposed method.

ITI. THE PROPOSED ALGORITHM
A. Reconstructing the HR patch by kernel regression

According to (3), the relationship between LR patch yz’;‘ €
R? and HR patch azf € R™ can be simply represented as
a linear regression model by employing the LR training set
L,= [lzl,, . J;V and HR training set H,, = hzl,, .. .,hf,v}.
However, the whole face image is usually divided into very
small overlapped patches to reflect the local details (e.g.,
3 x 3 pixels), which means that LR patch yzf is in a very
low dimension. In this case, the linear regression between
LR and HR patches is extremely under-determined, which
causes difficulty in effectively addressing the complex input-
output relationship. To overcome the shortcoming of the linear
regression model, we first project the LR features into RKHS
by a kernel function [50]. The dimension of the feature in the
kernel space is much higher than the original dimension of the
LR feature. Thus, in the case of using kernel regression, the
project matrix contains more parameters to fit the complex
relationship between LR and HR patches. Due to the addi-
tional parameters in the kernel regression, this can result in
more accurate approximation to the input-output relationship,
which makes the face hallucination procedure more stable.
Meanwhile, the kernel regression also has the advantage of
exploiting the nonlinear characteristics to better conduct the
face reconstruction procedure.

Define ¢ : RY — R7 (d < F) as the nonlinear
projection operator, which maps the feature of the LR patch
to an RKHS. The kernel function k(l;,1;) = ¢(l;)" é(1;)
is employed to measure the nonlinear similarity between I;
and [; in the projected high-dimensional space. We utilize a
Gaussian kernel in this paper, which can be represented as
k(1) = exp(— ||l; — lj||§ /v). By using the operator ¢, the
corresponding LR training set can be represented in the RKHS

as: l; R qb(li,)
Ly = 6(Ly) = [6(0})..... 6(t})]

Then, we utilize the mapped features of RKHS to substitute
the LR features for reconstructing the HR patches. To preserve
the reconstruction consistency between the ith LR patch and
the corresponding HR patch, we can minimize the following
local optimization function:

(6)

Di(A%) = [|h}, — A% ()| %)

where A? represents the kernel regression projection.
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Considering all the samples in the training set, we can sum-
marize the local optimizations as a global objective function:
2

D(AY) = |[H, ~ AZo(L,)[ + A [Afl, @

where the additional constraint is the regularization term, and

the regularization parameter A\ balances the above two terms.

The objective function (8) can be rewritten in terms of traces
as:

D(AZ) = tr {(H, — AZS(Ly)(H, - AZO(L,) "}
+xr{Ag(a9)” |

B. Preserving the intrinsic geometric structure

As shown in Fig. 1, it is necessary to preserve the intrinsic
distances between each given sample and its neighbors in the
HR space after the reconstruction procedure, which means that
the distance between the reconstruction results of sample l"
and its neighbor l”“ should be close to the original dlstance
between hl and h” For each training sample, we select K
nearest nelghbors to measure the intrinsic geometric structure.
To represent the optimization function of the ith sample in
mathematical formulation, we expect to minimize:

Z IR
(10)

where the weight w; ;» is utilized to measure the similarity
between each HR patch h,, and its neighbor h . It is defined
; P2
as wj i, = exp <— |k, — By H2 /02), where the parameter o
is set to 1 in this paper.
Define the index set for neighbors of the ¢th data sample

hzk (Aaﬁd)(lz) A¢'¢ lzk H2 Wiy

as Q; = {i,i1,...,ix}. The corresponding local data sets
L=1lh,, by} ... h}] and L = [L,, 1} ... 1}] represent

the neighbors of the ith training sample in the HR and LR

space, respectively. Equation (10) can be rewritten as:
Ji(AD)
— tr {(H}S;, — AJo(L})S})AL(H; S, — Ao(Ly)S;)” |
tr { (F, — Ag(Ly)S,AL(SE) " (H), — Ago(Ly)" |
( (

— A6(L}))
— AJ6(Ly))Z; (H), - AZo(L)" |
(1n)

el (K+1)x K
) e R , € =

[1,...,1J7 € RK, I, is the K x K identity matrix,
E; = S;A;(S;)T describes the intrinsic geometric structure,
A, = diag([wi ;- - -, wiig]) contains all the weighting coef-
ficients on the diagonal, diag(-) is the diagonalization opera-
tor, and ¢r(-) is the trace operator.

Next, we incorporate the local optimizations of all the
training samples for building the global alignment on the entire
training set. Thus, we first unify all the local LR and HR data
sets into a consistent coordinate system. The local coordinate
Li = [, ... ,U¥] and H, = [k} h}' ... h/}] can be
selected from the global coordinate L, and H,, by utilizing a
sample selection matrix Z¢ € RV*(K+1);

o(L,) = ¢(L,)Z,,, H,

H

’L

P

’L

p

7

tr »

where the matrix S; =

=H,Z, (12)

where the selection matrix Z; can be described by:
p/mn 0 otherwise

Substituting (12) to (11), the local optimization of the ith
sample can be rewritten as:
Ji(AD)
i iyyi i iT
= tr { (0,2}, ~ Ago(L,)Z)h(H, Z; — AZo(L,)Z))" }
14
By integrating all the local optimizations, the whole align-
ment for the entire training set can be represented as:

J(A9) = S J(AD)
o {(Hp - AL(L)) (S 2% (2)) ) I, - A;%(LP»T}
=tr {(Hp - Ag¢(Lp)) p(Hp - A$¢(Lp))T}

13)

15)

where ©, = > Z;Z;(Z;)T is the global alignment matrix.

C. Optimization

To maintain the reconstruction consistency and preserve the
intrinsic geometric structure simultaneously, we combine the
objective function in (9) and (15) to calculate the optimal
kernel regression:

A? = arg min F(A; L, Hy) (16)
Ap

P

It can be represented by:

F(A9)
ftr((H — AJ(Ly))(H, — A7o(Ly))T) + Mtr(AD(AD)T)
+ ptr((Hy — Afo(L,))© (H — AJo(Lp))")
= tr((Hp A¢¢(Lp))(I+M® )(H, A%(L NY)
+ )\tr(A¢(A¢)T)

a7

where p is the regularization parameter to balance the two
functions.

According to the kernel theory, the kernel regression Af;

can be further described by the linear combination of ¢(L,):

— Cyo(Ly)" (18)

where C, € R™¥ is the projection matrix. Thus, the
optimization in (17) can be converted to calculate the optimal
matrix C,. Define K,, = ¢(L,)T ¢(L,) to be the kernel matrix
in the RKHS. It can be reformulated by:

F(Cp) =tr((H, — C,Kp)(I+ u®,)(H, - C,K,)")
+ Xtr(C,K,C)
19)
We calculate the gradient of (19) with respect to C,,, and
set it as 0:

—(H, - C,K,)(I+10,)KI' + \C,K, =0  (20)

According to the property of kernel function, we have KZ =
K, in (20). Thus, the optimal projection matrix C, can be
deduced from (20) analytically:

C,=H,(I+ Nep)[Kp(I +p10,) + )‘I]_l (21
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Fig. 2. The flowchart for the coarse-to-fine recursive regression structure.
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Given an input testing LR patch yﬁ , the corresponding HR
patch mf can be estimated by:

zll = A%o(y))

= Cpo(Ly) " 0(yy) (22)
=H,(I+ p0,)Ky(I+u®)) + /\I]_ln(yﬁ)
where the vector k(y}) = [k:(lll),yﬁ), e k(lév’ y".

D. The coarse-to-fine recursive regression structure

By optimizing (17), we can obtain a kernel regression to
approximate the HR face patches by the input LR patches.
However, the prediction of such a single regression model is
not sufficiently precise, which causes the insufficiency of local
details. Thus, we further propose a coarse-to-fine recursive
regression structure to refine the high-frequency details. The
training procedure is shown in Fig. 2. In iteration 0, we train
the basic regression model A]‘fo according to the input LR
training set L) and original HR training set HY). The regression
model A;‘fo can be employed to obtain the initial prediction
of HR patches P) = A2°¢(LY) (i.e., Prediction 0 in Fig. 2).
However, the high-frequency information may be lost in the
initial prediction, which needs to be further generated by the
following regressions. In each iteration ¢t (t = 1,2,...,T),
we continue to learn the corresponding regression model Agt
to approximate the residual high-frequency details H; from
the intermediate reconstructed patches LZ (i.e., Input ¢ in
Fig. 2). The ground truth of the residual high-frequency details
is represented as H;, (i.e., Residual ¢ in Fig. 2), while the
predicted one is described as P; (i.e., Prediction ¢ in Fig. 2).
It conducts a similar training strategy with (17) to learn the
corresponding kernel regression function A]‘ft. The iterative
procedure can be formulated as:

Pl =1

[ p

Ly LI 4+ Pt >2
t _ pyt—1 t—1

Hp - Hp o Pp

. (23)
A9 = arg 121;1 F(AS:LL, HY)

Pl = ASp(LL),t =1,2,...,T

To better enhance the local high-frequency information,
we utilize the following four high-pass filters to extract the
features from LR patches:

fi= [17_1]af2:f1T’f3 = [_1727_”,f4 :fg

These four descriptions are concatenated into one vector as the
representation of each LR patch in Lg. For the HR patches in
Hg, we subtract the mean value to reflect the local texture

(24)

instead of absolute intensity. Assume that we have obtained
all the kernel regression functions {A90, A9! ... A9T} For
a testing LR patch yﬁ , the hallucination task can be conducted
by a recursive procedure:

(25)

Finally, we can reconstruct the hallucinated HR patch wg by
proceeding (25) T' times. We also add the mean value Z,, to wg
in order to recover the absolute intensity, where the mean value
is estimated by the input LR patch. The whole HR face image
is produced by integrating all the HR patches according to their
original positions. The pixel values in the overlapped regions
are calculated by averaging the pixels of adjacent reconstructed

patches.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, we
perform the experiments on the CAS-PEAL [51] and FERET
[52] face databases for comparison. We utilize a subset of
the CAS-PEAL database which includes 1040 frontal face
images to conduct the experiment. We randomly select 40
images to serve as the testing set, while considering the
remaining 1000 images as the training set. For the experiments
on the FERET database, we utilize 600 face images from
three subsets (i.e., ba, bj and bk) which were captured by 200
various individuals. The subset ba includes face images with
normal expressions. The subset bj contains face images with
expression variations. The subset bk consists of face images
under different illumination conditions. We employ 30 images
from 10 individuals as the testing set, while utilizing the other
570 images as the training set. To conduct the experiments,
we align all the face images by the position of two eyes and
crop them to 128 x 128 pixels. We then blur the HR images
by utilizing a 7 x 7 Gaussian filter with a standard deviation
of 0.85 and generate LR images of 32 x 32 pixels by a down-
sampling process. For experimental convenience, we convert
the intensity values of the face images to the range from
0 (black) to 1 (white). To demonstrate the effectiveness of
the proposed method, we compare the experimental results
with several state-of-the-art baselines (e.g., LSR [25], LcR
[30], WASR [28], SRLSP [22]) and three deep learning based
methods (e.g., VDSR [35], LCGE [39] and WaveSR [42]).

A. Parameter settings

There are some parameters which require to be determined
before conducting the experiments. We utilize a Gaussian
kernel to project the feature of the LR patch into RKHS, while
the parameter v in the Gaussian function is set to 3. In Section
III-B, the number of neighboring samples is set to K = 200
for preserving the intrinsic geometric structure. To optimize
Eq. (17), we fix the regularization parameters A and yx to 0.5
and 1/K, respectively. The maximum number of iterations is
set to three.
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(b)

)]

Fig. 3. The hallucinated results on the CAS-PEAL database. (Please zoom in the results for better comparison. The main distinctions are highlighted in the
rectangle.) (a) LR image. (b) LSR [25]. (¢) LcR [30]. (d) WASR [28]. (e) SRLSP [22]. (f) VDSR [35]. (g) LCGE [39]. (h) WaveSR [42]. (i) The proposed

method. (j) Original HR image.

B. Experimental results on the CAS-PEAL database

To show the effectiveness of the proposed approach, we
evaluate the performance with seven state-of-the-art methods
in this subsection, which include LSR [25], LcR [30], WASR
[28], SRLSP [22], VDSR [35], LCGE [39] and WaveSR [42].
We present some representative reconstructed HR images in
Fig. 3. As shown in the figure, the results of LSR [25] suffer
from smoothing artifacts around the regions of the nose, eyes
and mouth, while the artificial effects also occur near the
contour of the face image. LcR [30] has the ability to enhance
local details around the eyes and nostrils, but the ringing
artifacts and noises are not well suppressed on the face image.
WASR [28] improves artificial effects around the contour
of the face image. However, the textures around the eyes
and mouth seem to be blurred after reconstruction. SRLSP
[22] reduces the jaggy and noisy effects on the hallucinated
results, but the aliasing effects appear on the regions with
high-frequency textures. VDSR [35] produces clear textures
on the cheek and the contour of face image. However, it
sometimes suffers from artificial details especially on the
region around the eyes. LCGE [39] reconstructs fine results on
most human face regions. However, it also causes noticeable
artificial effects around the area of the eyes. For example, it
fails to reconstruct the shape of two-layer eyelids. WaveSR
[42] further improves the visual quality of the hallucinated
images, which is helpful to produce facial components with

more plausible textures. The proposed approach successfully
suppresses the noise and eliminates the artifacts of ringing
effects on the reconstructed face image. Furthermore, it also
produces more reasonable results on the regions with vivid
details (e.g., eyeballs, nose and mouth). Compared with other
methods, the proposed method also presents the advantage of
recovering subtle details on the facial components, such as
eyelid, pouch, nose and mouth.

s 10 15 20 25 % 3% 40 5 10 15 20 25 3 3 40
Index of testing image Index of testing image

(a) (b)

Fig. 4. The quantitative indexes on the CAS-PEAL database. (a) PSNR. (b)
SSIM.

In Fig. 4, we also present the comparison of the PSNR and
SSIM [53] indexes on the hallucinated face images for evaluat-
ing the above algorithms. As shown in the figure, the proposed
method obtains the highest quantitative results for most testing
images. In Table I, we also present the average PSNR and
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TABLE I
THE AVERAGE QUANTITATIVE INDEXES ON THE CAS-PEAL DATABASE.

LSR LcR WASR SRLSP VDSR LCGE WaveSR Proposed

PSNR(dB) 29.30 30.26 30.36 30.49 30.79 30.85 3123 3143
SSIM  0.9160 0.9279 0.9283 0.9317 0.9408 0.9348 0.9376 0.9412

TABLE I
THE AVERAGE QUANTITATIVE INDEXES ON THE FERET DATABASE.

LSR LcR WASR SRLSP VDSR LCGE WaveSR Proposed

PSNR (dB) 31.86 3221 3233 3244 3279 3278 3272  33.15
SSIM  0.8982 0.9021 0.9043 0.9056 0.9139 0.9097 0.9027 0.9164

SSIM indexes for different methods. The above experimental
results demonstrate the advantage of the proposed algorithm
according to both qualitative and quantitative comparisons.

C. Experimental results on the FERET database

PSNR(dB)

5 10 15 20 25 30 5 10 15 20 25 30
Index of testing image Index of testing image

(a) (b)
Fig. 6. The quantitative indexes on the FERET database. (a) PSNR. (b) SSIM.

In this subsection, we further demonstrate the advantages
of the proposed method by performing the experiments on
the FERET database. The face images in the FERET database
are captured under various illumination conditions and facial
expressions. The experiments on such a database can evaluate
the flexibility of different methods in alternative environments.
We present some hallucinated results in Fig. 5. The pro-
posed algorithm obtains fine textures on the cheek region
and reconstructs vivid details on regions around the eyes and
mouth. Meanwhile, the compared methods seem to produce
some artificial effects on the reconstructed face image. For
example, the textures of mouth suffer from blurring effects,
while some unreal details also appear near the area of the
eyes. Fig. 6 shows the corresponding quantitative indexes
for comparing the results of different methods. The average
quantitative indexes are also presented in Table II. Compared
with the second best quantitative indexes, the result of the
proposed algorithm increases 0.36dB in PSNR and 0.0025 in
SSIM. The above compared results indicate that the proposed
approach consistently achieves superior performance under
various environments.

Fig. 7. One real-world image captured in the real environment.

D. Experiments on real-world images

To further evaluate the performance of the proposed method
on a real-world image, we collect one image from the Internet
which was captured in the real environment. The selected
image is shown in Fig. 7. We conduct the face hallucination
procedure on the highlighted human faces. In the experiment,
we manually align the LR face images and standardize the
size to 32 x 32 pixels, while the FERET database is selected
as the training image set to hallucinate the face images. The
experimental results are shown in Fig. 8 for comparison.
The image captured from the real environment contains more
variations, which considerably influences the performance of
LSR [25], LcR [30] and WASR [28]. For these algorithms,
the hallucinated results are also obscured around the eye
region (especially the eyelid), which seems to be affected by
aliasing artifacts. The other three methods [22], [35] and [39]
have the advantage of alleviating the noisy artifacts, but the
reconstructed face images suffer from apparent blurring effects
or artifacts around the eyeballs. WaveSR [42] has the ability to
reconstruct reasonable facial components, whereas the noise
seems to be magnified on the face images. The proposed
method successfully suppresses the noise and reconstructs
more suitable details on the regions with complex textures,
which is able to produce acceptable results.

E. Influence of training set size

To study the influence of the training set size in the face
hallucination problem, we further perform experiments on the
CAS-PEAL face database by varying the number of training
images from 1000 to 200 with step 200. We also fix the
testing samples in the previous experiments to conduct fair
comparisons. Then, we perform the experiments on various
training sets and evaluate the impact of the training set size.
Fig. 9 shows some experimental results with different training
set sizes. The average quantitative indexes for the 40 testing
images are presented in Table III. When the number of
training images is larger than 600, the visual quality of the
reconstructed images varies very slightly with changes in the
training set size. Similar conclusions can also be drawn from
Table III. When the number of training images decreases to
200, the visual quality of the hallucinated HR images suffers
from degradation near the contour of face images. However, it
consistently suppresses the noisy artifacts and preserves vivid
high-frequency details, especially on the region of the facial
components (e.g., nose, eyes and mouth).
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Fig. 5. The hallucinated results on the FERET database. (Please zoom in the results for better comparison. The main distinctions are highlighted in the
rectangle.) (a) LR image. (b) LSR [25]. (c) LcR [30]. (d) WASR [28]. (e) SRLSP [22]. (f) VDSR [35]. (g) LCGE [39]. (h) WaveSR [42]. (i) The proposed

method. (j) Original HR image.
i A _
o | » . » .
Fig. 8. The hallucinated results for the real-world images. (Please zoom in the results for better comparison. The main distinctions are highlighted in the

rectangle.)(a) LR image. (b) LSR [25]. (c) LcR [30]. (d) WASR [28]. (e) SRLSP [22]. (f) VDSR [35]. (g) LCGE [39]. (h) WaveSR [42]. (i) The proposed
method.

(@ (® ® ()] (h)

F. Effectiveness of using kernel regression face hallucination results under the proposed framework. To
In this subsection, we experimentally show the effective- achieve this objective, we utilize linear regression instead of
ness of using the kernel mapping function to improve the
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Fig. 9. The hallucinated results on the CAS-PEAL database with different training set sizes. (a) LR image. (b) With 200 samples. (c) With 400 samples. (d)
With 600 samples. (e) With 800 samples. (f) With 1000 samples. (g) Original HR image.

TABLE III
THE AVERAGE QUANTITATIVE INDEXES FOR VARIOUS TRAINING SET
SIZES.
Size 200 400 600 800 1000
PSNR (dB)  30.01 30.83 31.15 31.32 31.43
SSIM 0.9254  0.9357 09390 0.9407 0.9412

kernel regression to conduct the face hallucination procedure.
Then, we compare the linear regression based results with
the experimental results of the proposed method. Specifically,
we can rewrite (17) to represent the hallucination model with
linear regression:
F(Ap)=tr((H, — ApL,)(I+ p©,)(H, — A,L,)")
+ )\tr(ApA;;F)

(26)
where A, is the linear mapping function that corresponds to
position p. We calculate the gradient of (26) and set it as O:

—(H, - AL)(I+p®,)LT + XA, =0 (27

Thus, the optimal linear mapping function A, can be

deduced from (27):
A, = H,(T+ 10, LT [L,(I+ pO®,) LT + AT " (28)

Given an input testing LR patch yﬁ , the output HR patch

x!! can be estimated by:
xl = A yk
Pt vt (29
= H,(I+ ©,)L7 [L,(1+ 4®,)LT + AI] 'y
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which can be utilized to substitute (22) for the experiment
with linear regression.

We conduct the experiment on the CAS-PEAL database
to verify the effectiveness of using kernel regression in the
reconstruction. We also fix the 40 testing images in the exper-
iment for comparing the visual quality and quantitative indica-
tors. Some representative hallucinated results are presented in
Fig. 10. The proposed algorithm obtains superior hallucinated
results especially on the regions of the nose, mouth and
cheek. The quantitative indicators for all the testing images
are presented in Fig. 11. It is apparent that the reconstruction
by kernel regression produces better results than the algorithm
performed by linear regression. The average PSNR and SSIM
values of all the testing images are 29.82dB and 0.9250 for the
face hallucination algorithm with linear regression. By taking
advantage of kernel regression, the proposed method achieves
an improvement of 1.61dB in PSNR and 0.0162 in SSIM. The
experimental results demonstrate that the utilization of kernel
regression is effective to obtain superior HR images for the
proposed face hallucination framework.

G. Effectiveness of the geometric structure constraint

We further discuss the contribution of the intrinsic geo-
metric structure to show the effectiveness. To achieve this
objective, we eliminate the corresponding intrinsic geometric
structure constraint in (17) by setting = 0, which presents the
performance of the algorithm without the intrinsic geometric
structure for comparison. Then, we compare the hallucinated
results with the proposed method to show the advantages
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Fig. 10. Comparison for the performance of utilizing different mapping
function. (a) Linear regression. (b) Kernel regression.

—e— Kernel regression| 088 ernel regression
34 9 Linear regression o097 | —o— Linear regression|
) 096
2 095
o
a, 0.04
x =
< @ 093
a3 2]
o 092
29
091
28
09
a 0.89
2 088
5 0 15 20 25 3 35 40 5 10 15 2 25 % 3% 40
Index of testing image Index of testing image

Fig. 11. The quantitative indicators for comparison. (a) PSNR. (b) SSIM.

Fig. 12. Comparison for utilizing the intrinsic geometric structure constraint.
(a) Without intrinsic geometric structure. (b) With intrinsic geometric struc-
ture.

of intrinsic geometric structure constraint. The experiments
are also conducted on the CAS-PEAL database, while some
representative hallucinated results are shown in Fig. 12. The
corresponding PSNR and SSIM values are also presented
in Fig. 13. The algorithm without intrinsic geometric struc-
ture constraint achieves the average quantitative indicators of
31.21dB in PSNR and 0.9379 in SSIM, which are inferior
to the proposed approach by 0.22dB in PSNR and 0.0033 in
SSIM. According to the experimental results, we can conclude
that the intrinsic geometric structure constraint truly benefits
the reconstruction results in the proposed face hallucination
approach.

PSNR(dB)
13
>

5 0 15 20 25 3 35 40 s 10 15 2 25 3 3 4
Index of testing image Index of testing image

(a) (b)

Fig. 13. The quantitative indicators for comparison. (a) PSNR. (b) SSIM.

11

H. Influence of the recursive regression structure

To evaluate the influence of the recursive regression struc-
ture in the proposed algorithm, we present the average PSNR
and SSIM values along with the variation of iterations on
the CAS-PEAL database. The results are shown in Fig. 14.
The proposed algorithm obtains better performance according
to the increase in iterations, which indicates that the residual
high-frequency details are well compensated by the recursive
regression structure. The proposed method achieves 30.64dB
in PSNR and 0.9330 in SSIM with only one regression step,
while the quantitative indicators increase to 31.46 dB in PSNR
and 0.9420 in SSIM after five regression steps. Accordingly, a
higher computational cost is required together with an increase
of regression steps. In practice, the proposed method can
roughly achieve stable results after only three regression steps.
Thus, we fix the maximum number of recursive steps to three
in the proposed approach. It is also possible to adjust the
number of recursive steps in the perspective of the balance
between quality and efficiency.

0.944

0.942

5 oo

7]
D o036
0934

0932

1 2 3 4 5 1 2 3 4 5
Iteration number Iteration number

() (b)

Fig. 14. The PSNR and SSIM indicators with different numbers of iterations.
(a) PSNR. (b) SSIM.

1. Computational Cost

To investigate the capability of various methods, we also
compare the average computational time of the proposed
algorithm with other state-of-the-art methods on the CAS-
PEAL database. Specifically, we perform LSR [25], LcR [30],
WASR [28], SRLSP [22] and the proposed method using
MATLAB 2017a on a computer of 8G memory and 3.2 GHz
CPU. VDSR [35] and WaveSR [42] are conducted on a single
Tesla K80 GPU by Caffe and PyTorch, respectively. LCGE
[39] is implemented by Caffe on a Tesla K80 GPU, while the
local detail enhancement process is conducted on CPU using
C++. The average computational time of various methods is
presented in Table IV. Compared with other methods, the
proposed algorithm produces superior results with reasonable
computational cost because the proposed method only re-
quires several regression procedures for generating the final
HR image. The computational cost can be further reduced
by decreasing the number of iterations, which also sightly
degrades the quality of the reconstructed HR image.

J. Performance of the face recognition task

We further conduct experiments on the low-resolution face
recognition task to verify the effectiveness of face halluci-
nation algorithms for improving performance. The evaluation
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TABLE IV
COMPARISON FOR THE AVERAGE RUNNING TIME OF VARIOUS FACE
HALLUCINATION ALGORITHMS. NOTICE THAT THE DEEP LEARNING
BASED APPROACHES ARE IMPLEMENTED ON GPU.

LSR LcR  WASR SRLSP VDSR LCGE WaveSR Proposed
10.2s 10.9s 24.1s 9.1s 0.6s 68.9s 3.3s 3.6s

TABLE V
THE RECOGNITION ACCURACY FOR DIFFERENT FACE HALLUCINATION
ALGORITHMS

LSR LcR WASR SRLSP | VDSR
96.71% | 97.58% 97.84% 97.75% | 98.87%
LCGE | WaveSR | Proposed HR
97.75% | 99.57% 99.65% 99.91%

is performed on a subset of the Multi-PIE face database [54],
which includes frontal face images under 20 different illumina-
tion conditions (Session 04, Camera: 05_1, Recording No.01).
For each subject, we utilize five face images with various
illumination to constitute the testing set, while employing the
remaining face images to serve as the training set. In the
experiment, we normalize the HR face images to the resolution
of 64 x 64 pixels, while obtaining the LR images of 16 x 16
pixels by down-sampling. By using various face hallucination
methods, we first magnify the LR testing images to the
resolution of 64 x 64 pixels. Then, the hallucinated face images
are utilized to evaluate the face recognition performance at
the HR level. We employ ResNet [55] to conduct the face
recognition procedure. Before entering the first residual block,
a convolutional layer with kernel size 7 x 7, stride of 2, and 64
output channels is performed on the input images. Then, we
utilize a group of residual blocks in the network, which has
the same structure as ResNet18. At the end of the last residual
block, the network is followed by a global average pooling,
a fully-connected layer and softmax. We employ PyTorch for
implementation and use SGD as the optimizer. The batch size
is set to 128. A weight decay of 0.0005 and a momentum of 0.9
are utilized to train the network. The learning rate starts from
0.1 and is divided by 10 after 50 epochs until the loss is steady.
The experimental results for different hallucination approaches
are presented in Table V. We also supply the recognition
rate on the original HR testing images for comparison. The
proposed method obtains the accuracy of 99.65%, which is the
highest recognition rate among the compared algorithms. The
above experiments demonstrate that the proposed approach can
effectively reconstruct plausible high-frequency information
and benefit the face recognition task.

V. CONCLUSION

In this paper, we propose a novel face hallucination algo-
rithm that reconstructs the HR face image with a series of
adaptive regression mappings by a coarse-to-fine strategy. In
the training phase of each regression, the proposed method
takes advantage of kernel function to seek the nonlinear char-
acteristic, while simultaneously considering the reconstruction
consistency and preserving the intrinsic geometric structure
between neighboring samples. The coarse-to-fine strategy is

achieved by the recursive regression structure, which first
generates an initial HR face image and then compensates for
the residual reconstruction error by an iterative procedure. In
the testing phase, the final hallucinated face image can be
simply obtained by the projection of regression mappings,
which induces the efficiency of the proposed method. The
proposed approach is rather fast yet effective for reconstruct-
ing HR face images. Experimental results demonstrate that
the proposed algorithm produces superior performance with
reasonable computational time when compared with the state-
of-the-art algorithms.
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