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Abstract—Micro-expression recognition aims to infer genuine
emotions which people try to conceal from facial video clips. It
is a very challenging task because micro-expressions have very
low intensity and short duration, which makes micro-expressions
difficult to observe. Recently, researchers have designed various
spatiotemporal descriptors to describe micro-expressions. It is
notable that for better capturing the low-intensity facial muscle
movement, a fixed spatial division grid, 8 x 8 for example, is
commonly used to partition the facial images into a few facial
blocks before extracting descriptors. However, it is hard to choose
an ideal division grid for different micro-expression samples
because the division grids affect the discriminative ability of
spatiotemporal descriptors to distinguish micro-expressions. To
address this problem, in this paper we design a hierarchical
spatial division scheme for spatiotemporal descriptor extraction.
By using the proposed scheme, it would not be a problem to
determine which division grid is most suitable regarding different
micro-expression datasets. Furthermore, we propose a kernelized
group sparse learning (KGSL) model to process hierarchical
scheme based spatiotemporal descriptors such that they are
more effective for micro-expression recognition tasks. To evaluate
the performance of the proposed micro-expression recognition
method consisting of the hierarchical scheme based spatiotempo-
ral descriptors and KGSL, extensive experiments are conducted
on two public micro-expression databases: CASME II and SMIC.
Compared with many recent state-of-the-art approaches, our
method achieves more promising recognition results.

Index Terms—Micro-expression recognition, spatiotemporal
descriptor, hierarchical spatial division, group sparse learning,
kernelized group sparse learning
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I. INTRODUCTION

ICRO-EXPRESSION is a subtle, repressed, and in-
voluntary facial expression and occurs when people
try to conceal their true underlying emotions [1]. Similar
with conventional facial expressions, accurately recognizing
micro-expressions has great values in many application fields,
e.g., emotion interfaces [2], multimedia entertainment [3],
clinical diagnosis [4], interrogation [5], and security field [6].
Consequently, micro-expression recognition has attracted lots
of researchers’ attention and become a very active research
topic. The early researches about micro-expression recognition
can be traced back to the work of Ekman [7] in 1969, in which
Ekman observed micro-expressions when he was analyzing a
video of an interview with a depressed patient. Since then,
Ekman’s group carried out extensive and deep studies on
micro-expressions. Among their works, it is worth mentioning
a training tool which is named Micro-Expression Training
Tool (METT) [8]. METT is developed to help people learn
how to understand micro-expressions. After receiving intensive
training of METT, people can recognize seven categories of
basic micro-expressions. However, different from conventional
facial expressions, micro-expressions last for a very short
time and have considerably low intensity [7], [9]. Moreover,
according to recent works of [10], [11], it is known that the
muscle movements caused by micro-expressions only emerge
in a few local and small facial regions. Due to these facts,
micro-expressions are actually very difficult to observe and
recognize and hence micro-expression recognition is a more
challenging task than conventional facial expression recog-
nition [3], [12]. In the work of [4], Frank et al. pointed
out that people achieve a low-level result just around 40%
recognition accuracy in micro-expression recognition test after
receiving METT training, which is far from practical applica-
tions. Consequently, it is necessary and urgent to develop a
high-quality automatic micro-expression recognition method
to assist people to accurately recognize micro-expressions.
As a typical pattern recognition task, micro-expression
recognition can be roughly divided into two main parts. One is
micro-expression feature extraction, which targets at extracting
useful information from a facial video clip to describe the
micro-expressions that the video clip contains. The second
one is micro-expression classification, which designs a clas-
sifier such as support vector machine (SVM) [13] based
on features extracted in the first part for micro-expression
recognition tasks. In recent years, most researches of micro-
expression recognition focus on feature extraction part. It
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is believed that designing reliable micro-expression features,
which can effectively describe the subtle changes of micro-
expressions, would benefit micro-expression recognition tasks.
For example, in the works of [1], [14], [15], local binary
pattern from three orthogonal planes (LBP-TOP), which has
demonstrated its effectiveness in video based facial expression
recognition [16], [17] and other computer vision tasks, was
employed for describing micro-expressions and achieved good
results. Although these results are seemingly higher than that
of observation of human beings, it is still far from a high-
quality micro-expression recognition method. Therefore, there
have been many researchers to employ different techniques
to improve LBP-TOP or design more suitable spatiotemporal
descriptors for micro-expression recognition. Ruiz-Hernandez
et al. [18] proposed to apply re-parameterization of second
order Gaussian jet on LBP-TOP and obtained a promising
micro-expression recognition result on SMIC database. Wang
et al. [19] extracted the background information using robust
principal component analysis (RPCA) [20] and then used
its LBP-TOP and Local Spatiotemporal Directional Features
(LSDF) for micro-expression recognition. In the work of [21],
Wang et al. proposed to use six intersection points to reduce
redundant information of LBP-TOP to obtain a LBP-TOP’s
variant, called LBP-SIP, and experimental results showed that
LBP-SIP is better at recognizing micro-expressions than LBP-
TOP. Recently, Huang et al. [22] proposed to use integral
operation, which is a popular image projection technique, to
develop a novel spatiotemporal LBP based descriptor, called
Spatiotemporal Local Binary Pattern with Integration Projec-
tion (STLBP-IP), for describing micro-expressions. Extensive
experiments demonstrated that STLBP-IP outperforms many
spatiotemporal descriptors such as LBP-TOP and LBP-SIP
in micro-expression recognition tasks. More recently, two
non-LBP framework based spatiotemporal descriptors, i.e.,
Main Directional Mean Optical (MDMO) [23] feature and
Facial Dynamics Map (FDM) [24] feature, have been also
developed for describing micro-expressions. MDMO and FDM
both achieve promising results on various micro-expression
databases.

It is worthy to mentioned that in micro-expression recog-
nition tasks, a spatial division method is usually used to-
gether with the above mentioned spatiotemporal descriptors
to enhance their discriminative ability to distinguish micro-
expressions. Specifically, a micro-expression video clip is
divided into a few spatial blocks with a preset grid, e.g., 8 X 8
in advance. Subsequently, the spatiotemporal features such as
LBP-TOP are extracted from these divided facial blocks and
then concatenated to compose the micro-expression feature
vector. Extensive works [1], [14], [15], [18], [19], [21] have
demonstrated the effectiveness of this method. However, it is
needed to consider how to choose a most suitable preset spatial
division grid for different micro-expression samples when we
use spatial division method. Unfortunately, in most existing
works, the spatial division grid is selected just empirically
and there is no detailed explanation for why such a grid is
chosen. Nevertheless, to solve this problem, Zhao et al. [25]
proposed a boosted multi-resolution method for spatiotemporal
descriptors to deal with dynamic facial expression recognition

tasks. Wang et al. [10], [11] designed 16 Regions of Interests
(ROIs) based on Facial Action Coding System (FACS) [26]
for descriptor extraction instead of fixed grid based division
method. Similar with the work of Wang et al. [10], [11], Liu
et al. [23] also designed a more elaborate set of ROIs whose
number reaches 32. Inspired by these works, in this paper we
first attempt to explain why the widely-used spatial division
method works well from the view of FACS [26]. Then, based
on the explanation, we design a hierarchical spatial division
scheme for spatiotemporal descriptor extraction. By adopting
this scheme, we can use hierarchical spatiotemporal descriptor
to describe micro-expressions and do not need to consider
how to choose a suitable division grid for different micro-
expression databases excessively like conventional spatial di-
vision method. Furthermore, we propose a kernelized group
sparse learning (KGSL) model, which is derived from group
sparse learning (GSL) model, to build the relationship between
hierarchical spatiotemporal descriptors and micro-expressions.

Overall, the contributions of this paper mainly include
following two parts:

1) We attempt to explain why spatial division method
is beneficial for improving the discriminative abil-
ity of spatiotemporal descriptors to describe micro-
expressions. Meanwhile, based on our explanation, we
design a hierarchical division scheme instead of the
widely used fixed grid based division method for spa-
tiotemporal descriptor extraction.

2) We propose a KGSL model to process the hierarchical
spatiotemporal descriptors to learn a set of importance
weights which can not only select the important facial
blocks from various facial blocks yielded by hierarchical
scheme but also measure their specific contributions to
micro-expression recognition.

The rest of the paper is organized as follows. Section II
introduces the hierarchical spatial division scheme for spa-
tiotemporal descriptor extraction. Section III describes KGSL
model and shows how it works with hierarchical spatiotem-
poral descriptors for recognizing micro-expressions. In Sec-
tion IV, we conduct extensive experiments on two commonly
used micro-expression databases to evaluate the proposed
method consisting of hierarchical spatiotemporal descriptor
and KGSL. Finally, the conclusion is drawn in Section V.

II. HIERARCHICAL SPATIOTEMPORAL DESCRIPTORS FOR
DESCRIBING MICRO-EXPRESSIONS

According to the theory of FACS [26], common expres-
sions, e.g., Angry, Disgust, Fear, and Happy, can be
coded by the combinations of some action units (AUs)'.
As described previously, Wang et al. [10], [11] and Liu et
al. [23] designed a set of ROIs based on FACS, respectively,
where each ROI comprises one or more AUs, instead of the
aforementioned fixed grid based spatial division method and
then extracted spatiotemporal descriptors from these ROIs to
describe micro-expressions. They showed ROIs based method

There are 38 elementary components including 32 AUs and 6 action
descriptors (ADs) in FACS. FACS can quantify facial movement with a
combination of these components.
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Fig. 1. An illustration of the proposed hierarchical spatiotemporal descriptors + KGSL micro-expression recognition method. The top dashed box describes
how to construct a hierarchical spatiotemporal descriptor given a micro-expression video clip. The bottom dashed box presents the key novelty of KGSL
model that it can learn a group of weights to measure and quantify the contributions of facial regions to micro-expression recognition. In the example, the
weights with the value of 0 mean that their corresponding facial blocks have no contributions to micro-expression recognition. The weights with positive

rational numbers reveal different contributions to micro-expression recognition.

is more powerful and effective than fixed grid based spatial
division method. Inspired by their works, it is believed that
different micro-expressions are also associated with different
AU combinations. As well, the features extracted from the
AU regions associated with micro-expressions would be more
discriminative and effective for micro-expression recognition.
Based on this fact, the fixed grid based spatial division
method and the ROI method actually share an important
point in common that they are exhaustively aiming at locating
good facial regions which cover the AU regions strongly
associated with micro-expressions. This is why spatiotemporal
descriptors, e.g., LBP-TOP, combined with both the above
methods would work well in micro-expression recognition.
Note that the areas of these good regions are actually hoped
to be appropriate, which means the selected regions cannot
be either too large or too small. The reason is that large
regions may produce noisy information and interfere with the
performance of spatiotemporal descriptors, while small regions
lead to the loss of useful information. However, as analyzed
previously, conventional spatial division method cannot ensure
such appropriate regions are obtained because its grid size is
fixed.

To solve this problem, we design a hierarchical division
scheme which consists of multiple types of gradually denser
grids. The grids with different densities would yield facial
blocks with different sizes, which guarantees that ideal facial
blocks covering the critical AU regions associated with micro-
expressions are most probably and appropriately included.
Consequently, the hierarchical division scheme is more flexible

to all spatiotemporal descriptors than fixed grid based division
method since we do not need to try out the best type of
grid for different micro-expression datasets. An example of
the hierarchical spatial division scheme is depicted in the top
dashed box of Fig. 1. It shows how a micro-expression video
clip is converted to a hierarchical spatiotemporal descriptor
feature vector. More specifically, given a micro-expression
video clip My, we first divide it into a few non-overlap
spatial blocks with equal size according to different types of
grids whose numbers of yielded facial blocks are increased
gradually, e.g., {1 x1,2x2,3x%x3, -, nxn}, {1x1,
2x2,4x4,---, nxn}, respectively. Thus, there will be N
blocks, where NN is the total number of blocks. For all facial
block video clips, spatiotemporal descriptors are extracted,
respectively, and denoted by {x ;}}_,. Note that x;, ; here is
a column vector. Then, we concatenate all the spatiotemporal
descriptors one by one into a supervector as is illustrated in
Fig. 1. The proposed hierarchical spatiotemporal feature vector
can be expressed as x; = [Xz,v ...,xaN]T, where T is the
transpose operator. In addition, it is worthy to mention that the
multi-resolution division method proposed in [25] consisting
of four types of grids can be actually treated as a special case
of our hierarchical division scheme. It is also noted that the
hierarchical division scheme looks like the spatial pyramid
proposed in [27]. In fact, this division manner is very popular
in many computer vision tasks and in our hierarchical division
scheme, we make use of the advantage of this image division
approach such that all the divided regions are able to cover all
possible micro-expression aware AU regions.
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III. KGSL WITH HIERARCHICAL SPATIOTEMPORAL
DESCRIPTORS FOR MICRO-EXPRESSION RECOGNITION

In this section, we will introduce our KGSL model and show
how it processes the hierarchical spatiotemporal descriptors
and deals with micro-expression recognition tasks. To begin
with, we build a GSL model based on hierarchical spatiotem-
poral descriptors and micro-expressions and then derive KGSL
from GSL formulation.

A. GSL Model

Suppose that we have M micro-expression video clips
as training samples and their hierarchical spatiotemporal de-
scriptors are extracted according to Section II. We denote
them by X = [x,---,xy] € R>M_  where d is the
dimension of hierarchical spatiotemporal descriptors. Instead
of using commonly used discrete labels, e.g., 1, 2, and 3,
we employ label vector to represent the micro-expression
categories for constructing GSL model. More specifically, let
L =[lj, --,ly] € RE*M be the corresponding label matrix,
in which ¢ is the number of micro-expression classes and
L, = [lka, k|t is a column vector whose entries take
a binary value 0 or 1 according to the following rule:

6]

It is notable that label vectors are actually a set of standard
orthogonal basis vectors and can span a vector space contain-
ing label information. Intuitively, it is suitable to introduce
a projection matrix to bridge the feature space and the label
space. For this purpose, we build the relationship between label
space and feature space by using the following optimization
problem:

1, if x;, belongs to the j

0, otherwise.

micro-expression class;

min |IL - U" X%, @)

where U is the projection matrix. Note that with the use of
block matrix trick, UTX can be rewritten as Zf\;l UZ-TXj,,
where X; is the spatiotemporal descriptors associated with
each block video clip as shown in Fig. 1 and U; is the
correspondin%v sub-projection matrix of X;. Thus, replacing
UTX by > ;,_, U7X, the optimization problem of Eq. (2)
is equivalent to the following one:

N
min |L = U7X, (3)
i=1

As mentioned previously, we hope to select the good
divided facial blocks which are exactly associated with micro-
expressions and cover more useful regions because only these
facial blocks have enormous contributions to micro-expression
recognition. As well, since their contributions are probably
different, it is a good way to quantify their importance. We
give an illustration to describe this idea shown in Fig. 1. To
achieve this goal, we introduce a weighted parameter 3; for
each divided facial block and impose its /; norm regularization
with non-negative constraint, i.e., Zf\il Bi; (B; > 0) onto
the objective function of Eq. (3). It is clear to see that this
regularization term has two expectable benefits. Firstly, it

discards the facial blocks having little contributions during
model learning. Secondly, it endows a positive rational number
to each selected block region to measure its importance.
Therefore, our GSL model is finally formulated as follows:

N N
. T (12
win L =3 BUTXE ) B st fiz0, @
=1 i=1
where p is a trade-off parameter determining the number of
nonzero elements of importance weight vector 3.

B. KGSL Model

In many recent works [28], [29], [30], [24], [31], nonlinear
classifiers, e.g., nonlinear SVM, are preferred for micro-
expression recognition problem and the experimental results
have demonstrated their advantages over linear ones. Our
recent works [22], [32] also suggest that ChiSquare kernel
seems more suitable than linear one for modeling some
spatiotemporal descriptors when using SVM as classifier. This
is the main motivation of why we intend to extend GSL to a
kernelized version for processing hierarchical spatiotemporal
descriptors instead of directly using GSL. For this purpose, let
X, and U; be mapped into a kernel space F via a nonlinear
mapping operator ¢ as below,

¢:RI = F, X; - X? and U; = U?,

Then, we can arrive at the following optimization problem by
substituting Uf and Xf into the GSL formulation of Eq. (4):

N N

in |L— S 5U¢" X202 : >

min ||L Z;ﬂle X ||F+u2ﬁz, st B >0, (5)
According to the reproduced kernel theory, in such an

infinite-dimensional space, each column ufjj of Uf can be
ie., uf’j

Xfpj, where p; is the linear combination coefficients of ui j
with respect to X?. Let U? = [uil, e
Uf’ = XfP, where P = [p1,- -+, P¢]. Substituting the new

expression of U?, we are able to rewrite Eq. (5) as:

represented as the linear combination of b:¢4

7

,ufc], then we have

N N
min ||L — PT ZKZ 2 + iy S.t. D; > 0, 6
min | ;ﬁ I7 ugﬁ Bi >0, (©

where K; = Xf’TXf is a Gram matrix and can be directly
calculated by different preset kernel functions.

It is noted that a reliable and reasonable p; needs be sparse
because only a few columns of Xf can compose u? ; linearly
instead of the whole. Therefore, it is better to add a /[; norm
regularization of P, i.e., [P[l; = 3_j_, [[p;[|1 to the objective
function of Eq. (6). Additionally, it can avoid the overfitting
problem [33] during the optimization of KGSL model. Thus,
we will obtain our KGSL model whose optimization problem
can be expressed as:

N N
i -pT K| i, S.t. B >
win |L—P > BKl[FAMP+1 Y B, st Bi >0, (7)

i=1 i=1
where A is also a trade-off parameter which controls the
sparsity of P.
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Algorithm 1: Algorithm for learning the optimal param-
eters P and S of KGSL.

Algorithm 2: Algorithm for solving the optimization
problem of step 2 in Algorithm 1.

Input: training feature matrix X = [X7T,... XZ|7T,
training label matrix L, kernel function k(x,y), and
trade-off parameters A\ and p.

Initialize: k = 0, 8%, K; = k(X;, X;).

Output: the optimal P and §.

while the objective function < € or iter k£ < maxlter do

1) Fix 8% and compute K**1:

KkJrl = [BfK,{a T 755€VK%]T7
2) Fix ¥ and update P*+1:
PH  argmgn L — BTRE 2 4 AP
3) Fix P**! and compute Z**!:
Zk+1 = [Z], e 7ZN]7

where z; = vec(Uf“TKi) and vec(-) means a matrix
is reshaped into a vector by concatenating its columns
one by one;

4) Fix P¥*1 and update g**1:

541 = axgmin 1 21812 + B, 515 0
where 1= vec(L) and ||8]|; = 33~ , Bi.

S)k=k+1;
end while

C. Optimization of KGSL

The optimization problem of KGSL model in Eq. (7)
can be simply solved via the alternative direction method
(ADM) [34], [35], i.e., updating the parameters {5, P}
alternately until convergence. The solving procedures consist
of four important steps, which is summarized in Algorithm 1.
It is notable that the non-negative Lasso problem in Step 4
is solved by Liu et al.’s SLEP package [36] in our algorithm
implementation. Meanwhile, we use the inexact augmented
Lagrangian multiplier (inexact ALM) approach [34], [35] to
optimize P in Step 2. More specifically, we firstly introduce
an auxiliary parameter Q which equals P. Then, the original
optimization problem with respect to P is converted to a
constrained one and is reformulated as follows:

in|L - QTK|? P
min L~ QK3 + AP
st. P=Q. ®)
Thus, the Lagrangian function of Eq.(8) is obtained as:
L(P.Q.Y.x) = |L—Q K% + AP
+r(YH(P - Q) + 5P - Q% (9)
where Y is the Lagrangian multiplier matrix and & is a trade-
off parameter.
Finally, the optimal P can be learned by minimizing the
Lagrangian function of Eq. (9) with respect to different param-

eters iteratively until convergence. The complete procedures
for optimizing P are summarized in Algorithm 2.

Input: training feature Gram matrix K, training label
matrix L, and trade-off parameter \.

Initialize: k& = 0, P*, Q, and Y*.

Output: the optimal P.

while |P* — Q**||, < € or iter k& < maxlter do

1) Fix P* and Y* and update Q*1:

. . ~ T
Q! —argmin L - QUK+ (Y (PF - Q)

KR .
2Pk - Q3

which results in

o k N Yk—l— kPk
Q"' = (KK + 1) (KL + ————),

where I is an identity matrix.
2) Fix Q**! and Y* and update P:

A 1 Yk
PF1 — argngnEHPHl + §||P —(QFH! — = )”%,
whose solution is:
Y Yk
I G - R S N C - Rt
Fu Q5 =) + %, QT - 5F) <

0, otherwise.

where P;;, Q;;, and Y;; are the elements of i*" row and
4t column of their corresponding matrices.
3) Update Y**! and s*+1:

Yk+1 — Yk + I{k(Pk+1 o Qk+1), I{k+1 _ min(pﬁk, Hmaz)v

Hk=k+1.
end while

D. Micro-Expression Label Prediction Using KGSL

Once the optimal parameters P and j3; of KGSL model are

learned based on training samples, we can estimate the micro-
expression category of a given testing micro-expression video
clip M, by two simple steps below:

1) Solve the following optimization problem to obtain the
label vector of a given testing sample:

N
Hihl”lt *PTzlﬁi(Kt)iH%v (10)

where (K;); = XfT(Xt)? and is calculated using the
pre-selected kernel function in KGSL model training,
x; is the feature vector of the testing micro-expression
video clip, and 1; is its corresponding label vector.

2) Assign the micro-expression category to the testing
micro-expression video clip according to the criterion
described in Eq. (11):

micro-expression_label = arg m]?x{lt(k:)}. (11)

where 1;(k) means the k' element of label vector I;.
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IV. EXPERIMENTS

A. Databases and Experiment Setting

In this section, we conduct extensive experiments to
evaluate the performance of the proposed micro-expression
method consisting of hierarchical spatiotemporal descriptors
and KGSL on two widely-used micro-expression databases.
One is CASME 1I [14], which is collected by Yan et al.
from Institute of Psychology, Chinese Academy of Science.
CASME II database contains 247 micro-expression video clips
from 26 subjects. These samples are categorized into five
micro-expression classes, i.e., Happy (32 samples), Surprise
(25 samples), Disgust (64 samples), Repression (27 sam-
ples), and Others (99 samples). The other is SMIC [37]
collected by Li et al. from University of Oulu. SMIC database
consists of 164 samples of 16 participants belonging to 3
different classes, i.e., Positive (51 samples), Negative (70
samples), and Surprise (43 samples), respectively. Particu-
larly, the samples are recorded by a high-speed camera (HS)
of 100 fps, a normal visual camera (VIS) of 25 fps, and a near-
infrared camera (NIR) of 25 fps, respectively. In this paper,
we use the HS samples for the experiments. For CASME 11
database, we crop and transform the face images of video clips
into 308 x 257 pixels, while for SMIC database, the images
are cropped and then transformed to 170 x 139 pixels.

In the experiments on both databases, leave-one-subject-out
(LOSO) strategy is used to calculate recognition accuracies,
where in each fold the samples of one subject are used as
the test set while the remaining samples are used as training
one. After S folds (S denotes the number of subjects), the
samples of all subjects have been used as the test set once,
and the final recogrslition rate is then calculated according
to Accuracy = % x 100, where T; and N; are the
number of correct zf)rledqictions and the number of testing
samples, respectively, when the samples of " subject is
served as the testing set. Besides, since CASME II and SMIC
databases are highly imbalanced [28], [31], [38], which means
in the database the number of one type of micro-expression
samples is significantly larger or lower than other types of
micro-expression samples, we also report the Fl-score of all
the experimental results such that the actual performance of
the micro-expression methods can be reflected. Fl-score is
calculated according to F = 1377 %, where p; and
r; mean the precision and recall of the i*” micro-expression,
respectively, and c is the number of micro-expressions.

For our method, we choose three representative spatiotem-
poral descriptors, i.e., LBP-TOP [1], [16], LBP-SIP [21], and
STLBP-IP [22], to respectively conduct the same experiments
according to the above protocol. The detailed setup of our
method including the parameters of these descriptors, hier-
archical scheme, and the parameters of KGSL are listed as
below:

1) Following the suggestion of [22], [32], we choose Chi-
Square kernel function for KGSL model throughout the
experiments.

2) For the hierarchical division scheme, we choose four
types of grids that are gradually denser, i.e., 1 x 1, 2 x 2,

TABLE I
THE SELECTED TRADE-OFF PARAMETERS OF KGSL FOR HIERARCHICAL
VERSION OF LBP-TOP, LBP-SIP, AND STLBP-IP oN CASME II AND
SMIC DATABASES, RESPECTIVELY.

[ Spatiotemporal Descriptor [
Hierachical LBP-TOP
Hierachical LBP-SIP

Hierachical STLBP-IP

CASMET | SMIC
A=10,p=01 [ X=1p=29
A=1,u=138 A=8pu=1
A=9,u=17

4 x4, and 8 x 8, respectively. Thus, we have in total 85
facial blocks given a micro-expression video clip.

3) For LBP-TOP, we set the neighboring radius R and the
number of the neighboring points P to be 3 and 8 for
LBP operator on three orthogonal planes. The uniform
pattern is used in LBP coding. Similar with LBP-TOP,
for LBP-SIP, we set its neighboring radius R as 3.

4) There are several parameters for STLBP-IP descriptor
including mask size W for spatial domain, radius of
LBP R, and neighboring number P of LBP for temporal
domain. According to the work of [22], we set W to be
9, while R and P are fixed at 3 and 8, respectively.
As well, we use temporal bilinear interpolation method
to normalize the temporal texture image as 60 for
CASME II and 20 for SMIC, respectively.

5) Leave-one-subject-out  cross-validation (LOSOCV)
method is adopted to determine the trade-off parameters
of KGSL. In our experiments we just select the
trade-off parameters for KGSL in the first fold, and
then the selected trade-off parameters are fixed in the
rest of folds?. More specifically, LOSOCV is applied
to the training samples, where in each fold the samples
belonging to one subject are served as validation set
and the rest of samples compose the new training
set. Then, we search the spaces A € [1,15] with
interval 1 and p € [0.1,3] with interval 0.1 and fix
each parameter combination for KGSL to compute the
recognition accuracy of validation set after S — 1 folds.
Finally, the set of parameters corresponding to the best
results are selected. The selected parameters of KGSL
for hierarchical LBP-TOP, hierarchical LBP-SIP, and
hierarchical STLBP-IP are given in Table I.

B. Comparison with the Fixed Grid Based Division Method

In order to show whether our proposed method can boost
the performance of spatiotemporal descriptors in dealing with
micro-expression recognition tasks, we first compare our
method with the widely-used fixed grid based division method.
We choose three grids including 2 x 2, 4 x 4, and 8 X §,
respectively to apply on LBP-TOP, LBP-SIP, and STLBP-IP,
and use Chi-Square kernel SVM as the classifier to conduct the

ZNote that since most of existing micro-expression methods report the
results using the fixed model parameter, to be consistent we just select the
trade-off parameter once (for the first fold). In fact, this strategy may be bias
to the first fold in the experiments. A good suggestion is selecting the trade-
off parameters several times (for several folds) and then averaging the results
to serve as the final experimental result. We also give the results of STLBP-IP
based on this suggestion in the last line of Table II, where we randomly select
the parameters for three folds.
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TABLE II
EXPERIMENTAL RESULTS ON CASME II AND SMIC DATABASES IN TERMS OF RECOGNITION ACCURACY AND F1-SCORE. THE VALUES IN BRACKET
BEHIND THE SPATIOTEMPORAL DESCRIPTORS ARE THE SPATIAL DIVISION GRID SIZES.

Method CASME 11 SMIC
Accuracy (%) | Fl-score Accuracy (%) | Fl-score
LBP-TOP (2 x 2) + SVM 36.30 0.3361 45.73 0.4606
LBP-TOP (4 x 4) + SVM 40.49 0.3770 47.56 0.4840
LBP-TOP (8 x 8) + SVM 40.90 0.3693 45.73 0.4690
Hierarchical LBP-TOP + SVM 40.89 0.3759 47.56 0.4861
Hierarchical LBP-TOP + KGSL 45.75 0.4230 52.44 0.4937
LBP-SIP (2 x 2) + SVM 3239 02156 35.08 0.3505
LBP-SIP (4 x 4) + SVM 39.68 03394 41.46 0.4096
LBP-SIP (8 x 8) + SVM 45.73 0.4249 42.07 0.4222
Hierarchical LBP-SIP + SVM 44.13 0.4047 39.63 0.3985
Hierarchical LBP-SIP + KGSL 4291 0.3410 43.29 0.4254
STLBP-IP (2 x 2) + SVM 46.15 0.4022 40.24 0.4047
STLBP-IP (4 x 4) + SVM 51.42 0.4654 48.17 0.4891
STLBP-IP (8 x 8) + SVM 55.06 0.4966 54.27 0.5467
STLBP-IP (8 x 9) + SVM [22] 59.51 N\A 57.93 N\A
Hierarchical STLBP-IP + SVM 55.47 0.5034 52.44 0.5353
Hierarchical STLBP-IP + KGSL 63.97 0.6125 60.37 0.6125

Hierarchical STLBP-IP + KGSL"| 63.83+0.62 [ 0.6110£0.0075 [ 60.78:£0.35 | 0.6126--0.0040 ]

* The result is the average of several results under the fixed parameters selected for several folds.

TABLE III
COMPARISON BETWEEN ROIS BASED METHODS AND OURS ON CASME II DATABASE, WHERE THE SPATIOTEMPORAL DESCRIPTOR IS LBP-TOP.

Method [ Protocol Accuracy(%) [ F1-score ]
Liu et al.’s ROIs scheme + SVM [23] LOSO 47.10 N\A
Hierachical scheme + SVM LOSO 46.96 0.4116
Hierachical scheme + KGSL LOSO 53.04 0.4841
Wang et al’s ROIs scheme + SVM [11]']  LOVO | 5514 ] N\A ]

" The result is obtained based on leave-one-video-out (LOVO) protocol and P of LBP-TOP

is set as 4.

exactly same experiments previously introduced. For STLBP-
IP on fixed grid setting, besides the above three types of grids,
we include the best result reported in [22] to comparison as
well. In addition, we also use ChiSquare kernel SVM for the
proposed hierarchical spatiotemporal descriptors to conduct
the experiments.

The experimental results on both CASME II and SMIC
databases are depicted in Tables II, respectively. As Table II
shows, it can be seen that with SVM as classier, the proposed
hierarchical spatiotemporal descriptors perform very closely
to the fixed grid division based descriptors and have no
obvious advantages. This is because that by using multiple
grids, although facial regions suitably covering the beneficial
AUs can be included, more useless facial regions which
have no or less contributions to micro-expression recognition
are introduced as well. The motivation of KGSL model is
hence to deal with this problem. Clearly, by using KGSL
model, three hierarchical spatiotemporal descriptors almost
have the markedly higher recognition accuracy and F1-score
on both CASME II and SMIC databases than those achieved
by various fixed grid based division methods, which indicates
that our method (combining hierarchical scheme and KGSL)
can boost the performance of spatiotemporal descriptors in
dealing with micro-expression recognition tasks. Particularly,
for some originally well-performing spatiotemporal descrip-

tors, e.g., STLBP-IP, our method can still further enhance it
dramatically. In the case of STLBP-IP, we can see that by
using the fixed grid based division method and SVM, STLBP-
IP achieves recognition accuracies of 59.51% and 57.93%
on CASME 1II and SMIC databases, respectively, which are
considerably competitive compared with most of recent state-
of-the-art results (refer to Tables V and VI in what follows).
But by combining our hierarchical scheme and KGSL model,
STLBP-IP obtains promising increases of 4.46% and 2.44%
recognition accuracies on CASME II and SMIC databases,
respectively. In a word, it is concluded that our method is able
to make most spatiotemporal descriptors be more competitive
and powerful in dealing with micro-expression recognition
tasks.

C. Comparison with the ROIs Based Method

We also compare the proposed method with the ROIs based
methods [10], [11], [23], which are designed according to
FACS theory. We directly take the result of ROIs based uni-
form LBP-TOP from their works, in which the parameters of
LBP-TOP are also set as R = 3 and P = 8, for Comparison.3

3Since Wang et al. [10], [11] claimed that P = 4 is more suitable for their
method and only gave the results of P = 4, we take the result under this
parameter setting.
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TABLE IV
THE RECENT STATE-OF-THE-ART MICRO-EXPRESSION RECOGNITION METHODS AND THEIR MAIN EMPLOYED TECHNIQUES.

Method [ Preprocessing Method

Spatiotemporal Descriptor

Division Scheme [ Classifier

. 5 x 5 for CASME II
Le Ngo et al. [28] | Temporal Interpolation LBP-TOP 8 x 8 for SMIC AdaBoost + STM
Oh et al. [39] No Riesz Wavelet 5 x 5 for CASME II | SVM (Linear)
X . LBP-MOP for CASME II | 5 x 5 for CASME 1I . .
Wang et al. [30] Wiener Filter LBP-TOP for SMIC 8 x 8 for SMIC SVM (Gaussian & Linear)
Park et al. [40] Adaptive Motion Magnification | LBP-TOP N\A SVM
Xu et al. [24] Linear Interpolation FDM N\A SVM (Gaussian)
. . . 5 x 5 for CASME II .

Le Ngo et al. [38] | Motion Magnification LBP-TOP 8 x 8 for SMIC SVM (Linear)
Le Ngo et al. [31] | Sparse Sampling LBP-TOP 5X%x5 SVM (Linear)
Huang et al. [32] Gaussian Filter STCLQP 8% 8 SVM (Linear)
Kim et al. [41] Data Augmentation CNN & RNN No N\A

. Gaussian Filtering & .
Liong et al. [42] Noise Block Removal OSW-LBP-TOP 8 x 8 for SMIC SVM (Linear)
Hong et al. [43] Temporal Interpolation 2Standmap N\A SVM (Linear)

Following the experiments on CASME II in [23], we recat-
egorize the micro-expression samples into four classes, i.e.,
Positive (original Happy), Negative (original Disgust),
Surprise, and Others (original Others and Repression),
and use Hierarchical LBP-TOP with SVM and KGSL with
ChiSquare kernel respectively to conduct the experiments
under the LOSO protocol. It should be pointed out that since
Liu et al. [23] report the best result with the optimal model
parameters, to offer a fair comparison here, we follow their
grid search strategy and search the parameters for KGSL
from a preset parameter grids (A € [1,15] with interval 1
and g € [0.1,3] with interval 0.1) to report the best result
corresponding to the optimal parameters. The best result of
KGSL corresponds to the optimal parameters A = 2 and
¢ = 0.6. The comparison results are given in Table III.
From Table III, we can find that by using SVM as classifier,
our hierarchical scheme is competitive against Liu et al.’s
ROIs based method as the experimental results shows (46.96%
v.s. 47.10%). More importantly, it is interesting to see that
together with the proposed KGSL model, the performance
of hierarchical LBP-TOP can be improved and our method
promisingly outperforms Liu et al.’s method [23] (53.04% vs.
47.10%). In addition, it can be also seen that the recognition
accuracy achieved by our method is even at the same level
with the result of Wang et al.’s method [10], [11] under the
leave-one-video-out (LOVO) protocol.

D. Comparison with the State-of-the-art Results

In this section, we compare the best result achieved by
our method (Hierarchical STLBP-IP + KGSL) in Table II
with recent state-of-the-art results on both two databases.
To make the readers have access to glance through these
methods [28], [39], [30], [40], [24], [38], [31], [32], [41],
[42], [43], we summarize their main employed techniques
including preprocessing method, spatiotemporal descriptor,
division scheme and classier in Table I'V. For the detail of these
methods, the readers can further refer to the corresponding
references. In addition, since some works among them report
the best results with the optimal model parameters instead of

TABLE V
COMPARISON BETWEEN OUR METHOD (HIERARCHICAL STLBP-IP +
KGSL) WITH SOME STATE-OF-THE ART METHODS ON CASME 11

DATABASE.

[ Method [ Accuracy (%) [ F1-score [
Le Ngo et al. [28] 43.78 0.3337
Oh et al. [39] 46.15 0.4307
Wang et al. [30] 45.75 N\A
Park et al. [40] 51.91 N\A
Xu et al. [24] 41.96 0.2972
Le Ngo et al. [38] 51.00 0.4700
Le Ngo et al. [31] 49.00 0.5100
Kim et al. [41] 60.98 N\A
Ours 63.97 0.6125
Huang et al. [32]* 58.39 0.5836
Ours™ 65.18 0.6254

* The result is obtained with the optimal parameter set
searched from a preset parameter space.

" The result is obtained with the optimal parameter set
(A = 8, u = 2.5) searched from a preset parameter
space.

the parameters selected by cross-validation method, we also
report the results of our methods with the optimal parameters
by using the parameter grid search strategy in the comparison.

1) Comparison results on CASME Il database: We take
the results on CASME II database under the LOSO protocol
achieved by the above methods [28], [39], [30], [40], [24],
[38], [31], [32] for comparison. The comparison results are
depicted in Table V. From Table V, we can see that our method
achieves the highest recognition accuracy and F1-score among
all the micro-expression recognition methods and performs
substantially better than other methods. Compared with the
best results of theirs (60.98% recognition accuracy reported
by Kim et al. [41] and 0.5100 F1-score reported by Le Ngo et
al. [31]), our method obtains a more promising performance
with increase of 2.99% recognition accuracy and 0.1025 F1-
score.

2) Comparison results on SMIC database: Among the
above comparison methods, the works of [42], [29], [28],
[30], [24], [31], [43], [32] employ SMIC database for eval-
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TABLE VI
COMPARISON BETWEEN OUR METHOD (HIERARCHICAL STLBP-IP +
KGSL) WITH SOME STATE-OF-THE ART METHODS ON SMIC DATABASE.

[ Method [ Accuracy (%) [ F1-score ]
Liong et al. [42] 53.66 N\A
Liong et al. [29] 53.56 N\A
Le Ngo et al. [28] 44.34 0.4731
Wang et al. [30] 51.83 N\A
Xu et al. [24] 54.88 0.5380
Le Ngo et al. [31] 58.00 0.6000
Hong et al. [43] 57.90 N\A
Ours 60.37 0.6125
Huang et al. [32]" 64.02 0.6381
Ours™ 66.46 0.6577

* The result is obtained with the optimal parameter set
searched from a preset parameter space.

** The result is obtained with the optimal parameter set
(A = 11, p = 2.8) searched from a preset parameter
space.

uation experiments by using the LOSO protocol. We list their
achieved best results in Table VI. As illustrated in this table,
it is clear to see that our method has the best performance
in terms of both recognition accuracy (60.37%) and FI1-
score (0.6125) among all the methods as well. Meanwhile,
it can be seen that Huang et al. [32]’s reported result reaches
64.02% recognition accuracy. By using the same parameter
search strategy, our KGSL method can achieve the recognition
accuracy of 66.46%, which is higher than theirs. Overall,
according to the results, we are able to reach a conclusion
that our method is better at dealing with the micro-expression
recognition tasks on SMIC database than these recent well-
performing methods.

3) Statistical significance analysis: We also conduct statis-
tical significance analysis for the experimental results. Firstly,
we perform one-sample t-test for testing the null hypothesis
that the average recognition accuracy of all the state-of-the-
art methods (first EIGHT methods in Table V for CASME II
and first SEVEN methods in Table VI for SMIC) is equal
to the recognition accuracy of our method on two micro-
expression databases. The significance level « is set to 0.05.
For CASME 1II and SMIC databases, we obtain p = 0.0001846
and p = 0.0075, respectively, which indicates that compared
with the state-of-the-art methods, the improvements achieved
by our method are statistically significant.

Secondly, we perform two-sample t-test for the comparison
between our method and the best-performing comparison
method (Huang et al. [32]). To this end, we choose the
results of Huang et al. [32] and our method under the optimal
parameter setting (corresponding to the last two methods in
Table V and Table VI) and calculate the accuracy of each
fold for both two methods according to their predictions in
the experiments on CASME II and SMIC, respectively. The
detailed results for all the folds are given in Table VII. Then,
according to the results of all the folds, we are able to obtain
p = 0.2228 and p = 0.4595 for the comparison on CASME II
and SMIC, respectively. It can be from the p-values seen that
the improvements achieved by our method have no statistical
significance compared with the results of Huang et al. [32].

TABLE VII
THE ACCURACY (%) OF EACH FOLD FOR THE PREDICTIONS OF HUANG ET
AL. [32] AND OURS ON CASME II AND SMIC, RESPECTIVELY.

Fold CASME 1T S]\iHC
Huang et al.” [ Ours Huang et al.”[  Ours

01 44 .44 100.00 33.33 66.67
02 38.46 69.23 83.33 66.67
03 85.71 57.14 69.23 58.97
04 100.00 100.00 47.37 57.89
05 57.89 31.58 100.00 100.00
06 60.00 80.00 50.00 50.00
07 100.00 44.44 69.23 53.85
08 33.33 100.00 25.00 0.00
09 76.92 61.54 85.71 100.00
10 100.00 100.00 88.89 77.78
11 70.00 70.00 70.00 90.00
12 50.00 75.00 80.00 80.00
12 100.00 50.00 75.00 75.00
14 75.00 50.00 85.71 71.43
15 33.33 100.00 50.00 100.00
16 25.00 50.00 40.91 68.18
17 20.59 50.00 - -
18 66.67 100.00 - -

19 66.67 53.33 - -
20 81.82 72.73 - -

21 50.00 50.00 - -
22 100.00 100.00 - -
23 58.33 75.00 - -
24 75.00 75.00 - -
25 28.57 42.86 - -
26 31.25 75.00 - -

* The results achieved by Huang et al.[32] in all the folds are pro-
vided by Dr. Xiaohua Huang from University of Oulu, Finland.

E. Evaluation on Hierarchical Scheme with Different Grid
Combinations

In the above experiments, we just employs multiple grids
with sizes {1x 1, 2x2, 4x 4, 8 x8} (TYPE-I) for hierarchical
scheme. In this section, we evaluate the performance of the
proposed hierarchical scheme with other grid combinations.
For this purpose, we select three grid combinations including
{1x1,2x2,3x%x3,4x4} (TYPE-I), {1x1,2x2,3x3,
4x4,5x5} (TYPE-II), and {1 x1,2x2,3x3,---,8x8}
(TYPE-IV), for hierarchical scheme with KGSL to conduct
the experiments. The kernel function of KGSL is ChiSquare.
We denote the above four types of grid combinations by
TYPE-I, TYPE-II, TYPE-III, and TYPE-IV, respectively. The
experimental results are given in Table VIII, where the number
in brackets in the first column is the facial block number
yielded by the corresponding type of grid combination. Note
that for convenience, we just employ the parameter grid search
strategy as the experiments in Section IV-C for KGSL with
different grid combinations and report the best results with
the optimal parameter set. As shown in this table, we can find
that the hierarchical STLBP-IP with TYPE-I and TYPE-IV
grid combinations achieves more promising results in terms
of both accuracy and Fl-score than other two types, which
indicates that for CASME II and SMIC databases, dense
grid (8 x 8) seems be more able to accurately cover micro-
expression aware AU regions than sparse grid (e.g., 4 x 4
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TABLE VIII

EXPERIMENTAL RESULTS OF THE PROPOSED HIERARCHICAL SCHEME USING DIFFERENT TYPES OF GRID COMBINATIONS ON CASME II AND SMIC
DATABASES.

TYPE CASME 11 SMIC

Accuracy (%) | Fl-score | Optimal Parameters | Runtime (s) | Accuracy (%) [ Fl-score [ Optimal Parameters | Runtime (s)

1 (85) 65.18 0.6254 A=8,u=25 213.23 66.46 0.6577 A=11, p =238 61.96

11 (30) 55.06 0.5294 A=3, =03 125.20 56.10 0.5592 A=6,u=4.9 33.07

10T (55) 57.49 0.5254 A=1,pu=17 160.73 57.93 0.5785 A=2, =05 46.00

1V (204) 63.56 0.6206 A=4, =038 386.86 63.41 0.6272 A=12, p=1.2 120.45

" W B

1.6e-4

i fa] & &
N S
@ ‘ (b)

N

0.0

Fig. 2. Examples for the visualization of learned importance parameters [3;.
(a) is the result of CASME II database, where the parameters of KGSL are
A = 8 and p = 2.5. The selected sample belongs to Happy category and
comes from Subject #sub0I. (b) is the result of SMIC database, where the
parameters of KGSL are A = 11 and px = 2.8. The selected sample belongs to
Negative category and is from Subject #s/8. The spatiotemporal descriptor
is STLBP-IP. In these two examples, only some of facial blocks yielded by
8 x 8 grid are selected by KGSL.

and 5 x 5). Meanwhile, it can also be seen that TYPE-I
slightly outperforms TYPE-IV for both CASME II and SMIC
databases. It may be explained by the fact that TYPE-IV
employs a finer granularity of grid combination and bring more
useless information compared with TYPE-I. Consequently, the
performance of the proposed hierarchical scheme using TYPE-
IV degrades compared with TYPE-L

We also investigate the complexity difference among hi-
erarchical schemes using these four different types of grid
combinations. To this end, we list their corresponding time
consumption of the experiments on CASME II and SMIC
databases, respectively, in Table VIII. Note that the computer
for experiments has an Intel Core i5-4570 CPU with 3.20
GHz and an 8GB RAM. The computing software is MATLAB
2016b. From the results of Table VIII, we can see that the
time consumption of the proposed hierarchical scheme is very
sensitive to the facial block numbers yielded by its preset
spatial grids. Theoretically, the time cost of the proposed
hierarchical scheme would increase as the increase of the facial
block numbers. In practice, however, the facial block numbers
should not be too large in order to avoid the redundancy of
the facial information. Moreover, it is notable that too small
size of facial block may not cover the useful facial regions and
hence the feature extracted from these facial blocks will bring
irrelevant information to the micro-expression recognition tar-
get. Consequently, it can be found that TYPE-I hierarchical
scheme is a satisfactory choice in practice by considering the
balance between the performance and time complexity.

AU11, AU12,
AU13, AU14,
AU15

(b)

Fig. 3. Some common selected facial blocks between (a) CASME II and (b)
SMIC databases and their associations with AUs and Wang et al.’s ROIs [10],
[11], where the number in the selected facial blocks is the block index
illustrated in Fig. 1.

F. Weighted Parameter Visualization for KGSL

As described previously, the regularization term with re-
spect to B of KGSL model is designed for quantifying the
contribution of each block yielded by hierarchical division
scheme to micro-expression recognition. To see how it reflects
the contributions of different facial blocks to micro-expression
recognition, we visualize the learned S of KGSL based on
both databases. For this purpose, we draw a weighted param-
eter visualization example with STLBP-IP as spatiotemporal
descriptor for CASME II and SMIC databases, respectively,
where the testing samples in CASME II case belong to Subject
#sub01 and in SMIC example the testing subject is Subject
#s18. The visualization results are shown in Fig. 2, where
the left transparent heat map describes the learned weights f3;
of CASME 1II example and the right one corresponds to the
SMIC example.

From the visualization results, it is interesting to see that
for both two databases, facial blocks on 1 x 1, 2x 2, and 4 x 4
grids are all not selected. It is demonstrated that spatiotemporal
descriptors extracted based on sparse division grids have no
or very low contributions to distinguishing micro-expressions.
That is why in the most existing works, they achieve satis-
factory performance by adopting dense division grids, e.g.,
6 x 6, 6 x 8, and 8 x 8. It should be pointed out that not
all facial blocks yielded by a dense grid, e.g., 8 x 8 in this
case, contribute to distinguishing micro-expressions. Only the
facial blocks locating at the AU regions associated with micro-
expressions, e.g., AUs around eyebrows (AUI1, AU2, AU4)
and AUs near lip corners (AU13, AUI4) in this example
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Fig. 4. Results of trade-off parameter sensitive experiments for the proposed KGSL model with different spatiotemporal descriptors (LBP-TOP, LBP-SIP, and
STLBP-IP), where (a) corresponds to the results of CASME II database and (b) is the results of SMIC database.

as shown in Fig. 3, are selected. From Fig. 3, it is also
interesting to see that these mentioned AUs are mostly the
elements composing the ROIs designed by Wang et al. [10],
[11]. Our example may provide a support for the fact that
different micro-expressions are associated with different AU
combinations like facial expressions, which is discussed in
Section II.

Besides, by comparing two visualization results, we can
find that the number of selected facial blocks of CASME
IT are larger than that of SMIC. We think there may be
two possible reasons. Firstly, the micro-expression categoriza-
tions of two databases are totally different. CASME 1II has
five micro-expressions including Happy, Surprise, Disgust,
Repression, and Others, while SMIC samples are divided
into three micro-expressions, i.e., Positive, Negative, and
Surprise. Therefore, the related facial regions that are dis-
criminative to these two types of micro-expression catego-
rizations have different numbers and locations. Secondly, the
micro-expressions induced by the stimuli materials collected
by CASME II owners may have more facial muscle move-
ments than SMIC database and hence more facial blocks of
CASME 1II samples are selected by KGSL model. In addition,
although the selected facial blocks of two databases have
different numbers, it is clear that there are some shared blocks
locating at the AU regions as mentioned above. It is believed
that the AUs associated with these shared facial block regions
are very important and contributing to distinguishing micro-

expression independently, which means for either different
databases or different categorizations for micro-expression
samples, they play a crucial role in micro-expression recogni-
tion tasks.

G. Parameter Sensitivity of KGSL model

In this section, we investigate the parameter sensitivity of
the proposed KGSL model. As Eq. (7) shows, the KGSL
model has two important trade-off parameters, i.e., A and p.
To see whether KGSL model with different spatiotemporal
descriptors is robust to their selection, we conduct additional
experiments using KGSL with hierarchical LBP-TOP, LBP-
SIP, and STLBP-IP on CASME II and SMIC databases,
respectively, by fixing the values of one parameter of KGSL
while changing the other one. More specifically, the changing
space and interval of A and y are set as follows: A € [1: 1 : 15]
and g € [0.1: 0.1 : 3], while the fixed A and p in the exper-
iments are set as same as the values selected by CV method,
which are shown in Table I. Experimental results are given in
Fig. 4, where Fig. 4 (a) corresponds to the results of CASME II
database and Fig. 4 (b) is the results of SMIC database. From
the results, it is clear to see that the performance of KGSL with
different spatiotemporal descriptors changes slightly within the
parameter space for both CASME II and SMIC databases. This
indicates that the proposed KGSL model is robust to its trade-
off parameters.
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V. CONCLUSION

In this paper, we have designed a hierarchical spatial divi-
sion scheme for spatiotemporal descriptors to better describe
facial micro-expressions, which is motivated by the inner re-
lationship between FACS and micro-expressions. Meanwhile,
based on the fact that the facial regions corresponding to some
AUs contribute to distinguishing different micro-expressions,
we have further proposed a novel model called KGSL to
process hierarchical scheme based spatiotemporal descriptors.
We conduct extensive experiments on two publicly available
spontaneous micro-expression databases, i.e., CASME II and
SMIC, to evaluate the performance of the proposed method.
The experimental results show that our method can effectively
enhance spatiotemporal descriptors in dealing with micro-
expression recognition tasks. By combining our method with
STLBP-IP, we achieve promising results that are better than
recent state-of-the-art results on both databases.

In addition, something important is worth pointing out.
Firstly, the proposed method in this paper is in fact also
suitable for dealing with macro-expression recognition prob-
lem because it has been demonstrated that selecting AU-
aware facial regions benefits distinguishing macro-expressions
as well [25], [35]. Secondly, it is clear that AU regions
associated with micro-expressions are very important for de-
scribing micro-expressions. Consequently, it is a good choice
to investigate how to better benefit from these AU regions
for micro-expression recognition tasks. In the future, we will
focus on developing an AU related feature learning method
which can effectively utilize the discriminative information for
micro-expressions from AU regions.
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