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Abstract—Micro-expressions (MEs) are rapid and subtle facial
movements that are difficult to detect and recognize. Most recent
works have attempted to recognize MEs with spatial and tem-
poral information from video clips. According to psychological
studies, the apex frame conveys the most emotional information
expressed in facial expressions. However, it is not clear how the
single apex frame contributes to micro-expression recognition. To
alleviate that problem, this paper firstly proposes a new method to
detect the apex frame by estimating pixel-level change rates in the
frequency domain. With frequency information, it performs more
effectively on apex frame spotting than the currently existing apex
frame spotting methods based on the spatio-temporal change
information. Secondly, with the apex frame, this paper proposes
a joint feature learning architecture coupling local and global
information to recognize MEs, because not all regions make
the same contribution to ME recognition and some regions do
not even contain any emotional information. More specifically,
the proposed model involves the local information learned from
the facial regions contributing major emotion information, and
the global information learned from the whole face. Leveraging
the local and global information enables our model to learn
discriminative ME representations and suppress the negative
influence of unrelated regions to MEs. The proposed method is
extensively evaluated using CASME, CASME II, SAMM, SMIC,
and composite databases. Experimental results demonstrate that
our method with the detected apex frame achieves considerably
promising ME recognition performance, compared with the state-
of-the-art methods employing the whole ME sequence. Moreover,
the results indicate that the apex frame can significantly con-
tribute to micro-expression recognition.

Index Terms—Micro-expression, 3D FFT, Facial expression
recognition, Multi-instance learning, Deep learning

I. INTRODUCTION

ICRO-EXPRESSIONS (MEs) are involuntary facial
movements reacting to emotional stimulus [1]. MEs
can reveal people’s hidden feelings in high-stake situations
and have many potential applications in different fields, such
as clinical diagnosis, national security, and interrogations.
Different from ordinary facial expressions that we see daily,
MEs have short duration (1/25 to 1/3 second), low intensity,
and occur with sparse facial action units [2]. All of the above
characteristics make MEs difficult to detect and recognize.
Generally, two main tasks are included in ME analysis: spot-
ting and recognition. The spotting task is aimed at identifying
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ME occurrence or finding the onset, offset and apex frames,
while the recognition task classifies the MEs into specific
emotion categories [3]-[5]. Most of the current research on
ME recognition utilizes whole video clips [6]-[10]. Ekman
declared that ‘snapshot taken at a point when the expression is
at its apex can easily convey the emotion message’ [11]. This
means that, the apex frame can contribute major information to
facial expression recognition. Recently, Liong et al. discovered
that the redundancy information in ME clips could decrease
the performance of ME recognition [3]. In contrast, the onset,
apex, and offset frames provide useful information to ME
classification. Moreover, Liong et al. proposed a bi-weighted
orientation optical flow feature extracted on the spotted apex
frame for ME recognition [12]. However, so far there are few
studies that analyze the contribution of the apex frame to ME
recognition. On the other hand, as deep learning technology
has achieved considerable performance in facial expression
recognition [13], [14], some researchers have started to exploit
deep neural networks for ME recognition [15], [16]. However,
their proposed methods dramatically degrade the performance
compared with hand-crafted methods [7]. This is explained by
the fact that ME databases are very small and the changes
in MEs are subtle. Motivated by the above-mentioned ob-
servations [3], [11], [15], [16], this paper provokes the three
following discussions: (1) ‘Does the single apex frame in ME
contribute the important information for ME recognition?’;
(2) ‘How is the recognition result based on the apex frame
compared with the methods employing the ME sequence?’
and (3) ‘Can deep learning achieve good performance of ME
recognition with the apex frame?’.

To address the aforementioned questions, the first stage of
this paper is to locate the apex frame in the ME sequence.
Currently, most of the existing spontaneous ME apex frame
spotting methods estimate the facial muscle change in the
spatio-temporal domain to detect the apex frame in ME
sequences, e.g., optical flow-based methods [17]. Actually, for
micro-expression, facial muscle change is not obvious along
the temporal dimension. To a certain extent, these kinds of
methods are prone to errors when spotting the apex frame.
According to our empirical analysis [18], the apex frames in
ME sequences are highly related to the high-frequency infor-
mation. To this end, the frequency, even though rarely utilized
by the current existing research, can provide rich and important
information to apex frame spotting. This paper proposes a new
method to locate the apex frame through frequency analysis.
Different from commonly used ME spotting methods based
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Fig. 1. Framework of the micro-expression recognition system.

on the change between frames, the proposed frequency-based
method in this paper utilizes the frequency representation of
facial muscle change in the frequency domain to locate the
apex frame.

As previously discussed, most pioneers utilizing deep learn-
ing technology and video clips cannot obtain satisfactory
results for micro-expression recognition [15], [16]. To gain
an improvement, our previous work [18] used the deep VGG
model [19] to classify the magnified ME apex frame, but
still cannot achieve significant improvement, especially for the
subjects with outliers. For example, our previous work [18]
obtained an accuracy of 64.41% for the subjects without eye-
glasses, 61.5% for the subjects with eyeglasses, and 33% for
some subjects with big eyeglasses. It was found that eyeglasses
have a seriously negative influence on the performance of ME
recognition. The empirical experience and quantitative analysis
in [20] also validated that observation. It is of importance to
suppress the influence of outliers such as eyeglasses.

Some research has reduced the impact of regions without
useful information by extracting features on the regions of
interest (ROIs) [12]. Here, Liong et al. assumed all the ROIs
have an equal contribution to micro-expression recognition. As
far as we know, despite ROIs, the informative region could be
attributed to different micro-expression. In other words, only
specific AUs are triggered when facial expression occurs. For
example, anger is mostly related to AU4 (Brow lower) or AU7
(Lids tight) [21]. Compared with the motionless regions, the
local region related to AUs may contribute more information to
ME recognition. Therefore, a novel learning framework termed
LGCcon is proposed to join local and global information to
emphasize the local informative region learning among global
information for ME recognition. The architecture is designed
based on the local informative region and the global face
derived from the apex frame. Specifically, the local informative
region contributing most ME information is automatically
learned by following the concept of multi-instance learning
(MIL) [22]. It aims to improve the discriminative representa-
tion ability and suppress the impact of outliers and motionless
regions. Additionally, local and global information learning
constraints are developed in our framework to improve the
performance of local and global representations, respectively.
Moreover, Centerloss [23] is used to increase the compactness
of intra-class variations and separable inter-class differences.

The contribution of this paper is threefold:

(1) A new method, termed 3DF-N, is proposed to locate
the apex frames in the frequency domain. Due to frequency
information, which describes the rate of change clearly, the
proposed method can effectively spot the apex frame of micro-
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expression videos.

(2) A local and global information joint learning module
(LGCcon) is proposed to improve the ability and robustness of
discriminative representation against the problem of outliers.

(3) We develop a new deep learning framework to recognize
MEs based on apex frames, and to further study the contri-
bution of apex frames to ME recognition. The experiments
demonstrate that our method based on the apex frame can
achieve comparable promising performance, when compared
with ME sequences. The experimental results further indicate
that deep learning can achieve good performance on ME
recognition with the apex frame. Figure 1 shows our whole
framework.

The remaining parts of this paper are organized as follows:
Section II presents the related work, while Section III details
two proposed methods for apex frame spotting and ME
recognition, respectively. Section IV discusses the experiments
and analyzes the results. Section V makes conclusions on the
proposed methods and observations. A preliminary version of
this work was presented in [18]. The work in this paper is
substantially extended in four aspects: (1) The apex frame
spotting method is further improved through reducing redun-
dancy information, which is achieved by locating regions with
large change rates. (2) To suppress the influence of outliers
and motionless regions for ME recognition, a MIL-based
method is proposed to automatically detect the most important
information on the face. (3) To further gain discriminative rep-
resentation ability, a local maximum and global context joint
learning framework is designed to adaptively embed local and
global information. (4) Intensive experiments are conducted
on the CASME, CASME II, SAMM, SMIC, and composite
databases to demonstrate the effectiveness and generalizability
of LGCcon.

II. RELATED WORKS

This section briefly summarizes the existing study on micro-
expression analysis. The techniques on micro-expression spot-
ting and recognition are described to indicate the research
focus. As the proposed local information learning method is
following the concept of multi-instance learning, MIL is also
presented briefly.

A. Micro-expression Spotting

For ME spotting, due to the subtle and rapid change
characteristics of MEs, it is difficult to locate the onset, apex,
and offset frames accurately. Patel et al. [24] used integrate
optical flow vectors computed on small local spatial regions
to spot the onset and offset frames from a long-term video.



Li et al. [25] proposed a training-free method based on the
feature difference contrast and peak detection to spot MEs.
On the other hand, Liong et al. [17] used the binary search
strategy with a local binary pattern and optical flow on several
interesting facial sub-regions to spot the apex frame in ME
clips. And Ma et al. [26] further improved the performance
of apex frame spotting by utilizing the histogram of oriented
optical flow. However, these methods merely concerned the
subtle spatial change between neighboring frames, but omitted
the rapid change of frames along the temporal domain. In
contrast, the proposed apex frame spotting method based on
3D Fast Fourier Transform (FFT) not only analyzes rapid
changes of ME in the frequency domain, but also leverages
the spatial and continuous temporal information.

B. Micro-expression Recognition

The ME recognition research can be traced to the work
of Pfister et al. [27]. Pfister et al. proposed recognizing
ME by using a local binary pattern from three orthogonal
planes (LBP-TOP) [28] and classical classifiers. Following
the work of [28], to increase the efficiency of LBP-TOP for
ME recognition, Wang et al. [29] proposed a spatio-temporal
descriptor with six intersection points (LBP-SIP), also sup-
pressing the redundancy information of LBP-TOP. In order to
improve the performance of ME recognition, certain spatio-
temporal descriptors have been proposed, e.g., the spatio-
temporal completed local quantized pattern (STCLQP) [7] and
a histogram of image gradient orientation (HIGO-TOP) [25].
Likewise, other feature types like main direction main optical
(MDMO) [30] and tensor independent color space (TICS) [31]
methods were proposed. All the aforementioned methods are
mostly based on the whole video clip. However, there remains
a query over which frame could significantly contribute to
micro-expression recognition. Liong et al. [12] attempted to
use apex frames for ME recognition, but unfortunately, this
system based on apex frames cannot gain an improvement,
and in contrast, it still behaved worse than the state-of-the-art
methods [25], [30] throughout the whole video clip. Even so,
using apex frame could obtain high efficiency to some extent
in a real-world application.

In recent years, deep learning has achieved promising
performance in many research fields [13], [14]. It has also
been used in ME recognition [16], [32]. The work in [15] was
the first to transfer deep convolutional neural network models
from objects and facial expressions to small ME databases.
However, its recognition rate on the CASME II database is
47.3%, which is worse than hand-crafted descriptors. Peng et
al. [16] proposed a dual-template CNN model based on optical
flows extracted from the ME sequences for ME recognition.
The optical flow information over the whole video should
first be extracted and then fed into CNN. Actually, the ex-
traction of optical flow leads to heavy computation in real-
world applications, which seriously degrades the efficiency
of the dual-template CNN model. Li et al. [33] proposed a
novel automatic ME analysis algorithm utilizing the Flownet
2.0 [32]. With the benefit of Flownet, Li et al. improved the
performance of dual-template CNN [16], but it is still inferior

to classical methods [25]. More recently, methods [34], [35]
based on optical flow between the onset, apex, and offset
frames considerably increased ME recognition performance
compared with algorithms employing ME clips [15], [25],
[33]. This indirectly indicates that not all frames in ME clips
make a contribution to ME recognition. Thus, this paper
puts the focus on the contribution of apex frames to ME
recognition. The experimental results validate that the apex
frame is the most contributing one for ME recognition.

C. Multi-instance Learning

Multi-instance learning (MIL) supplies a training frame-
work for resolving the problem of inaccurate annotations. Dif-
ferent from supervised algorithms [13], [14] needing accurate
annotations, MIL merely requires data in the form of bags
with positive or negative labels [36]. If there is at least one
positive instance in the bag, the bag is positive, otherwise, it is
negative. With the obscure bags, MIL can annotate individual
instances correctly [36].

MIL has achieved excellent performance in several com-
puter vision tasks. For example, Oquab et al [22], [37]
proposed to regarding sub-regions in the complex image as
instances in a bag by following MIL. The image is classified
through combining sub-region scores through a max pooling
layer. For action recognition, Gkioxari et al. [38] employed
MIL to locate an action region and recognized the action with
the contextual information.

For ME recognition, most MEs are related to one or two
AUs. This means that the regions related to AUs contribute
more to ME recognition. On the other hand, outliers, e.g., eye-
glasses, have a negative influence on ME recognition. Follow-
ing the concept of MIL, the candidate facial local sub-regions
are considered as the instances. The proposed LGCcon obtains
the positive instance contributing the most ME information for
inferring the ME class automatically via a maximum operation.
It combines MIL and deep learning architecture to learn the
local informative feature from the local facial region. It also
largely suppresses the influence of some noisy regions, such
as those occluded by eyeglasses.

ITII. MICRO-EXPRESSION RECOGNITION BASED
ON THE APEX FRAME

In this section, the proposed methods for ME recognition
are detailed. As we study the contribution of apex frame to
ME recognition, the first stage is to locate the apex frame.
Subsection A introduces the flow of spotting an apex frame
in a ME sequence through frequency analysis. Then the
LGCcon network is proposed to recognize ME based on the
detected apex frame through joint local and global information
learning. In Subsection B, the specific details of LGCcon
are elaborated. Finally, we introduce the implementation of
LGCcon in Subsection C.

A. Micro-expression apex frame spotting

As previously discussed in Section I, the subtle change
of ME leads to a hard locating apex frame in the spatio-
temporal domain. According to our empirical experience [18],
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Fig. 2. The flowchart for the proposed 3DF-N for micro-expression spotting. HBF represents the high-band frequency filter.

the frequency can clearly express the subtle but rapid pixel
changes in ME sequences. Thus, this paper spots the apex
frames in the frequency domain instead. The basic idea is to
represent each ME frame with the frequency components at
short intervals, and to locate the apex frame through comparing
the frequencies afterwards. Figure 2 depicts the flowchart of
the proposed ME apex frame spotting method.

According to [39], it is found that the frequency is sensitive
to illumination variations. Prior to analyzing frequency, gray-
scale invariant Local Binary Patterns (LBP) [40] is used to
extract the texture map of the ME frame, which suppresses the
influence of illumination change to frequency. Subsequently,
the frequency of sequential video frames is obtained at a spec-
ified interval. For more details, the facial area is divided into
equal-sized blocks (6 x 6 in the experiments). Afterwards, the
video blocks are transformed into frequency domain through
3D Fast Fourier Transformation (3D-FFT) with a sliding time
window. Given the sliding window of length 7', for the i-th
interval, the frequency values for the interval are computed on
blocks by 3D-FFT. The frequency value of the j-th block in
the i-th interval is obtained as follows:
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where (u,v,q) represents the position in the frequency do-
main; L, and W; represent the height and width of the
j-th block b;; in the i-th interval, respectively and j =
{1,2,---,36}.

Based on the observation [18], the apex frame with rapid
pixel change is related to the higher frequency. On the other
hand, MEs with subtle changes contain useless low-frequency
information. Thus, a high-band frequency (HBF) filter is
antecedently used to filter the higher frequency and reduce
the influence of unchanging pixels in the frames. The HBF
filter Hy,; is defined as follows:

1 if \Ju?2+v2+¢%2 > Dy
Hy,, » Yo = . B ’ 2
biy (4, 0,0) {O if \/u? 402 +¢% < Dy o
where Dy is the threshold.
The proposed 3DF-N obtains the high-frequency compo-
nents of the j-th block in the ¢-th interval according to
Equation 3,

Gbij (u,v,q) = Fbij (U,U>Q) X Hbij (U>U7q)' 3)

Due to sparse facial changes caused by MEs, the occurrence
of apex frame leads to higher frequency in some specific
blocks. To reduce redundancy information, 3DF-N uses the
specific blocks with the NV largest frequency values, and then
sums up the high-frequency value Gy, in the i-th video
interval by the following formulation,
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where A; represents the frequency amplitude of the i-th
interval. A; indicates the range of rapid facial movements
at the ¢-th interval. In the same way, 3DF-N can obtain
frequency information of all the video intervals. The interval
with maximum amplitude indicates the frames with the most
obvious facial movement, which is defined as follows:

Api = max(Ai), (5)

where A,; represents the interval with the most rapid facial
movements. The middle of the interval can be viewed as the
apex frame.

B. Micro-expression recognition based on joint local and
global information learning

For the majority of MEs, not all facial regions contribute
to ME recognition. In order to emphasize emotion learning
from informative regions and reduce the influence of out-
liers, the proposed LGCcon discovers that local facial regions
contribute ME information and learns the local and global
facial information jointly to increase the discrimination and
robustness of features against the problem of outliers. Besides,
multi-constraints on local and global information learning
are developed to raise the discrimination of local and global
representations, respectively. Furthermore, Centerloss [23] is
employed to enhance inter-class dispersion and intra-class
compactness for ME recognition.

Figure 3 illustrates the framework of LGCcon. The back-
bone of LGCcon is based on VGG-16 CNN architecture [19].
LGCcon consists of the Global Information path (GI) and
Local Information path (LI), which extract global and local
features, respectively. Specifically, the GI aims to extract con-
textual features from the whole facial image. Meanwhile, the
LI aims to extract features from the local region contributing
the most ME information. Below, the details of the LI and GI
in LGCcon are presented.
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respectively.

As Figure 3 shows, given a face image I, it passes through
16 convolutional layers and three fully connected (FC) layers.
The feature of the last FC layer is represented as ¢g. For the
GI, the score of ME based on the whole face is defined as
Sgl

Sa(0;1) = wg - pa (1), 6)

where ¢¢ is the feature extracted from the whole face region
I. The dimension of ¢¢ corresponds to the number of ME
categories. w% is the global weight for ME category 6.
Given the score S¢(0;I) for ME based on global informa-
tion, the Softmax function is used to compute the probability

e (S6(6: 1))
ex ;
pc(0;1) = VoG -
> oep(exp(Sa(6;1)))
Thus, the loss function for the GI path is defined as follows:

)
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Le=—— ) (log(pa(f =Ui|1;))),

i=1

®)

where M represents the batch size and [; represents the true
label of image I;.

On the other hand, as seen in Figure 3, the LI is proposed
to extract the information on the local regions containing ME
emotion (e.g., cheek raiser). For the sake of simplicity, 7 is
defined as a region in I, R(7;1) is the set of candidates for
the sub-regions in the whole set of regions in I. As the face
structure is fixed and symmetrical, LGCcon obtains R(7;I)
by a sliding window with the height being 1/3 of the face
height and the face width. The step size of the sliding window
is 1/6 of the face height, and six ROIs are obtained in one
face image. Then, the ROI pooling layer is used to extract
local features ¢, for all the R(7;I). Following the concept
of MIL [38], the set of candidate sub-regions R(7;I) can
be regarded as a ‘bag’ of instances in ME recognition. For
each ME image, at least one local region contributes emotional
information to ME recognition. The most informative region
can be seen as the positive instance for the corresponding ME

category. The LI path recognizes MEs based on the positive
instance contributing the most emotional information through
a maximum operation. Therefore, the score and probability of
ME:s based on the local information are defined in Equations 9
and 10, respectively.

Sp(0;7,1) = TEI%E(E('I) wi <o (3 1),

(€))

where ¢y, is the feature extracted from local face regions
R(7;I). The dimension of ¢, is the number of ME categories.
wf is the local weight for ME category 6.

o exp(Sp(0;7,1))
pr(0;7, 1) = Yoeplexp(Sp(0;7,1)))’

where S, and pp represent the score and probability of MEs
based on the local information, respectively.

Based on pr(0;7,1), the loss function for the LI path is
defined as L:

(10)
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where [; is the true label of ROI 7; in facial image I;.

Finally, the scores based on the global information and local
information learning are combined to jointly estimate the final
ME probability.

Spa(0;7,1) = Sa(0; 1) + Sp(0;7,1), (12)

exp(scorerq(0;7,1))
T =
JULG(Q’T7 ) ZGGE(exp(scoreLG(e;Ta I)))7

where Sy and prg represent the joint score and probability
of MEs, respectively. Specifically, the feature representations
¢r and ¢¢, and the weight vectors wg and w‘z in Equations 6
and 9 are learned jointly for all ME categories. The loss

(13)



function of the joint local and global information learning is
represented as Lrg,

M
1
Lre=—7; > (log(pra (0 = Lil7, 1)))).

i=1

(14)

However, based on the previously described framework,
the features are not sufficiently discriminative. Due to small
ME databases, the possible training identities are very limited
and not diversified. For enhancing the discriminant of ME
features, Centerloss [23] is employed to strengthen inter-class
dispersion and intra-class compactness. Centerloss is defined

as:
1 M
Lc = 52 Hxl — Cy,
i=1

where z; represents the sample in the class, while the cy,
represents the center of samples belonging to ME class 6;.

During the training process, the Ly, and L are also used as
the constraints to restrict the learning procedure based on local
and global information, respectively. They aim to promote the
discriminant of local and global representations, Therefore, the
final loss function L is formulated as follows:

2
., (15)

L=Lig+Mo-Lec+AL-Lp+ g Lg, (16)

where Ao, A\ and A balance the loss functions. Ao is
set as 0.008. A\r and A\g are set as 0.7 for faster training
convergence. The influences of A¢, A\p and Ag are analyzed
in the experiments section.

C. Implementation of LGCcon

LGCcon is built based on VGG and R*CNN [41] and fine-
tuned on the VGG-FACE model [19]. In the training stage, the
losses Lrg, Le, L, and L are trained jointly. The learning
rate is set as 0.00001 and batch size 64. To avoid over-fitting,
the dropout rate is set as 0.8.

As the MEs have low intensity and are difficult recognize,
the apex frames are magnified to train the ME classifier. The
Eulerian magnification method [42] is used to magnify the
subtle motion of apex frames. Here, it enlarges the difference
between different ME categories for enhancing the perfor-
mance of recognition. The level of motion magnification is
set as 30 in our framework according to [18]. In addition,
due to the small sampling size of the ME database, the new
data augmentation strategy is exploited to train a good model.
Although the ME is rapid, the neighboring five frames to the
apex frame are very similar to the apex frame, especially the
magnified one. The apex frame and the two frames before and
after the apex frame are chosen, such that the ME database is
augmented five times. For the sake of simplicity, the extended
database is named the Extended Magnified ME (EMME)
database.

IV. EXPERIMENTS
In this section, experiments regarding apex frame spotting
and recognition are conducted on the CASME [43], CASME 11
[44], SAMM [45], SMIC [28], and composite [46] databases,
and the results are quantitatively and qualitatively analyzed.

Firstly, the databases are introduced in Subsection A. Subsec-
tion B demonstrates the evaluation metrics and performance
comparisons on apex frame spotting. Finally, the experiments
on micro-expression recognition with the apex frame are
elaborated in Subsection C, including evaluation metrics and
experimental protocols for ME recognition, comparisons with
the single path to validate the effectiveness of joint local and
global information learning, ablation study, parameter analysis,
performance comparisons with different frames to evaluate the
apex frame contribution, comparisons with the state-of-the-art
methods and computational time discussion.

A. Databases

The CASME [43] database contains spontaneous ME clips
including frames from onset to offset. It contains 195 spon-
taneous ME clips from 19 subjects, recorded by high-speed
camera at 60 fps. Samples in CASME database are categorized
into eight ME emotion categories: happiness, disgust, sadness,
surprise, fear, tenseness, repression, and contempt.

CASME 1I [44] consists of 247 MEs elicited from 26
participants with a high-speed camera at 200 fps. There are
five kinds of ME expressions: happiness, surprise, disgust,
repression, and others.

SAMM [45] collects 159 ME samples from 32 participants
of 13 ethnicities using a 200 fps high-speed camera. It includes
the ME emotion classes happy, sad, surprise, angry, disgust,
fear, contempt, and other.

SMIC [28] includes three subsets: SMIC-HS, SMIC-VIS
and SMIC-NIR. SMIC-VIS and SMIC-NIR are recorded by
normal speed cameras with 25 fps of visual (VIS) and near
inferred (NIR) light range, respectively. SMIC-HS recorded
by 100 fps high-speed cameras is used in our experiments,
which contains 164 spontaneous MEs from 16 subjects. These
samples are divided into three classes: positive, negative, and
surprise.

The composite database [46] collects samples from three
spontaneous facial micro-expression databases: CASME 11
[44], SAMM [45], and SMIC-HS (denoted as SMIC in the
following discussions) [28]. Due to various annotations in
three databases, the composite database unifies emotion labels
in all three databases, in which emotion labels are reanno-
tated as positive, negative, and surprise. Consequently, this
consolidation includes 442 samples (145 from CASME II, 133
from SAMM,and 164 from SMIC) from 68 subjects (24 from
CASME 11, 28 from SAMM, and 16 from SMIC).

In the ME databases, some of the emotion categories have
only a few samples, which are not enough for learning.
Following the previous works [7], [25], [28], only the emotions
with more than 10 samples are considered. The emotion
categories in CASME are then classified as: Disgust (D),
Surprise (S), Repression (R), and Tense (T). The samples
in CASME 1II are classified as: Happiness (H), Disgust (D),
Surprise (S), Repression (R), and Others (O). The samples in
SAMM are classified as: Happiness (H), Anger (A), Surprise
(S), Contempt (C), and Other (O). All ME samples in the
SMIC database are used for experimentation, classified as:
Negative (N), Positive (P), and Surprise (S).
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in the ME sequence and the red circle represents the highest frequency.

In the experiments, the cropped face images provided by the
previous works [7], [25], [28] are employed. For experiments,
all the faces are resized into 224 x 224 pixels.

B. Experiments with apex frame spotting

Because the SMIC database does not provide the annotation
for apex frames, the apex frame spotting experiments are con-
ducted with the CASME, CASME II and SAMM databases.
As this paper focuses on locating the apex frame in ME clips,
all video clips from onset to offset in the CASME, CASME
II, and SAMM databases are used. In the experiments, the ME
interval 1" is set at 61, 61, and 19 for CASME II, SAMM, and
CASME. The HBF filter threshold D, in Equation 2 is set as
1.

2Figurf: 4 illustrates several examples of the frequency ampli-
tude change for CASME, CASME II, and SAMM. As seen in
Figure 4, the apex frame nearly occurs at the position with
the highest frequency magnitude. It quantitatively validates
that the frequency domain can explicitly explore the micro-
expression intensity changes.

1) Evaluation metrics for apex frame spotting: The Nor-
malized Mean Absolute Error (NMAE) and Normalized Stan-
dard Error (NSE) are chosen to report the effectiveness of the
apex frame spotting method.

NMAE is the average normalized frame distance between
the spotted apex frame and the ground-truth:

K
1 ,
NMAE = i ; e (17)
[ =l (18)
len

where e; is the frame distance between the spotted apex frame
and the ground-truth apex frame of the i-th sample. len is the
average length of the samples in the database and K is the
number of samples in the databases.

NSE represents the standard deviation of the sample mean
distribution:

vsp— V)
-

- ,
where ¢;’ is the average of ¢; .

19)

TABLE I
THE NMAE (THE LESS THE BETTER) OF APEX FRAME SPOTTING, WHERE
2DF, 3DF-36 AND 3DF-N ARE THE PROPOSED METHODS FOR APEX
FRAME SPOTTING. ENTRIES IN BOLD REPRESENT THE BEST

PERFORMANCE.

Database CASME | CASME II | SAMM
LBP [40] 0.3462 0.2037 0.4364
OS-ROI [17] 0.1824 0.1964 0.2550

RHOOF [26] 0.1644 0.1656 N/A
OS-N 0.2037 0.1678 0.2767
2DF 0.1399 0.1954 0.1567
3DF-36 0.1089 0.1687 0.1412
3DF-N 0.1023 0.1471 0.1353

*N/A - no results reported.
TABLE II

THE NSE (THE LESS THE BETTER) OF APEX FRAME SPOTTING, WHERE
2DF, 3DF-36 AND 3DF-N ARE THE PROPOSED METHODS FOR APEX
FRAME SPOTTING. ENTRIES IN BOLD REPRESENT THE BEST

PERFORMANCE.

Database CASME | CASME II | SAMM
LBP [40] 0.0223 0.0158 0.0197
OS-ROI [17] 0.0100 0.0118 0.0156

RHOOF [26] 0.0110 0.0159 N/A
OS-N 0.0147 0.0094 0.0178
2DF 0.0137 0.0119 0.0108
3DF-36 0.0094 0.0116 0.0111
3DF-N 0.0085 0.0080 0.0107

*N/A - no results reported.

2) Performance evaluation for apex frame spotting: Ta-
bles I and II report the comparative results in terms of
NMAE and NSE, respectively. The 2DF method computes
the frequency in the X-T and Y-T dimensions, and then sums
the frequency magnitudes in X-T and Y-T dimensions up to
represent the final change rate. 3DF-36 and 3DF-N represent
the proposed apex frame spotting method based on all 36
blocks and maximum N blocks, respectively. OS-N computes
optical strain on maximum N blocks.

As shown in Table I, the proposed 3DF-N consistently
outperforms LBP [40] by 0.2439, 0.0566, and 0.3011 in
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Fig. 5. Apex frame spotting results on the first N blocks with largest frequency amplitude for the CASME, CASME 1I, and SAMM databases, respectively.

The x-axis shows IV largest frequency values.

terms of NMAE on CASME, CASME II and SAMM, respec-
tively. 3DF-N improves the OS-N consistently with gains of
0.1014, 0.0207, and 0.1414 in terms of NMAE on CASME,
CASME 1I, and SAMM, respectively. The increasing results
demonstrate that our proposed 3DF-N outperforms optical flow
on ME apex frame spotting by a large margin. The results
indirectly indicate that it is reasonable to spot apex frames
in the frequency domain. Furthermore, it can be found that
3DF-36 and 3DF-N work better than 2DF. The results show
that both spatial and temporal changes make contributions
for apex frame spotting. Moreover, 3DF-N outperforms 3DF-
36 by 0.0066, 0.0216, and 0.0059 in terms of NMAE on
CASME, CASME II and SAMM, respectively. It shows that
reducing the redundant information can improve the apex
frame performance. In comparison with the state-of-the-art
methods [17], [26], 3DF-N achieves the best performance on
all three databases. Compared with RHOOF [26] based on
optical flow histogram on ROIs, 3DF-N improves the spotting
performances on the CASME and CASME 1I databases by
37.78% and 11.17% in terms of NMAE, respectively. In Table
II, compared with LBP, 3DF-N reduces the NSE by 0.0138,
0.0078, and 0.0090 in the CASME, CASME II, and SAMM
databases, respectively. 3DF-N achieves the best robustness
compared with LBP, OS-ROI and RHOOF.

In order to see the influence of N, 3DF-N methods are
evaluated on different N blocks, in which N blocks cor-
respond to the first IV largest frequency amplitudes. The
results with various N are illustrated in Figure 5. 3DF-N
consistently improves the 3DF-36 when the blocks with lower
frequency amplitude are abandoned. It is concluded that the
high-frequency signal contributes more valuable information
to apex frame spotting. As seen from Figure 5, when NN is 28,
14, and 23 for CASME, CASME II, and SAMM, respectively,
3DF-N achieves the best performance by considering NMSE
and NSE jointly. Although, the NSE on SAMM is not the
lowest when N = 23, it slightly decreases the performance
by 0.0003 compared with when N = 14. The difference of
N for the three databases is likely caused by the different
properties of the databases including the recording rates and
image resolution.

TABLE III
METHODS AND THE CORRESPONDING STRUCTURE (L REPRESENTS THE
LOSS OF GLOBAL INFORMATION. L;, REPRESENTS THE LOSS OF LOCAL
INFORMATION. L ¢ REPRESENTS THE LOSS OF THE SUM OF GLOBAL AND
LOCAL INFORMATION. L REPRESENTS THE CENTERLOSS.)

Method | Lg | Ly | Lrg | Lo
GI 4 - - -
LI - v - -
LG - - 4 -
LGC - - N
LGcon VA Vv Vv -
LGCcon | +/ Vv Vv Vv
TABLE IV

MICRO-EXPRESSION RECOGNITION COMPARISONS OF ACCURACY (%)
AND F1-SCORE BASED ON THE APEX FRAMES, WHERE THE TEXT IN BOLD
IS THE BEST RESULT.

CASME CASME 11 SAMM SMIC
Methods ACC Fl1 ACC Fl1 ACC Fl1 ACC Fl1
LBP 5321 0.50 | 40.33 0.11 4191 0.12 46.44 0.46
GI 60.23 0.58 | 63.21 0.59 36.00 0.25 59.75 0.58
LI 51.46 0.51 60.08 0.54 27.21 0.20 49.39 0.48
LGCcon 60.82 0.60 | 65.02 0.64 | 4090 034 | N/A N/A
LGCconD | 57.31 0.54 | 62.14 0.60 3529 023 | 63.41 0.62

N/A - no results reported.

C. Experiments on micro-expression recognition

1) Evaluation metrics and protocols for ME recognition:
This section reports the results of ME recognition on the
CASME, CASME II, SAMM, and SMIC databases. As the
ground-truth apex frame label in the SMIC database is not
available, all the models in the SMIC database are trained with
the detected apex frames. In the experiments, the leave-one-
subject-out cross validation protocol is used. The recognition
accuracy and Fl-score are used as performance metrics.

Table II lists the proposed framework and its corresponding
combination of loss functions. The basic framework is LG with
the L loss. LGeon represents the basic framework with Lg
and L. LGC contains the Centerloss Lc. The final training
framework combining Ly, Lg, Ly and L¢ is represented as
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Fig. 6. Visualization of the examples for subjects with eyeglasses. The feature
map is shown on the right. The red rectangle implies the most informative
region.

TABLE V
MICRO-EXPRESSION RECOGNITION COMPARISONS OF ACCURACY (%) ON
THE SUBJECTS WITH AND WITHOUT EYEGLASSES, WHERE THE BEST
RESULTS ARE SHOWN IN BOLD. NG REPRESENTS THE SUBJECTS WITHOUT
EYEGLASSES AND WG REPRESENTS THE SUBJECTS WITH EYEGLASSES.

CASME CASME II SAMM SMIC*
Methods WG NG WG NG WG NG WG NG
VGGMag [18] | 62.96 56.45 | 61.50 64.41 | 31.30 3699 | 48.61 67.39
LGCcon 63.88 56.45 | 64.40 65.29 | 32.17 43.19 | 59.72 66.30

The results on SMIC are based on the detected apex frame

LGCcon.

2) Performance comparisons with the single-path network
and LBP: This section compares the two-path LGCcon with
the single-path network based on sole local information (LI),
sole global information of the whole face (GI), and LBP. The
LBP features are extracted on 6x 6 blocks and the radii is set at
(3,3,3). Linear SVM is used. Table IV reports the comparison
results in terms of accuracy and Fl-score. It is seen that
LGCcon improves the single-path architecture significantly.
Comparing with sole learning based on local and global
information independently, the two-path LGCcon framework
achieves improvements of 0.09 and 0.02 on the CASME
database, 0.10 and 0.05 on the CASME II database, 0.14 and
0.09 on the SAMM database, and 0.14 and 0.04 on the SMIC
database in terms of Fl-score, respectively. The increasing
results demonstrate that both the local and global information
make contributions to ME recognition. Joint learning the local
and global information can also improve the ME recognition
performance. With the SAMM database, the LBP method
is inferior to the LGCcon though its accuracy is relatively
high. This is explained by the class-imbalance of the SAMM
database, which makes the SVM classifier falsely classify most
of the samples to the class that has the largest number of
samples.

Furthermore, Table IV reports the results of LGCcon with
the detected apex frame based on 3DF-N, namely LGCconD.
Compared with LGCcon, LGCconD slightly degrades the
performance by 0.06, 0.04 and 0.11 in terms of Fl-score
on the CASME, CASME II, and SAMM databases, respec-
tively, which suggests that our proposed apex frame spotting
method is reliable. Furthermore, from Figure 7, it can be
seen that LGCconD can achieve good performances on most
ME categories. For ‘Repression’ in the CAME database and
‘Happiness’ in the SAMM database, the accuracies are lower,
it may be caused by the data imbalance.

In order to evaluate the effectiveness of LGCcon with
outliers, LGCcon is further studied on participants with eye-
glasses. Table V reports the comparisons between LGCcon

TABLE VI
ABLATION STUDY ON MICRO-EXPRESSION RECOGNITION ACCURACY (%)
AND F1-SCORE OF THE PROPOSED METHODS, WHERE THE TEXT IN BOLD
REPRESENTS THE BEST RESULT.

CASME CASME I SAMM SMIC
Methods ACC F1 ACC F1 ACC F1 ACC Fl
LG 44.44 050 | 61.73 0.62 | 3471 0.22 | 53.05 0.52
LGcon 5321 0.53 | 63.79 0.63 | 33.38 0.26 | 57.93 0.57
LGC 48.54 049 | 61.08 0.61 | 3552 029 | 54.88 0.54
LGCcon 60.82 0.60 | 65.02 0.64 | 40.90 0.34 | N/A N/A
LGCconD | 57.31 0.54 | 62.14 0.60 | 3529 0.23 | 63.41 0.62

N/A - no results reported.

and the previous work [18] on subjects with and without
eyeglasses. In [18], the local information on ME recognition is
not considered. In Table V, it is seen that LGCcon outperforms
VGGMag [18] with 2.9% when they recognize the ME of
the subjects with eyeglasses on the CASME II database.
It narrows the performance gap between subjects with and
without eyeglasses by 2.02%. Moreover, LGCcon outperforms
VGGMag by 0.92% and 0.87% on subjects with eyeglasses
on the CASME and SAMM databases, respectively. When
comparing with VGGMag, LGCcon slightly decreases the ac-
curacy on subjects without eyeglasses by 1.09% on the SMIC
database, but despite this, LGCcon consistently outperforms
the VGGMag by a large margin (11.11%) on subjects with
eyeglasses. Figure 6 illustrates some visualization examples
for subjects with eyeglasses. It can be seen that LGCcon
can extract the emotion information on informative facial
regions, even though the face is occluded by eyeglasses to
some degree. The results indicate that joint learning local and
global information not only improves the discrimination of the
ME feature, but also reduces the influence of outliers to some
extent.

3) Ablation study: To reveal the contribution of each mod-
ule, the accuracy and Fl-score of LGCcon with different
configurations are evaluated. Table VI reports the comparison
results. The proposed backbone LG obtains 0.50, 0.62, 0.22,
and 0.52 in terms of Fl-score on the CASME, CASME 11,
SAMM, and SMIC databases, respectively. Figure 7 illustrates
confusion matrices of LG, the variations of LG, and LBP.

(1) LGcon includes constraints Ly and Lg on local and
global information learning. The experiments show that LGcon
increases the F1-score by 0.03 on average on all four databases
in comparison to LG. It indicates that constraints on local and
global information learning can control the learning and lead
to a better fusion result.

(2) The LGC consists of the basic LG with the Centerloss
L¢c. As seen in Table VI, LGC performs better than basic
LG on the CASME, SAMM, and SMIC databases. LGC
also achieves comparable results on the CASME II database.
From the confusion matrices in Figure 7, it can be seen that
LGC outperforms LG by 0.01, 0.05, and 0.22 for the disgust,
surprise, and repression categories, respectively. Based on
the results, it is inferred that the Centerloss improves the
discriminative ability of the ME feature.

(3) Our framework LGCcon is designed by combining Cen-
terloss and constraints with local and global information learn-
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Fig. 8. Micro-expression recognition accuracies on the CASME, CASME II, SAMM, and SMIC databases, respectively, achieved by (a) models with different

Ac and fixed A\;, = Ag=0.7. (b) models with different A\, fixed Ac=0.0008 and Az=0.7. (c) models with different A, fixed Ac=0.0008 and A,=0.7.



TABLE VII
MICRO-EXPRESSION RECOGNITION COMPARISONS OF ACCURACY(%) ON
APEX FRAMES AND RANDOM FRAMES. APEX AND RANDOM REPRESENT
THE RESULTS BASED ON APEX FRAMES AND RANDOM FRAMES.

CASME CASME II SAMM
Methods Apex Random | Apex Random | Apex Random
VGGMag [18] 60.23 53.40 63.21 5543 36.00 33.82
LGCcon 60.82 54.60 65.02 57.56 4090 35.75

ing. LGCcon achieves an accuracy of 60.82%, 65.02%, and
40.90% on the CASME, CASME II, and SAMM databases,
respectively. Compared with LG, the addition of Lg, Ly,
and L¢ losses improves the recognition accuracy by 16.38%,
3.29%, and 6.19% on the CASME, CASME II, and SAMM
databases, respectively. It validates the effectiveness of multi-
constraints and Centerloss.

4) Parameter analysis: For LGCcon, the hyper parameter
Ac¢ limits the influence of intra-class variations, and A7 and
Ag constrain the learning of local and global information
individually. Here, three experiments are conducted to in-
vestigate the influence of the three parameters. In order to
validate the effectiveness of A\, A\;, and \g are both fixed
at 0.7. A¢ is varied from 0.0001 to 0.001. Figure 8(a) shows
the accuracy corresponding to various A¢c on the CASME,
CASME 1II, SAMM, and SMIC databases. LGCcon achieves
the best performance on the CASME II, SAMM, and SMIC
databases when Ao = 0.0008, while on the CASME database,
Ac = 0.0002. This difference is due to the intra-class
variations of each database.

To validate the influence of A, Ac and Ao are fixed
at 0.0008 and 0.7, respectively. Ay is varied from 0.1 to
0.9. Figure 8(b) illustrates the accuracy corresponding to
various Ay, on these databases. As seen from Figure 8(b), the
increasing Az, boosts the performance of model. It is seen that
when \;, = 0.7, the LGCcon achieves the best results.

Furthermore, to validate the influence of A, the same
analysis to Az is conducted. Here, A\c and )\ are fixed
at 0.0008 and 0.7, respectively. Figure 8(c) illustrates the
accuracy corresponding to various Ag on these databases.
As seen from Figure 8(c), the conclusion is the same as
the analysis of Ap. It is explained by the fact that the final
ME category is obtained based on the joint probability of
MEs pr. Large A\r, and A on independent local and global
information learning will distract the learning of the joint local
and global information. Small Ay and Ag are not enough
to constrain the learning of local and global information,
respectively.

According to Figure 8, the performance on the SMIC
database remains relatively unstable across the range of A\¢,
AL, and Ag. This is perhaps because of the diversity of
samples on the SMIC database, which leads LGCcon to
be more sensitive to these hyper parameters on the SMIC
database.

5) Performance comparisons with different frames: In order
to validate the importance of the apex frame, a comparison
of ME recognition performances based on the apex frame
with the other frames is conducted. One frame from the
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Fig. 9. Performance vs. training frame on the CASME database. D represents
the distance between the onset frame and apex frame.

ME clip between the onset and apex frames is randomly
selected. Table VII reports the recognition accuracy based
on the random frame selection approaches and apex frame
approaches. Several interesting finds are observed: (1) LGCcon
still obtains the competitive results by using other frames.
(2) More importantly, the utilization of the apex frame yields
better recognition results for VGGMag and LGCcon methods
than using random frames. Furthermore, Figure 9 shows ME
recognition accuracy with a function of training frames on the
CASME database. When the selected frame is closer to the
apex frame, LBP and LGCcon gain improvements by around
10% in terms of accuracy. These results indicate that the apex
frame in ME clips contributes more important information to
ME recognition, compared with the other frames.

6) Comparison with the state-of-the-art algorithms: This
section compares the proposed LGCcon, LGCconD with state-
of-the-art methods [3], [7], [15], [35]. Table VIII summarizes
the compared results. It is seen that LGCcon surpasses the ex-
isting deep learning methods based on whole ME sequence [4],
[15]. Furthermore, our proposed LGCcon with LOSO pro-
tocol shows superior performance on CASME II, compared
with 3D-FCNN [33] and TIM-DCNN [9] which employ the
leave one-video-out protocol (LOVO), while LGCcon achieves
competitive results on SMIC. Although these results cannot
be compared directly, they still indicate the effectiveness of
LGCcon. Compared with LOSO, the LOVO protocol is easier
to obtain better performance, as the LOVO can include more
training data and the test data can come from the same subject
with training data. The results demonstrate that the proposed
deep method can achieve good performance with the apex
frame. Besides, LGCcon and LGCconD achieve promising
results compared with the hand-crafted methods using ME
sequences [7], [28], [47] on the CASME, CASME II, SAMM,
and SMIC databases.

Furthermore, STRCN [34] has two types of input. The
first type (denoted as STRCN-A) is a masked ME sequence
and the second one (denoted as STRCN-G) is optical flow
between onset and apex frames. As STRCN [34] used different
training protocol to the LGCcon, STRCN-G and STRCN-
A are re-implemented in PyTorch with the same training
protocol and data augmentation (magnification ratio set at 8
by following [34]) to LGCcon. The results of STRCN-A and
STRCN-G are shown in Table VIII.



TABLE VIIL
MICRO-EXPRESSION RECOGNITION ACCURACY AND F1-SCORE OF THE PROPOSED METHODS AND THE STATE-OF-THE-ART METHODS. THE BEST
RESULTS WITH LOSO PROTOCOL ARE SHOWN IN BOLD AND BRACKETS. THE SECOND BEST RESULTS WITH LOSO PROTOCOL ARE SHOWN IN BOLD,
AND THE THIRD BEST RESULTS ARE SHOWN IN BRACKETS.

CASME CASME I SAMM SMIC
Methods ACC Fl1 ACC Fl1 ACC F1 ACC F1
Baseline [28] 40.35 0.26 40.65 0.33 34.56 0.25 45.70 0.46
LBP-SIP [29] 36.84 0.33 46.56 0.45 36.76 0.21 42.12 0.42
FHOFO [47] 65.99 0.54 55.86 0.52 N/A N/A 51.83 0.52
STCLQP [7] 57.31 0.50 58.39 0.58 N/A N/A 64.02 0.63
Bi-WOOF [3] N/A N/A 59.67 N/A N/A N/A 62.80 N/A
HIGOMag [25] N/A N/A 67.21 N/A | [4191] N/A 68.29 N/A
3D-FCNN' [33] | 54.44 N/A 59.11 N/A N/A N/A 55.49 N/A
TIM-DCNN' [9] N/A N/A 64.90 N/A N/A N/A 65.85 N/A
VGGMag [18] 60.23  [0.58] | 63.21 0.59 36.00 0.25 59.75 0.58
CNNLSTM [4] N/A N/A 60.96 N/A N/A N/A N/A N/A
Selective [15] N/A N/A 47.30 N/A N/A N/A 53.60 N/A
STRCN-A* [34] | 40.93 0.35 45.26 0.38 32.85 0.24 49.39 0.47
STRCN-G* [34] | 59.65 0.57 63.37 [0.62] | 53.48 036 | [64.63] 0.63
TSCNN [35] [73.88] [0.72] | [80.97] [0.81] | [71.76] [0.69] | [72.74] [0.72]
LGCcon [60.82]  0.60 | [65.02] 0.64 40.90  [0.34] N/A N/A
LGCconD 57.31 0.54 62.14 0.60 35.29 0.23 63.41  [0.62]
*N/A - no results reported.
+ employing LOVO which leaves one video out.
¥ re-implemented in PyTorch with the same training protocol and data augmentation as LGCcon.
Compared with STRCN-G based on the optical flow be- TABLE IX

tween onset and apex frames, LGCcon based on apex frame
achieves comparable performance, i.e., 0.60 vs. 0.57 on
CASME, 0.64 vs. 0.62 on CASME 1I, and 0.34 vs. 0.36
on SAMM in terms of Fl-score. On the SMIC database,
LGCconD slightly decreases the Fl-score by 0.01 with the
detected apex frame, compared to STRCN-G.

LGCcon outperforms STRCN-A by 19.89%, 19.76%, and
2.44% in terms of accuracy on the CASME, CASME II,
and SAMM databases, respectively. In addition, LGCconD
improves the accuracy on the SMIC database by 14.02%,
in comparison with STRCN-A. The results demonstrate the
effectiveness of LGCcon structure and the important apex
frame contribution to ME recognition.

TSCNN [35] utilized the dynamic temporal information
of optical flow between onset, apex, and offset frames, and
the static spatial information of apex frames. Although the
accuracy of LGCcon is a bit lower than TSCNN, LGCcon,
based on only static apex frame information, can deal with
the situation when the onset frame, offset frame, and temporal
information are missing. Even though many methods [34], [35]
indicated that optical flow-based methods always outperform
the appearance-based methods, our proposed LGCcon, which
is considered an appearance-based method, achieves competi-
tive performance compared with optical flow-based methods.
The results further verify the effectiveness of LGCcon.

7) Performance on the composite database: Table IX re-
ports the results on the composite database. Following the
evaluation metrics provided by MEGC2019 [46], UF1 and

MICRO-EXPRESSION RECOGNITION RESULTS OF THE PROPOSED METHODS
AND THE STATE-OF-THE-ART METHODS ON THE COMPOSITE DATABASE.
THE BEST RESULTS ARE SHOWN IN BOLD.

CASME 1II SAMM SMIC

Methods UF1 UAR UF1 UAR UF1 UAR
LBP-TOP [28] | 0.7026 0.7429 | 0.3954 0.4102 | 0.2000 0.5280
Bi-WOOF [3] 0.7805 0.8026 | 0.5211 0.5139 | 0.5727 0.5829
ResNet [48] 0.6248  0.6136 | 0.4726 0.4359 | 0.4609 0.4327
OFF-Apex [49] | 0.8764 0.8681 | 0.5409 0.5392 | 0.6817 0.6695
Duallnp [50] 0.8621 0.8560 | 0.5868 0.5663 | 0.6645 0.6726
EMR [51] 0.8293 0.8209 | 0.7754 0.7152 | 0.7461 0.7530

LGCcon 0.7929  0.7639 | 0.5248 0.4955 N/A N/A
LGCconD 0.7762 0.7499 | 0.4924 0.4711 | 0.6195 0.6066

N/A - no results reported.

UAR are used to measure the performance of various methods.
As seen from Table IX, the proposed method only based
on the apex frame outperforms the LBP-TOP and ResNet
[48] employing the temporal information. The methods [49]—
[51] utilizing the optical flow between onset and apex frames
outperform LGCcon. It is explained by the fact that (1) optical
flow eliminates subject diversity across databases to some ex-
tent, and (2) EMR [51] also employed domain adaptation using
expression-reduced CK+ samples [52]. However, because it is
different from these methods, LGCcon can handle situations
without temporal information and auxiliary databases. On the
other hand, experimental results indicate that the apex frame
significantly contributes to ME recognition.



8) Computational time: Our proposed apex frame detection
is implemented with Matlab on CPU (Intel(R) Xeon(R) CPU
E5-2650 v3 @ 2.30GHz). The apex frame detection time
varies from 0.2s to 3s as the length of the ME sequence
varies from 9 to 100 frames. Thus, the average apex frame
detection duration is about 1.26s. Our proposed 3DF-N method
employs the sliding window. In other words, the detection time
is influenced by the ME sequence length. We conducted the
experiments about the LGCcon network using a NVIDIA Tesla
K80c GPU with 12 GB memory. The average testing time for
ME image ( 224 x 224) is 0.18s. The LGCcon is based on the
framework of fast RCNN. And the ROI proposal is designed
according to facial structure without extra computation. With
the powerful GPU and further development, the ME system
could be realized in real-time in the future.

V. CONCLUSION

In ME research, the apex frames are very important, as
they convey the representative information in micro-expression
videos. This paper studies the contribution of apex frames to
ME recognition. A complete pipeline is proposed to firstly
locate the apex frame through analyzing MEs in the frequency
domain and furthermore recognize MEs by a joint local and
global information learning architecture. In contrast to existing
spotting methods in the spatio-temporal domain, the proposed
3DF-N spots the apex frame in the frequency domain, which
is more powerful for describing rapid changes. Different from
the publicly available deep learning methods considering all
the regions on face equally, LGCcon learns discriminative
representation from the region containing the most emotional
information automatically. It is found that LGCcon can focus
on emotion learning and reduce the influences of eyeglasses
and other negative effects.

The proposed approach is evaluated on the CASME,
CASME 1II, SAMM, SMIC and composite databases. The
experiments demonstrate that frequency analysis is suitable
for describing ME change. LGCcon employing apex frames
achieves comparable results when compared with the state-of-
the-art methods employing the information from the whole
ME sequence. The conclusion that both local and global
information contributes to ME recognition can be drawn. Joint
learning local and global information can reduce the side
effects of outliers to some degree and improve the performance
of ME recognition. The proposed LGCcon approach achieves
promising ME recognition performance with the apex frame.
Furthermore, the performance comparison of different frames
in ME clips demonstrate that the apex frame contributes more
important emotion information to ME recognition compared
with other frames. In future work, we will explore the local
and global information contributions to ME recognition based
on video clips.
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