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Radio Resource Sharing and Edge Caching with
Latency Constraint for Local 5G Operator:
Geometric Programming Meets Stackelberg Game
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Abstract—The rapidly increasing demand in indoor small cell
networks has given rise to the concept of local 5G operator
(OP) for local service delivery. In this regard, we develop a
novel game-theoretic framework with geometric programming
to model and analyze cache-enabled small cell base stations
(SBSs) with infrastructure sharing for local 5G OP networks.
In such a network, the local 5G OP provides wireless network
in indoor area and rent out the infrastructure which are RAN
and cache storage to multiple mobile network operators (MNOs)
while guarantee the quality-of-experience (QoE) at the users
(UEs) of MNOs. We formulate a Stackelberg game model where
the local 5G OP is the leader and the MNOs are the followers.
The local 5G OP aims to maximize its profit by optimizing
its infrastructure rental fee, and the MNOs aim to minimize
their renting cost of infrastructure by minimizing the ‘“cache
intensity” subject to latency constraint at each UE. Here, the
cache intensity is defined as the product of the number of SBSs
per unit area and the number of popular files stored in each SBS.
The optimization problems of the local 5G OP and the MNOs
are transformed into geometric programming. Accordingly, the
subgame perfect equilibrium of Stackelberg game is obtained
through the succesive geometric programming (SGP) method.
Since the MNOs share their rented infrastructure, for cost
sharing, we apply the concept of Shapley value to divide the
cost among the MNOs. We show that the cost sharing problem
can be mapped into a simplified ‘““airport runway cost sharing
problem”, in which the Shapley value can be computed efficiently.
Finally, we present an extensive performance evaluation that
reveals interesting insights into designing resource sharing with
edge caching in local 5G OP networks.

Index Terms—5G, beyond 5G (B5G), edge caching, latency
constraint, local SG operator, micro-operator, stochastic geome-
try, geometric programming, Stackelberg game, Shapley value.

I. INTRODUCTION
A. Motivation

The 5G and beyond 5G (B5G) technologies will need to
support extremely diverse use-cases for example, (i) Extreme
mobile broadband (xMBB) with data rates up to several
Gbps, more videos, more live streaming and reliable broad-
band access over large coverage areas. (ii) Massive machine
type communications (mMTC) which is a service category
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consisting of sensing, tagging, and monitoring require high
connection density. (iii) Ultra reliable low latency (uRLLC)
which is a service category to support the latency-sensitive
services such as, remote control, autonomous driving car
and tactile Internet [2]. Industrial, manufacturing companies,
sport arenas and smart hospitals cannot completely rely on
unlicensed wireless band. Also, traditional macro cellular
networks deployed by the mobile network operators (MNOs)
is insufficient to rapidly serve the UEs in an indoor area
with the quality of experience (QoE)/quality of service (QoS)
guaranteed.

Since 80% of traffic of the above applications is generated
from indoor areas [2], the new business model of the MNOs
needs to be developed for local service delivery with spe-
cific requirements in indoor [3]-[5]. In this regard, the most
prominent and efficient solution is the deployment of local
5G operator (OP) as to offer services in specific indoor with
locally licensed spectrum. The local 5G OP business model
becomes very promising in ultra dense networks deployment
as (i) reduce the network total cost of the MNOs and (ii) the
UEs can be served with the QoE/QoS satisfied. The facility
owner with the capability of deploying small cell base stations
(SBSs) in an indoor with licensed band can become local 5G
OP [6]-[7]. Recently, Qualcomm has proposed the concept
of local 5G services for industrial automation with reliabil-
ity/latency satisfied [8]. The overview of local infrastructure
provided by the local 5G OP (micro-OP) to serve IoT devices
was studied in [9].

The local 5G OP can serve the MNQO’s UEs with licensed
bands while renting out the SBSs to the MNOs. In this regard,
the resource/network virtualization will be implemented for
the local 5G OP to reduce capital expenditure (CAPEX) and
operational expenses (OPEX) and improve network resource
utilization. Furthermore, the deployment of local SG OP can
support the possible use cases of B5G, for example, using
short-range communication in high frequencies of licensed
band to provide extreme data rate in indoor areas, i.e.,
terabit/sec for downlink transmission [10]. Under the IEEE
802.15 standard, the data rate 100 gigabit/sec is enough for
virtual/augmented reality and kiosk for a single UE, however,
it is not enough for multiple simultaneous UEs and instanta-
neous large file download. Therefore, local 5G OP with proper
infrastructure is essential to serve UEs with such a very high
data rate.

However, none of the existing work has formally formulated
the business model of local 5G OP and multiple MNOs using
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game theoretical approaches while taking latency constraint at
each UE into account. In [11], the authors studied resource
sharing through simulations in which spectrum including
mmWave band and/or network infrastrucure resources can
be shared by MNOs. The stochastic geometry modeling for
BS placement with single/multiple sellers and multiple buyer
MNOs and Cournot oligopoly game was proposed in [12]-
[13]. Multiple-MNO spectrum sharing using matching game
for small cell networks was explored in [14]. Apart from the
efficient resource utilization, achieving low latency for xMBB
with partial/full virtual reality is also a critical challenge for
the MNOs. To tackle this challenge, the concept of proactive
caching was introduced [16]-[19] in which popular contents
are stored at the edge/radio access network (RAN), e.g., cache-
enabled BSs to reduce the wireless access delay. In [15],
the virtualization technique in the downlink transmission of
limited fronthaul capacity cloud-radio access networks was
considered. The authors formulated an optimization problem
to maximize network energy efficiency by a joint design of
virtual computing resources, transmit beamforming, remote
radio head (RRH) selection, and RRH-UE association.

In the context of economic modeling of caching, the work
in [17] used stochastic geometry method to characterize the
probability that a UE finds a video file from a content provider
in the cache of a BS located closest to it. Using this probability,
a Stackelberg game was formulated and solved to maximize
the average profit of the network service providers, which
act as the leaders, and the content providers, which act as
the followers. In [18], the authors considered a Stackelberg
game with a single MNO and multiple content providers.
The MNO, as the leader, decides on the price to charge to
content providers such that the revenue is maximized. The
content providers, as the followers, compete with each other
to obtain sufficient cache space to improve the QoS to its UEs.
In [19], the cache is partitioned into slices and each partition is
allocated to the content providers. The utility based approach
is used to formulated the problem of content providers. In [20],
the authors considered that the network operator (NO) leases
the resources of a high-tier central cloudlet for task offloading.
The NO tries to minimize its computational cost and devices’
energy consumption in a multi-tier mobile edge computing
(MEC) system by optimizing the offloading decision, transmit
power and radio resources in uplink channel.

The majority of the above work consider neither infras-
tructure sharing (i.e., virtualization of network resources) nor
the latency constraint at the UE in the context of local
5G OP with edge caching. Also, only deterministic channel
models with caching are considered, e.g., in [16]-[19]. We
therefore significantly extend the existing work by developing
a framework to model and analyze latency-constrained for
radio resource sharing with caching-enabled SBSs in local
5G OP networks with the SBS modeling using stochastic
geometry.

Fig. 1 illustrates the business model between the local 5G
OP, MNOs, application provider (APV), and infrastructure
provider (InP) considered in this paper. The local SG OP leases
available licensed subbands from multiple MNOs and obtains
the videos/contents from the APV. The core networks can be
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Fig. 1. Business model between the local 5G OP, MNOs, application provider
(APV), and infrastructure provider.

provided by either InP or MNOs. Then, the local 5G OP will
assign the licensed subbands to the SBSs in order to give the
wireless service to the UEs of MNOs. We consider only a part
of local 5G OP leasing out the SBSs and cache storage to the
MNOs and allowing the MNOs to rent and share the same
resources. Some part of the business model in Fig. 1, includes
one MNO and one local 5G OP, has been initially implemented
in real-world scenario, i.e., in our 5G test network (5G TN),
6G Flagship, university of Oulu, Finland [21]. The 5G TN
has received the licensed spectrum subbands, frequency band
7 which is from 2110 — 2170 MHz for downlink transmission.
The core network has been provided by nokia, Oulu, Finland,
to connect to each SBS. In this case, our 5G TN becomes
the local 5G operator (local 5G OP) who deploys SBSs with
licensed subbands and each SBS connects to core networks.

For the theoretical aspects, our work is the first work that
formulates the optimization problems of each MNO and the
local 5G OP as geometric programming and formulate an
entire problem as a Stackelberg game where the local 5G OP is
the leader and the MNOs are the followers. Also, the MNOs
cooperate with each other to share the cost of leasing. The
motivation behind our proposed game theoretical frameworks
are (i) The local 5G OP installs fixed amount of cache-enable
SBSs per unit area, so it knows the available cache intensity
to provide MNOs for renting. (ii) The local 5G OP and the
MNOs can exchange information between each other. Thus,
the local 5G OP will have sufficient foresight to anticipate
the strategy of each MNO and the local 5G OP is able to
estimate the amount of infrastructure that all MNOs need.
Therefore, we formulate the business model of local 5G OP
and the MNOs by using Stackelberg game. Then, the local 5G
OP declares the total rent to MNOs, and since the MNOs are
able to communicate with other. Accordingly, we propose the
coalitional formation game where the MNOs cooperate with
each other to share the total rent.

B. The contributions of the paper

The main contributions of the paper are as follows
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o From the perspective of cache-enabled SBSs, we derive
expressions for two important caching performance met-
rics, namely, cache hit probability and wireless access
delay.

o Using the derived caching performance metrics, we
model the virtualization problem of a cache-enabled
large-scale cellular networks as a Stackelberg game,
where the local 5G OP is the leader and the MNOs are
the followers.

o For radio resource sharing with edge caching, using a
geometric program, the optimal strategies of each MNO
are obtained analytically in terms of SBS intensity and
cache size where the MNO aims at minimizing the cost
of renting cache intensity from the local 5G OP subject
to the latency constraint at the UE.

« To use the storage resources efficiently, from the perspec-
tive of resource sharing of local 5G OP, it handles only
the largest cache intensity required by the MNO. The
pricing problem of the local 5G OP is formulated as a
Stackelberg game where the objective is to maximize its
revenue while minimizing the power consumption at the
SBSs. We obtain the subgame perfect equilibrium of the
Stackelberg game analytically via successive geometric
programming.

o We develop a method based on the Shapley value to share
the cost of leasing among the MNOs. We show that our
cost sharing problem can be mapped into a simplified
form, namely, an airport runway cost sharing problem, in
which the Shapley value can be computed efficiently.

C. Organization

The rest of the paper is organized as follows. Section II
describes the system model. In Section III-A, the cache hit
probability and wireless access delay are derived. Section IV
presents the optimization of each MNO as to minimize the
cache intensity subject to the latency constraint at a UE. This
corresponds to the follower subgame in the Stackelberg game
formulation. Section V presents the problem of the local 5G
OP as to maximize the revenue which corresponds to the
leader subgame in the Stackelberg game formulation. Also,
the cooperation among MNOs for sharing the infrastructure
using Shapley value to divide the rent among the MNOs is
proposed. The numerical results are presented in Section VI
before the paper is concluded in Section VII.

II. LoCAL 5G OPERATOR VIRTUALIZED CACHE-ENABLE
SBSs To MNOSs

A. System Model

We consider a heterogeneous network with a local 5G OP
and a set K of MNOs such that || = K. The MNOs are
assumed to be co-located and serve their UEs in the same area.
The local 5G OP is assumed to provide the licensed spectrum
band while installing a set of cache-enabled SBSs, ®;, which
are spatially distributed according to a homogeneous Poisson
point process (PPP) with spatial intensity J, i.e., the number
of SBSs per unit area. All SBSs are identical in terms of edge
caching capabilities.

TABLE I
Li1ST OF COMMON NOTATIONS

Notation | Description

K] A set of MNOs where K| = K.

78 A set of cached-enabled SBSs installed by the local 5G OP.

Dy A set of cache-enabled SBSs rented by MNO-k.

Dy, The set of UEs that subscribe to MNO-k.

A The intensity of SBSs installed by the local 5G OP.

Ak The intensity of SBSs rented by MNO-E.

Wi, Licensed banwidth leased out by the MNO-k.

Ly Number of subchannels of the MNO-k.

A1 The intensity of interfering SBSs which causes intra-MNO
interference of MNO-k.

AA The intensity of SBSs that a typical UE of MNO-k
can associate itself with.

&k The intensity of UEs subscribe to MNO-k.

Pk The transmit power of the rented SBS of MNO-k.

Iy The intra-MNO interference of MNO-k.

gj The channel gain between the tagged UE and interfering SBS-
J

T The distance between the tagged UE and the interfering SBS-
7

P, The coverage probability.

G The throughput of the tagged UE served by the nearest SBS.

IK| The set of files available for caching in the cloud, where
K| =K.

Sk The number of files store in cache-enable SBS.

v Zipf exponent.

Phit Cache hit probability.

Ty Size of the file which is assumed to be fixed.

Dy Transmission delay.

Dy Backhaul delay.

Dy, Total delay.

w The price of cache per unit area.

Each MNO-k, k£ € K, wants to rent a fraction of the set
®,,. The intensity of the SBSs Ay rented and utilized by the
MNO-£, is given by the thinning of ®; of the SBSs owned
by the local OP, which yields another homogeneous PPP ®.
We can express the property of thinning and sharing of SBSs
by ®; C ®; such that | J, . @ = 3, where k,1 € K and
k # [. First of all, the local 5G OP leases some portions of
available licensed spectrum from multiple MNOs then, attach
the licensed subbands to its SBSs while allowing multiple
MNOs to rent its SBSs and cache storage.

Fig. 2 gives an example for the general case of the average
number of cache-enabled SBSs required by MNO-1, MNO-
2 and MNO-3. Since the local 5G OP deploys resource
virtualization, when MNOs rent the cache-enabled SBSs from
the local 5G OP, some of the SBSs including cache storage
can be utilized by all three MNOs simultaneously while some
are used by one or two MNOs. However, in our scenario, we
assume that the each cache-enable SBS of local 5G OP are
shared by all K’ MNOs simultaneously. Each MNO-k operates
over orthogonal spectrum, and thus there is no inter-MNO
interference. The MNO-£ leases out the licensed bandwidth of
Wi, Hz, which is divided into L; subchannels to the local 5G
OP. Each SBS operates in one of the L, available subchannels
assigned to it by the local 5G OP. The subchannel of the same
MNO can be accessed by more than one SBS and therefore,
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Fig. 2. Virtualized Cache-enabled SBSs shared between MNO-1, MNO-2,
and MNO-3.

the intensity of interfering SBSs which causes intra-MNO
interference of the MNO-k is given by A\; = 2—’; Every SBS
and UE are assumed to be equipped with a single antenna.

For each MNO-£, the SBS serves one UE in a given time
slot by using the assigned subchannel with the maximum
transmit power pi. A UE subscribed to an MNO-£ associates
with the nearest available SBS that the MNO-k rents from
the local 5G OP. We assume that each MNO-k is free to
use any fraction of the total available SBSs. The net intensity
of the SBSs that a typical UE of the MNO-k can associate
itself with is Ay = ;. The set of UEs that subscribe to
MNO-k is denoted by ®,,. The UEs are assumed to be
spatially distributed according to a homogeneous PPP with
spatial intensity &g.

In this part, we consider the analysis of a single MNO-
k downlink SINR coverage probability and throughput. We
consider a tagged UE of MNO-£ to be located at the origin,
which associates with the nearest SBS. Let us label the nearest
SBS as SBS-0. We assume that the signal undergoes Rayleigh
fading with the channel gain, go. Let a; > 2 denote the
path-loss exponent for the path-loss model r, **, where rg
is the distance between the tagged UE and the nearest SBS-
0, 0 € ®. Let o’,% denote the noise variance, and again py
denote the transmit power of all the SBSs of the MNO-
k. The downlink SINRk at the tagged UE is given by

SINRx = QOIT o +0 . The interference experienced by the
tagged UE associated with SBS-0 comes from the transmitted
signal from other SBSs of the same MNO-£ to the UEs in
the same time slot. Thus, Iy, = > c4,\ 0} 957 Pk Here g;
is the channel gain between the tagged UE and interfering
SBS-j, and r; is the distance between the tagged UE and the
interfering SBS-j, where j € ®,\{0}.

For a given threshold T, the SINR coverage probability
for the tagged UE is defined as P. = P(SINRy, > T).

'The UEs are assumed to associate to the SBSs based on their average
received signal strength and the average received signal power at each UE from
its corresponding SBS will be strictly higher than the average interference
power from the interfering SBS. As such, power control is not crucial for
the network operation due to interference protection introduced by the UE
association criterion.

4

Following the approach given in [22, Theorem 1], we first
condition on the nearest SBS at the distance g from the
tagged UE. Since the Rayleigh fading channel gain follows
an exponential distribution, P. can be expressed by taking
expectation with respect to the interference power as in (4)-
(6) in [12]. The P, under our system model is given as
[12, Prop. 1]: P. = 74 fooo exp{—(Az + Bz*/?)}dz, with

Aa = Mg, A1 = Ap/Ly. The coefficients A and B are
J— 2
given by A = w[A/(3—1) + 4] and B = %, where
2/a _
B = AR (02 (D(=2/ax, Tg/pr)) — T(=2/on))

We can evaluate PC uiing equation (13) in [12] as P. ~

_ —2/a
TAA {A + 3 f{ k)] . Therefore, the coverage probability

(Tg-2>2/ak -1 0
Z)\ pr ’

where I'(z) is the Gamma function. For the interference-
limited case, when 02 — 0, or when \;, — oo, the last term
in (1) will become 0. The expression in (1) simplifies to
Ly,
PC_B—&—Lk—l' @
Note from (2) that as L; — oo, P, — 1.

Next, we define the throughput of the tagged UE served
by the nearest SBS as G, = PCL—‘Z/’“ logy (1 + 0), where P, is
the downlink coverage probability, and Wy, /Ly is the channel
bandwidth. We can approximate the throughput by using P, in
(1) for the general case, or P, in (2) for the interference-limited
case. In this regard, we use P. of the interference-limited case
from (2) to express G as follows:

]
can be expressed as,

-1 «
1481, b

Fe= Li  2mA0(

G = log, (1 + 6). (3)

Wi
B+ Lg—1
Note that Gy is independent of Ag. Also, increasing the
number of subchannels L; improves the coverage probability
but reduces the throughput.

III. MODELING OF CONTENT CACHING AND WIRELESS
ACCESS DELAY

The idea of caching at the SBSs allows us to reduce the
latency of data delivery to the UEs. The local 5G OP can
store the most popular files in cache storage of all the SBSs
to serve the UEs of MNOs. In this section, we present the
analysis of cache hit probability and the delay modeling.

A. Content Popularity-Based Edge Caching: Cache Hit Prob-
ability

Let 7 = {fi1,...,fr} be the set of files available for
caching in the cloud, where F' = |F|. Considering edge
caching based on the file popularity, let S;, C F be the set of
files can be stored at each SBS of each MNO-k. For simplicity,
we assume that all the files are of equal size. If a random file
f € F is requested by a UE, let By (Sx) = P(f € S) denote
the probability that the file f is available at the SBS cache,
which we refer to as the “cache hit probability.”
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We assume that the cache policy is to store the Sy most
popular files from F. We can model the popularity of the files
by the Zipf distribution given by p; = ﬁ, where pg is
the probability of d-th most popular file Jbieling requested and
the exponent v > 0 reflects the skewness of the file popularity
distribution. Larger values of v lead to fewer popular files
in the content requests. The probability that the requested file
f € F is stored in the cache is Py;i(Sk) = P(d < Sk), where d
is the random popularity rank of file f. Since P(d < Sj) is the
cumulative distribution function (CDF) of the Zipf distribution,
we can express Py (Sg) as follows:

Sk v
Phie(Sk) = =471 1/d — s “)
> i 13" Hry
In (4), we concisely express P using generalized harmonic
numbers, i.e., Hg, , and Hp,, where

H = Sil _ 4)
Sk,v — o] (’I”L+ ]_)u’

and Hp, is defined similarly.

B. Asymptotic Approximation for the Cache Hit Probability
To facilitate subsequent analysis, we now derive the fol-

lowing lemma on the asymptotic approximation (i.e., when
Sk — 00) on the hit probability:

Lemma 1. When the cache size Sy, is large and v # 1, the
probability that a requested file f € F is in the cache is
asymptotically given by

1 (Sk+ 1)1
e ) - ——"7—

where ((v) is the Riemann zeta function.

Pyis(Sy) ~

; (6)

v—1

Proof: The generalized harmonic number Hg, , does not
have a closed-form expression. Nevertheless, for analytical
tractability, we can make an asymptotic approximation in
terms of S; and v. To do so, we relate the generalized
harmonic number to the Hurwitz zeta function and then use the
properties of Hurwitz zeta function. The Hurwitz zeta function,
¢(s,a), is defined as follows [23, Eqn 25.11.1]:

o0

1
s,a) = —_— 7
((s,) Ezjo T )
where R(s) > 1 and a # 0,—1,—2,.... The Hurwitz zeta
function reduces to the Reimann zeta function when a = 1,
ie., ((s,1) = ((s), where ((s) is the Riemann zeta function.
Also, harmonic sums can be expressed in terms of Hurwitz
zeta function as follows [23, Eqn 25.11.4]:
m—1 1

nz::o oy~ @) —Csatm). ®)

In our case, comparing (5) and (8), we can express the
generalized harmonic sum Hg, , in terms of the Hurwitz zeta
function as follows:

Sk—l 1

Hg, , = nz:% m =) =W, Sk+1). O

5

Now, as S — oo, the asymptotic expansion of the Hurwitz
zeta function is given by [23, Eqn 25.11.43]

(Sk+ 1)t
v—1

— DBy, e
+;m(l/)2k—l(5k + 1)k (10)

1
¢, Sk +1) ~ +§(Sk+1)_y

where By are Bernoulli numbers and (v)op—1 = v(v +
1) --- (v+2k—2) are Pochammer’s symbol for rising factorial.
Taking only the first dominant term from (10) and substituting
it in (9), we obtain the asymptotic approximation for the
generalized harmonic number as follows:

(Sk + 1)171/

HSk,l/NC(V)i l/—l

(1D

Thus, from the above arguments, using (4) and (11), we
prove the lemma. u

Here (6) is asymptotic in the sense that a larger value of
S results in a greater accuracy of the approximation. Note
that although it is required that (v) > 1 in the definition of
the Hurwitz zeta function in (7), the Riemann zeta function
¢(v) has a unique analytic continuation to the entire complex
plane, excluding v = 1, which corresponds to a simple
pole [24]. Similar analytic continuation holds for the Hurwitz
zeta function as well [25]. Thus, so long as v # 1, the
approximation in (6) is applicable for any Zipf’s exponent
v>0.

In reality, Zipf’s exponent is found to be close to, but never
exactly equal to, 1. There is no consensus on the actual setting
of v value [26], [27], with the considered value varying widely,
i.e., v € [0.5,2.5]. Also, since we expect the cache size to be
1 < Sk < F, the above approximation holds with very small
margin of error. In Fig. 3, we compare the hit probability
versus cache size using the exact values of H, from (9)
and the asymptotic approximation of Hy, , from (11) when
F = 103. The relative error is shown in Fig. 4. We observe that
the relative error decreases with an increase of cache size. The
error tends to decrease more rapidly for larger values of v. For
v > 0.5, the relative error is less than 1% for S; > 30, while
for v > 1.5 the relative error is less than 1% for S, > 10.
Finally, we also note that the formula is applicable even when
v <0.

Remark 1. Similar to Hg, ,, applying the asymptotic ap-
proximation for the generalized harmonic number to Hp,,

we have )
Sp+1)' "

Cv) — St~

Cv) - =

v—1

Pir(Sk) ~ 12)

Thus, for a fixed value of Sy, Py decreases with increasing
F.

Remark 2. Let s, = ‘j}“j:ll be the fixed fraction of files cached
at the SBS. Dividing the numerator and denominator of the
right hand side of (12) by (F +1)*7" /(v —1), we see that as
F — oo and as Sy changes such that the fraction s is fixed,

we obtain

Py ~ 8,77, (13)
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Fig. 3. Cache hit probability versus cache size S.
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Fig. 4. Relative error versus cache size S.

for 0 < v < 1. This result has an important implication in
that, to achieve a desirable hit probability, the fraction of total
files that needs to be cached at the SBS is

_1
sk~ PL7 (14)

solong as 0 <v <1 Ifv>1, then Py~ 1as F — oc.

C. Modeling Wireless Access Delay in a Cache-Enabled Cel-
lular Network

With caching at the SBSs, by wireless access delay we refer
to the delay between a request is made by a UE to download a
file and the time the file is downloaded at the UE. Considering
that the downlink is the bottleneck, we consider only expected
downlink transmission delay plus expected backhaul delay
along with the cache hit probability?.

1) Expected Downlink Transmission Delay: The delay in
the transmission of a file between the cached SBS and UE
is referred to as the downlink transmission delay. If a file
requested by a UE is available in the cache of the serving SBS,
then there is only transmission delay. This delay is attributed
to a number of factors, including finite channel capacity, size
of the file, and the number of UEs in a cell. For each MNO-k,
each rented SBS serves N UEs in the cell in a given time
slot based on round-robin scheduling, the throughput per UE
becomes Gy /N, and the delay at each UE is Nj/Gg. In
order to transfer a file of fixed size s, the transmission delay
is Dy = Ng:f . Here, N}, is a random variable. The expected
number of UEs inside an average Voronoi cell formed by the

2The uplink delay (i.e., delay between the request is sent by the UE and it
is received by the SBS) is not considered in our case.

6

PPP SBSs is given by E[Ny] = f\—’;, where & is the intensity
of the UEs. '

E[Nglzy  &pay

E[Dr,] = — .
[Drs] G pWen

(15)

Since we are using G, for interference limited case in (3),
the throughput of each UE becomes a constant. In (15) the
SBS intensity )\, is a variable that the MNO will need to
decide when renting the infrastructure from the local 5G OP.
We can oSBServe from (15) that increasing the SBS intensity
lowers the transmission delay. This also verifies a peculiarity
of modeling the SBSs as a homogeneous PPP which is a well-
known result in stochastic geometry.

2) Expected Backhaul Delay: If the requested file from a
UE is not available in the cache of the serving SBS, the SBS
needs to fetch the file from a cloud server through optical fiber.
Here, the delay of the file transfer between the SBS and the
cloud server is referred to as the backhaul delay. We model
the process of a SBS fetching files from the cloud server using
an M /M /m queue [28]>. When the number of cloud servers
is m = 1, the expected backhaul delay is given as follows

[29]:
_(atc p
eibel = (%5%) (25) 74+

where 7 is the average time taken for the server to deliver ¢
bits of each file to the SBS. The arrival rate of file requests to
the server is ¢, the service rate of the server is p = 1/7,
and p = ¢/u is the server utilization. Assuming p < 1
for the steady-state system. Here c, and c, are coefficients
of variations of the inter-arrival time and the service time,
respectively.

(16)

3) Expected Total Delay: The delay experienced by a
UE while downloading a file is only due to the downlink
transmission delay, D1y, if the requested file is already cached
at its serving SBS. If this is not the case, then the wireless
access delay experienced by the UE is the sum of the downlink
transmission delay and the backhaul delay, Dtx + Dpy. Since
the availability of a file in the SBS cache is given by the hit
probability, P, the expected total delay is given by

E[Dy] = E[Dry] Puic + E[D1x + Don] (1 — Pri)
= E[Dry] + E[Dyp)(1 — Priy)- (17)

Since 0 < Py < 1, note that the average total delay is
bounded by E[Dr] < E[Dy] < E[Dr«] 4+ E[Dyp]. Since By
depends on the cache size S, this implies that the minimum
expected total delay that we can achieve by changing only the
cache size is E[Dry].

In the next section, we propose the MNO strategy subject
to the latency constraint, i.e., the total transmission delay from
the SBS to UE. Then, we formulate the business model of the
local 5G OP and multiple MNOs by using Stackelberg game,
where the local 5G OP the leader and MNOs are the followers.

3In our framework, any other queueing model can be also used to charac-
terize the backhaul delay.
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IV. THE MNO STRATEGY : MINIMIZATION OF CACHE
INTENSITY WITH LATENCY CONSTRAINT

In this section, we deal with the minimization of cache
intensity for each MNO-k in a large cellular network. The
cache intensity is defined as the product of SBS intensity and
cache size. For the interference-limited transmission scenario,
we then transform the problem into a geometric program and
provide an exact solution.

A. Optimization Problem Formulation

The optimization problem for an MNO-k, where k € IC, so
as to minimize the cost of renting the amount of cache per unit
area (cache intensity) while satisfying the latency of a tagged
UE is as follows:

(P0O) miny, s, wAgSk (18)
S.t. P(Dk > Dth) <'e, (19)
Sk < F, (20)

where A\, > 0 and Sy > 0. Here, the latency constraint is given
in (19). It is a probabilistic constraint that limits the probability
of end-to-end delay to be above a certain threshold Dy, to a
small value ¢, € € (0,1). The w is the price per unit of cache
intensity, which is set by the local 5G OP.

Since Dy is a random variable whose distribution is not
known, in order to make the optimization problem more
tractable, we can use the Markov’s inequality to linearize the
probabilistic constraint in (19). Using Markov’s meqluahty, we
have P(Dy, > Dy,) < E[Dm] If we ensure that b S 6
then the Markov inequality implies that constraint (19) is also
satisfied. Accordingly, the probabilistic constraint in (19) can
be replaced by the constraint E[Dy] < eDy,. Thus, we have a
more tractable problem:

(PO/) minAkﬂsk o.))\kSk (21)
st. E[Dy] < €Dy, (22)
S, < F. (23)

SuSBStituting the expression for E[Dy] from (17) into (22),
we obtain after some algebra,
EDth — E[DTX]
E[Du]
Since Pi((Sk) < 1 for any Sy < F, the left-hand-side of

(24) must be less than or equal to unity. As such, it must be
the case that

1- < Puit(Sk). (24)

E[Drx] < €Dy,. (25)

Thus, we have Lemma 2 in the following subsection to
guarantee the feasibility of latency constraint.

B. Trade-off Between Cache Storage and SBS Intensity

Lemma 2. The constraint in (22) is feasible for S < F if
and only if E[Dy] < €Dy, is satisfied.

Proof: The proof of statement in the forward direction
is as given above. For the reverse direction, we are given
E[Drk] < €Dy. To check if there exists some Sy such

7

that S;, < F which satisfies E[Dk] < €Dy, we have from
(17), P(S) =1 — L[D[’E][;i[]l?n] 1— 76’3‘%[&[‘1’]3“‘] Since
E[D1x] < €Dy, this means that Phlt(S) < 1. Hence, there
must exist some Sy such that S < F which satisfies (22). ®

Lemma 2 gives us the necessary and sufficient condition
under which both the constraints in (22) and (23) can be
satisfied. We see that although the latency constraint in (22) is
over the total delay, since the backhaul delay is a constant,
from (25), the transmission delay is the most significant
component. However, if we have E[Dri] = €Dy, then the
cache size is S, = F'. That is, each SBS has to cache all the
available files in F. This is certainly unrealistic in practice.
Hence, practically, it should be the case that E[Dyy] < €Dy,
so that S < F. We can also express the constraint in (25)
in terms of the average number of UEs served per SBS, %
which lead to the following proposition:

Proposition 1. For the latency constraint in (25) to be satisﬁed
for Sy, < F, the average number of UEs per SBS, X5, must

satisfy 3 5" < Eng}G’“

Proof: We substitute the expression for E[Dr] from (15)
in (25), we obtain a lower bound for the SBS intensity required
to satisfy the constraint in (25) and hence the constraint in (22)

as follows :
Eray

eDnGy’

This gives us the relationship between the SBS intensity A
and the UE intensity &, for the latency constraint to be satisfied
for Sy < F. If this condition is violated, then the required Sy
will be greater than F, leading to a contradiction. [ ]

Therefore, the above proposition gives us a simple condition
under which caching at the SBS will satisfy the required
latency constraint. Indeed, if Ay is held fixed, we cannot
change the transmission delay and can change only the total
delay by varying the cache size, S;. Hence, we need to vary
both A\, and S that results in problem (P1) given in the next
subsection.

Ak = (26)

C. Optimal Strategy of each MNO

We will now solve the general problem when both \j; and
S}, are jointly optimized. Given the popularity-based caching,
for large Sy the optimization problem (P0’) is a geometric
program [30]. In the following, we first express the primal
problem in (22) in the standard form of a geometric program,
after which, we give the solution to the problem via its dual
problem.

First, we expand E[Dy] in (17) using (15) and (6) in terms
of \r and S}, as follows:

1—v
E[Dy] = ék:j\i + E[Dy] {1 - H;U (g(y) _ (Sk;r_l)lﬂ
_Cl+f + C5(Sp + 1)1~ 27

where C; = E[Dy] (1— %), Cy = %if, and C3 =
E[Dyy] ’

W-—DHr, Since we consider the case that the cache size, Sy,
is large, without loss of generality we can assume S +1 ~ S
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in the right most term of (27). Then, substituting (27) in the
constraint in (22), we obtain, Cy + $2 + 557" < €Dy, <=

C. 1 1—v
(ﬁ) xt <ﬁ) S,V < 1 Therefore,

AN+ VSTV <, (28)

where A = DS2C and V' = - Df . Similarly, substituting
(26) to the constraint in (23), we can express the primal

problem in (PO’) as a geometric program.

Proposition 2. For content popularity-based edge caching,
assuming the cache size, Sy, to be sufficiently large and the
constants A > 0,V > 0, v # 1, we can transform the problem
(P0’) into the following geometric program:

(P].) mil’l)\ﬁs g = o.))\kSk (29)
st AN+ VSTV <, (30)
RN\ <, €3]
where R = eD,/,

The optimization problem in (P1) can be solved analyt-
ically. In geometric programming, when the orthogonality
and normality conditions with dual variables ¢, are satisfied,
the maximum of dual function is equal to the minimum of
primal function g [30]. As such, we can express the dual
maximization problem as follows:

) J: J 1)
_ (e (AT (VAT (RN S0-+35 04
e q = <5l> (52) (53> (54) %2+ 3) o'

(32)

st & =1, (33)
01

(1 -1 0 —1) |, )
1 0 1-v 0) |6
04

where §; > 0 for i = 1,...,4. The degree of difficulty of this
geometric program is 1. In our case, (33) gives the normality
condition while (34) gives the orthogonality condition. In
geometric programming, we focus on finding the optimal point
of the dual variables §* = (07, 85, 0%,d;) that maximizes the
dual function g subject to the orthogonality and normality
conditions. Note that this dual problem is a convex program
with a concave objective function and linear constraints.

Using (33) and (34), we can directly solve for 8. Here,
matrix multiplication from (34) yields

517(52754:0, and 514’(171])53:0.

Since §; = 1, we have 03 = i and 6 + 04 = 1. Let
0o = r, so that 64 = 1 — r. Since d2 > 0 and 6, > 0, we
then have a bound over r as 0 < r < 1. Substituting the
values of 4 in the dual problem, we obtain a simpler problem
constrained over a single variable r as given in (37)-(38). To
find the optimal r, we first take the logarithm of ¢ in (37)

8

and differentiate it with respect to r. Since A, R, and v are
all positive, we obtain

dlog(q) A 1+r(v-1)

= 1 _ 1 —_— .
or ®\rR +log v—1
Solving the optimality condition dkc’lg;'.(q) = 0 for r, we obtain
the maxima at r = m Since r is bounded between
0 <r <1, we have the op?ima of the modified dual problem

at
r* = max <O,min (1, {(y —-1) (i - 1)} 1)) . (36)

Let ¢* be the optimal value of the modified dual problem
(37)-(38). For the optimal primal variables A} and S;, we have

(35)

AN = 8507 =,
L RO =80 = (=)

By adding the expressions for A(A\;)~! and R(A})™!, we
obtain A(A\;)~' + R(A;)~! = ¢*, which we can solve to

1/(v—1)
obtain A; = A2 Also, we have Sy = (LU :

Note that for S} to be positive, we must have v > 1. Hence,
we have the following proposition:

WALSE = 014" = ¢,
*

V(ST =80 = Ty

Proposition 3. The optimal solution to problem (P1) for each
MNO-k, which is the local optimal solution of the problem
(PO), for A> 0,V >0 and v > 1 is given by

A+ R
N=2 (39)
q
Viy— 1)\ YD
Si = (M) , (40)
q
where q* is the optima of the one-dimensional problem (37)
— (38) evaluated at r* in (36).

Note that the value of ¢ is indeterminate at r = 0 and r = 1.

We see that lim, 1 (1 —7)'~" = 1 and lim,_,; (&) =

1—r
and the limit of ¢* as r — 1 is

r*—1

lim ¢* = wA ((v —1)V)Y/ =D (L) o

Likewise, since we have lim,_,o(A/r)" = 1, the limit of ¢*

asr —0is
1
1 v—1
ALY .
HV) P

Therefore, given the price of infrastructure w, the optimal
strategy of each MNO-k, which is computed by Proposition 3,
gives the minimum amount of cache per unit area, A;,.S};, while
satisfying the latency constraint for each UE.

lim ¢* =wR((v —

r*—0

V. THE LOCAL 5G OP: STACKELBERG GAME
MODEL-BASED CACHE INTENSITY PRICING FOR
MULTIPLE MNOS

In this section, we develop a novel strategy of the local
5G OP for renting out its infrastructure to KX MNOs using
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st. 0<r<1.

Stackelberg game and then propose the coalitional game to
for the MNOs to share the rent among each other. Recall that
the SBSs and cache storage can be shared by multiple MNOs.
Given the infrastructure sharing scheme and the popularity
based caching at the SBSs by each MNO, a question emerges:
how many files the Local 5G OP should be cache to serve all
MNOs? Clearly, it is sufficient for the local 5G OP to cache
only the largest number of files requested by the MNOs, rather
than the aggregate amount of files requested. This is due to
the fact that when the MNOs request files based on popularity,
there is an overlapping of the most popular files.

For example, let MNO-1 requests S; = 10 most popular

9
1 1
A T >oT R 1—r 1 r+o )
-7
max, ¢ =w| — v—-1V T T+ 1 (1—m7) (37
T -Tr vV —
Local 5G OP
MNOs Leader
Followers Subgam
Subgame -7 e,
A N
ISt / revenue \\\ [
777N = max(Akésk*) N .- {mno-
l/ MNO-1 ,/ Equivalent - \\ 4[
1 LAL*S* \\ / [Q1]minimization Algorithm 1 \
I | ‘/ problem converges to the| | Rent Sharing
'l ,' I local optimal I using Algorithm 2
| [mnok]l tion of (Q0) | !
\ LA*S* \ Auxiliary solution of |
§ / 4 variable J Shapley value
N L7 \ /
- \\ /
R Geometric /
N programming //
~ -
Stackelberg TS e
game

files {f1,..., fio} to be cached and MNO-2 requests Sy = 15
most popular files {f1, ..., fi5}, assuming that the popularity
rank of the file corresponds to the file’s index, with file f;
being the most popular and file f15 being the least popular. The
local 5G OP can satisfy the requests of both MNOs by caching
ST = max(S1,S2) = 15 most popular files {f1,..., fi5}.
since {f1,..., fio} € {f1,.-., f15}. This is much less than
the aggregate amount 7 +.S3 = 25 required to be stored when
the cache is not shared among the MNOs.

In general, since S, is the set of most popular files requested
to be cached by the MNO-k, we can order the sets Sy as
Sr1) € -+ € Sy(k), where 7 represents the permutation of
set /C. Thus, it is sufficient for local 5G OP to cache the largest
set Sy (k) of a certain MNO that also meets the demands of
all other MNOs. Since the largest set of most popular files
also contains the smaller sets of most popular files and the
local 5G OP allows cache-enable SBSs to be shared among
multiple MNOs, the local 5G OP needs to handle only the
largest cache intensity required by the MNO with the largest
set of file demand denoted as A}S} = maxy{A\xSk}. In this
regard, we model the pricing problem of the infrastructure as
a Stackelberg game, where the local 5G OP is the leader and
the MNOs are the followers. The local 5G OP, as the leader,
will then compute the optimal price of cache intensity, w*,
accordingly. Since the local 5G OP only needs to handle the
largest cache intensity, the game is essentially simplified to a
one-leader one-follower game, where the single follower is the
MNO with the largest demand. The leader subgame problem
is shown in (QO) in (41).

After the local 5G OP computes the price of cache intensity
of the infrastructure, the local 5G OP will declare the total rent
to all MNOs. Since the MNOs are able to communicate with
each other, we propose the coalitional formation game where
the MNOs cooperate with each other to share the total rent.
The relationship among the MNOs and the local 5G OP, and
rent sharing among the MNOs are illustrated in Fig. 5.

In order to obtain the Stackelberg equibrium, the backward
induction method is used. Therefore, each MNO-k, k € K,
will send its best response in terms of its demand for cache in-

Fig. 5. Basic Idea of Hierarchical Relationship between the MNOs and the
Local 5G OP.

tensity A7 S} to the local 5G OP. The local 5G OP will handle
the largest required cache intensity as A}S} = maxy(A;S})).
Also, the local 5G OP will declare the price, w*, to all K
MNOs that maximizes its revenue. Finally, using Shapley
value, the MNOs can share the rental cost of cache intensity
in a fair manner.

A. Optimization Problem of the local 5G OP

In a Stackelberg game, the leader is assumed to have
sufficient foresight to be able to anticipate the strategy of the
follower. The local 5G OP aims at maximizing its revenue
obtained by renting out the cache SBSs to the MNOs, while
minimizing the operational expenses in terms of power con-
sumption. Since the SBSs can be randomly selected by the
MNOs, we do not know the number of MNOs that will utilize
the SBSs in advance. In the worst-case scenario, all X MNOs
will use the same SBSs simultaneously and the transmit power
at each SBS will be p; = Kpg. Since the local 5G OP is
renting out A7 SBSs per unit area and, since we assume the
worst-case scenario, the power consumption per unit area is
then given by Y (A}) = Xj(Kpy + pc), where p. denotes a
fixed amount of circuit power.

When the cache-enable SBSs are shared by K MNOs, we
can formulate the optimization problem of the local 5G OP as
follows:

(Q0)

where w is the price of cache per unit area, and + is the price
of areal power consumption, where w,y > 0. Note that we are
not dealing with how other resources, e.g., computing, server,
or transmission capacity are shared. We only consider the case
where the cache storage in a unit area is shared among the
MNOs.

wATST =Y (A7), (41)

max,,
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To obtain the solution of the Stackelberg game, we use
backward induction method. Accordingly, we first solve the
follower subgame problem. This essentially is to solve the
optimal strategy of the MNO with the largest required cache
intensity. The follower’s solution is then used in the leader
subgame problem, after which the leader problem is solved.
The solution to the leader subgame gives the subgame perfect
equilibrium of Stackelberg game.

Accordingly, we compute the largest cache intensity that the
local 5G OP needs to provide to MNOs as 7S} = max(\;.S})
by using A; and S} of each follower MNO-£ from Propo-
sition 3. From Proposition 3, we can express A} and S}
in terms of w as A} = Ik and S} = Upw™ @, where
Ti = (A+ R)/(q;/w) and Uy, = [V(v — 1)/ (g )]/,
Note that, in these expressions for 7}, and Uy, from (37), the
term g} /w is independent of w, making T}, and U}, independent
of w as well. This transforms the first term of (41), which is
wmaxk{A;Si} = wAj S}, into

m}?X{Uka} w /=1 — g~/ w1,

That is, UT = maxy{U;T})}. Also, the second term in (41)
is transformed into

VY (A}) = XNjy(Kpk + pe) = Thw ™",

where D = ~(Kpg + pc). Therefore, we can rewrite the
maximization problem in (41) as an equivalent minimization
problem:

(Q1) mingso Tpw ' —UTw /=1, (42)

The problem (Q1) is a signomial optimization problem over
the price variable w. In general, the problem (Q1) is a non-
convex problem. However, this problem becomes convex at
some values of v. Nevertheless, we can obtain the solution to
the problem in (Q1) via successive geometric programming
(SGP). In order to solve (Q1), let us introduce an auxiliary
variable z > 0 such that it upper bounds the objective function

in (42) as follows:
2> Tpw ' —UTw V=1, (43)

Since minimizing the upper bound z minimizes the objective
function in (42) as well, the problem (Q1) can be equivalently
re-written in terms of this auxiliary variable as follows:

(Q2)

S.t.

X = Mingsg 2 44)

Tpo! <1
2+ UTw=1/ (=1 —
Here, the constraint in (45) is obtained after some algebraic
manipulations of the bound in (43). To see the equivalence, for
fixed w, the optimal value of z is z = Tpw ! —UTw =1/,

Since the constraint in (45) is a ratio of two posynomials, the
problem (Q2) is also referred to as a complementary geometric
program. Following the approach outlined in [31], [32], the
problem (Q2) can be rewritten in the form of a geometric
program by substituting the posynomial in the denominator
of (45) by a monomial. We can transform a posynomial into
a monomial using the arithmetic-geometric mean inequality

w;
Yz > I, (“"—) for non-negative numbers x; > 0,

(45)

w;

10

where ) . w; = 1 and equality if and only if all z;/w;
are the same. Accordingly, let us denote the posynomial in
the denominator of (45) as Q(z,w) = z + UTw /=1,
and its evaluation at point (Z,w) as Q = Q(Z,w) = Z +
UTw 7. Substituting each term of Q(z,w) into x; and
since (Z + UTw #1)/Q = 1, we have the lower bound
from the arithmetic-geometric mean inequality as Q(z,w) >

Q(z,w,z,w), where Q(z,w,z,w) is a monomial given by

G (wrg) @ .
Q(z,w,z,0) = (ZQ) (W 711Q = Ez%uW8
V4 wr—1
The parameters are given by
z . —UTwv 1 Q
ae= UV gl @ 4
Q (v—-1)Q 2w’

Therefore, the problem (Q2) can be transformed into an
approximate geometric program by approximating the denom-
inator of (45) by the lower bound Q(z,w,z,@) as follows:

(Q3) x = min,, = (47)
— 1

st gp hd =<1 (48)
2%

The problem (Q3) is now a geometric program which can be
solved analytically. Note that the degree of difficulty of this
problem is zero. The dual maximization problem of (Q3) is

given by
51 — 32 —
1 T —32
mou=(5) (55) & @
st. 01 =1, (50)
0 -1 :ﬂ o) _ 0. (51)
1 — (52

We can solve for the optimal values of dual variables § directly
from (50) and (51). The matrix multiplication from (51) gives
(—1—B)d3 = 0 and 0; —ads = 0. Summing the two equations
gives (—1 — 3)do + 6; — @by = 0. Since &; = 1, we obtain
02 = 1/(1 4+ @+ $). By substituting the values of 0; and Jo
in the dual problem X, the optimal dual function xJ; yields

. (Tp\ =7
Xd = E ‘

Since 7 is the optimal solution of the dual problem, we can
find the optimal variables z* and w* of the problem (Q3) from
x;; as follows:

(52)

1
—% Tp\ 1+a+8
2f=01x = (;) and

*

Accordingly, we can compute w =
43\ /1+8)
e 1/(1+a+8)
W(%) ) . Since this is the

first approximate values of z* and w*, we can substitute
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Algorithm 1 Successive Geometric Programming (SGP)
1: Set z(0) and w
2: repeat
3. Calculate @(t), 5(t), E(t) using (46)
4:  Calculate x7(¢) using (52)

. Tp(1+0t+ﬁ)
5: t + 1 ( E(z*)“

(0) to any arbitrary feasible values

)1/(1+a+6)) 1/(145)
Tp

6: (t +1) Xt
7: untll convergence

these values back into Q(z,w, z*,w*) and repeat the process,
leading to new values of to z* and w*. Thus, we have a SGP
algorithm as given in Algorithm 1. This algorithm converges
to a local optima of (Q2) [33] which is the local optimal
solution of (QO). This leads to the following proposition.

Proposition 4. Algorithm 1 converges to a locally optimal
solution of the primal problem (QO) for the local 5G OP. This,
along with the largest cache intensity from the MNOs, gives
the subgame perfect equilibrium of the one-leader and one-
follower Stackelberg game.

B. Rent Sharing Among MNOs using Shapley Value

After the local 5G OP computes the price per unit of cache
intensity of the infrastructure from Algorithm 1, the local
5G OP will declare the total rent w*A7S7 to all MNOs.
The MNOs will cooperate with each other and fairly divide
the infrastructure rental fee among each other. Therefore, we
model this situation as a cooperative game for rent sharing
using the Shapley value. The coalition form of the K-person
game is given by (K, v), where K is the set of K MNOs. The
characteristic function of the game is denoted by v, where
v : 25 — R. The characteristic function maps every 2%
possible coalitions to a real number, referred to as the value of
a coalition. When all K MNOs cooperate and form a single
coalition, it is called the “grand coalition”. The value of the
grand coalition is v(K). For the case when a subset of MNOs
cooperate with each other and form a coalition C C IC, we
define the characteristic function of C as follows:

v(0) =0 and v(C)= maxgec w A\ S}, (53)

where w* is the optimal price set by the local 5G OP following
Proposition 4.

Proposition 5. The characteristic function v given in (53)
satisfies the sub-additivity property, v(C1UCz2) < v(Cy)+v(C2)
for any two coalitions C1 and Ca, where C1 N Cqy = ().

Proof: Let k* = argmaxycc, ¢, w*ApSy. Since C1 and

Cy are disjoint, £* must belong to either C; or Co, but not
both. If k* € Cy, we have v(C; U C2) = v(Cy). Therefore,
v(C1UC3) < v(C1)+v(Cq). Likewise, if k* € Cs, then v(Cy U
Ce) = v(Cz). Again, v(C; U Cz) < v(Cy) + v(Cz). Thus, v
given in (53) is sub-additive. ]
Note that the sub-additivity implies that the MNOs forming

a bigger coalition will have smaller cost. Let the cost allocated
to MNO-k be 1. Then, the value of coalition C should be
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divided among each MNO in the coalition C such that v(C) =
> kec Yr- The Shapley value function, v, is a function that
assigns to each possible characteristic function of a K-MNO
game, v with a K-tuple, (v) = (¥1(v),¥2(v), ..., YK (v)).
Here 1) (v) represents the worth or value of MNO-k in the
game with characteristic function v and is defined by the
following axioms of fairness:
1) Efficiency: >, o ¥Yr(v) = v(K).
2) Symmetry: If k and [ are such that v(CU {k}) = v(CU
{l}) for every coalition C not containing k and [, then
Vi (v) = Yi(v).
3) Dummy: If i is such that v(C) = v(C U {i}) for every
coalition C not containing 4, then v;(v) = 0.
4) Additivity: If v and v are characteristic functions, then
u+v) = (u) + (o).
There exists a unique function that satisfies all these fairness
axioms which is given by:

s (=Dl =€y

cCcK
kec

Y (v) =

v(C—{k}P]. 54

This gives the average marginal contribution made by MNO-£
when it joins a random coalition C. We take this value as the
fair payoff allocation among the MNOs inside the coalition.

The direct computation of the Shapely value using the ana-
lytical formula given in (54) quickly becomes computationally
infeasible as the number of MNOs increases. However, due
to the special structure of the characteristic function for our
rent sharing problem, as given in (53), we can apply a simple
algorithm to allocate the cost among the MNOs by recognizing
that our problem is equivalent to the airport runway cost
sharing problem studied by Littlechild and Owens [34]. In
our case, the local 5G OP sets the total rent, w*A7S7 using
Algorithm 1, and the MNOs divide the rent among each other
according to their required cache intensities A} S} obtained
from Proposition 3.

Algorithm 2 presents the rent sharing algorithm among
MNOs. Depending on the requirement of the MNOs, the
MNOs are first sorted in an ascending order of their cache
intensities, i.e., demands, /\j‘r.(l)S;(l) < ... < A;(K)S;(K),
where 7 denotes the permutation of set K. The cost of meeting
the smallest demand, w A'n'(l)s;kr(l)’ is divided equally among
all K MNOs. Then, the incremental cost A = WAL S*

*/\’:r 1) S* 1) of meeting the second smallest demand 1s shared
equally among all the MNOs, except the MNO with the
smallest demand. The process is repeated until the incremental
cost A = w*Ar K).S;(K) w /\W(K 1)5;(1(71 is allocated
only to the MNO with the largest demand. The cost allocated
among the MNOs by Algorithm 2 is equivalent to the Shapley
value of the coalition game (K, v) [34]. Note that Algorithm 2
has the worst-case computational complexity of O(K?).

VI. NUMERICAL RESULTS

Unless otherwise stated, the transmit power of SBSis p = 1
Watt, noise power is 02 = —150 dBm, the number of video
files in the cloud is F' = 105, the size of the file requested by
each UE is zy = 105 bits, path-loss exponent is o = 5, i.e.,
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Algorithm 2 Cost sharing among MNOs

1: Initialize A\gSp = 0 and ¢, =0 for all k € K

2: Arrange the MNOs in an ascending order of their cache
intensity )\jr(l)S;;(l) <... < A;(K)S;(K), where 7 is the
permutation of set K

3: for k=1to K do

4@ A = WALy k) — W AR (ke 1) (k-1
5: fori=Fkto K do

6: Vr(i) < Uy + A/(K =k +1)

7:  end for

8: end for

suburban area without line of sight [35]. The SINR threshold
is 6 = 10 dB. Each MNO is assumed to have the same number
of subchannels as L. = 4. Based on 5G requirements in [36],
the latency of data transmission should be less than 1072 sec.
Therefore, we limit the total delay to be P(D > 1073) < 0.01
in (19). We assume that there is a single server, m = 1, in the
cloud, where the mean arrival rate of file requests is ¢ = 0.8,
mean service time 7 = 5 x 1073, the coefficients of variation
of inter-arrival time and service time are ¢, = 2 and ¢, = 1,
respectively, as such, E[Dyy] = 0.0051 sec.

A. Optimal Strategy of an MNO-k from Proposition 3

We first show the optimal strategy of a single MNO-k from
Proposition 3 by varying the bandwidth as Wy = 1 gigaherz
(GHz), 2GHz, 3GHz, and 4GHz while the price of cache
intensity is w is assumed to be unity. The UE intensity is
& = 20/ (7 x 1002).

In Fig. 6, we see that )} increases when v is increased.
However, A} does not change with W, for a given v. On the
other hand, in Fig. 7, S; increases when W}, is increased when
v is fixed. The reason is that a higher bandwidth yields a larger
throughput. When the SBS can transmit a file faster, the MNO
renting the SBS can benefit more from serving its UEs and
hence the MNO should cache more files. Hence, for v > 1,
increasing W, leads to a decrease in the cost ¢*, which in turn
leads to an increased S};. On the other hand, since R o< 1 /G,
from (39), the G, term cancels out in the expression for A},
making A} independent of W,. We can see from Fig. 7 that for
v € (1.8,2.3) most of the files are equally popular. Therefore,
the cache size is made small to reduce the cost for the MNO.
By contrast, as v increases, some files become more popular
than the other files. Therefore, it is worth for the MNO-k£ to
request for increased cache size. However, when v is large,
ie., v > 2.3, only few files are very popular, and hence the
cache size decreases. We see that while S} decreases with an
increasing of v, A} also increases. Fig. 6 and Fig. 7 show the
tradeoft between A} and .S}, for a given v.

In Fig. 8, we set W, = 2 GHz. We can observe that
increasing the UE intensity, &, decreases the cache size, Sj.
Also, increasing the number of subchannels Ly reduces the
cache size S}. This is due to the fact that increasing UE
intensity or the number of subchannels reduces the throughput
of the UE, hence increases the downlink transmission delay.
The MNO will cache fewer files to keep the total delay less
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Fig. 8. Cache size of MNO-k (S;) versus average number of UEs per
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than a given threshold. We can see that the UE intensity has
a significant impact on the cache size.

B. Optimal Price (w*) and Maximum Profit (z*) of the Local
5G OP at Subgame Perfect Equilibrium of Stackelberg Game

After obtaining the best response of each follower MNO
from Proposition 3, with the infrastructure sharing deploy-
ment, the local 5G OP supports the largest demand required
by the MNOs. The local 5G OP will then compute the optimal
price w* of the infrastructure so as to maximize its profit
z* by using the SGP in Algorithm 1. In Figs. 9-12, we
demonstrate the optimal strategy of the leader local 5G OP and
the optimal strategy of three follower MNOs at the subgame
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perfect equilibrium of the Stackelberg game. We assume the
bandwidth and the UE intensity to be [W;, Wy, W3]= [1GHz,
1.5GHz,2GHz] and [&1,&9,&3] = [10,15,20]/(m x 100?),
respectively.
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Fig. 9. Convergence of the optimal price of infrastructure (w*) and
maximum profit (2*) from Algorithm 1.
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Fig. 10. Optimal price of infrastructure (w*) and maximum profit (z*) from
Algorithm 1 versus Zipf exponent (v).

The best responses of an MNO (in terms of optimal SBS
intensity and optimal cache size to be leased) at the subgame
perfect equilibrium of Stackelberg game are shown in Fig. 11
and Fig. 12, respectively. In Fig. 9, we show the convergence
of the optimal price of infrastructure, w*, and the maximum
profit, z*. When the price of areal power consumption, -y, and
the circuit power, p., increase, z* also increases, while both
~ and p. have very small effect on w*. The SGP algorithm is
effective since both w* and z* converge within a few iterations.
We see that with increasing v, w* remains constant. The
reason is that the price of infrastructure depends only on the
maximum demand A}S7 required by the MNOs. However,
when v increases, z* also increases. By increasing v, the
amount of infrastructure required by the MNO increases. This
gives higher profit to the InP. The best response Aj and S}
of each MNO-k at the equilibrium are shown in Fig. 11 and
Fig. 12, respectively.

In Fig. 11, the curves for A} of all K MNOs are identical.
The trends in Fig. 11 are very similar to those in Fig. 6.
Also, varying of price of infrastructure w and circuit power
p. does not have any impact on Aj. In Fig. 12, we plot .S} of
different MNOs versus v. When the value of v changes, the
cache size S7 of MNO-1 is the largest while S5 of MNO-3
becomes the smallest. Although the MNO-3 has the largest

13

0.15
™
R
—
I
X
~01r
=<
2
[%2]
c
g
£0.05+
a 6=300, p_=60
k=1,2,3
o ‘ ‘ |
1.5 2 2.5 3 3.5

Zipf exponent (v)

Fig. 11. Optimal SBS intensity (A\}) versus Zipf exponent (v) at subgame
perfect equilibrium of Stackelberg game.

150

=1,2,3

*

Cache Size (S,), k

6=200, p_=40

15 2 25 3 35
Zipf exponent (v)

Fig. 12. Optimal cache size (Sg) Zipf exponent (v) with (w*) from
Algorithm 1.

bandwidth, the UE intensity has a more significant effect on
Si. Accordingly, the UE intensity of MNO-1, 1, is the lowest
and the S7 becomes the highest. Varying the price of areal
power consumption ~ and circuit power p. does not change
optimal S}. We see that the initial curves of S} in Fig. 12
fluctuates, which is due to the random initial values of Z*
and S* of SGP in Algorithm 1.

C. Maximum Profit of the local 5G OP at Subgame Perfect
Equilibrium of Stackelberg Game and Shapley Value

Fig. 13 presents the total rent w*A} ST, which is the first
term of problem (QO), and the Shapley value of each MNO-
k, 1, versus the Zipf exponent, v. For a given value of v,
we observe that iy is the highest while 3 is the lowest.
The reason is that the MNO-1 has the lowest number of UEs
per unit area while MNO-3 has the highest UE intensity. As
discussed in Section VI-A, a lower &, tends to increase the
cache size S}. Thus, the MNO-1 will try to buy the highest
amount of infrastructure when compared with those for MNO-
2 and MNO-3. It can be seen that all three MNOs can divide
the rent in a fair manner by using Algorithm 2, which is the
Shapley value of their cooperative game. The maximum profit
of local 5G OP versus v is plotted in Fig. 14, which is obtained
by solving the problem (QO) using Algorithm 1. We observe
that when v increases, the maximum profit of the local 5G OP
also increases. Also, when ~ and p. increase, the maximum
profit of the InP enhances significantly.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2948630, IEEE

Transactions on Mobile Computing

~ 457
@ ar
=)
3
> 35f
>
2 3
=1 H rr
£ WS =P+t
0 25F
3
e
e
3 15f
5 a1
i
B L
g o5
2
0 ¥
15 2 25 3 35
Zipf exponent (v)
H * * * 1
Fig. 13. Total rent w*A*S} and vy versus Zipf exponent (v) at

Stackelberg equilibrium.

300 -

N

a

<3
T

N

=1

=]
T

6=300, p_=60
6=200, p =40

-

a

S
T

=

o

1<)
T

“$=100, p =20

Maximum Profit of Local 5G OP

o
=]
T

25
Zipf exponent (v)

Fig. 14. The maximum profit versus Zipf exponent (v) at Stackelberg
equilibrium.

The major observations from these numerical results are: (i)
The Zipf exponent, v, has a significant impact on the optimal
strategy of each MNO-k. (ii) When the bandwidth increases,
the cache size is also increased for a given v. However,
changing the bandwidth does not affect the SBS intensity. (iii)
The UE intensity and subchannels have high influence on the
cache size. (iv) The price of power consumption per unit area,
v, and the circuit power, p., affect the profit of the local 5G
OP significantly.

VII. CONCLUSION

We have proposed a novel deployment of indoor wireless
networks for local 5G OP with virtualized cache-enabled
SBSs. The local 5G OP provides the infrastructure, consisting
of RAN and and edge caching, to multiple MNOs. With
infrastructure sharing deployment, multiple MNOs are able to
use the common infrastructure simultaneously. The throughput
of videos/contents transmission from the SBS to each UE for
interference limited case has been derived. Each MNO aims to
minimize the cost of rented cache intensity subject to latency
constraint at each UE while SBSs transmit contents/videos to
the UEs. The problem of each MNO has been transformed
into geometric program and a closed-form solution has been
obtained. Likewise, we have modeled the pricing problem for
sharing the cache-enabled SBSs infrastructure between the
local 5G OP and the MNOs as a Stackelberg game where the
local 5G OP is the leader and the MNOs are the followers.
With infrastructure sharing deployment, we have shown that
the single leader multi-followers Stackelberg game has become
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a single leader single follower Stackelberg game. Then, we
have obtained the optimal strategy of the local SG OP at
the subgame perfect equilibrium of Stackelberg game via
successive geometric programming. Lastly, sharing of the rent
of infrastructure among the MNOs has been done via Shapely
value. However, the proposed framework can be enhanced
by considering spectrum sharing in addition to infrastructure
sharing among the MNOs as well as the SBSs and cache
storage can be implemented by multiple local 5G OPs.
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