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New Wine Old Bottles: Feistel Structure Revised
Jiajie Liu, Bing Sun, Guoqiang Liu, Xinfeng Dong, Li Liu, Hua Zhang and Chao Li

Abstract—This paper mainly investigates the iterative
structures whose decryption is similar to the encryption.
Firstly, we unify many well-known structures which share
similar procedures between the decryption and the encryp-
tion, and give a sufficient and necessary condition for this
structure to be bijective, which reveals many new insights
into the Feistel structure as well as the Lai-Massey structure.
Secondly, we analyze the security of the unified structure
against the known cryptanalysis. By extending the dual
structure from a Feistel structure to the unified structure,
we prove that a differential of the unified structure is
impossible if and only if it is a zero-correlation linear
hull of its dual structure, which presents a generalized
link between the impossible differential and zero-correlation
linear cryptanalysis shown in CRYPTO 2015. Significantly,
several constraints on the linear components of the cipher
and the permutation on the branches of the cipher are
specified to make the structure resilient to differential and
linear cryptanalysis. Furthermore, in the case that the order
of the permutation equals the number of the branches n, we
prove that there always exist a (3n − 1)-round impossible
differential and a (3n − 1)-round zero-correlation linear
hull of the structure, and also present an algorithm to
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construct these distinguishers. Finally, we propose some
novel structures which might be used in future block cipher
designs.

Index Terms—Feistel structure, Lai-Massey structure, im-
possible differential, dual structure, zero-correlation linear
hull.

1. INTRODUCTION

BLOCK cipher acts as an essential element in the
field of cryptography. Since the publication of the

Data Encryption Standard (DES) [1], plenty of instances
have been proposed to enrich the choices and in the
meanwhile to resist evolving cryptanalysis techniques [2–
5]. In the 1990’s, along with the development of the
computer science and the invention of the differential [6]
and linear cryptanalysis [7], DES with 56-bit key could
no longer provide security level needed in many applica-
tions. Due to this, the National Institute of Standards and
Technology (NIST) initiated the competition for Advanced
Encryption Standard (AES) in 1997. The Rijndael won the
competition and officially became the new AES standard
in 2001 [8].

In the last few decades, a lot of researches have been
exploited on the design and cryptanalysis of block ciphers,
many of which allow the provable security evaluations
against known cryptanalytic vectors such as the differential
and linear cryptanalysis [9, 10], as well as their extensions
such as the impossible differential and zero-correlation
linear cryptanalysis [11–13]. Links among different crypt-
analytic techniques can help reduce the workload during
the process of evaluating the security of a cipher since
there might exist some equivalence between different dis-
tinguishers constructed by different cryptanalytic methods.
As a result, a series of work focus on finding and estab-
lishing links between different cryptanalytic techniques.
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For instance, Blondeau and Nyberg claimed in 2013 that
there exists some equivalence between a zero-correlation
linear hull and an impossible differential in some specific
cases [14]. Then, Blondeau et al. proposed a practical
relation between these two distinguishers for Feistel-type
and Skipjack-type ciphers [15]. At CRYPTO 2015, Sun
et al. proposed the dual structure and proved that an
impossible differential of a structure is a zero-correlation
linear hull of its dual structure [16].

The design of modern block ciphers always uses itera-
tive structures to simplify the security analysis and enable
better software and hardware efficiencies. Among all the
candidates, the structures that have similar procedures
between the decryption and the encryption, such as Feistel
and Lai-Massey structures, are being especially concerned.

f f

Fig. 1: Feistel structure and Lai-Massay structure

The Feistel structure, which is utilized by SIMON [17],
SIMECK [18] and so on, plays an important role in
symmetric key cryptography from both theoretical and
practical point of view. It becomes popular since the pub-
lication of DES. With Feistel structures, it is convenient
to generate permutations from various round functions,
bijective or not, which allows to construct many schemes
for specific needs. In a Feistel cipher, see Fig. 1, the
block of plaintext to be encrypted is split into two equal-
sized halves. The round function is applied to one half,
using a subkey, and then the output is XORed with the
other half. The two halves are then swapped. There are
many extensions of the Feistel structure, such as the SM4
structure [19], the Mars structure [20], type-1, type-2, and
type-3 generalized Feistel structures [21–23].

The Lai-Massey scheme [24] was first used in the design
of Proposed Encryption Standard (PES) [25] which was

f f

Fig. 2: An SM4 and A Mars Structure

later modified to be the International Data Encryption
Algorithm (IDEA) in 1991. Other ciphers making use of
this structure include MESH [26], FOX [27], etc. The
Lai-Massey structure offers security properties similar to
the Feistel structure, and also shares the advantages that
the decryption is similar to the encryption and the round
functions are not necessarily to be bijective. The input
block is also split into two equal-sized halves. The round
function is applied to the sum of the two pieces, and the
result is then added to both half blocks. Nevertheless, we
cannot use it directly as shown in Fig. 1 in order to obtain
a secure cipher. Yet this can be overcome by introducing
an orthomorphism on one of the two branches [24].

Our Contributions. Many of the iterative structures can
be divided into two categories, according to whether the
inverse of the round function is necessary to compute the
inverse of the structure, and the ones that do not need the
inverse, such as the Feistel and Lai-Massey structures, are
of special interest in this paper. The main contributions of
this paper are as follows.

(1) We find a unified description for the known structures
that share similar procedures for decryption and en-
cryption, and find a sufficient and necessary condition
for this structure to be bijective, which enlarges the
choices of structures for block cipher designs.

(2) By introducing the dual structure, we prove that an
r-round differential of a structure is impossible if and
only if it is an r-round zero-correlation linear hull of
the dual structure. Then, to make the unified structure
resilient to differential and linear cryptanalysis, we
give some constraints on linear components. Further-
more, We prove that there always exist a (3n − 1)-
round impossible differential and a (3n − 1)-round
zero-correlation linear hull when some conditions are
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Fig. 3: A Type-1, A Type-2 and A Type-3 generalized Feistel Structure

specified.
(3) We propose several new structures as instances which

might be used in future block cipher designs.

Organization. The rest of the paper is organized as
follows. Section 2 presents the unified description of the
structures sharing similar decryption and encryption pro-
cedures. Section 3 gives some preliminary cryptanalysis
results of the structure. Section 4 proposes some new
structures as instances for block cipher designs. At last,
Section 5 concludes this paper.

2. THE UNIFIED STRUCTURE

In this section, we propose the unified structure whose
decryption procedure is similar to that of the encryption,
and give a sufficient and necessary condition for the
structure to be bijective.

Let F2 denote the binary field and Fn
2 denote the n-

dimensional vector space over F2. Throughout this paper,
x = (x0, x1, . . . , xn−1) always corresponds to a column
vector. Depending on whether the inverse of the nonlinear
round function is needed for the decryption, the iterative
structures of the block ciphers can be grouped into two
broad categories: the first one does not need the inverse
of round function for decryption, while the second one
generally requires the inverse of the round function for
decryption. The aim of this section is to give a unified
view of the structures which do not need the inverse of
the round function.

Let b and t be positive integers, A =

[A0, A1, . . . , An−1] and B = [B0, B1, . . . , Bn−1]

where Ai ∈ Ft×b
2 and Bj ∈ Fb×t

2 . Let f be any map over
Ft
2. Then, the map fA,B : Fb×n

2 → Fb×n
2 is defined as:

yi = xi ⊕Bif(h), 0 ≤ i ≤ n− 1,

where (y0, y1, . . . , yn−1) = fA,B(x0, x1, . . . , xn−1), h =

A0x0 ⊕ A1x1 ⊕ · · · ⊕ An−1xn−1, and xi, yi ∈ Fb
2, see

Fig. 4.
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Fig. 4: The Unified Structure fA,B

Denote by Bt all the maps from Ft
2 to Ft

2. Then, as
illustrated in [16], the structure FA,B is defined as FA,B =

{fA,B | f ∈ Bt}, and FA,B is said to be invertible if fA,B

is invertible for all possible f ∈ Bt.

Firstly, we give a sufficient condition for the structure
to be bijective.

Lemma 1. Assume A0B0⊕A1B1⊕· · ·⊕An−1Bn−1 = 0.

Then, FA,B is invertible. Furthermore, for any invertible

instance fA,B , f−1
A,B = fA,B always holds.

Proof: If A0B0 ⊕ A1B1 ⊕ · · · ⊕ An−1Bn−1 = 0,
then we can check the following equation holds for any
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X = (x0, x1, . . . , xn−1) ∈ Fb×n
2 :

n−1∑
i=0

Aiyi =

n−1∑
i=0

Ai(xi ⊕Bif(h))

=
n−1∑
i=0

Aixi

⊕(
n−1∑
i=0

AiBi

)
f(h) =

n−1∑
i=0

Aixi.

Thus for any fA,B ,

fA,B ◦ fA,B(X) = X,

which indicates that FA,B is invertible and f−1
A,B = fA,B .

Fortunately, the sufficient condition shown in Lemma 1
is also necessary for the structure to be bijective.

Lemma 2. Assume FA,B is invertible. Then, we always

have A0B0 ⊕A1B1 ⊕ · · · ⊕An−1Bn−1 = 0.

Proof: Suppose A0B0⊕A1B1⊕· · ·⊕An−1Bn−1 ̸= 0.
Then, there is a non-zero vector β in Ft

2 such that

(A0B0 ⊕A1B1 ⊕ · · · ⊕An−1Bn−1)β ̸= 0.

Given β, we are going to construct a map f such that
fA,B is not invertible by showing two values mapping to
the same image under f .

For any (x0, x1, . . . , xn−1) ∈ Fb×n
2 , let

f(A0x0 ⊕A1x1 ⊕ · · · ⊕An−1xn−1) = 0,

f(A0x0 ⊕A1x1 ⊕ · · · ⊕An−1xn−1

⊕(A0B0 ⊕A1B1 ⊕ · · · ⊕An−1Bn−1)β) = β.

Then, according to the procedure of fA,B , we have

fA,B(x0, x1, . . . , xn−1) = (x0, x1, . . . , xn−1),

and

fA,B(x0 ⊕B0β, x1 ⊕B1β, . . . , xn−1 ⊕Bn−1β)

=(x0, x1, . . . , xn−1).

Obviously we have (B0β,B1β, . . . , Bn−1β) ̸= 0, since
otherwise (A0B0 ⊕ A1B1 ⊕ · · · ⊕ An−1Bn−1)β ̸= 0.
Therefore,

(x0, x1, . . . , xn−1) ̸= (x0⊕B0β, x1⊕B1β, . . . , xn−1⊕Bn−1β),

which shows (x0, x1, . . . , xn−1) has at least two different

pre-images. Thus, for the f defined as above, fA,B is not
injective, hence not invertible.

According to Lemma 1 and Lemma 2, we have the
following theorem:

Theorem 3. FA,B is invertible if and only if A0B0 ⊕
A1B1 ⊕ · · · ⊕ An−1Bn−1 = 0. Furthermore, for any

invertible instance fA,B , f−1
A,B = fA,B always holds.

We emphasize b and t can be equal, but they are
allowed to be different as well. In addition, f can be
either bijective or non-bijective. Theorem 3 summarizes
the known structures that have a decryption process similar
with that of the encryption. Table I lists several instances
that are involved in the unified structure together with
their corresponding instantiations for the A and B, where
I and O stand for the identity matrix and zero matrix,
respectively.

Besides Feistel, Lai-Massey, SM4, Mars and type-1
generalized Feistel listed above, the type-2 generalized
Feistel structure can also be viewed as an instance of the
unified structure. We take the one as shown in Fig. 3 as
an example to show the parameters:

A0 =

[
I

O

]
, A2 =

[
O

I

]
, B1 =

[
I, O

]
, B3 =

[
O, I

]
,

A1 = A3 = B0 = B2 = O, and the round function
is the concatenation of f0 and f1. In addition, the type-
3 generalized Feistel structure can be viewed as the
parallelism of the type-1 generalized Feistel structure.

Following are three important notes:

(1) Theorem 3 gives the guidelines to ensure invertibility
of the round under universal choices of f . This does
not rule out the possibility that, for some (not all) f ,
dedicated choices of A,B not fulfilling the theorem
may still make the round function invertible.

(2) The conditions above only guarantee the invertibility.
To design a secure cipher, more constraints to the
choices of A and B as well as f have to be put in
place, in order to make the cipher resilient to known
attacks such as differential attack and impossible
differential attack. These will be discussed in the
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TABLE I: Special Instances of the Unified Structure

Feistel structure n = 2
A0 = I, A1 = O
B0 = O,B1 = I

Lai-Massey structure n = 2
A0 = I, A1 = I
B0 = I,B1 = I

SM4 structure n = 4
A0 = O,A1 = A2 = A3 = I
B0 = I,B1 = B2 = B3 = O

Mars structure n = 4
A0 = I, A1 = A2 = A3 = O
B0 = O,B1 = B2 = B3 = I

Type-1 generalized Feistel structure n
A0 = I, A1 = A2 = · · · = An−1 = O
B1 = I,B0 = B2 = · · · = Bn−1 = O

following sections.
(3) To design a secure structure, we always adopt a

permutation π on the n output branches of FA,B ,
which is denoted as FA,B,π in the following.

3. STRUCTURAL CRYPTANALYSIS OF FA,B

This section analyzes the security of the unified struc-
ture against the impossible differential and zero-correlation
linear cryptanalysis which do not investigate the details of
the round function, and also gives some constraints on
the linear parameters of the structure such that it can be
resilient to the differential and linear cryptanalysis. Firstly,
by introducing the dual structure of the unified structure,
we prove that a differential of the unified structure is
impossible if and only if it is a zero-correlation linear
hull of its dual structure. Secondly, to make the structure
resilient to differential and linear cryptanalysis, the ranks
of the linear components should be at least the product
of the number of the branches n and the width of the
branches b. Furthermore, taking account the circularly shift
is widely used in the design of ciphers, we investigate
the generalised situation that the order of the permutation
equals n. Under this setting, we prove that there always
exist (3n − 1)-round impossible differentials and zero-
correlation linear hulls of the structure, which presents an
algorithm to construct these distinguishers as well.

Let A∗ = [AT
0, A

T
1, . . . , A

T
n−1] and B∗ =

[BT
0 , B

T
1 . . . , B

T
n−1]. Denote by q the order of permutation

π, i.e., q = ord(π) is the least positive integer d such that
πd is the identity. Given a permutation π, there is always
a permutation matrix Pπ which is an n× n block matrix
(Pi,j)n×n, where Pi,j is a b× b zero matrix for all (i, j)

except Pi,π(i) = Ib, i = 1, 2, . . . , n which is the b × b

identity matrix. For an integer r ≥ 1, we further associate
A, B and π with the following two matrices:

A(r)
π =


A

APπ

...
AP r−1

π

 , B(r)
π =


B∗

B∗Pπ

...
B∗P r−1

π

 .

A. Dual Structure

At CRYPTO 2015, Sun et al. defined the dual structure
of a Feistel structure in [16]. In the following, we are going
to extend the dual structure from the Feistel structure to
the unified structure. As illustrated in Fig. 5, we give the
dual structure of FA,B,π as follows.

Definition 4. Let FA,B,π be an iterative structure with

matrices A, B and permutation π. Then the dual structure

F⊥
A,B,π is defined as FB∗,A∗,π .

As in [16], we can build the following link between the
impossible differential and zero-correlation linear hull of
the unified structure.

Theorem 5. α→ β is an r-round impossible differential

of FA,B,π if and only if it is an r-round zero-correlation

linear hull of F⊥
A,B,π = FB∗,A∗,π.

Proof: The proof can be divided into the following
two parts:

Part(I). We prove that for δ0 → δr, δ0, δr ∈ Fb×n
2 , if there

is an instance F ∈ FB∗,A∗,π such that the correlation is
non-zero, i.e., c(δ0 · x ⊕ δr · F (x)) ̸= 0, we can find
an instance F ′ ∈ FA,B,π such that the corresponding
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Fig. 5: Dual structure F⊥
A,B,π of FA,B,π

differential characteristic is with positive probability, i.e.,
p(δ0 → δr) > 0.

Assume that δ0 → δr is a linear hull with a non-zero
correlation for some F ∈ FB∗,A∗,π. Then there exists a
linear trail with a non-zero correlation:

δ0 → · · · → δi → · · · → δr.

where δi ∈ Fb×n
2 . Denote by ui the input mask of fi and

B̂ the block matrix whose i-th row is Bi. Then we have

δi+1 = Pπ(δi ⊕ B̂ui).

In the following, for any x ∈ Fb×n
2 , we are going

to construct an r-round cipher Fr ∈ FA,B,π , such that
Fr(x)⊕ Fr(x⊕ δ0) = δr. If r = 0, we define

f0(Ax) = Ax, f0(A(x⊕ δ0)) = Ax⊕ u0.

Then, for F0 ∈ FA,B,π which adopts such f0, F0(x) ⊕
F0(x⊕ δ0) = δ1.

Assume we have constructed Fr−1 such that Fr−1(x)⊕
Fr−1(x⊕δ0) = δr, and denote by y the output of Fr−1(x).
In the r-th round, define fr as follows:

fr(Ay) = Ay, fr(A(y ⊕ δr)) = Ay ⊕ ur.

Then
Fr(x) = Pπ(y ⊕ B̂Ay)

and

Fr(x⊕ δ0) = Pπ(y ⊕ δr ⊕ B̂(Ay ⊕ ur)).

Therefore, Fr(x)⊕ Fr(x⊕ δ0) = Pπ(δr ⊕ B̂ur) = δr+1.

Part(II). We prove that for δ0 → δr, if p(δ0 → δr) > 0

holds for an instance F ∈ FA,B,π , there exists some F ′ ∈
FB∗,A∗,π such that c(δ0 · x⊕ δr · F ′(x)) ̸= 0.

Assume that δ0 → δr is a differential of F ∈ FA,B,π.
Then there exists a differential characteristic with positive
probability:

δ0 → · · · → δi → · · · → δr

where δi ∈ Fb×n
2 . In this characteristic, the input differ-

ence of fi is Aδi ∈ Fb
2. Denote by vi ∈ Fb

2 the output
difference of fi. Then δi+1 = Pπ(δi ⊕ B̂vi).

Taking the following fact into consideration: for
(Aδi, vi), there always exists a b × b binary matrix Li

such that vi = LiAδi. Therefore, we can simply let
fi(x) = Lix, which results in c(vi · x⊕Aδi · fi(x)) = 1.

Now we are going to construct an r-round cipher Fr ∈
FB∗,A∗,π such that c(δ0 ·x⊕ δr ·Fr(x)) ̸= 0. If r = 0, let
f0(x) = L0x. Then all operations in F0 ∈ FB∗,A∗,π are
linear over F2, which implies the existence of a bn × bn

binary matrix M0 such that F0(x) = M0x, and

c(δ0 · x⊕ δ1 · F0(x)) = 1.

Assume we have constructed Fr−1(x) = Mr−1x, with
Mr−1 being a bn× bn binary matrix such that

c(δ0 · x⊕ δr−1 · Fr−1(x)) = 1

and we can define fr in the r-round similarly, then
Fr(x) = Mrx for some bn× bn binary matrix Mr, and

c(δ0 · x⊕ δr · Fr(x)) = 1

which ends our proof.

Theorem 5 is fundamental in the cryptanalysis of
FA,B,π , since it reveals the fact that constructing a zero-
correlation linear hull of an instance of the unified struc-
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ture is equivalent to constructing an impossible differential
of another instance of the unified structure, which gen-
eralizes the link between the impossible differential and
zero-correlation linear hulls from the Feistel structure to
the unified structures.

B. Differential and Linear Cryptanalysis

To design an iterative structure, extra constraints to A

and B as well as π might be imposed, in order to make the
structure resilient to differential and linear cryptanalysis,
and so on.

Firstly, we recall that b is the width of the branch, n is
the number of branches, and q is the order of π.

Theorem 6. The rank of A(q)
π needs to be bn. Otherwise,

there always exists an r-round differential of FA,B,π with

probability 1 no matter how large r is. Furthermore,

when the rank of A(q)
π equals bn, there exists at least 1

differentially active round function f in FA,B,π covering

consecutive q rounds.

Proof: There are bn columns in A(q)
π , so

rank(A(q)
π ) ≤ bn. If rank(A(q)

π ) < bn, then A(q)
π x = 0

has a non-zero solution. To be specific, there is a non-zero
vector δ ∈ Fb×n

2 such that

Aδ = 0

APπδ = 0
...

AP q−1
π δ = 0

(1)

Let the input difference of the first round be δ, then the
input difference to the first f is Aδ = 0. And thus the
output difference, which is also the input to the second
round, is Pπδ.

Following Equ. (1), for any j ∈ {1, 2, . . . , q}, both of
the input and output differences of f in the j-round are 0.
Obviously, the output difference of the q-th round equals
to P q

πδ. Taking P q
π = I into consideration, the input differ-

ence of f in the (q+1)-th round is AP q+1
π δ = APπδ = 0.

Then the output difference of the r-th round is P r
πδ. So

δ → P r
πδ

is an r-round differential with probability 1 regardless of
rounds.

We assume none of the round function in q consecutive
rounds is differentially active, which means the input
differences to the q round functions are 0.

Let the input difference to the first round be 0 ̸=
δ ∈ Fb×n

2 . Since the output differences of these rounds
functions are 0, the input differences of the i-th round is
P i−1
π δ, where i = 1, 2, . . . , q. Then, the input difference to

the i-th f is AP i−1
π δ = 0, i = 1, 2, . . . , q. So, we get Equ.

(1), i.e., A(q)
π δ = 0 and δ ̸= 0. However, rank(A(q)

π ) = bn

implies that A(q)
π δ = 0 only has zero solution, which

contradicts with δ ̸= 0.

Thus, at least 1 round function f of consecutive q

rounds is differentially active.

We use the Lai-Massey structure to verify Theorem 6.
The Lai-Massey structure with the orthomorphism is not
an instance of FA,B,π since the decryption procedure is
different from the encryption procedure, i.e. f−1

A,B ̸= fA,B .
However, the Lai-Massey structure without the orthomor-
phism can be considered as a specific example of FA,B,π

with the following parameters: n = 2, A0 = I, A1 =

I,B0 = I,B1 = I , π(1) = 2 and π(2) = 1, as seen
in Fig. 1.

Then we have A = [I, I], B∗ = [I, I], and

A(2)
π =

[
I I

I I

]
and B(2)

π =

[
I I

I I

]
.

Let [
I I

I I

][
x1

x2

]
= 0.

We find x1 = x2. Accordingly, (α, α) → (α, α) where
α ̸= 0 is an r-round differential of this structure with
probability 1 for any value of r. Therefore, an orthomor-
phism is needed to get rid of this iterative differential.

Following Theorem 5, we have a similar constraint on
B which shows there might be a potential linear weakness
if B is not carefully designed:

Corollary 7. The rank of B(q)
π needs to be bn. Otherwise,

there always exists an r-round linear hull of FA,B,π with
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correlation 1, regardless of the value of r. Furthermore,

when the rank of B(q)
π equals bn, there exists at least

1 linearly active round function f in FA,B,π covering

consecutive q rounds.

Both Theorem 6 and Corollary 7 show that, as long
as the round function is carefully designed, FA,B,π with
enough rounds can resist differential and linear cryptanal-
ysis.

In summary, to avoid these weakness with respect to the
differential and linear cryptanalysis, the following equation
must hold:

rank(A(q)
π ) = rank(B(q)

π ) = bn.

Since the rank of a matrix cannot be larger than either
the columns or the rows, rank(A(q)

π ) ≤ min{ord(π) ×
t, bn}, we have:

Corollary 8. The order of the permutation on n branches

must be at least ord(π) = b
tn.

Since the circularly shift is very popular in the design of
a cipher, we are now investigating this case. Particularly,
we assume π0(i) = i+1 for 1 ≤ i ≤ n−1 and π0(n) = 1.
And a more generalized case is that ord(π) = n which
contains π0 as an instance.

Corollary 9. If we adopt π0 or generally a permutation

whose order is n, the length of the output of each Ai is

at least that of the input, i.e., t ≥ b.

C. Impossible Differential and Zero-Correlation Linear

Cryptanalysis

In this part, we assume Ai and Bj are squares, and the
round function is bijective.

Proposition 10. Assume ord(π) = n, rank(A(q)
π ) =

rank(B(q)
π ) = bn and t = b. Then, there is a (3n − 1)-

round impossible differential of FA,B,π, provided Ai and

Bj are squares, and f is bijective.

Proof: We consider the solutions for the following
equations:



Aδ = 0

APπδ = 0
...

APn−2
π δ = 0

(2)

and APn−1
π δ ̸= 0.

When q = ord(π) = n, we recall that

A(q)
π =


A

APπ

...
APn−1

π

 , B(q)
π =


B∗

B∗Pπ

...
B∗Pn−1

π

 .

Since rank(A(q−1)
π ) ≤ (n − 1)b < nb, there is a non-

zero solution δ of Equ. (2).

Denote by δ the input difference to the first round.
Since the input difference to the first f is Aδ = 0, the
output difference of the first f is also 0. Thus the output
difference of the first round is Pπδ.

Then, the input difference to the second f is APπδ = 0,
thus the output differences of the second f and the second
round are 0 and P 2

πδ, respectively.

Similarly, according to Equ. (2), for any i ∈
{3, . . . , n− 1} the input difference to the i-th f is always
0, and the output difference to the i-th round is P i

πδ.
Particularly, the output difference of the (n− 1)-th round
is Pn−1

π δ.

Denote by γ1, γ2, . . . , γn+1 and ε1, ε2, . . . , εn+1 the
input and output differences to f in the n-th, (n+1)-th, . . .,
(2n)-th rounds, respectively. Since γ1 = APn−1

π δ ̸= 0 and
f is bijective, we have ε1 ̸= 0. Then, the output difference
of the n-th round is

δn = δ ⊕ PπB̂ε1.

Denote by δ2n the output difference of the 2n-th round.
Then,

δ2n = δ ⊕ Pn+1
π B̂ε1 ⊕ · · · ⊕ PπB̂εn+1.

Since the output difference of the (3n − 1)-th round
is Pn−1

π δ, and the structure has a similar decryption
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procedure as that of the encryption, we could infer from
the decryption direction that the input difference of the
(2n+ 1)-th round is η2n+1 = δ.

If the (3n−1)-round differential δ → Pn−1
π δ is possible,

we have δ2n = η2n+1, which implies

Pn+1
π B̂ε1 ⊕ · · · ⊕ PπB̂εn+1 = 0.

Then, taking Pn+1
π = Pπ into account, we have:

[
B̂ PπB̂ P 2

π B̂ · · · Pn−1
π B̂

]


ε2

ε1 ⊕ εn+1

εn
...
ε3


= 0.

(3)

Since Pπ is a permutation matrix, (P j
π)

T = (P j
π)

−1 =

Pn−j
π . As a result,

[
B̂ PπB̂ P 2

π B̂ · · · Pn−1
π B̂

]T
=


B∗

B∗Pn−1
π

...
B∗Pπ


whose rank is nb. Thus, Equ. (3) has only zero solution
which demonstrates

(ε1 ⊕ εn+1) = ε2 = · · · = εn = 0.

Therefore, γ2 = · · · = γn = 0, due to the fact f is
bijective. On the other hand, γ2, . . . , γn can be computed
as follows: 

γ2 = Aδ ⊕APπB̂ε1

γ3 = APπδ ⊕AP 2
π B̂ε1

...

γn = APn−2
π δ ⊕APn−1

π B̂ε1

Following A1B1 ⊕A2B2 ⊕ · · · ⊕AnBn = 0, we can get

Algorithm 1: Constructing (3n−1)-round impossible
differential of FA,B,π

Input: matrix A, permutation π, the number of
branches n;

Output: input difference δin, output difference δout;
1 Computing the order of π, q = ord(π);
2 if q ̸= n then
3 return ∅;
4 else

5 Computing A(n−1)
π =

 A
...

APn−2
π

;

6 Computing a non-zero solution δ for the equation
A(n−1)

π x = 0;
7 δin ← δ;
8 δout ← Pn−1

π δ;

9 return δin, δout;

AB̂ε1 = 0. Thus 

AB̂ε1 = 0

APπB̂ε1 = 0
...

APn−1
π B̂ε1 = 0

Since the columns of A(q)
π are linearly independent, we

have B̂ε1 = 0. The columns of B(q)
π being independent

indicates rank(B̂) = rank(B∗) = b. So, we have ε1 =

0 which contradicts ε1 ̸= 0. Thus, the (3n − 1)-round
differential δ → Pn−1

π δ is an impossible differential of
FA,B,π .

Algorithm 1 gives an algorithm for computing the (3n−
1)-round impossible differential of FA,B,π provided the
order of the permutation is n.

Due to Theorem 5, Proposition 10 can be projected to
zero-correlation linear cryptanalysis of FA,B,π:

Proposition 11. Assume ord(π) = n, rank(A(q)
π ) =

rank(B(q)π ) = bn and t = b. Then, there is a (3n − 1)-

round zero-correlation linear hull of FA,B,π as long as

Ai and Bj are squares, and f is bijective.

Both Propositions 10 and 11 indicate that, as long as f

is bijective, ord(π) = n and rank(A(q)
π ) = rank(B(q)

π ) =
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bn, the structures might have the same security margin
with respect to impossible differential and zero-correlation
linear cryptanalysis, even if different Ai’s and Bj’s are
specified.

Following are some notes:

(1) The SM4 structure is a specific example of FA,B,π ,
as seen in Fig. 2. According to Algorithm 1 and Propo-
sition 10, (α, α, α, 0) → (0, α, α, α) is an 11-round
impossible differential of SM4 structure, where α ∈ F32

2

and α ̸= 0. It is consistent with the results given in
[28]. Notice the Mars structure is the dual structure of the
SM4 structure, according to Proposition 11, (α, α, α, 0)→
(0, α, α, α) is also an 11-round zero-correlation linear hull
of the Mars structure.

(2) Algorithm 1 can only compute (3n − 1)-round
impossible differentials from the perspective of structure
without considering the details of round functions. In other
words, if details of the round functions are investigated, the
rounds of a distinguisher might be extended. For example,
a 12-round impossible differential of SM4 was constructed
using the fact that the round function f is composed of
the non-linear layer followed by an MDS matrix [29, 30].

(3) We have shown a lower bound for the rounds of
the impossible differential and zero-correlation linear hull
of the unified structure by only using linear algebra. For
a specific cipher, there might be some distinguishers that
cover more rounds. Due to the complex round function, the
automated tools are used to find these distinguishers. For a
specific cipher, automatic search tools might help find out
longer distinguishers since the details of round functions
are taken into consideration which also consumes more
computation and time.

Deal, SMS4 and Mars are specific instances of FA,B,π

with 2, 4 and 4 branches respectively. According to
Proposition 10, there exist 5-, 11- and 11-round impossible
differentials of these three ciphers, respectively, which is
consistent with the results given in [28, 31]. Furthermore,
assume conditions in Proposition 10 are satisfied, we can
always construct (3n − 1)-round impossible differentials,
which shows that these structures have the same security
with respect to impossible differential attack, even if

different A’s and B’s are specified.

4. PROPOSALS FOR NEW STRUCTURES

In this section, we propose two new structures as
instances of FA,B which may be used in future block
cipher designs. Theorem 3 gives new approaches to select
the structure of an iterative cipher. For example, based on
Theorem 3, Fig. 6 gives a new structure whose encryption
and decryption are the same:

Example 1. Denote by (Li, Ri) and (Li+1, Ri+1) the

input and output of the iterative structure, respectively,

where Li, Li+1, Ri, Ri+1 are elements in F2b . Then,Li+1 = Ri ⊕ awi,

Ri+1 = Li ⊕ wi,

where a is the multiplication by a over the finite field F2b

and wi = f(aLi ⊕ Ri). Furthermore, following Theorem

6, a should not be equal to 1.

f

 

 

Li Ri

Li ! Ri !

Fig. 6: Procedure of Example 1

In addition, we propose a new structure with 4 branches
based on Theorem 3, see Fig. 7.

Example 2. Let F232 = F2⟨u⟩, where u is a root of g(x) =

x32⊕x22⊕x2⊕x⊕1 in F232 . Denote by (x0, x1, x2, x3)

and (y0, y1, y2, y3) the input and output of the iterative

structure, respectively, where xi, yi are elements in F232 .
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Then, 

y0 = x1 ⊕ wi,

y1 = x2 ⊕ 2wi,

y2 = x3 ⊕ 3wi,

y3 = x0 ⊕ wi,

where 2 and 3 are the multiplications by 2 and 3 respec-

tively over the finite field F232 and wi = f(2x0 ⊕ 3x1 ⊕
x2 ⊕ x3).

 
y

 
y

 
x

 
x

 
y

 
x

 
y

 
x

f

Fig. 7: Procedure of Example 2

The multiplications by 2 and 3 can be respectively
written as M2 and M3, where M2,M3 ∈ F32×32

2 . The
structure is a specific example of FA,B,π with the fol-
lowing parameters: n = 4, A0 = M2, A1 = M3, A2 =

A3 = I,B0 = B1 = I,B2 = M2, B3 = M3,
π(1) = 4, π(2) = 1, π(3) = 2 and π(4) = 3, as seen
in Fig. 7.

Then we have A = [M2,M3, I, I], B∗ =

[I, I,MT
2 ,M

T
3 ],

A(4)
π =


M2 M3 I I

I M2 M3 I

I I M2 M3

M3 I I M2



and B(4)π =


I I MT

2 MT
3

MT
3 I I MT

2

MT
2 MT

3 I I

I MT
2 MT

3 I

 .

After calculation, rank(A(4)
π ) = rank(B(4)

π ) = 128. Let

M2 M3 I I

I M2 M3 I

I I M2 M3



x1

x2

x3

x4

 =

0
0
0

 .

We find x1 = 9α, x2 = dα, x3 = bα, x4 = eα is a non-
zero solution for the equation, where α ∈ F232 , α ̸= 0 and
9, d, b, e are the multiplications by 9, d, b, e respectively
over the finite field F232 . According to Proposition 10,

(9α,dα, bα, eα)→ (eα, 9α, dα,bα)

is an 11-round impossible differential of this structure.

5. CONCLUSION

Many iterative structures have the same procedure of
the decryption and the encryptions. In this paper, we
give a unified view of these structures, which surpris-
ingly gives many new structures as well. We analyze
the security of this unified structure against differential
cryptanalysis, linear cryptanalysis, impossible differential
and zero-correlation linear cryptanalysis which also gives
the constraints on the linear parameters of the structure.
Firstly, we define the dual structure of FA,B and prove
the equivalence of the existences of impossible differen-
tial and zero-correlation linear hull between these two
structures. To make the structure resilient to differential
and linear cryptanalysis, we give some constraints which
are necessary to be appended to the matrices A and B.
Under such conditions and the assumption that the order
of the permutation is n, we prove the existences of a
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(3n−1)-round impossible differential and a (3n−1)-round
zero-correlation linear hull of FA,B . Based on the unified
structure, we propose some new structures as applications
which may be used in future block cipher designs.
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