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A Modified Immune Network Algorithm for
Multimodal Electromagnetic Problems

Felipe Campelo!, Frederico G. Guimarées”, Hajime Igarashi®, Jaime A. Ramirez?, and So Noguchi'

!Laboratory of Hybrid Systems, Graduate School of Information
Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
2Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte MG 31270-010, Brazil

Some optimization algorithms based on theories from immunology have the feature of finding an arbitrary number of optima, in-
cluding the global solution. However, this advantage comes at the cost of a large number of objective function evaluations, in most cases,
prohibitive in electromagnetic design. This paper proposes a modified version of the artificial immune network algorithm (opt-AINet)
for electromagnetic design optimization. The objective of this modified AINet (m-AINet) is to reduce the computational effort required
by the algorithm, while keeping or improving the convergence characteristics. Another improvement proposed is to make it more suit-
able for constrained problems through the utilization of a specific constraint-handling technique. The results obtained over an analytical
problem and the design of an electromagnetic device show the applicability of the proposed algorithm.

Index Terms—Artificial immune systems, electromagnetic design optimization, immune networks.

1. INTRODUCTION

PTIMIZATION problems in electromagnetics are usually

multivariate, nonlinear, computationally expensive, and
multimodal. Frequently, not only the global optimum but also
other local optima may be interesting to obtain, as it enables
the designer to choose the most suitable solution from a set of
optimal points.

Due to these characteristics, population-based optimization
algorithms are often used for solving such problems. Many tech-
niques exist for making stochastic algorithms find and maintain
a set of suboptima [1]-[3]. The efficiency of these techniques,
however, is limited by the fact that the population size is fixed,
i.e., the algorithm is able to find a maximum number of op-
tima, defined by the initial choice of parameters. Arbitrarily in-
creasing the size of the population is seldom a good alternative,
since it implies an often worthless increase in the computational
cost.

The artificial immune network (AINet) is an algorithm based
on the artificial immune systems (AIS) paradigm [4]. This al-
gorithm was inspired by the idiotypic network theory for ex-
plaining the immune system dynamics, originally proposed in
[5]. The optimization version of the AINet [6], [7] is called
opt-AlNet, and presents a number of interesting features, such
as dynamic variation of the population size, local and global
search, and the ability to maintain any number of optima. These
are highly desirable characteristics, but they are obtained at the
cost of a very large number of objective function evaluations. In
the context of numerical electromagnetic problems, this price
may be prohibitive.

In this paper, we present a modified version of the opt-AINet,
which requires a lower number of objective function evaluations
without losing the valuable characteristics of the original al-
gorithm. Additionally, a specific constraint-handling technique
has been introduced. A comparison between the characteris-
tics and performance of the opt-AlNet and the modified ver-
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sion proposed here (m-AINet) is presented, as well as results for
showing the applicability of the proposed algorithm for electro-
magnetic optimization.

II. PREVIOUS WORK

The AlNet algorithm was originally proposed for performing
data analysis tasks [8]. It was later used for multimodal op-
timization (opt-AINet) [6]. This algorithm is capable of per-
forming local and global search, as well as to dinamically adjust
the size of the population. The local search is based in the op-
erations of cloning, maturation, and selection of the antibodies
(points in the search space), while the global exploration is done
by the insertion of random points and variation in the size of the
population.

The cloning operator basically gives each point a user-defined
number of exact copies, or clones. An antibody and its clones are
called a subpopulation. The maturation operator submits each
clone to Gaussian noise, with the standard deviation as a func-
tion of the normalized fitness of the original antibody. The fit-
ness of the maturated clones is evaluated and only the best point
from each subpopulation is allowed to proceed in the optimiza-
tion process, while the others are excluded.

The above cycle is repeated until the average fitness of the
population does not present a significant variation between two
iterations. When this is achieved, the population is said to have
reached global stabilization, and the algorithm proceeds to the
suppression operator: the similarity (Euclidean distance) is de-
termined among all the antibodies. If two points are closer than
a user-defined threshold o, the one with lower fitness is elimi-
nated, in order to avoid redundancy. The surviving antibodies,
after the suppression operation, are called memory antibodies.

After the suppression, the size of the population is increased
by a fraction d% of the number of surviving antibodies. The
new antibodies are randomly generated, and the cloning/matu-
ration/selection cycle is restarted. The algorithm continues until
the number of memory antibodies does not vary between two
successive suppressions, or the algorithm performs an user-de-
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fined maximum number of iterations. For a more detailed de-
scription of the opt-AINet algorithm, see [6].

Comparative tests between opt-AINet and other algorithms
have been performed in [7]. The reported results show that,
while the algorithm was successful in finding the global op-
timum of the test functions used, the number of function evalua-
tions needed was much bigger than that for the other algorithms
used for comparison. While the paper concludes that this heavy
computational cost can be somehow related to the increase in
the size of the population, it does not explore the possibility of
the populational growth being caused by the finding of local op-
tima. However, even if this is the case, such a large number of
function evaluations makes the algorithm unsuitable for electro-
magnetic optimization.

Another limitation of the opt-AlINet is the lack of a mecha-
nism for dealing with constraints. Although it is possible to use
the penalization of the objective function by the constraint viola-
tions to transform a constrained problem into an unconstrained
one, this could lead the opt-AINet algorithm to converge to a
large number of unfeasible optima, thus increasing even more
the computational cost. This is especially true in heavily con-
strained spaces or when dealing with equality constraints.

III. THE MODIFIED AINET ALGORITHM

In order to reduce the computational cost of the opt-AINet, as
well as enabling the solution of constrained problems, a mod-
ified algorithm has been developed. The m-AlINet algorithm
shares the overall structure of the opt-AINet, but most of its op-
erators have been altered, as described in this session.

Consider a general mono-objective optimization problem

max f(x) € R

: 9i(x) <0, i=1,....p
subject to : . 1
ub) {hxx):o? i=1.9 D

where f(-) : R"® — R is the objective function, g;(-) : R® —
R are the inequality constraints and h;(-) : R” — R are the
equality constraints. As in the opt-AlNet, the m-AINet starts by
generating an initial population of npop, antibodies in the nor-
malized search space, and evaluating these points over the ob-
jective and constraint functions. The fitness of a given antibody
is equal to the value of the objective function for the point, in
case of maximization problems, or the negative of this value, for
minimization.

Each point then receives two clones for each dimension of
the problem. These clones are symmetrically displaced from the
original antibody by a distance k

k= 0.Texp(—f*)(1 4+ Gauss(0,1)) (2)

where f* is the normalized fitness of the original antibody, and
Gauss (0, 1) is arandom Gaussian variable. Thus, after this step,
each antibody will have 2n clones equally displaced over each
dimension.

The clones are evaluated over the objective function and the
best point from each dimension is used for estimating the best
vertex of the hypercube defined by the 2n clones. An extra
clone is generated at the estimated best vertex, as shown in
Fig. 1. This mutation scheme has been inspired by a technique
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Fig. 1. Hypercubic maturation and best vertex estimation for an unconstrained
two-dimensional maximization problem.

called worst vertex prediction, originally used in robust opti-
mization algorithms [9]. It is hereafter called hypercubic mat-
uration, in contrast with the random Gaussian maturation from
the opt-AlNet. In the m-AlINet, the number of clones for each
subpopulation is no longer a free parameter, but instead a fixed
number 2n + 1. This is an interesting feature, since the perfor-
mance of the opt-AINet algorithm is very sensitive to variations
in the number of clones. An antibody and its maturated clones
form a subpopulation of points.

Only the best point from each subpopulation is selected for
surviving. The m-AlINet uses a feasibility-based selection cri-
terion [10], which takes into account the constraint violations.
The selection is done according to the following rules.

* Between two feasible solutions, the one with the highest
fitness value is selected.

 If one solution is feasible and the other is unfeasible, the
feasible is selected; however, in a small percentage of the
cases, the fitness value of the violating point is used and the
points are compared as in the item above. This mechanism
helps maintaining the diversity in the population.

 If both solutions are unfeasible, the one with the lowest
sum of constraint violations is selected.

These selection rules ensure a strong convergence pressure
toward the feasible space, without the need of determining any
penalization constant. Moreover, when combined with the hy-
percubic maturation, it also avoids the detection of unfeasible
peaks by driving the subpopulations toward the feasible space.
It is important to notice here that, in the case of constrained
problems, this scheme is also used for the estimation of the best
vertex.

Each subpopulation is then checked for stabilization: if the
surviving point did not change since the last iteration, the sub-
population is said to have stabilized and is removed from the
iterative cycle. This criterion is called partial stabilization, in
contrast with the global stabilization criterion used in the opt-
AlNet. By avoiding the evaluation of already stabilized sub-
populations, this scheme greatly reduces computational cost of
the algorithm. It is especially effective when combined with the
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hypercubic maturation, since in this case there is a certain de-
gree of determinism in the local search, even though it is not a
fully deterministic search, as it uses a Gaussian variation of the
hypercube size. The iterative cycle continues until all the sub-
populations have stabilized or a maximum number of iterations
(maxgen) is achieved. The algorithm then proceeds for the sup-
pression operator.

The suppression is performed like in the opt-AINet, but again
using the feasibility-based selection in case of close points.
Moreover, only the points that did not stabilize during the
iterative cycle return to the active population, while the others
are stored in an external memory population. This memory
population is only mixed with the active population for the
consecutive suppressions: no more function evaluations are
required for the memory antibodies.

Finally, a number of new randomly generated antibodies
are added to the nonstabilized antibodies and this new active
population returns to the iterative cycle. The number of new
antibodies is a fraction d% of the memory population size. This
process is repeated until the size of the memory population
does not vary for two consecutive generations, or if the algo-
rithm reaches a user-defined maximum number of suppressions
(maxsup).

The code for the m-AlNet as it is described here has been
implemented in Matlab, and is available at [11].

Algorithm 1 m-AlNet algorithm
Given: npopo, ¢, d, maxgen, maxsup;
e nsup = 0; {number of supressions}
* ngen = 0; {number of generations}
Initialize empty populations Ab.ait and Abmem
Generate initial population Ab;
while Abyerm does not stabilize AND nsup < maxsup do
while size(Ab) > 0 AND ngen < maxgendo
Evaluate the population Ab;
Generate 2n clones for each antibody;
Maturate the clones using the hypercubic scheme;
Evaluate the clones;
Generate and evaluate an extra clone for each subpopulation, at
the estimated best vertex;
Select the best antibody from each subpopulation;
Check each subpopulation for stabilization
Move the stabilized antibodies to Abwait ;
end while
Perform the supression operator; Update Abmem ;
Add new random antibodies to the Ab population;
end while

IV. RESULTS
A. Analytic Constrained Problem

For testing the ability of the m-AINet to work on con-
strained search spaces, the following minimization problem
was considered:

min f(x) = an + fo — acos(2mz;)
i=1

3)

subject to :
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TABLE 1
RESULTS FOR THE CONSTRAINED PROBLEM
%Conv  Optima(Total)  Optima(Feasible) Evals
m-AlNet 86% 49.4 + 3.37 28.5 4+ 3.62 8873 £ 639
opt-AINet 80% 250 + 6.09 6.8 +2.86 341690
+12900

with @ = 10,n = 3, and [-5.12 < x; < 5.12]. The objective
function is the three-dimensional (3-D) Rastrigin function. Its
unconstrained version presents 10™ peaks over the search space,
but the constraints, in particular the equality one, greatly reduces
the number of feasible peaks. The constrained global optimum
is located at the point [1, 0, 0], and the convergence criterion
used was ||Tpest — [1,0,0]|]2 < +/0.02, as suggested in [12].
The tolerance for the equality constraint was set to htol = 0.05,
which means that points with values for this constraint lower
than htol are considered feasible.

The results obtained by the m-AINet are shown in Table I.
These results were obtained by using the following parame-
ters: npop, = 20,0 = 0.05,d = 0.5, maxgen = 30, and
maxsup = 10.

For analyzing the effects of the proposed modifications on the
performance of the algorithm, we have also tested the opt-AINet
over this problem. The parameters used were the same as used
for the m-AINet, with the additinal parameters No = 7and 3 =
100. The number of clones was intentionally chosen as 2n + 1,
i.e., the number of clones generated for each subpopulation was
the same for the opt-AINet and the m-AlINet. The opt-AlNet
used the penalization of the objective function as the method
for dealing with the constraints. The penalty function constant
used was K, = 10.

Table I shows the effect of the proposed modifications on
the performance and computational cost of the m-AINet when
compared to the original opt-AlNet. The convergence rate im-
proved slighly, but the biggest improvement was the reduction
of the computational cost, represented by the number of ob-
jective function evaluations (Evals column). This can be justi-
fied by the use of the partial stabilization of the subpopulations.
This strategy is particularly successful when combined with the
hypercubic maturation: in the random Gaussian maturation the
chance of a subpopulation to improve after stopping for one gen-
eration is still relatively big. On the other hand, due to a certain
degree of determinism introduced by the hypercubic maturation,
this possibility is much smaller. Thus, the hypercubic matura-
tion allows the use of the partial stabilizations technique without
interfeering on the evolution of the subpopulations.

Additionally, the use of the feasibility-based selection crite-
rion seems to have enabled the m-AINet to concentrate on the
search for the feasible peaks, ignoring almost all the unfeasible
ones (the number of unfeasible peaks is given by the difference
between Optima(Total) and Optima(Feasible)). This is a valu-
able characteristic that contributed not only for the improvement
in convergence and in the number of feasible peaks found, but
also for the reduction on the computational cost, since the size
of the population is a function of the amount of peaks found.

B. Electromagnetic Problem

The proposed algorithm was also tested on the design of
an electromagnetic device. The TEAM Benchmark Problem
22 [13] consists on the minimization of the magnetic flux
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TABLE 1I
RESULTS FOR THE SMES PROBLEM
m-AlINet(1) m-AINet(2) GA [12] Best [13]
ro[m] 2.99 3.26 3.05 3.08
ha[m] 0.524 0.872 0.492 0.478
da[m] 0.381 0.190 0.400 0.394
BsiraylmT] 0.8039 1.0269 0.9360 0.8896
Energy[M J] 173.93 181.17 179.74 180.03

density at a certain distance from a superconducting magnetic
energy storage (SMES) device. In this paper, we have used the
3-D version of this problem. The design parameters are three
geometric variables which define the size and position of the
outer coil of the device. The limits of the search space and other
specific details of this problem are discussed in [13].

As stated above, the problem is defined as the minimization
of the value of Bgiray, subject to

Bax < 4.92T 4)
Energy — 180 MJ 5)
180 MJ B

where Bpax[1] is the maximum magnetic flux density at the
outer coil, and Energy [MJ] is the amount of energy stored by
the device. In this paper, the tolerance for the energy constraint
has been set at 5% of the reference value of 180 MJ.

The m-AINet has been applied to solve this problem, with
the following configuration: npop, = 10,0 = 0.04,d =
1,maxgen = 20, and maxsup = 10. The optimization
process required 2400 evaluations of the device, and returned
10 feasible optima, at a relative cost of 240 evaluations per
optimum. Two of the best points found are shown in Table II,
together with other solutions available in the literature. The
number of function evaluations required by the GA [12] was,
by coincidence, also 2400. This value is not available for the
best solution known [13].

From Table II, one can see that the solutions obtained by
m-AlNet are comparable to other results available in the litera-
ture. The first result (m-AINet(1)) presents a very low value for
the objective function, with a violation of the energy constraint
within the 5% tolerance specified. Solution m-AINet(2), on the
other hand, shows a slighly larger value for Bs¢,ay, and a very
small deviation from the reference value for Energy. The fact
that the proposed algorithm was able to find multiple optima,
while requiring the same number of function evaluations as a
GA, is an interesting feature. These additional optima provide
a range of design options for the designer, who may decide, for
example, for a solution with lower sensitivity to variations in the
design parameters, even if it presents a slightly higher value for
the objective.

V. CONCLUSION

A modified version of the artificial immune network algo-
rithm for multimodal optimization has been proposed. The main
differences between the m-AINet and the original opt-AINet al-
gorithm are the use of the partial stabilizations criterion, the in-
clusion of a specific scheme for dealing with constrained prob-
lems, and the use of the hypercubic maturation. With these mod-
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ifications, the resulting algorithm was able not only to main-
tain the interesting characteristics of the opt-AINet, but also to
greatly reduce the number of objective function evaluations re-
quired in the optimization process. This reduction makes the al-
gorithm suitable for electromagnetic problems. The need of a
user-defined value for the number of clones has also been re-
moved in the m-AINet.

We remark that the proposed algorithm allows the determina-
tion of multiple optimal solutions, including the global one, at an
acceptable cost. Subsequently, the designer may analyze these
solutions with respect to other characteristics not initially con-
sidered during the optimization process, such as sensitivity anal-
ysis or more subjective criteria, not easily described in mathe-
matical form.
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