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Abstract—Local binary descriptors, such as local binary pat- YNAMIC textures (DTs) are textures with motion [1]
tern (LBP) and its various variants, have been studied extensively and they are usually viewed as videos of moving scenes
in texture and dynamic texture analysis due to their outstanding that exhibit certain stationary properties in the time domain

characteristics, such as grayscale invariance, low computational 21 Tvpical f f DTs include vid 11
complexity and good discriminability. Most existing local binary [2]. Typical forms o S Include viaeos ot flames, sea waves,

feature extraction methods extract spatio-temporal features from running river, water, fountains and humans in crowds. The
three orthogonal planes of a spatio-temporal volume by viewing modeling and classification of DTs have received substantial

a dynamic texture in 3D space. For a given pixel in a video, attention over the past decade. DT classification has many
only a proportion of its surrounding pixels are incorporated in g5 jications, including video retrieval [3], activity recognition

the local binary feature extraction process. We argue that the - L . . . .
ignored pixels contain discriminative information that should [4], traffic monitoring [5], fire detection [6], [7], facial analysis

be explored. To fully utilize the information conveyed by all [8], crowd management [9], lip reading [10], micro-expression
the pixels in a local neighborhood, we propose to extract analysis [11], and tracking [12].

local binary features from the spatio-temporal domain with DT classification is more challenging than the static case
3D filters that are learned in an unsupervised manner so that because DTs vary not only in spatial appearance but also

the discriminative features along both the spatial and temporal . thei izati d d . f Th t
dimensions are captured simultaneously. The proposed approach In their organization an ynamics over tume. € extrac-

consists of three components: 3D filtering, binary hashing, and tion of powerful DT features is of great importance to the
joint histogramming. Densely sampled 3D blocks of a dynamic success of DT classification; consequently, most research on

texture are first normalized to have zero mean and are then DT classification focuses on feature extraction [8], [13]-[18].
filtered by 3D filters that are learned in advance. To preserve Compared to ordinary static textures, DTs extend the notion
more of the structure information, the filter response vectors are S . ' -

decomposed into two complementary components, namely, theOf self-similarity to the spatlo-temporql domain. _H?”Cea a_
signs and the magnitudes, which are further encoded separately thread of research focuses on extending the existing static
into binary codes. The local mean pixels of the 3D blocks are texture descriptors to the spatio-temporal domain to capture
also converted into binary codes. Finally, three types of binary temporal variations. One influential work was performed by
codes are combined via joint or hybrid histograms for the final Zhao and Pietikainen [8], who extended LBP [19], which is

feature representation. Extensive experiments are conducted on . . . . .
three commonly used dynamic texture databases: UCLA, DynTex widely used in static texture analysis [20], [21], to DT analysis

and YUVL. The proposed method provides comparable results and proposed volume LBP (VLBP) to combine motion and
to, and even outperforms, many state-of-the-art methods. appearance. Due to the large number of VLBP patterns, the

Index Terms—Dynamic texture, motion, feature extraction researchers further proposed to extract LBP features from three
local binary pattern orthogonal planes (LBP-TOP) to make the feature extraction
process computationally simple. The key idea of extracting
features from three orthogonal planes in LBP-TOP has been
widely followed by later researchers [16], [22]-[27] due to
its simplicity and good performance. Typical examples are
local phase quantization on three orthogonal planes (LPQ-
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some pixels in the local neighborhood. To the best of our knowledge, whether using 3D filtering
Features learned from data have recently shown superiaith local binary encoding is beneficial for DT classification
ity to handcrafted features [16], [17], [27], [29]-[34]. Thehas not been explored. Although the techniques used in the
popularity of handcrafted features appears to be overtak@moposed method are simple, our work fills this gap and thus
by learning-based methods, especially by deep convolutioiah be used as a baseline for similar future studies. Compared
neural networks (CNNs). However, due to the disadvantageih the existing TOP-based local binary feature extraction
of CNNs, such as high computational complexity, the requireethods, the proposed approach has three benefits: (1) As 3D
ment for substantial training data and the lack of generfiters operate in the spatial and temporal dimensions at the
invariance, traditional descriptors such as LBP and LBP-TGRame time, the motion and spatial appearance are captured
are still irreplaceable. A recent thorough experimental studgymultaneously; (2) Only one set of filters, instead of three sets,
[20] demonstrated that advanced LBP and LBP-TOP variamtsist be learned; (3) Considerable improvement is obtained
still perform on par or better than recent deeply learned fedde to the use of a simple filter learning technique.
tures in many practical scenarios, especially for problems withThe remainder of this paper is organized as follows. Related
limited training data, such as the micro-expression recognitisrork is introduced in Section Il. Details of the proposed B3DF
problem. To the best of our knowledge, no large-scale DAre given in Section Ill. Experimental results and comparisons
database exists for now, which limits the full utilization ofare presented in Section IV. Finally, the conclusions are
deep CNN techniques. Fortunately, with the advent of modepresented in Section V.
deep learning techniques, research on local descriptors has
seen a renaissance, with the development of learnable local [l. RELATED WORK

feature descriptors [16], [17], [26], [27], [29]-[32], [35], [36] Since DT classification has been studied for many years,
being an area of particular interest. Notable examples inclug@my of methods have been reported in the literature. Ac-
binarized statistical image features (BSIF) [31], simultaneoggrding to whether the underlying dynamic system is modeled,
local binary feature learning and encoding (SLBFLE) [36}hose methods can be roughly categorized into generative
MBSIF-TOP [16], and orthogonal tensor dictionary learninghethods and discriminative methods. In addition, we separate-
(OTDL) [17]. On the other hand, although recent learningy categorize deep-learning-based DT classification methods
based local binary feature extraction methOdS,SUCh as MBSIE['O a Sing|e class. The proposed approach be|0ngs to the
TOP [16] and MPCAF-TOP [27], have achieved encouragingiscriminative category; therefore, in the following part of this

DT classification performance and outperformed LBP-TOBection,we focus on the recent studies in this category that are
they also extract features from three orthogonal planes of Rost relevant to our work.

videos. The multiscale 2D filters used in MBSIF-TOP [16] and
MPCAF-TOP [27] are learned separately from images on thrge

i Generative Methods
orthogonal planes. In these two methods, only a proportion OfTh hods in thi . h d
the surrounding pixels of a given pixel are utilized for feature. e methods In this category attempt to estimate the under-

extraction, which may result in information loss. lyll':'g s_lyhstem Lhat ge_neratgs DTs from a number of tralndm?
Therefore, in this paper, we question the dominant roB s. Then, the eslimated system parameters are used for

that three-orthogonal-planes-based methaglg, (LBP-TOP. DT classification and synthesis. Two representative models
MBSIF-TOP, and novel LBP) play in the field’ of DT clas,si-are the spatio-temporal autoregressive (STAR) model [1], [2],

fication. Instead of extracting binary features for only thre[g’g]' [40] and the linear dynamical system (LDS) model

orthogonal planes, we develop an alternative feature repres@;\: [13], [41]-{44]. Despite the success these methods have

tation based on the point distribution of all pixels in a loc Chieved, they are impractical for t.he.following reasons [45]:

3D neighborhood. To this end, we propose to use learned The r_nodel-estlmatlon process is time consuming; (2) The
filters to extract local DT features, which are further encod sumptl_on_ of.well-segmented DTs does _not always hold,_and
via binary encoding. Specifically, we propose a binariz ) The similarity measure for two models is not easy to define.

3D feature (B3DF) extraction method that comprises thr&ecently, Baktashmotlagat al. [46] assumed that a video

components: (1) 3D filtering, (2) binary hashing, and (3 generated by a linear combination of stationary sources
joint histogramming Densely’ sampled 3D blocks’ of a D nd nonstationary sources. Then, they proposed discriminative

are first normalized to have zero mean and are then filteljtlfan”near stationary subspace analysis to separate the station-

by 3D filters that are learned in advance. To preserve mdiey part of a DT ff‘?m _the nonstgtlonary part and used the
of the structure information, the filter response vectors a{,%rmer for DT classification. Duboiet aI.[4_7] adopted 2D.+T.
decomposed into two complementary components, namely, E)Egvelet transform to decompose a DT into Iocal_(_)su_llatlng
signs and the magnitudes, which are further separately encojggnomena and nonlocal wavefronts for DT classification.
into binary codes. The local mean pixels of the 3D blocksare =~

also encoded into binary codes. Finally, three types of bindy Discriminative Methods

codes are combined via joint or hybrid histograms for the final Because there are many approaches in this category, for
feature representation. As for filter learning, four widely usedarity, we further group the methods into four subcategories
unsupervised filter learning techniques (principal componegtcording to the techniques used: optical-flow-based methods,
analysis (PCA), independent component analysis (ICA), spafsgctal-analysis-based methods, LBP-based methods, and 3D-
filtering (SF) [37] and k-means clustering [38]) are considerefiltering-based methods. As the proposed method utilizes 3D
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filtering and binary encoding, we emphasize the introductialictionary (the kernelized version was named KGDL) from
of the last two subcategories. LBP-TOP features. Hongt al. [24] argued that LBP-TOP
Optical flow was used in early studies to model motion patlisregarded the distinct characteristics of each frame, so they
terns in DTs [48], [49]. For example, Let al. [48] proposed applied k-means clustering to LBP-TOP features to aggregate
to characterize DTs through spatio-temporal multiresolutighe salient features (ASF-TOP) for DT classification. 2D filter
histograms based on velocity and acceleration fields. Olearning has also been utilized for feature extraction from three
drawback of methods based on optical flow estimation is thatthogonal planes. Arashloo and Kittler [16] first learned three
the assumed properties of local smoothness and brightnssts of multiscale 2D filters via ICA and then used those filters
consistency are generally difficult to justify [50]. On thdo extract multiscale features for DT representation (MBSIF-
basis of the observation that DTs have self-similarities acroB®P). Zhaoet al. [27] used PCA to learn filters in a manner
multiple scales (this property is referred to as fractal structusemilar to that of Arashloo and Kittler, resulting in a DT
[51]), Xu et al. [14] proposed the dynamic fractal spectrumepresentation named MPCAF-TOP.
(DFS) for DT description. Later, they extended DFS and These LBP-based methods have three drawbacks: (1) Mo-
proposed two new methods: 3D oriented transform featuwien information is not modeled if the LBP features are
(3D-OTF) [52] and wavelet domain multiple fractal spectraxtracted from each frame individually; (2) Methods similar to
(WMFS) [15]. One advantage of fractal-analysis-based metit BP or LBP-TOP may not make full use of all the pixels in a
ods is their robustness to environmental changes; howeuecal volume; and (3) Various learning techniques are applied
when the scenes in DTs are complex, the local stochastic seither to optimize the LBP code structure or to learn 2D filters
similarities are weakened, and the performance is poor. instead of learning features by viewing a local volume as a
LBP was applied to extract features from each frame ofwvehole.
DT video [53], [54]. Ghanem and Ahuja [53] proposed to learn 3D filtering has also been utilized for DT classification. For
feature-specific weights for LBP histograms and two othexample, Rivera and Chae [59] proposed to use 3D Gaussian-
types of features through maximum margin distance learnitige compass masks to build a directional transitional number
(MMDL). The final similarity between two DTs was definedgraph (DNG) for DT representation. Similar works include
as the weighted sum of their three feature-specific distancfg0] and [61]. Note that these methods used predefined filters.
Ren et al. [54] argued that the performance of LBP for DTTo the best of our knowledge, 3D filter learning has not been
classification was limited by the reliability issues of LBRexplored for DT classification. We also place the two sparse-
histograms and thus proposed to apply PCA on patchwise LB&ding-based dictionary learning methods proposed by Quan
histograms to learn more reliable features for DT classificatiogt al. [17], [30] in this subcategory. However, it is unclear
Zhao and Pietikainen [8] extended the original LBP tovhy and how they manually chose 27 and 25 dictionary atoms
a spatio-temporal descriptoi.€, VLBP), in which several from the two dictionaries, respectively. Hadji and Wildes [62]
pixels in a local volume were sampled and thresholded by theioposed the spatio-temporal oriented energy network (SOE-
center pixel and then encoded into a binary string. VLBP h&&T), which uses 3D Gaussiari“@order derivative filters for
a dimensionality issue, but it is effective for DT classificatiorconvolution and is thus learning-free.
Later, Renet al. [55] proposed the maximal joint mutual
information criterion to select discriminative VLBP patterns )
rather than directly using the predefined structures. Tiwari afd D€€P Learning Methods
Tyagi [56] proposed a completed version of VLBP (CVLBP) Deep learning has been used for various computer vision
by incorporating VLBP with both the magnitude informatiortasks, and good performance has been achieved. Here, we
and the center pixel information. Zhasi al. [18] extended briefly introduce some works using deep learning for DT
the local binary count (LBC) pattern to the spatio-temporalassification. Tayloret al. [63] proposed a convolutional
domain for DT classification, resulting in a descriptor nameghted restricted Boltzmann machine to learn spatio-temporal
volume LBC (VLBC). Given the same number of sampléeatures. Yaret al.[64] proposed to use cascaded autoencoders
pixels, the feature dimensionality of VLBC is much smalleto model videos. Wang and Hu [65] mapped low-level features
than that of VLBP. They also proposed a completed versiom high-level features through a deep neural network.eQi
of VLBC (CVLBC) to enhance performance. al. [66] adopted a well-trained 2D CNN to transfer image
Another important extension of LBP to the spatio-temporétatures for DT representation. Arashlebal. [26] viewed a
domain, LBP-TOP, was proposed by Zhao and Pietikainen [BJ video as three image sequences and used three multiscale
in 2007. Since then, many TOP-based methods [16], [22]-[28]Jal-layer CNNs (PCANet-TOP, using pre-learned 2D PCA
[27] have been reported in the literature. Raletual. [22] filters) to extract features from each image sequence. Similarly,
applied local phase quantization on three orthogonal plan&sdrearczyk and Whelan [67] trained three CNNs to process
for DT description. Cheret al. [23] applied the Weber local the three image sequences. The final output of these networks
descriptor [57] in a similar way for DT segmentation. Tiwarivas a global score vector consisting of probabilities. In con-
and Tyagi [25] viewed a DT as three image sequences anast to methods using 2D filters, Trahal.[68] trained a 3D
combined LBP with Michelson contrast [28] and center pixéLNN (called C3D) for spatio-temporal feature learning. A 3D
information in each image sequence. Then, the concatena@®N [68], [69] generally requires a large dataset for training;
feature was used for DT classification. Haramdial. [58] existing DT databases contain a limited number of videos,
applied sparse coding on Grassmann manifolds to learnwhich are insufficient to train such a network. Therefore,
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A 3D Block of Size Ty~ Tm Let m; = % Z;‘lzl i We haveX = [:131, To, - ,mN] and
A Video 3x3x3 - il N (ORES [m1,ma,--,my]T (m; is x,, in Fig. 1(a)), where
T Botnls oz, € RTandm, € R (1 < n < N) are, respectively,
o I . 83 the nth ZMV and its corresponding mean pixel, afd =
(2) P P e |2 (X=[5)x (Y =[5]))x(T—5§])) is the total number of 3D
33 oTolel | [em-=.e  Dblocksinthe DT video. As the size of the zero-mean 3D block
2| s | o 20— ] is the same as that of a 3D filter, the convolution of the zero-
T = £ 57 | @s |2 Ty — Tm mean 3D block with the 3D filter is equivalent to the scalar

—————————————————————— ———-—————— product of their corresponding vectorized versions. Thys,

. Three Orthogonal | [t & is filtered with theL learned 3D filters via Eqn. (1), resulting
A Video Planes 18| Te | P15 —>3 o mvg\ . - T L
referen|  ® (meemer, N LAilter responses, = [rn1, 702, o]t € R
Tos X3 )/
T24 5 &\@J
L T13| T €15 —brz 8 pixels are Tn = WTmn (1)
(b) @ 4| a5 | T & ignored.
3 o loalon] Now, we need to encode, in an appropriate way. In many
} @5 | @c o2 —> existing works [8], [16], [19], [27], [56], [70], [71], the binary
# . and 1 represent the same pixel. il i I encoding scheme has shown to be an effective way to encode

Fig. 1. lllustration of how a zero-mean vector (ZMV) is extestfrom a 3D local features for both static and dynamic texture description.

block of size3 x 3 x 3 (top). How LBP-TOP processes the same 3D blociAdditionally, many TOP-based methods [16], [22], [24], [25],
is also shown for comparison (bottom). [27] that we target also use binary encoding. Therefore,

traditional descriptors such as LBP and LBP-TOP are stif make use of the_effective binary encoding scheme and
irreplaceable provide a fair comparison between our method and TOP-based
' methods, we adopt the binary encoding scheme to enepde

. THE PROPOSEDMETHOD into a binary string, generating a B3DE code by

In this section, we present the derivation of the pro- L
posed B3DF descriptor, consisting of B30¥; B3DF M and B3DF_Sp = 221718(74"[), (2)
B3DF_C, given the learned 3D filters. Then, these codes are 1=1

used to build hybrid histograms for DT representation. Finallyynare the notation “S” means the codes are built from signs

we briefly introduce how the 3D filters are learned. ands(z) returns 1 ifz > 0, otherwise 0.
After the encoding process, we hawé B3DF_S codes
A. B3DF for the DT. To transform those codes into a compact DT

First, we demonstrate how the proposed method locallgpresentation, the statistical distribution of the codeg(a
processes a video and compare it with that of LBP-TORImensional histogram, denoted &S;) is generated and can
Given a pixel in a video, its neighborhood is regarded dx used for DT classification.

a whole, and all the pixels in the neighborhood (including 2) BSDFE_M & B3DF_C: In conventional binary encoding
itself) are converted into a zero-mean vector (ZMV) for furtheévased methodse(g, [8], [19]), only the sign component is
processing. Fig. 1 illustrates how B3DF and LBP-TOP processed for feature encoding. However, Gebal. [70] showed

a3 x 3 x 3 block in a video, respectively. Clearly, all 27 pixelghat using only the sign component is infeasible because it is
in the block are used by our method (Fig. 1(a)). However, onggnsitive to noise and different local structures may sometimes
19 pixels are used by LBP-TOP and many other TOP-basee characterized by the same binary code, which would reduce
methods (Fig. 1(b)). We argue that the ignored 8 pixels contdire discriminative capacity of the descriptor. Additionally,
discriminative information and should be exploited to build they also proved that the magnitude component and center
powerful descriptor, which is the main motivation to desigpixels also contain discriminative information. As a result,
our B3DF. this work has been followed in other papers [18], [56], [71]

1) B3DF_S: AssumeW = [w;,ws, - ,wy] are L vec- for both static and dynamic texture classification, resulting
torized 3D filters (how they are learned will be introduced iin significant performance improvement. Moreover, Zleto
Section 11I-C), wherew; € R? (1 <1< L,d = k%) is theith al. [71] replaced the local center pixel with its local average
vectorized 3D filter. In this section, we describe how thése gray level to make the feature more robust to noise. We
filters are used to extract the B3D& features from DTs. have a component similar to the local average gray level,

Here, we view a given DT as a 3D volume of siXe<Y xT i.e, the local mean pixel, which was previously used for
in 3D space, whereX x Y is the spatial size and’ is the data normalization. Motivated by these studies, we adopt the
temporal size. Then, we densely sample 3D blocks of sizencept of completed modeling to build our completed B3DF,
k x k x k from the 3D volume (no padding is applied forin which the magnitude component and the mean pixels are
border pixels). As shown in Fig. 1(a), whete = 3, the utilized for performance enhancement.
raw pixel intensities of ak x k x k cubic neighborhood B3DF_M As shown by Eqgn. (2), the B3DE feature
around a pixel are taken and reordered to produce a ZMdjcodes only the sign information. To make use of the
namely,z;, in a d-dimensional feature spacee., x; € R%. magnitudes{|r,;|}~ ,, we encode them into a binary code
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Fig. 2. lllustration of the feature extraction process of pmeposed method.

named B3DEM, where a threshold is used to binarize,|.

L
B3DF_Mp ;=Y 27 S(|rm| = pim), 4)
=1

where the notation “M” means the codes are built from
magnitudes and(x) is defined in Eqn. (2). Similar to the
B3DF_S codes, we build a-dimensional histogram of these
B3DF_M codes and denote it ad ;.

B3DF_C In [18], [56], the local center pixels are threshold-
ed against the global mean pixel of a DT to obtain a binary
code, which is beneficial for DT classification. In this paper,
the local center pixel is not treated specially; thus, we threshold
the local mean pixels to generate binary codes. As noted in
[71], using the average local gray level is superior to using
the center pixel directly; thus, we use the average value of all
the mean pixels in a DT as the threshold

1 N
He = N nz:zl M. (%)
As we need to compute one. for each DT, it is also DT-
specific. Then, we have

B3DF_Cy = s(my, — ie), (6)

where the notation_“C” means that the codes are built from
local mean pixels.

B. Hybrid Histograms for DT representation

The feature extraction process is illustrated in Fig. 2. As
shown in the figure, we obtain three different binary codes
(B3DF_S, B3DF_M and B3DF_() after the code gener-
ation stage. We have already extracted two 1D histogradigs (
and Hj,) from the former two types of codes. However, the
three types of codes should be combined to make use of the
different discriminative information they convey. A 3D joint
histogram was used to integrate the three different types of
information in [18]. If we used the same method here, we
would obtain a2?/+!-dimensional feature vector, which is
not practical for real-world applications. Rather than building
a 3D joint histogram, we build two 2D joint histograms of
2L+1 pins,

Hsc(i,j) = Y  I{B3DF_S =i A B3DF_C = j},

,y,t

@)
Hyel(iyj) = Z I{B3DF_M =i A B3DF_C = j},

T,y,t

For the binarization in a given DT, the threshold is set to the

average value of all the magnitudes in the DT as

1 N L
Hm = m Z Z |T7Ll|7 3

n=1[=1

wherei is an integer between and 2% — 1; j is 0 or 1;
the symbolA means &nd”; and B3SDF_S, B3DF_M and
B3DF_C are the codes at locatiofx, y, t).

The spatial and temporal dimensions of a DT can affect
the computation of the similarities among different DTs.

where|z| is the absolute value aof. As u,, is related only to For example, suppose there are two DTs belonging to the
the magnitudes in one DT.€., oney,, is computed for each same class, one of sizé) x 50 x 50 and the other of

DT), it is DT-specific.

size 150 x 150 x 150. Although they are captured from the

After computing ., the magnitudeg|r,,;|}~ , are bina- same scene, the Chi-square statistic of their corresponding
rized and then encoded by means of binary encoding througjetograms could be large, which may cause misclassification.
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Therefore, we need to normalize the aforementioned B ( g8
and H,;) and 2D Hsc and H,;¢) histograms to generate
coherent representations. Specifically, the sum of all the bif
in a histogram is first calculated; then, each bin is divided bl

the sum as
)= _Hbl)
Hip(j) = > Hin(j)’ (8)
H2D(i,j) B HQD(Z7])

- Xy Hop(7,57)

For the ease of computing the dissimilarity of two DTsfi9- 3. DT examples from the UCLA (top), DynTex (middle) and YU
we further vectorizeH s and Hyso. Then, we concatenate (P°ttom) databases.
Hgsc and Hy o as another type of DT descriptor (denoted agvo-step normalization is applied: B; = F;/||F;||» and 2)
Hse) to combine all three types of features. The dimensiah(® = F(@ /||F®||,. Finally, W is obtained by optimizing
is 2112, Moreover, we also consider the concatenatiodef the objectivemin Zf;lllf‘(i)lh in an iterative manner. The
and H); (denoted asig,,) for DT classification. work in [37] e%lains the theory.

K-means clusteringWe follow the work in [38] with
C. 3D Filter Learning one difference: only zero-mean normalization is applied for

The proposed method has one prerequisite: a set of §Bf@ Preprocessing. The vectorized filters W) are first
filters must be learned in advance from training data. Whéﬁ”don(ll)y initialized. We denote the feature matrix Bs
choosing a filter learning technique, the fact that the numb@pd ¥~ is the jth feature value of sampler;, where
of videos in most DT databases is limited must be considerdd.< J < L and1 < i < M. Then, W is obtained
As a result, we find four representative unsupervised filtgy itératively running the following three-step process: 1)
learning techniques (PCA, ICA, sparse filtering and k-meags?) _ { Wi @i 1 j =arg ?Mx|wl il 2)W = XFT+W,
clustering) that work well with small datasets. To the best’ 0 otherwise
of our knowledge, these four filter learning methods werdd 3)w; = w;/|[wjll2, Vj.
developed to learn 2D filters and have not been utilized to
learn 3D filters. We believe that applying these filter learning V. EXPERIMENTS
methods to learn 3D filters for DT classification and comparing |, thjs section, we present a detailed experimental evaluation
their performance is meaningful for future research in th§ e proposed approach for DT classification. We use the
field of DT analysis. We will briefly introduce the four filter nearest neighbor (NN) classifier or the nearest class center
learning processes in the following. _ (NCC) classifier with Chi-square distance to evaluate the

Training Data We follow the sampling scheme in [17] t0performance of the proposed method. We believe that a more
obtain the data for filter learning. Quat al. [17] randomly  5qyanced classifier such as SVM could further improve the
sampled 2000 3D patches from each DT class in the trainiggssification performance. However, we deliberately use the
dataset. Note that data in the test dataset are not used N[ or NCC classifier to emphasize the contribution of the
dictionary learning. Therefore, suppose there@relasses in pronosed B3DF descriptors. The classification accuracies of

the training dataset. We randomly samplé = 2000C 3D oyr method are compared with those of the state-of-the-art
blocks of sizek x k x k from the training dataset for filter 5phr0aches.

learning. As a result)/ ZMVs are obtained. These ZMVs are
formed into a matrixX = [x1, xo, -+, za7] € R>*M for 3D . . _
filter learning. A. Experimental Setup and Implementation Details
PCA The L vectorized filters are the first eigenvectors 1) DT Data Three DT databases are adopted., the
(sorted in descending order with respect to their correspondid@LA database [2], the DynTex database [72] and the YUVL
eigenvalues) of the covariance mat®¥X?”. For more details, database [50]. Frames from several typical DTs (flower, tree,
please refer to [26] or [27]. flame, water,etc) are shown in Fig. 3. Because few DT
ICA we first need to compute a whitening matri& databases exist, these three databases have been refined ant
consisting of the firstZ rows of D-2E~! for dimension recompiled by many researchers to generate additional datasets
reduction and data whitening, whel®2 and E are obtained for evaluation under various protocols. Details about these
through eigendecompositio’XX” = EDE™!). Then, an datasets and evaluation protocols will be described later. When
orthogonal matrixU can be estimated from the whitened datavaluating our method, all the DT videos are converted to
ZX via ICA. Finally, the L vectorized filters are obtained bygrayscale videos.
W = (UZ)T. More details can be found in [31] and [16]. UCLA database:The UCLA database contains 200 DT
Sparse filtering The L vectorized filters W) are first videos from 50 classes, with four videos in each class. Each
randomly initialized. Supposﬁy) = w,; Tz, is thejth feature video consists of 75 frames of siz60 x 110. In this paper, we
value of samplex;, wherel < j < L andl <i < M.Then,a use a preprocessed versiaf this database, in which all the
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videos are cropped to frames of si#&x 48 such that the key only one video is included in each class, the work in [8]
dynamic features are captured. Following [18], we use fiygoposed to crop each video into 10 subvideos of different
popular evaluation protocols, in which the videos in UCLAizes. Specifically, each video is cropped at the point where
are regrouped. The details of the five protocols are presentee= 170 (horizontal direction)y = 130 (vertical direction)
below. and ¢t = 100 (time direction). Together with another two

Protocol 150-class leave-one-out classification: Each timgubvideos obtained by cutting at = 100, we obtain 10
one of the 200 DT videos is used for testing and the remainiagbvideos for each DT video. For classification, a leave-one-
199 are used for training. group-ouf scheme is used with the NN classifier and the NCC

Protocol 2 50-class fourfold cross validation: For eacltlassifier. When the NCC classifier is used, the features of the
class, three of the four videos are used for training, and tBetraining DT videos in each class are averaged as the class
remaining one is used for testing. To ensure that each ag#nter, and a test video is classified according its similarity to
the four videos is used as a test video one time, four spiite class center.
schemes are predefinfednd this experiment is repeated four DynTex++ This dataset [53] is recompiled from 345 videos
times. The average accuracy of the four experiments is tbethe DynTex database. Those videos are preprocessed and
final performance indicator. cropped into videos of siz&) x 50 x 50. The processed videos

Protocol 39-class breakdown: In protocols 1 and 2, somare grouped into 36 categories, each with 100 videos. For the
videos from different classes can be semantically categorizadaluation, we follow the work in [53]: 50% of the videos
into the same class. Thus, in this protocol, all 200 videds each class are randomly chosen for training, and the rest
are regrouped into nine classes, which are smoke (4), faee used for testing. The test videos are classified with the
(8), boiling water (8), water (12), flowers (12), sea (12NN classifier. This experiment is repeated 10 times, and the
waterfall (16), fountains (20), and plant (108), where thelassification rates are averaged as the final result.
number in parentheses denotes the number of videos in eacAlpha This dataset contains 60 videos from the DynTex
class. For DT classification, 50% of the videos in each cladatabase that are categorized into 3 classes: sea, grass, and
are randomly selected for training, and the rest are used foges.
testing. To assess the statistical significance, we repeated thBeta This dataset consists of 162 videos, which belong to
experiment over 20 random partitions of the training and tes0 classes: sea, vegetation, trees, flags, calm water, fountains,
sets. smoke, escalator, traffic, and rotation.

Protocol 4 8-class breakdown: As more than one-half of GammaThis dataset is composed of 275 videos from the
the 200 videos belong to the plant class in protocol 3, tl®ynTex database. The videos belong to 10 classes: flowers,
8-class breakdown is obtained by removing the plant clag®a, naked trees, foliage, escalator, calm water, flags, grass,
The experiment is performed in a similar way as the 9-clagaffic, and fountains.
breakdown. We use the same data split scheme and repeat th®etails about the compilations of the Alpha, Beta and Gam-
experiment 20 times. ma datasets are available on the homepadehis database.

Protocol 5shift-invariant evaluation: To test the translatiornll the videos in the three datasets contain 250 frames of
invariance, each DT video is clipped into two non-overlappingze 352 x 288. For the evaluation, we use the leave-one-
left and right halves to remove the effect of identical vieweut classification scheme with the NCC classifier and the NN
points. There are two settings for this protocol: using 3@assifier.
classes [73] and using 50 classes [61]. We choose the latter iyyUvL database: The YUVL database® contains 610
this paper. Moreover, as the method used to crop the videosigeos of various resolution, temporal extents and frame rates.
unknown, we simply cut each video in the middle, resulting ihe authors [50] provided two ways to partition the videos:
a left half and a right half of equal size. In the evaluation, twpl) basic-level (denoted as YUVL1) and (2) subordinate-level
experiments are conducted, one using the left-half data felenoted as YUVL2). Another compilation (named YUVL3)
training and the other using the right-half data for trainingvas introduced in [62].

In each experiment, the remaining data are used for testingyyv|1 According to the space time orientations present in
Finally, the two classification rates are averaged as the fiRaliven pattern, all 610 videos are grouped into five classes:

performance indicator. heterogeneous and isotropic, unconstrained, underconstrained,
Additionally, the NN classifier is used in all five evaluationjominant, and multi-dominant.
protocols. YUVL2 Videos belonging to the two classes unconstrained

DynTex databaseThe DynTex database is a large datasgind multi-dominant in YUVL1 are discarded. Each of the
that contains more than 650 high-quality videos. Usually, onfgmaining three classes are further divided into two subclass-
a portion of the dataset is chosen for DT classification. F|\&, resulting in six classes: ﬂicker, aperture problem, Sing|e
compilations of this dataset have been widely used in thgiented, non-single oriented, wavy fluid, and stochastic.

literature. . . . YUVL3 Videos of the two omitted classes in YUVL2 are
DynTex-35This dataset is an old version of the DynTexncluded, resulting in an 8-class dataset.

database, consisting of 35 videos. Each video belongs to a
unigue class and contains 250 frames of sige x 300. As 2Videos of the same size belong to a group.

Shttp://dyntex.univ-Ir.fr
http://www.bernardghanem.com/datasets 4http://vision.eecs.yorku.ca/research/spacetime-texture-data/
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According to the existing work [62], which conducted — 9 85 e—pca
experiments on the YUVL database, the leave-one-out clas- —B-ICA
sification scheme with the NN classifier is adopted. % 80 xiparse

-means

2) Parameter Setting The proposed method has four key

©
=

parametersi.e., the number of 3D blocks for filter learning = 575

(M), the 3D block size ), the number of filters &), and the oot Py

filter learning method (PCA, ICA, sparse filtering or k-means). © S70t

We use the same sampling scheme as that in [17]: 2000 305 9o | 15

blocks from each of th&' DT classes in the training dataset 8 S5t

are randomly sampled, resulting M = 2000C 3D blocks in '3 88 i

total. Fork and L, we empirically choosé € {3,5,7,9,11} S O 60

and L € {6,8,10,12,14} to evaluate the proposed method. 86 | |@-PCA

To identify good choices ok, L and filter learning method, :g;rse | s5t

we evaluate the proposed method with various parameter —A— K-means

settings with one protocol from each of the UCLA and DynTex 82 ‘ , , 50 ‘ | |
databases. 6 8 10 12 14 6 8 10 12 14
3) Efficient Implementation As shown in Fig. 2, we must # of filters # of filters
traverse each pixel in a given DT to obtain the ZMVs and mean (a) (b)

pixels. This traversing process can be very time consuming _ ,
and may make the proposed method impractical for sor % Ferormance of 5305 i ZTand vayoL on (@) e UL
real-world applications. However, Fig. 2 is drawn only for

illustrative purposes; we implement the proposed method inFirst, we consider the choice @f, the number of 3D filters,

a very efficient way. Specifically, all the mean pixels arwhile keeping the 3D block size constant@ak 7 x 7 (i.e,,
obtained by filtering a DT with an average filter of sizé = 7). Fig. 4 presents the classification accuracy aveor

k x k x k, and Egn. (1) is equivalent to filtering the DTall four filter learning methods. From Fig. 4, we make the fol-
with the mean-removed filters. Here, we briefly prove thi®wing observations. Generally, the classification performance
result. Supposar; is the mean-removed version af; and increases with increasing. The value of L has a greater
m_w; = 525:1 wy;; then, we can filter the original 3D blockimpact on the DynTex Gamma dataset than on the UCLA
(x,, +m,) with w,; as 8-class breakdown dataset, except when the sparse filtering
method is used. When using sparse filters, the classification
rate on both datasets increases rapidly. Overall, PCA, ICA
and sparse filtering achieve the best performance ivith 14,

= wyTeg +ma Y wi (9) whereas k-means clustering performs best vith: 12. Note

that we do not present results fér > 14 because a larger

L produces longer feature vectors, which make the proposed
Becausew/ z,, = 2]421 Wi Tnj, Z]'{l:l m_m; = ijl wy; Method imprgctical for real-world applicgtions. . .

and 2?21 2,; = 0, Eqn. (9) is the same a8 (x,, +m,,) = Then, we fixL = 10 and perform experiments with varying
w’z,. Thus, Eqn. (1) is equivalent to filtering the DT withk to study how the 3D blpck size affects the classification
the mean-removed filters. Additionally, Eqns. (2)—(6) Contamerformance of B3DES. Fig. 5 presents the results. From
mainly element-wise operations and summations of matrix 97 80
elements, which can be conducted directly on 3D matrices.

W] (@ +mn) = 0 [(wij — m_wp) (20, +ma))

d d
— m_mlzjzlmnj — mnzj-:lm_ml.

Therefore, we implement the proposed method efficiently o6 75
through 3D filtering with mean-removed 3D filters, thereby
avoiding the time-consuming ZMV extraction process. The £ .| 270
computational complexities of the inefficient implementation & 2
(i.e. traversing each pixel in a DT) and the efficient imple- g oal é o5
mentation are compared in Section IV-D. g g
g 93 g 6

B. Experimental Test © ©

In this section, we study how the choices bf(the 3D ] tive , 55
block size), L (the number of 3D filters needed) and the —4—Sparse
filter learning method affect the DT classification performance. —gq [ZA=Kmeans|, ‘ 50 ‘ .
Specifically, we choose the UCLA 8-class breakdown dataset 3 5 7 9 11 s 5 7T 9 M
(protocol 4) and the DynTex Gamma dataset for the parameter Va'“(Z)"f k Va'iz)"f K

evaluation. The reason for choosing these two datasets is that,

according to previous works, each is relatively challenging ilg. 5. Performance of B3DFS with L = 10 and varyingk on (a) the
the corresponding database. UCLA 8-class breakdown dataset and (b) the DynTex Gamma dataset.
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TABLE |
PERFORMANCE COMPARISON OF THE PROPOSED FEATURES ON THE
UCLA 8-CLASS BREAKDOWN ANDDYNTEX GAMMA DATASETS

TABLE Il
PERFORMANCE COMPARISON OBB3DF WITH OTHER METHODS ON THE
UCLA DATABASE UNDER FOUR DIFFERENT EVALUATION PROTOCOLS
(THE HIGHEST CLASSIFICATION RATES UNDER EACH PROTOCOL ARE

Filter Feature Classification Rate(%) HIGHLIGHTED IN BOLD)
Type Type UCLA Prot. 4 | DynTex Gamma
B3DF_S 95.43 69.32 Method Classification Rate(%)
PCA B3DF_SM 97.39 70.08 Prot. 1] Prot. 2| Prot. 3| Prot. 4[Prot. 5
B3DF_SMC 97.50 71.21 AR-LDS [40] 89.50 - - - -
B3DF_S 96.30 81.44 KDT-MD [41] - | 89.50| - - -
ICA B3DF_SM 98.15 69.32 BoS [13] - - | 7000 -
B3DF_SMC 98.15 72.73 DL-PEGASOS [53] 99.00 | 95.60| - -
B3DF_S 94.78 76.89 HEM [43] - 96.45 | 96.63 56.40
Sparse |B3DF_SM 97.93 65.15 L2 Bhattacharyya [50] 81.00 | - - 42.30
B3DF_SMC 98.37 70.83 DFS [14] - | 89.50| - - -
B3DF S 95.43 62.88 3D-OTF [52] 99.25| 96.32 | 95.80 | 67.40
K-meang B3DF_SM 96.96 61.36 WMFS [15] - 96.95| 97.18 | 61.20
B3DF_SMC 97.72 67.05 DNG [59] - 98.10| 97.00| -
OTDL [17] 98.50 | 97.50 | 97.00 | 68.60
Fig. 5, we can observe the following. Generaliyhas a much EKI?]LI [30|]f - - gg-gg anes|
igh-level feature - . . -
stronger effect on the DynTex Gamma dataset than on the |, 5o (8] 8950 | 9630 | 91.96| -
UCLA 8-class dataset. On the DynTex Gamma dataset, the cvLBP [56] - 93.00 | 96.90| 95.65| -
classification performance first increases with increasiagd CVLBC [18] 99.50| 99.50| 99.20 | 99.02| -
then decreases for all four filter learning methods. However, -ER-TOP [€] ' 94.501 96.001 94.34 1 -
9 - T ' MBSIF-TOP [16] 99.50 | 99.50 | 98.75| 97.80 | -
on the UCLA 8-class breakdown dataset, the effectdf Novel LBP [25] 95.00| 95.00| 98.35| 97.50| -
different. For the UCLA DT textures, in the case of sparse E/ICF’ACNAF-ISE [[gg]] 99.50 gg-gg 99.15| 98.26| -
. - ; : et- - . - - -
flltermg3 the clas_sn‘lcatlon performance_z decreasgs rapidly with DT-GoogleNet [67] i 9950 | 98.35| 99.02| -
increasingt. While for the other three filter learning methods, B3DFE S 99.00 | 99.00 | 97.95| 96.30 | 46.00
the classification performance fluctuates with increasing B3DF_SM 98.50 | 98.50 | 99.05| 98.15 | 67.25
although the performance fluctuation is modest. B3DF_SMC 99.50] 99.50] 98.85 | 98.15| €6.25

To choose an appropriatd., k) pair, we should consider and B3DF S using ICA filters is significantly better than all
Fig. 4 and Fig. 5 as a whole. According to Fig. 4, we shoulghe other features. After a comprehensive consideration of the
learn 14 PCA filters, 14 ICA filters, 14 sparse filters, and 12 kesults in Table I, we believe that B3DF using ICA filters is
means filters. For value d@f, a good trade-off can be achievedhe best choice. Therefore, we learn 14 ICA filters of size
by setting the value ok according to Fig. 5(b) because ther x 7 x 7 for feature extractionif., the parameters of the
fluctuation range in Fig. 5(b) is larger than that in Fig. 5(aproposed method are fixed to using ICA with = 14 and
As a result, the(L, k) pairs for PCA, ICA, sparse filtering k = 7). As an example, Fig. 6 illustrates the 14 3D ICA
and k-means clustering afe4, 7), (14,7), (14,9) and(12,5), filters learned from the UCLA 50-class breakdown dataset.
respectively.

After determining L and k for each filter type, we as- C. Comparative Evaluation
sess the performance of different filter learning methodsin this section, we compare the proposed method with
and different feature combinations. The results are given yarious existing methods, especially those that extract features
Table |, from which we can observe the following. Firstfrom three orthogonal planes. The parameter settings for
on the UCLA 8-class breakdown dataset, B3BMC shows our method were determined in the previous section. Unless
better performance than B3DBM, which in turn outperforms otherwise stated, the classification accuracies of the compared
B3DF_S, regardless of how the filters are learned. Fowfethods are quoted directly from the original papers.
types of B3DESMC features provide similar results (thel) Results on the UCLA databasd he results of the proposed
difference is less than 1%). However, the situation differs fenethod and those of 22 published approaches (including
the DynTex Gamma dataset. Except when using PCA filtefgcent state-of-the-art methods) are presented in Table II.
B3DF_SM gives worse results than B3D& and BSDESMC,  Notably, most of the results in Table Il were obtained using
- — — an NN classifier, with several exceptions: DL-PEGASOS [53]
- u .-".- ' . ﬂ -i used MMDL+NN; high-level feature [65] and EKDL [30]

- F i F r
PERVE LT,

used a kernel SVM; and DT-GoogleNet [67] used a softmax
- - “ .'.I'
4

R

N

-
-

Fig. 6. ICA filters learned from the UCLA 50-class breakdowiadat. Each

1Ows

column shows 7 slices from a 3D filter of sizex 7 x 7.

classifier. Additionally, the results of VLBP and LBP-TOP
under protocols 2 and 4 are from [56] while those under
protocol 3 are from [25].

From Table I, we make the following observations. First,
in comparison with 22 DT classification methods in the
literature, the proposed B3DBMC achieves state-of-the-art
performance on protocols 1 and 2 and produces high classifi-
cation rates very close to the best results on protocols 3, 4 and
5. The overall best results under protocols 1-4 are produced by
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TABLE Il
PERFORMANCE COMPARISON OBB3DF WITH OTHER METHODS ON THEDYNTEX DATABASE (THE HIGHEST CLASSIFICATION RATES UNDER EACH
PROTOCOL ARE HIGHLIGHTED IN BOLD

Classification Rate(%)
Method DynTex-35 | DynTex++ Alpha Beta Gamma
NCC| NN | NN/SVM [ NCC| NN | NCC| NN | NCC| NN

DL-PEGASOS [53] - - 63.70° - - - - - -
HEM [43] - | 98.60 - - - - - - -
DFS [14] 97.63| - 89.90° |83.60| - |65.20| - |60.80| -
3D-OTF [52] 96.70| - 89.17° - - - - - -
WMFS [15] 96.50| - 88.80° - - - - - -
DNG [59] - - 90.20Y - - - - - -
KGDL [58] - - 92.80° - - - - - -
2D+T [47] - - - 85.00( - |67.00] - |63.00] -
OTDL [17] 97.80| 99.00| 94.7¢° |86.60| - |69.00| - |64.20| -
EKDL [30] - - 93.40° - - - - - -
High-level feature [65] - - 69.00° - - - - - -
PHA+LBP [54] - - 91.90Y - - - - - -
VLBP [8] 81.14| - 87.35V - - - - - -
CVLBP [56] 85.14| - - - - - - - -
CVLBC [18] - 98.86| 91.31Y - - - - - -
LBP-TOP [8] 97.14| - 89.50V - |86.67| - |8086| - |8144
LPQ-TOP [22] - - 95.00V - - - - - -
MBSIF-TOP [16] - | 9861 9717 - |90.00] - |9070| - |91.30
ASF-TOP [24] - | 97.14| 95.40Y - |9167| - |86.42| - |89.39
Novel LBP [25] - |9857| 96.28Y - - - - - -
MPCAF-TOP [27] 96.73| 99.59| 96.52V | 86.67| 96.67| 71.60| 91.36| 67.42| 89.02
B3DF_S 97.71| 100 | 94.80Y | 90.00| 96.67| 74.07| 88.27| 81.44| 90.53
B3DF_SM 98.00| 99.71| 95.90V | 86.67| 96.67| 68.52| 90.12| 69.32| 89.39
B3DF_SMC 96.57| 99.71| 95.58V | 86.67| 95.00| 72.22| 90.12| 72.73| 90.91
C3D [69] - - - 100 | 100 | 95.68] 99.38| 96.21[ 96.97
SOE-NET [62] 93.10| 97.70| 94.40° | 96.70| 98.30| 86.40| 96.90| 80.30| 93.60
(Note: the superscript "S” stands for SVM, and "N™ stands for
NN.)

the CVLBC method, which is learning-free. However, the pograrison of the proposed method and 23 published approaches
performance of CVLBC on the DynTex++ dataset, as shows shown in Table Ill. Some methods were not originally
in Table 11l, demonstrates its limited generalization capabilitgvaluated on this database, and their results were reported
since it does not involve a learning procedure. The OTDhy other researchers. For the DynTex-35 dataset, the results
method, which has a very complex learning process, perforofsVLBP and LBP-TOP are from [56] and [14], respectively.
best under the very challenging protocol 4, outperforming o&or the DynTex++ dataset, DL-PEGASOS used MMDL+NN.
method by a modest 1.35%. The results of LBP-TOP on DynTex-35 and DynTex++ are

Second, among the methods with a learning process, ffem [16], and those of WMFS are from [17]. The VLBP
cluding the proposed method, MBSIF-TOP [16], PCANete€sults are obtained by us using VLBP. For the Alpha, Beta
TOP [26], and MPCAF-TOP [27] generally outperform thos@Nd Gamma datasets, the results of DFS are from [17], and
methods without a learning process, such as LBP-TOP [#jse of LBP-TOP are from [24]. Except for the DynTex++

and novel LBP [25]. This result again shows the benefit §ataset, the results of MPCAF-TOP are provided by us. As
learning. C3D [68] requires color videos as inputs, we evaluate it only

on the Alpha, Beta and Gamma datasets. Specifically, we first

esize the videos to frames of sizé2 x 112 and then use
proposed method, MBSIF-TOP [16] and MPCAF-TOP [27) "o ook pretrained on the Sports-1M dataset [74]

the proposed method performs second best, only sligh . o ; .
worse than MPCAF-TOP. However, our method outperformé/r feature extraction, resulting in a 4096-dimensional feature

MPCAF-TOP on datasets of large videdse{ DynTex-35, vector. Please refer to [68] for details. In contrast to the Chi-

) . ) square distance we use, the similarity between two C3D [68]
DynTex-Alpha, DynTex-Beta, and DynTex-Gamma), as Shov‘fgatures is the Euclidean distance and that between two SOE-

in Table lll. Moreover, MPCAF-TOP learns 2D filters from . -
densely sampled 2D patches, the number of which is muNIL'ET [62] features is the Bhattacharyya coefficient. However,

larger than that of the 3D blocks we require. Taking protocct.?1e features are classified by the same classiiiexsthe NCC

2 as an example, MPCAF-TOP uses approximately 7.5 miIIioCnaSSIerr and NN classifier.

2D patches at each scale (5 scales in total) for filter learning,From Table 11, we can make the following observations.
whereas our method needs only 0.1 million 3D blocks. Despi¢ comparison with 14 existing methods on the DynTex-
the slight performance advantage (less than 0.3%) of MPCAgs qataset, the proposed method achieves the state-of-the-
TOP over our method, we believe the proposed method is Mg performance with either the NN or NCC classifier, out-
practical than MPCAF-TOP. performing even the learning-free network-based approach
2) Results on the DynTex databas@he performance com- (i.e, SOE-NET [62]) with notable improvement. The learning-

Third, among the three learning-based methdds, the
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based methods, such as OTDL [17], MPCAF-TOP [27] and TABLE IV

B3DF_SM, generally Outperform the learning-free methods PERFORMANCE COMPARISON OFB3DF WITH OTHER METHODS ON THE
. ' "YUVL DATABASE (THE HIGHEST CLASSIFICATION RATES UNDER EACH

including LBP-TOP [8] and novel LBP [25]. PROTOCOL ARE HIGHLIGHTED IN BOLD)
On the DynTex++ dataset, the proposed B3BM outper-

forms all the methods (including SOE-NET [62] and OTDL Method YU?/IEiSiﬁ%i\c/TzRat\?S@)Ls

[17]) that were evaluated_ with the SVM cla_1§5|f|er anc_j_performs C30 68 8800 1 89.80 T 8550

the fourth best when using the NN classifier. Specifically, the SOE-NET [62]| 95.60 | 91.70 | 91.00

learning-based MBSIF-TOP [16] and MPCAF-TOP [27] out- B3DF_S 9164 | 8861 | 87.70

perform the proposed method by 1.27% and 0.62%, respective- gggi—gmc gé:g? g;:g% gg:fg

ly, the novel LBP method outperforms the proposed method by
0.38%. We believe the reason for this performance differenigarn from these data, the method uses a complex handcrafted
may be that only 40 3D blocks, on average, are sampled fronultiscale two-path network, which may be the reason for
each DT video because there are 50 DT videos per classitéhigh classification rates. On the other hand, the proposed
the DynTex++ dataset used for filter learning. Overall, th@ethod, a handcrafted method with a simple learning process,
learning-based methods provide better performance than grevides performance comparable to that of the two network-
learning-free methods. based methods. The comparison on this database shows that
On the Alpha, Beta and Gamma datasets, only six existinogder some circumstance, a simple learning-based method can
approaches have been evaluated with the NCC classifier. Withtentially outperform a well-trained network-based method.

the exceptions of C3D [68] and SOE-NET [62], our proposeﬂ) Results of training networks from scratch As shown
B3DF_S outperforms the learning-based methods (OTDL [14hove, network-based methode( DT-GoogleNet, C3D and
and MPCAF-TOP [27]) and learning-free methods (2D+T [47§0E-NET) are either trained on external data or carefully
and DFS [14]), with substantial improvements, demonstratif@ndcrafted. To study whether good DT classification results
the superiority of the proposed method. When using the Ny pe achieved by training networks from scratch on a DT
classifier, C3D and SOE-NET again show better performanggtapase, we train a few networks on the DynTex++ dataset.
than the other methods. Our approach has similar performaggg choose this dataset for two reasons: 1) It has 3600 DT
to that of the best non-network-based methods. Moreovgfgeos whereas the others have only a few hundred; and 2)
B3DF_S performs better than the other features. We beliey@e amounts of training and testing data are equal, which
that including BSDEM or B3DF_C would model more in- s gifferent from dataset using the leave-one-out scheme.
traclass variation and thus degrade the performance becagggardiess, the size of the dataset being used for training is
the dynamic scenes in the Alpha, Beta and Gamma datasg{Sorder of magnitude smaller than what is typically used for
are very complex. Now, we compare the proposed methggining CNNs on video recognition tasks (e.g., UCF101 [75]
with the two network-based approaches (C3D requires trainifg action recognition) and such experiments often pretrain on
and SOE-NET is training-free). C3D performs the best ofen larger dataset.), Sports-1M [74]). Specifically, we

all three datasets, with a large improvement over our methgdin 2 3D CNN and an optical-flow-based two-stream CNN,
and SOE-NET. On the Alpha and Beta datasets, SOE-NEJe architectures of which are presented in Fig. 7. As shown
performs much better than our method. However, our B3®F i, Fig. 8, a convolutional autoencoder is also designed for
sightly outperforms SOE-NET by 1.14% when using th@omparison with other methods using unsupervised learning.
NCC classifier on the Gamma dataset. Therefore, in SofBgcause the training dataset contains only 1800 DT videos,

situations, our simple learning-based method is comparail@ three networks are designed to be shallow. During the
to the learning-free network-based SOE-NET. On the other

hand, the proposed method still has some advantages in terms 3D CNN Two-Stream
of the practicality of B3DF, SOE-NET and C3D, especially Filters: 3203%3%3 Filters: 32@3%3
in resource-restricted scenarios, because B3DF requires much Stride: 1 Stride: 1
less training data and computational resources. Conv1|Padding: 0 Padding: 0
3) Results on the YUVL databaseAs this database has Rectifier: RELU Rectifier: RELU
not been widely adopted for performance evaluation, only C3D Pooling: Max Pooling: Max
and SOE-NET have been evaluated on it (the results of C3D Filters: 64@3*3%3 Filters: 64@3%3
were reported in [62]). The performance comparison on the Stride: 1 Stride: 1
YUVL database is reported in Table IV. From Table IV, we Conv2|Padding:0 Padding:0
can observe the following: 1) SOE-NET achieves the best geCt%fl?r: RELY Rectifier: RELU
ooling: Max Pooling: Max
performance on all three datasets; 2) The proposed BSDF
outperforms C3D on the YUVL1 and YUVL3 datasets while FC Nodes: 1024 Nodes: 1024
C3D outperforms B3DFS on the YUVL2 dataset; and 3) Rectifier:RELU Rectifier:RELU
Including magnitude and center pixel information slightly
Sof tmax|Nodes: 36 | | Nodes: 36

degrades the performance of the proposed method. The reason

C3D does not produce better results may be that it is trained , .
ith I d “th h hod d | f ig. 7. Network Architectures for 3D CNN (left) and two-stne@NN (right,

with external data; thus, the metho oes not learn from t image stream and the optical flow stream share the same architecture).

data in the YUVL database. Although SOE-NET also does nobnv means convolution.
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Encoder Decoder TABLE V
N COMPUTATION TIME (IN SECONDS FOR 3D FILTER LEARNING UNDER
gllFer5332@3*3*3 Filters: 3203%3%3 VARIOUS PARAMETER SETTINGS
tride: S
Conv1|Padding: 2 ?tg;‘.ie‘ g ConvTl Ceaming Method | #=3 | k=5 | k=7 | k=9 | k=11
Rectifier: RELU adding. PCA 0.10| 1.01] 2.88| 564 10.72
Pooling: Max Rectifier: RELU ICA 8.86|13.72| 17.56| 20.98| 23.73
Sparse filtering | 31.47|51.68| 59.07| 73.71| 84.03
gii‘ic(eiz?:164@3*3*3 Filters: 16@3%3%3 K-means clustering21.00| 55.25| 124.16| 293.92| 496.17
Conv2 | Padding:0 Stride: 3 ConvI2  has more data for training. Regardless, the two-stream CNN
. Padding:1 . . . . .
Rect}fler: RELU Rectifier: RELU is still considerably outperformed by most methods (including
Pooling: Max the proposed method), as shown in Table Ill. Therefore, to
Filters: 1@2#2%2 some e>§tent, trglnlng a convolut|_onal neural network from
Stride: 2 scratch is unsuitable for tasks with small datasets, such as
Padding:0 ConvI3 DT classification.
Rectifier: Tanh

D. Computational Efficiency

The computation time of the proposed method consists of
two parts: the time for 3D filter learning and that for feature
training process, we adopt the stochastic gradient descegtraction. To measure the two components of the computation
optimizer with a learning rate and momentum of 0.01 and 0.fme, we run the proposed method in MATLAB on a server
respectively. For the optical stream of the two-stream CNNith four AMD Opteron 6128 CPUs and 128 GB RAM. Our

the vertical and horizontal optical flow maps are stacked as thgram is the only workload on the system when measuring
input image. For the convolutional autoencoder, the outpuffe efficiency.

of Conv2 are vectorized and then classified based on theilTo obtain the Computation time for 3D filter |earning,is
Euclidean distances. fixed to 14, and the other parameters are varied. The training
Because 10 random Sp“ts are app“ed for the DynTex.ﬂﬁta are105 3D blocks Sampled from the 50-class breakdown
dataset, we train 10 models for each network and average tHéffLA database. To obtain stable results, we repeat the filter
classification rates. Each model is trained for 100 epochs, dR@ing process 50 times and use the average time as the final
the corresponding average classification rates are preser@@putation time. A comparison of the computation time of
in Fig. 9. We observe the following. For the 3D CNN, thdhe four learning methods is presented in Table V. PCA is more
performance first increases as the number of epochs incresféisient than the three other filter learning methods, which all
and then becomes stable after thet/8%poch, providing contain an iterative process. ICA requires less time than sparse
a classification rate of approximately 65%. The results aff€ring and k-means clustering to learn the filters.
similar for the two-stream CNN, except for the much higher For the computation time of feature extraction, we apply the
classification rate of approximately 86%. The performand€A filters (L = 14) to extract features from each of the 200
of the autoencoder first increases to its peak (65.52%) RI Vvideos in the UCLA database. To obtain stable results,
the 5%h epoch and then decreases. Overall, the two-stredg¢ time for processing each video is averaged as the final
CNN significantly outperforms the other two networks, likelomputation time. We compare the original implementation
because the two-stream CNN uses images as input and tfQ¥olving 3D block extraction) with the efficient imple-
mentation (using 3D convolution) in Table VI. Additionally,
the computation time of MBSIF-TOP and MPCAF-TOP is
included for comparison. Clearly, the efficient implementation
significantly accelerates the feature extraction process. On
even an old server, our method requires only approximately

Fig. 8. Network Architectures for the convolutional autaeder. ConvT
means transposed convolution.

90 T T T

9 2.8 seconds to extract the features from a video in the UCLA
2 database, demonstrating that it is practical for real-world
c
2 TABLE VI
‘f_g COMPUTATION TIME (IN SECOND$ FOR FEATURE EXTRACTION USING
a ICA FILTERS
©
© Feature Type | k=3 | k=5| k=7 | k=9 | k=11
T _[Hs 6.76] 7.59| 9.54] 12.35( 16.44
——3DCNN 5 S Hsw 6.84|7.61|9.62|12.53| 16.85
10 —— Two-Stream | - 5 =|Hsnc 6.86| 7.63| 9.67| 12.60| 16.89
~ Autoencoder £ _[Hs 0.59] 1.28] 2.75| 6.89 | 11.46
0 . | ‘ . | | ‘ . ‘ 5=
o 10 20 3 40 s e 70 s % 10 S EHSM 0.66|1.34|2.81| 6.95 | 11.52
Epoch 5= Hsme 0.67|1.37|2.84| 7.00 | 11.56
MBSIF-TOP [16] 24.63
Fig. 9. Average classification rates of each network at eackshep MPCAF-TOP [27] 10.44
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applications. On the other hand, MBSIF-TOP and MPCAH15]

TOP, respectively, require 24.63 seconds and 10.44 seconds,

and are clearly more time consuming. [16]

V. CONCLUSION

In this paper, we consider DTs in 3D space and propose[%g]
encode their 3D filter responses through binary encoding. In
this way, only one set of 3D filters is needed, and motion fel#!
tures are simultaneously combined with appearance features.
These 3D filters are efficiently learned from randomly samplégth]
3D blocks. After comparing four unsupervised filter learning
methods, we find that ICA is most suitable for the task of
DT classification. Additionally, our efficient implementatiorn2o]
of the proposed method can substantially accelerate the fea-
ture extraction process. Compared with existing approachf:i]
especially TOP-based ones, our method generally provides
better performance on various databases, demonstrating

its
effectiveness for DT classification. (22
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