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Abstract—Local binary descriptors, such as local binary pat-
tern (LBP) and its various variants, have been studied extensively
in texture and dynamic texture analysis due to their outstanding
characteristics, such as grayscale invariance, low computational
complexity and good discriminability. Most existing local binary
feature extraction methods extract spatio-temporal features from
three orthogonal planes of a spatio-temporal volume by viewing
a dynamic texture in 3D space. For a given pixel in a video,
only a proportion of its surrounding pixels are incorporated in
the local binary feature extraction process. We argue that the
ignored pixels contain discriminative information that should
be explored. To fully utilize the information conveyed by all
the pixels in a local neighborhood, we propose to extract
local binary features from the spatio-temporal domain with
3D filters that are learned in an unsupervised manner so that
the discriminative features along both the spatial and temporal
dimensions are captured simultaneously. The proposed approach
consists of three components: 3D filtering, binary hashing, and
joint histogramming. Densely sampled 3D blocks of a dynamic
texture are first normalized to have zero mean and are then
filtered by 3D filters that are learned in advance. To preserve
more of the structure information, the filter response vectors are
decomposed into two complementary components, namely, the
signs and the magnitudes, which are further encoded separately
into binary codes. The local mean pixels of the 3D blocks are
also converted into binary codes. Finally, three types of binary
codes are combined via joint or hybrid histograms for the final
feature representation. Extensive experiments are conducted on
three commonly used dynamic texture databases: UCLA, DynTex
and YUVL. The proposed method provides comparable results
to, and even outperforms, many state-of-the-art methods.

Index Terms—Dynamic texture, motion, feature extraction,
local binary pattern
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DYNAMIC textures (DTs) are textures with motion [1]
and they are usually viewed as videos of moving scenes

that exhibit certain stationary properties in the time domain
[2]. Typical forms of DTs include videos of flames, sea waves,
running river, water, fountains and humans in crowds. The
modeling and classification of DTs have received substantial
attention over the past decade. DT classification has many
applications, including video retrieval [3], activity recognition
[4], traffic monitoring [5], fire detection [6], [7], facial analysis
[8], crowd management [9], lip reading [10], micro-expression
analysis [11], and tracking [12].

DT classification is more challenging than the static case
because DTs vary not only in spatial appearance but also
in their organization and dynamics over time. The extrac-
tion of powerful DT features is of great importance to the
success of DT classification; consequently, most research on
DT classification focuses on feature extraction [8], [13]–[18].
Compared to ordinary static textures, DTs extend the notion
of self-similarity to the spatio-temporal domain. Hence, a
thread of research focuses on extending the existing static
texture descriptors to the spatio-temporal domain to capture
temporal variations. One influential work was performed by
Zhao and Pietikäinen [8], who extended LBP [19], which is
widely used in static texture analysis [20], [21], to DT analysis
and proposed volume LBP (VLBP) to combine motion and
appearance. Due to the large number of VLBP patterns, the
researchers further proposed to extract LBP features from three
orthogonal planes (LBP-TOP) to make the feature extraction
process computationally simple. The key idea of extracting
features from three orthogonal planes in LBP-TOP has been
widely followed by later researchers [16], [22]–[27] due to
its simplicity and good performance. Typical examples are
local phase quantization on three orthogonal planes (LPQ-
TOP) [22], multi-scale binarized statistical image features on
three orthogonal planes (MBSIF-TOP) [16], aggregated salient
features (ASF-TOP) [24] and LBP-TOP with Michelson con-
trast [28] (named novel LBP) [25]. In summary, local bi-
nary features, such as LBP and its 3D extension LBP-TOP,
stand out due to their outstanding characteristics, including
good representation power, invariance to monotonic gray-level
changes (e.g., those caused by illumination variations), and
computational simplicity. However, the popular LBP-TOP and
its variants (e.g., LPQ-TOP, MBSIF-TOP, novel LBP and ASF-
TOP) have the following two shortcomings: (1) They are
handcrafted and require strong prior knowledge to design, and
they do not adapt well to new data [29]; (2) They extract local
binary features from three orthogonal planes only, ignoring
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some pixels in the local neighborhood.
Features learned from data have recently shown superior-

ity to handcrafted features [16], [17], [27], [29]–[34]. The
popularity of handcrafted features appears to be overtaken
by learning-based methods, especially by deep convolutional
neural networks (CNNs). However, due to the disadvantages
of CNNs, such as high computational complexity, the require-
ment for substantial training data and the lack of general
invariance, traditional descriptors such as LBP and LBP-TOP
are still irreplaceable. A recent thorough experimental study
[20] demonstrated that advanced LBP and LBP-TOP variants
still perform on par or better than recent deeply learned fea-
tures in many practical scenarios, especially for problems with
limited training data, such as the micro-expression recognition
problem. To the best of our knowledge, no large-scale DT
database exists for now, which limits the full utilization of
deep CNN techniques. Fortunately, with the advent of modern
deep learning techniques, research on local descriptors has
seen a renaissance, with the development of learnable local
feature descriptors [16], [17], [26], [27], [29]–[32], [35], [36]
being an area of particular interest. Notable examples include
binarized statistical image features (BSIF) [31], simultaneous
local binary feature learning and encoding (SLBFLE) [36],
MBSIF-TOP [16], and orthogonal tensor dictionary learning
(OTDL) [17]. On the other hand, although recent learning-
based local binary feature extraction methods, such as MBSIF-
TOP [16] and MPCAF-TOP [27], have achieved encouraging
DT classification performance and outperformed LBP-TOP,
they also extract features from three orthogonal planes of DT
videos. The multiscale 2D filters used in MBSIF-TOP [16] and
MPCAF-TOP [27] are learned separately from images on three
orthogonal planes. In these two methods, only a proportion of
the surrounding pixels of a given pixel are utilized for feature
extraction, which may result in information loss.

Therefore, in this paper, we question the dominant role
that three-orthogonal-planes-based methods (e.g., LBP-TOP,
MBSIF-TOP, and novel LBP) play in the field of DT classi-
fication. Instead of extracting binary features for only three
orthogonal planes, we develop an alternative feature represen-
tation based on the point distribution of all pixels in a local
3D neighborhood. To this end, we propose to use learned 3D
filters to extract local DT features, which are further encoded
via binary encoding. Specifically, we propose a binarized
3D feature (B3DF) extraction method that comprises three
components: (1) 3D filtering, (2) binary hashing, and (3)
joint histogramming. Densely sampled 3D blocks of a DT
are first normalized to have zero mean and are then filtered
by 3D filters that are learned in advance. To preserve more
of the structure information, the filter response vectors are
decomposed into two complementary components, namely, the
signs and the magnitudes, which are further separately encoded
into binary codes. The local mean pixels of the 3D blocks are
also encoded into binary codes. Finally, three types of binary
codes are combined via joint or hybrid histograms for the final
feature representation. As for filter learning, four widely used
unsupervised filter learning techniques (principal component
analysis (PCA), independent component analysis (ICA), sparse
filtering (SF) [37] and k-means clustering [38]) are considered.

To the best of our knowledge, whether using 3D filtering
with local binary encoding is beneficial for DT classification
has not been explored. Although the techniques used in the
proposed method are simple, our work fills this gap and thus
can be used as a baseline for similar future studies. Compared
with the existing TOP-based local binary feature extraction
methods, the proposed approach has three benefits: (1) As 3D
filters operate in the spatial and temporal dimensions at the
same time, the motion and spatial appearance are captured
simultaneously; (2) Only one set of filters, instead of three sets,
must be learned; (3) Considerable improvement is obtained
due to the use of a simple filter learning technique.

The remainder of this paper is organized as follows. Related
work is introduced in Section II. Details of the proposed B3DF
are given in Section III. Experimental results and comparisons
are presented in Section IV. Finally, the conclusions are
presented in Section V.

II. RELATED WORK

Since DT classification has been studied for many years,
plenty of methods have been reported in the literature. Ac-
cording to whether the underlying dynamic system is modeled,
those methods can be roughly categorized into generative
methods and discriminative methods. In addition, we separate-
ly categorize deep-learning-based DT classification methods
into a single class. The proposed approach belongs to the
discriminative category; therefore, in the following part of this
section,we focus on the recent studies in this category that are
most relevant to our work.

A. Generative Methods

The methods in this category attempt to estimate the under-
lying system that generates DTs from a number of training
DTs. Then, the estimated system parameters are used for
DT classification and synthesis. Two representative models
are the spatio-temporal autoregressive (STAR) model [1], [2],
[39], [40] and the linear dynamical system (LDS) model
[2], [13], [41]–[44]. Despite the success these methods have
achieved, they are impractical for the following reasons [45]:
(1) The model-estimation process is time consuming; (2) The
assumption of well-segmented DTs does not always hold; and
(3) The similarity measure for two models is not easy to define.
Recently, Baktashmotlaghet al. [46] assumed that a video
is generated by a linear combination of stationary sources
and nonstationary sources. Then, they proposed discriminative
nonlinear stationary subspace analysis to separate the station-
ary part of a DT from the nonstationary part and used the
former for DT classification. Duboiset al. [47] adopted 2D+T
curvelet transform to decompose a DT into local oscillating
phenomena and nonlocal wavefronts for DT classification.

B. Discriminative Methods

Because there are many approaches in this category, for
clarity, we further group the methods into four subcategories
according to the techniques used: optical-flow-based methods,
fractal-analysis-based methods, LBP-based methods, and 3D-
filtering-based methods. As the proposed method utilizes 3D
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filtering and binary encoding, we emphasize the introduction
of the last two subcategories.

Optical flow was used in early studies to model motion pat-
terns in DTs [48], [49]. For example, Luet al. [48] proposed
to characterize DTs through spatio-temporal multiresolution
histograms based on velocity and acceleration fields. One
drawback of methods based on optical flow estimation is that
the assumed properties of local smoothness and brightness
consistency are generally difficult to justify [50]. On the
basis of the observation that DTs have self-similarities across
multiple scales (this property is referred to as fractal structure
[51]), Xu et al. [14] proposed the dynamic fractal spectrum
(DFS) for DT description. Later, they extended DFS and
proposed two new methods: 3D oriented transform feature
(3D-OTF) [52] and wavelet domain multiple fractal spectra
(WMFS) [15]. One advantage of fractal-analysis-based meth-
ods is their robustness to environmental changes; however,
when the scenes in DTs are complex, the local stochastic self-
similarities are weakened, and the performance is poor.

LBP was applied to extract features from each frame of a
DT video [53], [54]. Ghanem and Ahuja [53] proposed to learn
feature-specific weights for LBP histograms and two other
types of features through maximum margin distance learning
(MMDL). The final similarity between two DTs was defined
as the weighted sum of their three feature-specific distances.
Ren et al. [54] argued that the performance of LBP for DT
classification was limited by the reliability issues of LBP
histograms and thus proposed to apply PCA on patchwise LBP
histograms to learn more reliable features for DT classification.

Zhao and Pietikäinen [8] extended the original LBP to
a spatio-temporal descriptor (i.e., VLBP), in which several
pixels in a local volume were sampled and thresholded by their
center pixel and then encoded into a binary string. VLBP has
a dimensionality issue, but it is effective for DT classification.
Later, Renet al. [55] proposed the maximal joint mutual
information criterion to select discriminative VLBP patterns
rather than directly using the predefined structures. Tiwari and
Tyagi [56] proposed a completed version of VLBP (CVLBP)
by incorporating VLBP with both the magnitude information
and the center pixel information. Zhaoet al. [18] extended
the local binary count (LBC) pattern to the spatio-temporal
domain for DT classification, resulting in a descriptor named
volume LBC (VLBC). Given the same number of sample
pixels, the feature dimensionality of VLBC is much smaller
than that of VLBP. They also proposed a completed version
of VLBC (CVLBC) to enhance performance.

Another important extension of LBP to the spatio-temporal
domain, LBP-TOP, was proposed by Zhao and Pietikäinen [8]
in 2007. Since then, many TOP-based methods [16], [22]–[25],
[27] have been reported in the literature. Rahtuet al. [22]
applied local phase quantization on three orthogonal planes
for DT description. Chenet al. [23] applied the Weber local
descriptor [57] in a similar way for DT segmentation. Tiwari
and Tyagi [25] viewed a DT as three image sequences and
combined LBP with Michelson contrast [28] and center pixel
information in each image sequence. Then, the concatenated
feature was used for DT classification. Harandiet al. [58]
applied sparse coding on Grassmann manifolds to learn a

dictionary (the kernelized version was named KGDL) from
LBP-TOP features. Honget al. [24] argued that LBP-TOP
disregarded the distinct characteristics of each frame, so they
applied k-means clustering to LBP-TOP features to aggregate
the salient features (ASF-TOP) for DT classification. 2D filter
learning has also been utilized for feature extraction from three
orthogonal planes. Arashloo and Kittler [16] first learned three
sets of multiscale 2D filters via ICA and then used those filters
to extract multiscale features for DT representation (MBSIF-
TOP). Zhaoet al. [27] used PCA to learn filters in a manner
similar to that of Arashloo and Kittler, resulting in a DT
representation named MPCAF-TOP.

These LBP-based methods have three drawbacks: (1) Mo-
tion information is not modeled if the LBP features are
extracted from each frame individually; (2) Methods similar to
VLBP or LBP-TOP may not make full use of all the pixels in a
local volume; and (3) Various learning techniques are applied
either to optimize the LBP code structure or to learn 2D filters
instead of learning features by viewing a local volume as a
whole.

3D filtering has also been utilized for DT classification. For
example, Rivera and Chae [59] proposed to use 3D Gaussian-
like compass masks to build a directional transitional number
graph (DNG) for DT representation. Similar works include
[60] and [61]. Note that these methods used predefined filters.
To the best of our knowledge, 3D filter learning has not been
explored for DT classification. We also place the two sparse-
coding-based dictionary learning methods proposed by Quan
et al. [17], [30] in this subcategory. However, it is unclear
why and how they manually chose 27 and 25 dictionary atoms
from the two dictionaries, respectively. Hadji and Wildes [62]
proposed the spatio-temporal oriented energy network (SOE-
NET), which uses 3D Gaussian 3rd-order derivative filters for
convolution and is thus learning-free.

C. Deep Learning Methods

Deep learning has been used for various computer vision
tasks, and good performance has been achieved. Here, we
briefly introduce some works using deep learning for DT
classification. Tayloret al. [63] proposed a convolutional
gated restricted Boltzmann machine to learn spatio-temporal
features. Yanet al. [64] proposed to use cascaded autoencoders
to model videos. Wang and Hu [65] mapped low-level features
to high-level features through a deep neural network. Qiet
al. [66] adopted a well-trained 2D CNN to transfer image
features for DT representation. Arashlooet al. [26] viewed a
DT video as three image sequences and used three multiscale
dual-layer CNNs (PCANet-TOP, using pre-learned 2D PCA
filters) to extract features from each image sequence. Similarly,
Andrearczyk and Whelan [67] trained three CNNs to process
the three image sequences. The final output of these networks
was a global score vector consisting of probabilities. In con-
trast to methods using 2D filters, Tranet al. [68] trained a 3D
CNN (called C3D) for spatio-temporal feature learning. A 3D
CNN [68], [69] generally requires a large dataset for training;
existing DT databases contain a limited number of videos,
which are insufficient to train such a network. Therefore,
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Fig. 1. Illustration of how a zero-mean vector (ZMV) is extracted from a 3D
block of size3 × 3× 3 (top). How LBP-TOP processes the same 3D block
is also shown for comparison (bottom).

traditional descriptors such as LBP and LBP-TOP are still
irreplaceable.

III. T HE PROPOSEDMETHOD

In this section, we present the derivation of the pro-
posed B3DF descriptor, consisting of B3DFS, B3DF M and
B3DF C, given the learned 3D filters. Then, these codes are
used to build hybrid histograms for DT representation. Finally,
we briefly introduce how the 3D filters are learned.

A. B3DF

First, we demonstrate how the proposed method locally
processes a video and compare it with that of LBP-TOP.
Given a pixel in a video, its neighborhood is regarded as
a whole, and all the pixels in the neighborhood (including
itself) are converted into a zero-mean vector (ZMV) for further
processing. Fig. 1 illustrates how B3DF and LBP-TOP process
a 3×3×3 block in a video, respectively. Clearly, all 27 pixels
in the block are used by our method (Fig. 1(a)). However, only
19 pixels are used by LBP-TOP and many other TOP-based
methods (Fig. 1(b)). We argue that the ignored 8 pixels contain
discriminative information and should be exploited to build a
powerful descriptor, which is the main motivation to design
our B3DF.

1) B3DF S: AssumeW = [w1,w2, · · · ,wL] areL vec-
torized 3D filters (how they are learned will be introduced in
Section III-C), wherewl ∈ R

d (1 ≤ l ≤ L, d = k3) is the lth
vectorized 3D filter. In this section, we describe how theseL
filters are used to extract the B3DFS features from DTs.

Here, we view a given DT as a 3D volume of sizeX×Y ×T
in 3D space, whereX × Y is the spatial size andT is the
temporal size. Then, we densely sample 3D blocks of size
k × k × k from the 3D volume (no padding is applied for
border pixels). As shown in Fig. 1(a), wherek = 3, the
raw pixel intensities of ak × k × k cubic neighborhood
around a pixel are taken and reordered to produce a ZMV,
namely,xi, in a d-dimensional feature space,i.e., xi ∈ R

d.

Let mi = 1
d

∑d

j=1 xij . We haveX = [x1,x2, · · · ,xN ] and
m = [m1,m2, · · · ,mN ]T (mi is xm in Fig. 1(a)), where
xn ∈ R

d and mn ∈ R (1 ≤ n ≤ N) are, respectively,
the nth ZMV and its corresponding mean pixel, andN =
(X−⌊k2⌋)× (Y −⌊k2⌋)× (T −⌊k2 ⌋) is the total number of 3D
blocks in the DT video. As the size of the zero-mean 3D block
is the same as that of a 3D filter, the convolution of the zero-
mean 3D block with the 3D filter is equivalent to the scalar
product of their corresponding vectorized versions. Thus,xn

is filtered with theL learned 3D filters via Eqn. (1), resulting
in L filter responsesrn = [rn1, rn2, · · · , rnL]

T ∈ R
L.

rn = W
T
xn (1)

Now, we need to encodern in an appropriate way. In many
existing works [8], [16], [19], [27], [56], [70], [71], the binary
encoding scheme has shown to be an effective way to encode
local features for both static and dynamic texture description.
Additionally, many TOP-based methods [16], [22], [24], [25],
[27] that we target also use binary encoding. Therefore,
to make use of the effective binary encoding scheme and
provide a fair comparison between our method and TOP-based
methods, we adopt the binary encoding scheme to encodern

into a binary string, generating a B3DFS code by

B3DF SL,k =

L
∑

l=1

2l−1s(rnl), (2)

where the notation “S” means the codes are built from signs
ands(x) returns 1 ifx ≥ 0, otherwise 0.

After the encoding process, we haveN B3DF S codes
for the DT. To transform those codes into a compact DT
representation, the statistical distribution of the codes (a2L-
dimensional histogram, denoted asHS) is generated and can
be used for DT classification.

2) B3DF M & B3DF C: In conventional binary encoding
based methods (e.g., [8], [19]), only the sign component is
used for feature encoding. However, Guoet al. [70] showed
that using only the sign component is infeasible because it is
sensitive to noise and different local structures may sometimes
be characterized by the same binary code, which would reduce
the discriminative capacity of the descriptor. Additionally,
they also proved that the magnitude component and center
pixels also contain discriminative information. As a result,
this work has been followed in other papers [18], [56], [71]
for both static and dynamic texture classification, resulting
in significant performance improvement. Moreover, Zhaoet
al. [71] replaced the local center pixel with its local average
gray level to make the feature more robust to noise. We
have a component similar to the local average gray level,
i.e., the local mean pixel, which was previously used for
data normalization. Motivated by these studies, we adopt the
concept of completed modeling to build our completed B3DF,
in which the magnitude component and the mean pixels are
utilized for performance enhancement.

B3DF M As shown by Eqn. (2), the B3DFS feature
encodes only the sign information. To make use of the
magnitudes{|rnl|}Ll=1, we encode them into a binary code
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Fig. 2. Illustration of the feature extraction process of theproposed method.

named B3DFM, where a threshold is used to binarize|rnl|.
For the binarization in a given DT, the threshold is set to the
average value of all the magnitudes in the DT as

µm =
1

NL

N
∑

n=1

L
∑

l=1

|rnl|, (3)

where|x| is the absolute value ofx. As µm is related only to
the magnitudes in one DT (i.e., oneµm is computed for each
DT), it is DT-specific.

After computingµm, the magnitudes{|rnl|}Ll=1 are bina-
rized and then encoded by means of binary encoding through

B3DF ML,k =

L
∑

l=1

2l−1S(|rnl| − µm), (4)

where the notation “M ” means the codes are built from
magnitudes ands(x) is defined in Eqn. (2). Similar to the
B3DF S codes, we build a2L-dimensional histogram of these
B3DF M codes and denote it asHM .

B3DF C In [18], [56], the local center pixels are threshold-
ed against the global mean pixel of a DT to obtain a binary
code, which is beneficial for DT classification. In this paper,
the local center pixel is not treated specially; thus, we threshold
the local mean pixels to generate binary codes. As noted in
[71], using the average local gray level is superior to using
the center pixel directly; thus, we use the average value of all
the mean pixels in a DT as the threshold

µc =
1

N

N
∑

n=1

mn. (5)

As we need to compute oneµc for each DT, it is also DT-
specific. Then, we have

B3DF Ck = s(mn − µc), (6)

where the notation “C” means that the codes are built from
local mean pixels.

B. Hybrid Histograms for DT representation

The feature extraction process is illustrated in Fig. 2. As
shown in the figure, we obtain three different binary codes
(B3DF S, B3DF M and B3DF C) after the code gener-
ation stage. We have already extracted two 1D histograms (HS

andHM ) from the former two types of codes. However, the
three types of codes should be combined to make use of the
different discriminative information they convey. A 3D joint
histogram was used to integrate the three different types of
information in [18]. If we used the same method here, we
would obtain a22L+1-dimensional feature vector, which is
not practical for real-world applications. Rather than building
a 3D joint histogram, we build two 2D joint histograms of
2L+1 bins,

HSC(i, j) =
∑

x,y,t

I{B3DF S = i ∧B3DF C = j},

HMC(i, j) =
∑

x,y,t

I{B3DF M = i ∧B3DF C = j},
(7)

where i is an integer between0 and 2L − 1; j is 0 or 1;
the symbol∧ means “and”; and B3DF S, B3DF M and
B3DF C are the codes at location(x, y, t).

The spatial and temporal dimensions of a DT can affect
the computation of the similarities among different DTs.
For example, suppose there are two DTs belonging to the
same class, one of size50 × 50 × 50 and the other of
size 150 × 150 × 150. Although they are captured from the
same scene, the Chi-square statistic of their corresponding
histograms could be large, which may cause misclassification.
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Therefore, we need to normalize the aforementioned 1D (HS

and HM ) and 2D (HSC and HMC ) histograms to generate
coherent representations. Specifically, the sum of all the bins
in a histogram is first calculated; then, each bin is divided by
the sum as

H1D(j) =
H1D(j)

∑

j′ H1D(j′)
,

H2D(i, j) =
H2D(i, j)

∑

i′,j′ H2D(i′, j′)
.

(8)

For the ease of computing the dissimilarity of two DTs,
we further vectorizeHSC andHMC . Then, we concatenate
HSC andHMC as another type of DT descriptor (denoted as
HSMC ) to combine all three types of features. The dimension
is 2L+2. Moreover, we also consider the concatenation ofHS

andHM (denoted asHSM ) for DT classification.

C. 3D Filter Learning

The proposed method has one prerequisite: a set of 3D
filters must be learned in advance from training data. When
choosing a filter learning technique, the fact that the number
of videos in most DT databases is limited must be considered.
As a result, we find four representative unsupervised filter
learning techniques (PCA, ICA, sparse filtering and k-means
clustering) that work well with small datasets. To the best
of our knowledge, these four filter learning methods were
developed to learn 2D filters and have not been utilized to
learn 3D filters. We believe that applying these filter learning
methods to learn 3D filters for DT classification and comparing
their performance is meaningful for future research in the
field of DT analysis. We will briefly introduce the four filter
learning processes in the following.

Training Data We follow the sampling scheme in [17] to
obtain the data for filter learning. Quanet al. [17] randomly
sampled 2000 3D patches from each DT class in the training
dataset. Note that data in the test dataset are not used for
dictionary learning. Therefore, suppose there areC classes in
the training dataset. We randomly sampleM = 2000C 3D
blocks of sizek × k × k from the training dataset for filter
learning. As a result,M ZMVs are obtained. These ZMVs are
formed into a matrixX = [x1,x2, · · · ,xM ] ∈ R

d×M for 3D
filter learning.

PCA The L vectorized filters are the firstL eigenvectors
(sorted in descending order with respect to their corresponding
eigenvalues) of the covariance matrixXX

T . For more details,
please refer to [26] or [27].

ICA we first need to compute a whitening matrixZ
consisting of the firstL rows of D−

1

2E
−1 for dimension

reduction and data whitening, whereD and E are obtained
through eigendecomposition (XX

T = EDE
−1). Then, an

orthogonal matrixU can be estimated from the whitened data
ZX via ICA. Finally, theL vectorized filters are obtained by
W = (UZ)T . More details can be found in [31] and [16].

Sparse filtering The L vectorized filters (W) are first
randomly initialized. SupposeF(i)

j = wj
T
xi is thejth feature

value of samplexi, where1 ≤ j ≤ L and1 ≤ i ≤ M . Then, a

Fig. 3. DT examples from the UCLA (top), DynTex (middle) and YUVL
(bottom) databases.

two-step normalization is applied: 1)̃Fj = Fj/||Fj ||2 and 2)
F̂

(i) = F̃
(i)/||F̃(i)||2. Finally, W is obtained by optimizing

the objectivemin
W

∑N

i=1||F̂
(i)||1 in an iterative manner. The

work in [37] explains the theory.
K-means clusteringWe follow the work in [38] with

one difference: only zero-mean normalization is applied for
data preprocessing. TheL vectorized filters (W) are first
randomly initialized. We denote the feature matrix asF,
and F

(i)
j is the jth feature value of samplexi, where

1 ≤ j ≤ L and 1 ≤ i ≤ M . Then, W is obtained
by iteratively running the following three-step process: 1)

F
(i)
j =

{

w
T
j xi if j = argmax

l

|wT
l xi|

0 otherwise
, 2)W = XF

T+W,

and 3)wj = wj/||wj ||2, ∀j.

IV. EXPERIMENTS

In this section, we present a detailed experimental evaluation
of the proposed approach for DT classification. We use the
nearest neighbor (NN) classifier or the nearest class center
(NCC) classifier with Chi-square distance to evaluate the
performance of the proposed method. We believe that a more
advanced classifier such as SVM could further improve the
classification performance. However, we deliberately use the
NN or NCC classifier to emphasize the contribution of the
proposed B3DF descriptors. The classification accuracies of
our method are compared with those of the state-of-the-art
approaches.

A. Experimental Setup and Implementation Details

1) DT Data Three DT databases are adopted,i.e., the
UCLA database [2], the DynTex database [72] and the YUVL
database [50]. Frames from several typical DTs (flower, tree,
flame, water,etc.) are shown in Fig. 3. Because few DT
databases exist, these three databases have been refined and
recompiled by many researchers to generate additional datasets
for evaluation under various protocols. Details about these
datasets and evaluation protocols will be described later. When
evaluating our method, all the DT videos are converted to
grayscale videos.

UCLA database:The UCLA database contains 200 DT
videos from 50 classes, with four videos in each class. Each
video consists of 75 frames of size160×110. In this paper, we
use a preprocessed version1 of this database, in which all the
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videos are cropped to frames of size48×48 such that the key
dynamic features are captured. Following [18], we use five
popular evaluation protocols, in which the videos in UCLA
are regrouped. The details of the five protocols are presented
below.

Protocol 150-class leave-one-out classification: Each time
one of the 200 DT videos is used for testing and the remaining
199 are used for training.

Protocol 2 50-class fourfold cross validation: For each
class, three of the four videos are used for training, and the
remaining one is used for testing. To ensure that each of
the four videos is used as a test video one time, four split
schemes are predefined1 and this experiment is repeated four
times. The average accuracy of the four experiments is the
final performance indicator.

Protocol 3 9-class breakdown: In protocols 1 and 2, some
videos from different classes can be semantically categorized
into the same class. Thus, in this protocol, all 200 videos
are regrouped into nine classes, which are smoke (4), fire
(8), boiling water (8), water (12), flowers (12), sea (12),
waterfall (16), fountains (20), and plant (108), where the
number in parentheses denotes the number of videos in each
class. For DT classification, 50% of the videos in each class
are randomly selected for training, and the rest are used for
testing. To assess the statistical significance, we repeated the
experiment over 20 random partitions of the training and test
sets.

Protocol 4 8-class breakdown: As more than one-half of
the 200 videos belong to the plant class in protocol 3, the
8-class breakdown is obtained by removing the plant class.
The experiment is performed in a similar way as the 9-class
breakdown. We use the same data split scheme and repeat the
experiment 20 times.

Protocol 5shift-invariant evaluation: To test the translation
invariance, each DT video is clipped into two non-overlapping
left and right halves to remove the effect of identical view-
points. There are two settings for this protocol: using 39
classes [73] and using 50 classes [61]. We choose the latter in
this paper. Moreover, as the method used to crop the videos is
unknown, we simply cut each video in the middle, resulting in
a left half and a right half of equal size. In the evaluation, two
experiments are conducted, one using the left-half data for
training and the other using the right-half data for training.
In each experiment, the remaining data are used for testing.
Finally, the two classification rates are averaged as the final
performance indicator.

Additionally, the NN classifier is used in all five evaluation
protocols.

DynTex database:The DynTex database is a large dataset
that contains more than 650 high-quality videos. Usually, only
a portion of the dataset is chosen for DT classification. Five
compilations of this dataset have been widely used in the
literature.

DynTex-35 This dataset is an old version of the DynTex
database, consisting of 35 videos. Each video belongs to a
unique class and contains 250 frames of size400 × 300. As

1http://www.bernardghanem.com/datasets

only one video is included in each class, the work in [8]
proposed to crop each video into 10 subvideos of different
sizes. Specifically, each video is cropped at the point where
x = 170 (horizontal direction),y = 130 (vertical direction)
and t = 100 (time direction). Together with another two
subvideos obtained by cutting att = 100, we obtain 10
subvideos for each DT video. For classification, a leave-one-
group-out2 scheme is used with the NN classifier and the NCC
classifier. When the NCC classifier is used, the features of the
9 training DT videos in each class are averaged as the class
center, and a test video is classified according its similarity to
the class center.

DynTex++This dataset [53] is recompiled from 345 videos
of the DynTex database. Those videos are preprocessed and
cropped into videos of size50×50×50. The processed videos
are grouped into 36 categories, each with 100 videos. For the
evaluation, we follow the work in [53]: 50% of the videos
in each class are randomly chosen for training, and the rest
are used for testing. The test videos are classified with the
NN classifier. This experiment is repeated 10 times, and the
classification rates are averaged as the final result.

Alpha This dataset contains 60 videos from the DynTex
database that are categorized into 3 classes: sea, grass, and
trees.

Beta This dataset consists of 162 videos, which belong to
10 classes: sea, vegetation, trees, flags, calm water, fountains,
smoke, escalator, traffic, and rotation.

GammaThis dataset is composed of 275 videos from the
DynTex database. The videos belong to 10 classes: flowers,
sea, naked trees, foliage, escalator, calm water, flags, grass,
traffic, and fountains.

Details about the compilations of the Alpha, Beta and Gam-
ma datasets are available on the homepage3 of this database.
All the videos in the three datasets contain 250 frames of
size 352 × 288. For the evaluation, we use the leave-one-
out classification scheme with the NCC classifier and the NN
classifier.

YUVL database: The YUVL database4 contains 610
videos of various resolution, temporal extents and frame rates.
The authors [50] provided two ways to partition the videos:
(1) basic-level (denoted as YUVL1) and (2) subordinate-level
(denoted as YUVL2). Another compilation (named YUVL3)
was introduced in [62].

YUVL1 According to the space time orientations present in
a given pattern, all 610 videos are grouped into five classes:
heterogeneous and isotropic, unconstrained, underconstrained,
dominant, and multi-dominant.

YUVL2 Videos belonging to the two classes unconstrained
and multi-dominant in YUVL1 are discarded. Each of the
remaining three classes are further divided into two subclass-
es, resulting in six classes: flicker, aperture problem, single
oriented, non-single oriented, wavy fluid, and stochastic.

YUVL3 Videos of the two omitted classes in YUVL2 are
included, resulting in an 8-class dataset.

2Videos of the same size belong to a group.
3http://dyntex.univ-lr.fr
4http://vision.eecs.yorku.ca/research/spacetime-texture-data/
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According to the existing work [62], which conducted
experiments on the YUVL database, the leave-one-out clas-
sification scheme with the NN classifier is adopted.
2) Parameter Setting The proposed method has four key
parameters,i.e., the number of 3D blocks for filter learning
(M ), the 3D block size (k), the number of filters (L), and the
filter learning method (PCA, ICA, sparse filtering or k-means).
We use the same sampling scheme as that in [17]: 2000 3D
blocks from each of theC DT classes in the training dataset
are randomly sampled, resulting inM = 2000C 3D blocks in
total. Fork andL, we empirically choosek ∈ {3, 5, 7, 9, 11}
and L ∈ {6, 8, 10, 12, 14} to evaluate the proposed method.
To identify good choices ofk, L and filter learning method,
we evaluate the proposed method with various parameter
settings with one protocol from each of the UCLA and DynTex
databases.
3) Efficient Implementation As shown in Fig. 2, we must
traverse each pixel in a given DT to obtain the ZMVs and mean
pixels. This traversing process can be very time consuming
and may make the proposed method impractical for some
real-world applications. However, Fig. 2 is drawn only for
illustrative purposes; we implement the proposed method in
a very efficient way. Specifically, all the mean pixels are
obtained by filtering a DT with an average filter of size
k × k × k, and Eqn. (1) is equivalent to filtering the DT
with the mean-removed filters. Here, we briefly prove this
result. Supposewl is the mean-removed version ofwl and
m wl =

1
d

∑d

i=1 wli; then, we can filter the original 3D block
(xn +mn) with wl as

w
T
l (xn +mn) =

∑d

j=1[(wlj −m wl)(xnj +mn)]

=
∑d

j=1wljxnj +mn

∑d

j=1 wlj

−m ml

∑d

j=1xnj −mn

∑d

j=1m ml.

(9)

BecausewT
l xn =

∑d

j=1 wljxnj ,
∑d

j=1 m ml =
∑d

i=1 wli

and
∑d

j=1 xnj = 0, Eqn. (9) is the same aswT
l (xn +mn) =

w
T
l xn. Thus, Eqn. (1) is equivalent to filtering the DT with

the mean-removed filters. Additionally, Eqns. (2)–(6) contain
mainly element-wise operations and summations of matrix
elements, which can be conducted directly on 3D matrices.
Therefore, we implement the proposed method efficiently
through 3D filtering with mean-removed 3D filters, thereby
avoiding the time-consuming ZMV extraction process. The
computational complexities of the inefficient implementation
(i.e., traversing each pixel in a DT) and the efficient imple-
mentation are compared in Section IV-D.

B. Experimental Test

In this section, we study how the choices ofk (the 3D
block size),L (the number of 3D filters needed) and the
filter learning method affect the DT classification performance.
Specifically, we choose the UCLA 8-class breakdown dataset
(protocol 4) and the DynTex Gamma dataset for the parameter
evaluation. The reason for choosing these two datasets is that,
according to previous works, each is relatively challenging in
the corresponding database.

Fig. 4. Performance of B3DFS with k = 7 and varyingL on (a) the UCLA
8-class breakdown dataset and (b) the DynTex Gamma dataset.

First, we consider the choice ofL, the number of 3D filters,
while keeping the 3D block size constant at7 × 7 × 7 (i.e.,
k = 7). Fig. 4 presents the classification accuracy overL for
all four filter learning methods. From Fig. 4, we make the fol-
lowing observations. Generally, the classification performance
increases with increasingL. The value ofL has a greater
impact on the DynTex Gamma dataset than on the UCLA
8-class breakdown dataset, except when the sparse filtering
method is used. When using sparse filters, the classification
rate on both datasets increases rapidly. Overall, PCA, ICA
and sparse filtering achieve the best performance withL = 14,
whereas k-means clustering performs best withL = 12. Note
that we do not present results forL > 14 because a larger
L produces longer feature vectors, which make the proposed
method impractical for real-world applications.

Then, we fixL = 10 and perform experiments with varying
k to study how the 3D block size affects the classification
performance of B3DFS. Fig. 5 presents the results. From

Fig. 5. Performance of B3DFS with L = 10 and varyingk on (a) the
UCLA 8-class breakdown dataset and (b) the DynTex Gamma dataset.
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TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED FEATURES ON THE

UCLA 8-CLASS BREAKDOWN AND DYNTEX GAMMA DATASETS

Filter Feature Classification Rate(%)
Type Type UCLA Prot. 4 DynTex Gamma

PCA
B3DF S 95.43 69.32
B3DF SM 97.39 70.08
B3DF SMC 97.50 71.21

ICA
B3DF S 96.30 81.44
B3DF SM 98.15 69.32
B3DF SMC 98.15 72.73

Sparse
B3DF S 94.78 76.89
B3DF SM 97.93 65.15
B3DF SMC 98.37 70.83

K-means
B3DF S 95.43 62.88
B3DF SM 96.96 61.36
B3DF SMC 97.72 67.05

Fig. 5, we can observe the following. Generally,k has a much
stronger effect on the DynTex Gamma dataset than on the
UCLA 8-class dataset. On the DynTex Gamma dataset, the
classification performance first increases with increasingk and
then decreases for all four filter learning methods. However,
on the UCLA 8-class breakdown dataset, the effect ofk is
different. For the UCLA DT textures, in the case of sparse
filtering, the classification performance decreases rapidly with
increasingk. While for the other three filter learning methods,
the classification performance fluctuates with increasingk,
although the performance fluctuation is modest.

To choose an appropriate(L, k) pair, we should consider
Fig. 4 and Fig. 5 as a whole. According to Fig. 4, we should
learn 14 PCA filters, 14 ICA filters, 14 sparse filters, and 12 k-
means filters. For value ofk, a good trade-off can be achieved
by setting the value ofk according to Fig. 5(b) because the
fluctuation range in Fig. 5(b) is larger than that in Fig. 5(a).
As a result, the(L, k) pairs for PCA, ICA, sparse filtering
and k-means clustering are(14, 7), (14, 7), (14, 9) and(12, 5),
respectively.

After determiningL and k for each filter type, we as-
sess the performance of different filter learning methods
and different feature combinations. The results are given in
Table I, from which we can observe the following. First,
on the UCLA 8-class breakdown dataset, B3DFSMC shows
better performance than B3DFSM, which in turn outperforms
B3DF S, regardless of how the filters are learned. Four
types of B3DFSMC features provide similar results (the
difference is less than 1%). However, the situation differs for
the DynTex Gamma dataset. Except when using PCA filters,
B3DF SM gives worse results than B3DFS and B3DFSMC,

Fig. 6. ICA filters learned from the UCLA 50-class breakdown dataset. Each
column shows 7 slices from a 3D filter of size7× 7× 7.

TABLE II
PERFORMANCE COMPARISON OFB3DF WITH OTHER METHODS ON THE
UCLA DATABASE UNDER FOUR DIFFERENT EVALUATION PROTOCOLS

(THE HIGHEST CLASSIFICATION RATES UNDER EACH PROTOCOL ARE

HIGHLIGHTED IN BOLD)

Method Classification Rate(%)
Prot. 1 Prot. 2 Prot. 3 Prot. 4 Prot. 5

AR-LDS [40] 89.50 - - - -
KDT-MD [41] - 89.50 - - -
BoS [13] - - - 70.00 -
DL-PEGASOS [53] - 99.00 95.60 - -
HEM [43] - 96.45 96.63 - 56.40
L2 Bhattacharyya [50] 81.00 - - - 42.30
DFS [14] - 89.50 - - -
3D-OTF [52] - 99.25 96.32 95.80 67.40
WMFS [15] - - 96.95 97.18 61.20
DNG [59] - - 98.10 97.00 -
OTDL [17] - 98.50 97.50 97.00 68.60
EKDL [30] - - 98.60 - -
High-level feature [65] - - 92.67 85.65 -
VLBP [8] - 89.50 96.30 91.96 -
CVLBP [56] - 93.00 96.90 95.65 -
CVLBC [18] 99.50 99.50 99.20 99.02 -
LBP-TOP [8] - 94.50 96.00 94.34 -
MBSIF-TOP [16] 99.50 99.50 98.75 97.80 -
Novel LBP [25] 95.00 95.00 98.35 97.50 -
MPCAF-TOP [27] 99.50 99.50 99.15 98.26 -
PCANet-TOP [26] - 99.50 - - -
DT-GoogleNet [67] - 99.50 98.35 99.02 -
B3DF S 99.00 99.00 97.95 96.30 46.00
B3DF SM 98.50 98.50 99.05 98.15 67.25
B3DF SMC 99.50 99.50 98.85 98.15 66.25

and B3DF S using ICA filters is significantly better than all
the other features. After a comprehensive consideration of the
results in Table I, we believe that B3DF using ICA filters is
the best choice. Therefore, we learn 14 ICA filters of size
7 × 7 × 7 for feature extraction (i.e., the parameters of the
proposed method are fixed to using ICA withL = 14 and
k = 7). As an example, Fig. 6 illustrates the 14 3D ICA
filters learned from the UCLA 50-class breakdown dataset.

C. Comparative Evaluation

In this section, we compare the proposed method with
various existing methods, especially those that extract features
from three orthogonal planes. The parameter settings for
our method were determined in the previous section. Unless
otherwise stated, the classification accuracies of the compared
methods are quoted directly from the original papers.
1) Results on the UCLA databaseThe results of the proposed
method and those of 22 published approaches (including
recent state-of-the-art methods) are presented in Table II.
Notably, most of the results in Table II were obtained using
an NN classifier, with several exceptions: DL-PEGASOS [53]
used MMDL+NN; high-level feature [65] and EKDL [30]
used a kernel SVM; and DT-GoogleNet [67] used a softmax
classifier. Additionally, the results of VLBP and LBP-TOP
under protocols 2 and 4 are from [56] while those under
protocol 3 are from [25].

From Table II, we make the following observations. First,
in comparison with 22 DT classification methods in the
literature, the proposed B3DFSMC achieves state-of-the-art
performance on protocols 1 and 2 and produces high classifi-
cation rates very close to the best results on protocols 3, 4 and
5. The overall best results under protocols 1–4 are produced by
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TABLE III
PERFORMANCE COMPARISON OFB3DF WITH OTHER METHODS ON THEDYNTEX DATABASE (THE HIGHEST CLASSIFICATION RATES UNDER EACH

PROTOCOL ARE HIGHLIGHTED IN BOLD)

Method
Classification Rate(%)

DynTex-35 DynTex++ Alpha Beta Gamma
NCC NN NN/SVM NCC NN NCC NN NCC NN

DL-PEGASOS [53] - - 63.70S - - - - - -
HEM [43] - 98.60 - - - - - - -
DFS [14] 97.63 - 89.90S 83.60 - 65.20 - 60.80 -
3D-OTF [52] 96.70 - 89.17S - - - - - -
WMFS [15] 96.50 - 88.80S - - - - - -
DNG [59] - - 90.20N - - - - - -
KGDL [58] - - 92.80S - - - - - -
2D+T [47] - - - 85.00 - 67.00 - 63.00 -
OTDL [17] 97.80 99.00 94.70S 86.60 - 69.00 - 64.20 -
EKDL [30] - - 93.40S - - - - - -
High-level feature [65] - - 69.00S - - - - - -
PHA+LBP [54] - - 91.90N - - - - - -
VLBP [8] 81.14 - 87.35N - - - - - -
CVLBP [56] 85.14 - - - - - - - -
CVLBC [18] - 98.86 91.31N - - - - - -
LBP-TOP [8] 97.14 - 89.50N - 86.67 - 80.86 - 81.44
LPQ-TOP [22] - - 95.00N - - - - - -
MBSIF-TOP [16] - 98.61 97.17N - 90.00 - 90.70 - 91.30
ASF-TOP [24] - 97.14 95.40N - 91.67 - 86.42 - 89.39
Novel LBP [25] - 98.57 96.28N - - - - - -
MPCAF-TOP [27] 96.73 99.59 96.52N 86.67 96.67 71.60 91.36 67.42 89.02
B3DF S 97.71 100 94.80N 90.00 96.67 74.07 88.27 81.44 90.53
B3DF SM 98.00 99.71 95.90N 86.67 96.67 68.52 90.12 69.32 89.39
B3DF SMC 96.57 99.71 95.58N 86.67 95.00 72.22 90.12 72.73 90.91
C3D [68] - - - 100 100 95.68 99.38 96.21 96.97
SOE-NET [62] 93.10 97.70 94.40S 96.70 98.30 86.40 96.90 80.30 93.60
(Note: the superscript “S” stands for SVM, and “N” stands for
NN.)

the CVLBC method, which is learning-free. However, the poor
performance of CVLBC on the DynTex++ dataset, as shown
in Table III, demonstrates its limited generalization capability
since it does not involve a learning procedure. The OTDL
method, which has a very complex learning process, performs
best under the very challenging protocol 4, outperforming our
method by a modest 1.35%.

Second, among the methods with a learning process, in-
cluding the proposed method, MBSIF-TOP [16], PCANet-
TOP [26], and MPCAF-TOP [27] generally outperform those
methods without a learning process, such as LBP-TOP [8]
and novel LBP [25]. This result again shows the benefit of
learning.

Third, among the three learning-based methods,i.e., the
proposed method, MBSIF-TOP [16] and MPCAF-TOP [27],
the proposed method performs second best, only slightly
worse than MPCAF-TOP. However, our method outperforms
MPCAF-TOP on datasets of large videos (i.e., DynTex-35,
DynTex-Alpha, DynTex-Beta, and DynTex-Gamma), as shown
in Table III. Moreover, MPCAF-TOP learns 2D filters from
densely sampled 2D patches, the number of which is much
larger than that of the 3D blocks we require. Taking protocol
2 as an example, MPCAF-TOP uses approximately 7.5 million
2D patches at each scale (5 scales in total) for filter learning,
whereas our method needs only 0.1 million 3D blocks. Despite
the slight performance advantage (less than 0.3%) of MPCAF-
TOP over our method, we believe the proposed method is more
practical than MPCAF-TOP.

2) Results on the DynTex databaseThe performance com-

parison of the proposed method and 23 published approaches
is shown in Table III. Some methods were not originally
evaluated on this database, and their results were reported
by other researchers. For the DynTex-35 dataset, the results
of VLBP and LBP-TOP are from [56] and [14], respectively.
For the DynTex++ dataset, DL-PEGASOS used MMDL+NN.
The results of LBP-TOP on DynTex-35 and DynTex++ are
from [16], and those of WMFS are from [17]. The VLBP
results are obtained by us using VLBPriu2. For the Alpha, Beta
and Gamma datasets, the results of DFS are from [17], and
those of LBP-TOP are from [24]. Except for the DynTex++
dataset, the results of MPCAF-TOP are provided by us. As
C3D [68] requires color videos as inputs, we evaluate it only
on the Alpha, Beta and Gamma datasets. Specifically, we first
resize the videos to frames of size112 × 112 and then use
the C3D network pretrained on the Sports-1M dataset [74]
for feature extraction, resulting in a 4096-dimensional feature
vector. Please refer to [68] for details. In contrast to the Chi-
square distance we use, the similarity between two C3D [68]
features is the Euclidean distance and that between two SOE-
NET [62] features is the Bhattacharyya coefficient. However,
the features are classified by the same classifiers,i.e., the NCC
classifier and NN classifier.

From Table III, we can make the following observations.
In comparison with 14 existing methods on the DynTex-
35 dataset, the proposed method achieves the state-of-the-
art performance with either the NN or NCC classifier, out-
performing even the learning-free network-based approach
(i.e., SOE-NET [62]) with notable improvement. The learning-
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based methods, such as OTDL [17], MPCAF-TOP [27] and
B3DF SM, generally outperform the learning-free methods,
including LBP-TOP [8] and novel LBP [25].

On the DynTex++ dataset, the proposed B3DFSM outper-
forms all the methods (including SOE-NET [62] and OTDL
[17]) that were evaluated with the SVM classifier and performs
the fourth best when using the NN classifier. Specifically, the
learning-based MBSIF-TOP [16] and MPCAF-TOP [27] out-
perform the proposed method by 1.27% and 0.62%, respective-
ly, the novel LBP method outperforms the proposed method by
0.38%. We believe the reason for this performance difference
may be that only 40 3D blocks, on average, are sampled from
each DT video because there are 50 DT videos per class in
the DynTex++ dataset used for filter learning. Overall, the
learning-based methods provide better performance than the
learning-free methods.

On the Alpha, Beta and Gamma datasets, only six existing
approaches have been evaluated with the NCC classifier. With
the exceptions of C3D [68] and SOE-NET [62], our proposed
B3DF S outperforms the learning-based methods (OTDL [17]
and MPCAF-TOP [27]) and learning-free methods (2D+T [47]
and DFS [14]), with substantial improvements, demonstrating
the superiority of the proposed method. When using the NN
classifier, C3D and SOE-NET again show better performance
than the other methods. Our approach has similar performance
to that of the best non-network-based methods. Moreover,
B3DF S performs better than the other features. We believe
that including B3DFM or B3DF C would model more in-
traclass variation and thus degrade the performance because
the dynamic scenes in the Alpha, Beta and Gamma datasets
are very complex. Now, we compare the proposed method
with the two network-based approaches (C3D requires training
and SOE-NET is training-free). C3D performs the best on
all three datasets, with a large improvement over our method
and SOE-NET. On the Alpha and Beta datasets, SOE-NET
performs much better than our method. However, our B3DFS
slightly outperforms SOE-NET by 1.14% when using the
NCC classifier on the Gamma dataset. Therefore, in some
situations, our simple learning-based method is comparable
to the learning-free network-based SOE-NET. On the other
hand, the proposed method still has some advantages in terms
of the practicality of B3DF, SOE-NET and C3D, especially
in resource-restricted scenarios, because B3DF requires much
less training data and computational resources.

3) Results on the YUVL databaseAs this database has
not been widely adopted for performance evaluation, only C3D
and SOE-NET have been evaluated on it (the results of C3D
were reported in [62]). The performance comparison on the
YUVL database is reported in Table IV. From Table IV, we
can observe the following: 1) SOE-NET achieves the best
performance on all three datasets; 2) The proposed B3DFS
outperforms C3D on the YUVL1 and YUVL3 datasets while
C3D outperforms B3DFS on the YUVL2 dataset; and 3)
Including magnitude and center pixel information slightly
degrades the performance of the proposed method. The reason
C3D does not produce better results may be that it is trained
with external data; thus, the method does not learn from the
data in the YUVL database. Although SOE-NET also does not

TABLE IV
PERFORMANCE COMPARISON OFB3DF WITH OTHER METHODS ON THE
YUVL DATABASE (THE HIGHEST CLASSIFICATION RATES UNDER EACH

PROTOCOL ARE HIGHLIGHTED IN BOLD)

Method Classification Rate(%)
YUVL1 YUVL2 YUVL3

C3D [68] 88.00 89.80 85.50
SOE-NET [62] 95.60 91.70 91.00
B3DF S 91.64 88.61 87.70
B3DF SM 91.48 87.82 86.89
B3DF SMC 89.67 85.27 82.13

learn from these data, the method uses a complex handcrafted
multiscale two-path network, which may be the reason for
its high classification rates. On the other hand, the proposed
method, a handcrafted method with a simple learning process,
provides performance comparable to that of the two network-
based methods. The comparison on this database shows that
under some circumstance, a simple learning-based method can
potentially outperform a well-trained network-based method.

4) Results of training networks from scratch As shown
above, network-based methods (i.e., DT-GoogleNet, C3D and
SOE-NET) are either trained on external data or carefully
handcrafted. To study whether good DT classification results
can be achieved by training networks from scratch on a DT
database, we train a few networks on the DynTex++ dataset.
We choose this dataset for two reasons: 1) It has 3600 DT
videos, whereas the others have only a few hundred; and 2)
The amounts of training and testing data are equal, which
is different from dataset using the leave-one-out scheme.
Regardless, the size of the dataset being used for training is
an order of magnitude smaller than what is typically used for
training CNNs on video recognition tasks (e.g., UCF101 [75]
for action recognition) and such experiments often pretrain on
even larger datasets (e.g., Sports-1M [74]). Specifically, we
train a 3D CNN and an optical-flow-based two-stream CNN,
the architectures of which are presented in Fig. 7. As shown
in Fig. 8, a convolutional autoencoder is also designed for
comparison with other methods using unsupervised learning.
Because the training dataset contains only 1800 DT videos,
the three networks are designed to be shallow. During the

Conv1

Conv2

FC

Softmax

Fig. 7. Network Architectures for 3D CNN (left) and two-stream CNN (right,
the image stream and the optical flow stream share the same architecture).
Conv means convolution.
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Conv1

Conv2

ConvT1

ConvT2

ConvT3

Fig. 8. Network Architectures for the convolutional auto-encoder. ConvT
means transposed convolution.

training process, we adopt the stochastic gradient descent
optimizer with a learning rate and momentum of 0.01 and 0.5,
respectively. For the optical stream of the two-stream CNN,
the vertical and horizontal optical flow maps are stacked as the
input image. For the convolutional autoencoder, the outputs
of Conv2 are vectorized and then classified based on their
Euclidean distances.

Because 10 random splits are applied for the DynTex++
dataset, we train 10 models for each network and average their
classification rates. Each model is trained for 100 epochs, and
the corresponding average classification rates are presented
in Fig. 9. We observe the following. For the 3D CNN, the
performance first increases as the number of epochs increases
and then becomes stable after the 87th epoch, providing
a classification rate of approximately 65%. The results are
similar for the two-stream CNN, except for the much higher
classification rate of approximately 86%. The performance
of the autoencoder first increases to its peak (65.52%) at
the 51th epoch and then decreases. Overall, the two-stream
CNN significantly outperforms the other two networks, likely
because the two-stream CNN uses images as input and thus

Fig. 9. Average classification rates of each network at each epoch.

TABLE V
COMPUTATION TIME (IN SECONDS) FOR 3D FILTER LEARNING UNDER

VARIOUS PARAMETER SETTINGS

Learning Method k=3 k=5 k=7 k=9 k=11
PCA 0.10 1.01 2.88 5.64 10.72
ICA 8.86 13.72 17.56 20.98 23.73
Sparse filtering 31.47 51.68 59.07 73.71 84.03
K-means clustering21.00 55.25 124.16 293.92 496.17

has more data for training. Regardless, the two-stream CNN
is still considerably outperformed by most methods (including
the proposed method), as shown in Table III. Therefore, to
some extent, training a convolutional neural network from
scratch is unsuitable for tasks with small datasets, such as
DT classification.

D. Computational Efficiency

The computation time of the proposed method consists of
two parts: the time for 3D filter learning and that for feature
extraction. To measure the two components of the computation
time, we run the proposed method in MATLAB on a server
with four AMD Opteron 6128 CPUs and 128 GB RAM. Our
program is the only workload on the system when measuring
the efficiency.

To obtain the computation time for 3D filter learning,L is
fixed to 14, and the other parameters are varied. The training
data are105 3D blocks sampled from the 50-class breakdown
UCLA database. To obtain stable results, we repeat the filter
learning process 50 times and use the average time as the final
computation time. A comparison of the computation time of
the four learning methods is presented in Table V. PCA is more
efficient than the three other filter learning methods, which all
contain an iterative process. ICA requires less time than sparse
filtering and k-means clustering to learn the filters.

For the computation time of feature extraction, we apply the
ICA filters (L = 14) to extract features from each of the 200
DT videos in the UCLA database. To obtain stable results,
the time for processing each video is averaged as the final
computation time. We compare the original implementation
(involving 3D block extraction) with the efficient imple-
mentation (using 3D convolution) in Table VI. Additionally,
the computation time of MBSIF-TOP and MPCAF-TOP is
included for comparison. Clearly, the efficient implementation
significantly accelerates the feature extraction process. On
even an old server, our method requires only approximately
2.8 seconds to extract the features from a video in the UCLA
database, demonstrating that it is practical for real-world

TABLE VI
COMPUTATION TIME (IN SECONDS) FOR FEATURE EXTRACTION USING

ICA FILTERS

Feature Type k=3 k=5 k=7 k=9 k=11

O
rig

in
al

Im
pl

. HS 6.76 7.59 9.54 12.35 16.44
HSM 6.84 7.61 9.62 12.53 16.85
HSMC 6.86 7.63 9.67 12.60 16.89

E
ffi

ci
en

t
Im

pl
. HS 0.59 1.28 2.75 6.89 11.46

HSM 0.66 1.34 2.81 6.95 11.52
HSMC 0.67 1.37 2.84 7.00 11.56

MBSIF-TOP [16] 24.63
MPCAF-TOP [27] 10.44
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applications. On the other hand, MBSIF-TOP and MPCAF-
TOP, respectively, require 24.63 seconds and 10.44 seconds,
and are clearly more time consuming.

V. CONCLUSION

In this paper, we consider DTs in 3D space and propose to
encode their 3D filter responses through binary encoding. In
this way, only one set of 3D filters is needed, and motion fea-
tures are simultaneously combined with appearance features.
These 3D filters are efficiently learned from randomly sampled
3D blocks. After comparing four unsupervised filter learning
methods, we find that ICA is most suitable for the task of
DT classification. Additionally, our efficient implementation
of the proposed method can substantially accelerate the fea-
ture extraction process. Compared with existing approaches,
especially TOP-based ones, our method generally provides
better performance on various databases, demonstrating its
effectiveness for DT classification.
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