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Abstract—Online segmentation and recognition of skeleton-
based gestures are challenging. Compared with offline cases, the
inference of online settings can only rely on the current few
frames and always completes before whole temporal movements
are performed. However, incompletely performed gestures are
ambiguous and their early recognition is easy to fall into local
optimum. In this work, we address the problem with a temporal
hierarchical dictionary to guide the hidden Markov model
(HMM) decoding procedure. The intuition is that, gestures are
ambiguous with high uncertainty at early performing phases, and
only become discriminate after certain phases. This uncertainty
naturally can be measured by entropy. Thus, we propose a
measurement called “relative entropy map” (REM) to encode
this temporal context to guide HMM decoding. Furthermore,
we introduce a progressive learning strategy with which neural
networks could learn a robust recognition of HMM states in an
iterative manner. The performance of our method is intensively
evaluated on three challenging databases and achieves state-of-
the-art results. Our method shows the abilities of both extracting
the discriminate connotations and reducing large redundancy in
the HMM transition process. It is verified that our framework
can achieve online recognition of continuous gesture streams even
when they are halfway performed.

Index Terms—Temporal context, hidden Markov model, hi-
erarchical structure, deep neural network, relative entropy,
skeleton-based recognition.

I. INTRODUCTION

UMAN gestures are ubiquitous in the visual cognition,

pervading body language in all ages, cultures and tightly
integrated with verbal communication [1]. As an alternative
source to conventional RGB videos [2], the 3D skeletal joint
coordinates obtained from e.g., Kinects, contain compact 3D
positions of the major human body joints, which are robust
to variations of viewpoints [3]. Thus, skeleton-based action
and gesture recognition have been widely studied in recent
years. Meanwhile, compared to the offline setting, online
gesture segmentation and recognition can meet the low-latency
requirement and has more potential in applications spanning
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Fig. 1. Utilizing HMM for continuous gesture stream modeling. (a) Existing
methods [6], [7] utilize an ordinary HMM model with all the states being
candidates for transition. However, forcing to decode ambiguous HMM states
with insufficient information is easy to fall into local optimum. (b) The
proposed HMM transition decoding is guided by a temporal hierarchical dic-
tionary which makes the HMM transition more discriminating and efficiently
narrows down the search range during the decoding.

sign-language recognition [4], virtual manipulation to daily
assistance [5]. However, data-driven methods for the online
skeleton-based dynamic gesture recognition are still facing
several open challenges in real-world applications.

The first challenge of the online setting is that, the complete
global information is often unavailable. It is because that
the online setting requires the recognition to complete fast
even before the whole gesture sequences are seen. Recently,
temporal dynamic deep models [8] [9] [10] [11] [12] like
recurrent neural networks (RNN) show the capability to model
the temporal dependency for gesture recognition. However,
their superb performances much rely on the inference on the
complete gesture sequences [13]. Among those methods, the
segmentation of gestures from skeleton joint sequences is often
ignored under the assumption that pre-segmented sequences
are available [14]. However, in the tasks of online gesture
segmentation and recognition, the inference is limited within
the local temporal information from the current few frames.
The hidden Markov model (HMM), with its sequential tempo-
ral state modeling capability, can naturally process temporal
semantic connotations in an online manner. Thus, we merge
the Deep Neural Network (DNN) into an HMM prototype
to propose a hybrid DNN-HMM framework for the online
setting.

Secondly, human gestures are more symbolic and semantic
when compared to human actions and activities [5]. At its
root, the motion of a gesture is a set of sequentially distinct
phases organized in a global temporal order [15]. Different
gestures may have some phases highly similar. As shown in

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Oulu University. Downloaded on October 15,2020 at 05:21:15 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3028962, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING, OCTOBER 2020

Fig. 1, gestures of “waving hands” and “throwing” might share
the same beginning phase “raising hands”. It is ambiguous
and noisy to force systems to achieve correct recognition in
the early phase of the gestures. In the previous work, the
ambiguous phases of gestures are not considered intensively.
Therefore, we introduce entropy to measure this kind of
uncertainty of recognition, which can be encoded as global
temporal information to guide the online HMM decoding.

The segmentation-involved task for online gesture recogni-
tion is also a difficult challenge. An extra detection classifier
for distinguishing motions and non-motions is always used
for enhancing the segmentation in the post-processing [16]
[17]. It could not only compensate for the variability of
the gestures but also reduce the noise from the non-gesture
motions. However, it is desirable to design a system which
is advantageous to conduct the segmentation and recognition
simultaneously. The conventional HMM has shown the ability
to continuously process these temporal semantic connotations.
But the transition between the HMM states involves large
redundancy and thus it is easy to fall into local optimum as
shown in Fig. 1 (a). We improve the conventional HMM by
introducing a temporal hierarchical structured dictionary into
the HMM decoding. It can not only merge the ambiguous
HMM states but also narrow down the search range at every
decoding step.

In this work, we propose a DNN-HMM based system for
online gesture segmentation and recognition. It consists of
three phases: pre-training, training and festing as shown in
Fig. 2. In the pre-training phase, we model one gesture with
sequential HMM states and map the generated HMM states
into manifold presentations to measure their distances and
relative entropy. Based on the calculated relative entropy, we
encode this uncertainty into a temporal hierarchical dictionary
(THD). This allows the HMM decoding to tend to the most
discriminate HMM states and avoid ambiguity. In the training
phase, we let the neural network iteratively learn the candidate
HMM states by updating the HMM alignment in a progressive
manner. In the last testing phase, the trained neural network
will offer a frame-level prediction and the THD will be
used to guide the HMM decoding for the final recognition.
Experimental results show that our system achieves better
accuracy when compared with the previous work in the online
gesture segmentation and recognition tasks.

In summary, we make the following contributions:

1. With the assumption that, the uncertainty of recognizing

a gesture only decreases after certain phases are per-
formed, we propose a novel measurement called relative
entropy map (REM) and its formulations to investigate
the information entropy for discriminate margins of
distinct gestural phases.

2. Since forcing neural networks to learn non-discriminate
HMM states will bring noise, we propose a progressive
learning strategy that the network could learn the HMM
states in a more robust manner by iteratively updating
the HMM alignment.

3. We achieve start-of-the-art performance for gesture seg-
mentation and early recognition on three well-known
datasets: Chalearn 2014, MSRC and OAD dataset. The

proposed method shows significant improvements over
the previous work on both online and offline gesture
recognition tasks.

A preliminary version of this work was presented in [18],
but we substantially extend the work in three aspects, which
are listed as below: (1) to calculate relative entropy of the
gestures, we introduce the manifold presentation with Lie
Groups to offer a more robust distance measurement instead
of the Euclidean distance; (2) to avoid non-discriminate HMM
states, we propose a novel iterative learning algorithm for
neural networks to learn a robust recognition of HMM states;
(3) we merge the THD into traditional HMM decoding and
achieve a further improvement.

The rest of this paper is organized as follows. In Section
II, we introduce some related state-of-the-art approaches.
In Section IIlI, we give an overview of our online human
gesture segmentation and recognition system. In Section 1V,
we present the gesture motion modeling with HMM and our
investigation on the HMM states by measuring their relative
entropy. The details of constructing a THD by reducing its
relative entropy are also introduced. In Section V, we intro-
duce our hybrid DNN-HMM framework and its progressive
training details. Section VI presents the experimental results
and discussion, and Section VII concludes the paper.

II. RELATED WORK

We provide a brief review of the previous work that is
related to our task. Methods for the offline setting and the
online setting will be compared separately. Then dictionary-
based methods will be discussed.

A. Offline Segmentation and Recognition for Skeleton-based
Gestures

One main attribute of the offline setting is that the global
temporal information could be utilized for inference. The
most famous one might be the improved dense trajectories
@iDT) [9]. It utilizes Fisher vectors to describe the motion
trajectories as a whole. In the work of Neverova et al.
[16], multi-scale networks with distinct steps are used to
extract global temporal information of gestures. Yan et al.
[19] proposed a spatial-temporal graph convolutional network
for skeleton-based recognition. They regarded the skeletal
joints as vertexes, and the natural intra-body connections as
edges of the graph convolutional networks. Song et al. [20]
proposed an end-to-end spatio-temporal attention model for
action recognition from skeleton data with LSTM networks.
Given the global context, their model could selectively focus
on discriminate joints and frames of the inputs. However,
the superb performance of most published methods relies on
fully observing the whole sequence, which are limited to
implemented to the online setting.

B. Online Segmentation and Recognition for Skeleton-based
Gesture

For the online recognition task, Ma et al. [21] specified
the task as “after observing only a fraction of the activity,
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Fig. 2. The overview of the system learning process. (a) In the pre-training phase, we construct the THD Dth with the relative entropy of the candidates.
(b) In the training phase, we iteratively train the neural network W with re-aligned HMM states and update HMM alignment with the recognition result
predicted from the W. The updated dictionary is obtained Dth when the recognition result stops improving. (c) In the testing phase, given any 3D skeleton
data, we use classifier W to obtain a frame-level prediction and align the HMM states with the Dth dictionary to achieve the online recognition.

the classification and duration time of it should be given
in an online recognition problem”. In this paper, we will
measure the performance with the similar idea for online
gesture recognition. Considering the particularity of the online
model, most approaches always process gestures via sequential
temporal steps with local temporal information. To this end,
many hand-crafted features are proposed for the local dynamic
features. The features include Lie-group features that map
skeleton joints to the manifold space to obtain the non-linear
properties [22], MovingPose [23] and eigenjoint features [24]
that utilize a 3D kinematics descriptor to represent skeleton
poses, histograms of 3D joints [7] using histograms to repre-
sent high-dimensional skeleton joints, and Cov3D (covariance
3D) features extracted through a spatio-temporal covariance
descriptors [25]. As these methods themselves cannot capture
the global temporal evolution of gestures, many sequetial
temporal modeling methods are further utilized, such as the
hidden Markov model (HMM) [18], sliding-window [26] and
recurrent neural networks (RNN) [27]. With these temporal
modeling framework, the online segmentation is always con-
ducted as an extra gesture class in the sequential recognition.

C. Dictionary-based Methods for Gesture Recognition

Unlike human activities and actions, human gestures are
more symbolic and semantic with several distinctive phases.
Those phases are spatially and temporally sparse with large
redundancy. Thus, dictionary-based learning for the human
gesture and action representation has been intensively studied.
An early dictionary-based method for gesture recognition is
the work of Ivan and Juan [28]. They proposed a spatial
hierarchical dictionary by mapping k& body parts to higher-
level poses with k-means, and several poses are combined
for representing the highest action level. But the temporal
structures of the body motions are not embodied in these
dictionaries. Meanwhile, with the temporal information being
considered, the spatio-temporal structured dictionaries show
good performances in [29] [30]. The method of [30] is to
construct a temporal hierarchical dictionary by specifying the

dictionary elements at each temporal steps. However, this
method is limited within stationary situations: the whole pre-
segmented gestures must be provided to obtain distinct time
steps. At last, to sparsify the elements in the dictionary,
sparse representation-based methods like K-SVD [31] [32]
have been proposed for the gesture recognition task. However,
there are few efforts to provide a quantitative measurement of
the information redundancy in the dictionary. In this work,
as a commonly used tool in the field of information theory,
the entropy is utilized by us to quantitatively investigate the
information redundancy in the dictionary. It can show the
information compression capability of a dictionary and encode
the global temporal context into it by reducing the entropy of
the dictionary.

ITII. SYSTEM OVERVIEW

The three phases of our system are illustrated as shown in
Fig. 2.

In the first pre-training phase as shown in Fig. 2 (a), our
goal is to obtain a temporal hierarchical structured dictionary,
denoted as D,y th stands for the temporal hierarchy for short.
We first use the HMM model to generate sequential HMM
states of the given gestures, while these HMM states are
regarded as the candidates of a dictionary denoted as D,;.
all stands for the original dictionary with all candidates for
short. To sparsify the D,;;, we first calculate the distances
of the candidates in the manifold representation. Then we
use these distances to measure the relative entropy in the
dictionary D,;;. Based on this relative entropy, the uncertainty
of recognizing those candidates are encoded with a temporal
hierarchical structure. At last, the THD Dy, is sparsified by
reducing the relative entropy at each temporal step. It also
allows the HMM decoding to yield the most discriminate
candidates and avoid ambiguity.

Then, in the next training phase as illustrated in Fig. 2
(b), we adopt an attention-based Bi-directional LSTM network
(attention-BiLSTM) as a frame-level classifier W’. The output
of the classifier W’ is enhanced by an HMM alignment to
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Fig. 3. The abbreviated presentation of modeling gesture motions with the
DNN-HMM hybrid structure. The observation layer of the HMM will be the
input layer of an attention-BiLSTM network. The output of the attention-
BiLSTM is the emission probability of the HMM, which will estimate the
hidden states.

produce the recognition result of gestures. Commonly, the
training procedure will complete at this phase in other conven-
tional neural network training methods. While in our work, we
utilize the generative capability of HMM, to generate a new
HMM alignment as the new labels to update the dictionary
Dy, and re-train the classifier W’. The above operation will be
conducted iteratively until the recognition accuracy no longer
improves. As a result, an enhanced dictionary Dy, an updated
HMM transition matrix and a robust classifier W' are obtained
at this phase.

In the testing phase as shown in Fig. 2 (c), given a
continuous skeleton sequence, we apply the classifier W’ to
estimate the HMM states at frame level and HMM alignment
is then conducted to identify the final categories. Due to the
guide of the THD Dy, our system can achieve early detection
and recognition of gestures from non-stationary skeleton data
streams.

IV. CONSTRUCTING DICTIONARY WITH
RELATIVE ENTROPY METHODOLOGY

In this section, we will introduce how to model gesture
motions with HMM, and measure the relative entropy of the
HMM states with their distances in the manifold representa-
tion. At last, based on the relative entropy, we will represent
how the THD Dth is constructed by reducing the relative
entropy.

A. Gesture Motion Modeling with Conventional HMM

The conventional HMM is one of the most common gen-
erative models for modeling time series of observations. As
shown in Fig. 3, we model the gesture motion procedures with
HMM using similar techniques as [18]. Specifically, given C
gesture categories, let Cyy; = {1, ..., C'} be the set of the given

gestures categories with their lengths of arbitrary frames. Then
for each gesture, we segment its sequence averagely into 7T’
temporal segments to model it as a set of sequential conno-
tations. Therefore, for each gesture class ¢, a set of temporal
segments, or say sub-gestures, G(c) = {s()1,...,5)T} is
defined. The term s(.t stands for the tt" segment of gesture c.
Each temporal segment will be mapped to an HMM state and
the temporal modeling is achieved by the transition between
those HMM states.

As illustrated above, we initially defined the frame bound-
aries of the HMM states by averagely dividing the gestures.
The boundaries of those HMM states will be revised and
become more appropriate with progressive learning. We will
discuss the learning details in Section V.

Based on the conventional HMM, the full probability of
HMM during the training phase is specified as:

p((El,.’tQ, ey Iy hl, hg, veey hT) =

4 (1
p(ha)p(a1|ha) [ | plaelhe)p(helhe ),

t=2
where p(hy) is the prior probability, p(x¢|h:) is the ob-
servation probability, or known as, the emission probability
and p(h¢|hi—1) is the transition matrix. For the visible layer
in HMM, we denote input skeletal features of the current
state as its observed variables x; to this observed state Xj.
The observed variables here are equal to the feature vectors
x; € RP from a D-dimensional input space representing the
skeletal gesture for ¢ = 1,---,7T. One observed state X;
for t = 1,--.,T will be mapped to a corresponding hidden
state H; for t = 1,---,T with an attention-based BiLSTM
network. The hidden variables of the hidden states are denoted
as hy in the hidden layer of HMM. For a certain gesture c, its
hidden state h; stands for its sub-gesture s(c)t.

The attention-BiLSTM network will provide the emission
probability as:

p(he|ze)p(xe)

p(he)
where p(h¢|z;) is the HMM state posterior probability es-
timated by the attention-BiLSTM model and p(h;) is the
prior probability of each hidden state. And p(x) is the prior
probability of each observed state.

By collecting all the HMM states of the given gestures
as candidates, we can build the initial dictionary as Dall =
[G(1), ..., G(C)] for the HMM transition, and the total number
of the candidates in it is C' x 7.

p($t|ht) = 2

B. Generating Relative Entropy with Manifold Presentation

1) Relative Entropy : The intuition in this work is that, in
the online recognition, the early phases of different gestures
present the similarity with high uncertainty of recognition. The
gestures only become discriminate after certain phases being
performed. Thus, we introduce entropy to measure this kind
of information chaos level at each distinct temporal step. The
entropy is always used to measures the disorder degree or
randomness within a given system. As it is often used in data
compression and encoding information, here entropy can also
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Fig. 4. The abbreviated presentation of the relationship between the mass
function r(x) and the relative entropy D(pl||q). To make it easier to
understand, the mass function 7(z) can be regarded as the confidence of
recognizing two HMM states p and q. (a) The curve shows the relationship
of the distance between two HMM states and the relative entropy D(p||q).
(b) Two example cases in the recognition. The green point stands for an ideal
case that the value of relative entropy D(p||q) is low for the large confidence
of distinguishing the two HMM state. The red point stands for a bad case
that the value of relative entropy D(pl||q) is high which is caused by the
uncertainty of recognizing two HMM states.

reveal the ultimate compression of the HMM states in the
given original dictionary Dall. Our goal is to compress the
dictionary by reducing the relative entropy at each time step
and obtain its temporal hierarchy.

Specifically, here we regard each HMM state in the dic-
tionary as a chaotic system [33]. Obviously, one HMM state
by itself is isolated and immeasurable from the perspective of
statistical probability. Thus, we introduce relative entropy to
compare two HMM states as [33]:

Dipllg) = Zpu)wgzég, @)

where p(x) and ¢(x) are called probability mass function in
relation to two HMM states needed to be compared. The rel-
ative entropy D(p||q) is measured by bits, as a measurement
of the uncertainty level of distinguishing two probability mass
functions p(z) and ¢(x) from each other.

However, as p(x) and ¢(x) are discrete distributions, di-
rectly calculating the relative entropy of them will encounter
infinity value issue. Thus, we introduce an approximate func-
tion r(x) to jointly estimate the difference of the function
distributions. It can be regarded as a specific term to measure
the distance of the two HMM states. Then, instead of mea-
suring the distributions of ¢ and p separately, we can directly
calculate the entropy H(r) of r(x) to obtain D(p||q).

D(pllq) ~ H(r). 4)

A further detailed explanation of relative entropy is elaborated
as shown in Fig. 4. The relationship of the relative entropy
D(pl|lg) and mass function r(x) are demonstrated as curve
in Fig. 4 (a). In order to make the analysis straightforward,
we map the distance of two HMM state to the interval
0.5 < r(x) < 1. Then, when two HMM states are similar,
they will have a high relative entropy, or say the uncertainty
of recognition.

The curve presents some basic properties of the relative en-
tropy. When r(z) closes to 1, it means the distance between the
two HMM states is large and the confidence of distinguishing
the HMM states is high. Thus, the relative entropy has a low
value indicating little uncertainty, which is an ideal case shown
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algebra The tangent space o
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Fig. 5. An illustration of the calculation of mass functions. On the left,
it shows that the 3D skeleton data of two hidden HMM states is mapped
to Special Euclidean Groups SE(3) X ... x SE(3) to obtain a manifold
presentation. The distance between the hidden HMM states is then calculated
by their Lie algebra se(3) on the tangent space. Then on the right, it shows
the projective functions proposed by us to map a distance of manifold space
to a mass function.

as the green point in Fig. 4 (b). The bad case for recognition
is shown as the red point in Fig. 4 (b). With the distance of the
HMM states being relative low, the value of D(pl||q) is high
because of the ambiguity of the two HMM states. It means
the two HMM states are not discriminate enough to contribute
the recognition which should be merged.

2) Distances of HMM States in Manifold Presentation: In
order to apply relative entropy for gesture case, we need to
construct the mass functions r(x) in Eq. 3 for the given two
HMM states. Since the mass function r(x) is strongly related
to the geometrical distance between the two HMM states, we
can set it based on their geometrical distance.

Intuitively, we can simply use Euclidean distance of the 3D
skeleton space coordinates to obtain geometrical distance. But
for human skeleton data, the Euclidean distance only serves as
a similarity measure and can not offer a reasonable distance
metric in high dimensional space. We seek a representation
that is highly discriminate in high dimensional space.

Instead of using the Euclidean distance, we adopt the work
of [22] that uses manifold representation for 3D skeletal
data into our relative entropy definition. Mapping 3D skeletal
data to manifold presentations as Lie groups will offer a
true distance metric and avoid the problem of the curse of
dimension. Details could be found in [34] and [35] for a
general introduction to Lie groups and Special Euclidean
Group SE(3).

The special Euclidean group, denoted by SFE(3), is also
known as a Lie group with the set of all 4 by 4 matrices of

the form:
PR d) = [{f ﬂ , 5)

where d € R3 denotes the translation vector, and R € R3*x3
is a rotation matrix.

Precisely, given two rigid body parts at a HMM state,
their relative geometry can be described by the rotation and
translation. Then we can use the rotation and translation
representation of the body pairs to map the 3D skeleton to the
Lie groups (as shown in Fig. 5). Thus, the relative geometry
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between two body pairs m and n at time instance ¢ can be
described using:

Pon(t) = {Rg’n d"{’n} € SE(3), ©)

Rn m CZI’L m
Frm(t) = { 0 1

} € SE(3). @)

However, the Lie group SE(3) X ... x SE(3) is a curved
manifold and the measurement of the distance in this space is
not a trivial task. To tackle this issue, it is common to map the
Lie group presentations of the HMM states from SFE(3) x ... X
SE(3) to their Lie algebra se(3). The Lie algebra of SE(3) is
defined as the tangent plane to SF(3) at the identity element
I4. It is a 6-dimensional vector space formed by a set of all

U w . 3
{0 OL,WhereweR and U

is a 3 by 3 skew-symmetric matrix. For each element in the
manifold curve, it is presented with form:

4 by 4 matrices of the form

0 —u3 w2 wy
_ U w _ us 0 —Uu; W2
B= |:0 0:| - —U2 (751 0 ws < 52(3). (8)

0 0 0 0

Then, we can use the exponential map exp: se(3) — SFE(3)
and the logarithm map loggg(s): SE(3) — se(3) between the
Lie algebra se(3) and the Lie group SFE(3) to measure the
distance of two HMM states, which are given by

erpsp(s)(B) = e?, )
logsgz)(P) = log(P), (10)

where e and log denote the usual matrix exponential and
logarithm respectively.

Thus, for each HMM state of gesture ¢ among the T
different temporal steps, it can be represented as S.(t) =
[P12(t), Pa1t)s s Part,m), Puviny] € SE(3) x .. x
SE(3), where M is the number of body parts.

Using this kind of manifold representation, we measure the
distances of two distinct HMM states of two gesture classes
¢1 and ¢y with {2 norm at the same temporal step as:

Lpq =[S, (1) = Seo (O], (1)

where L, , can be used to form their relative entropy in the
next part.

3) From Manifold Distance to Relative Entropy Map: After
obtain the geometrical distance L, , of two HMM states, we
can construct the approximation function r(z) for Eq. 4

Let () be the mass function of approximation distribution
of the mutual relationship between p and ¢ with manifold
representation S..(t) of gestures ¢; and co at temporal step ¢.
Then, we further define the projective function fy,,; to map
L, 4 into distribution 7(x):

(@) = fproj(Lp,q(2)).

As shown in Fig. 5, we chose three commonly used projec-
tive functions as sigmoid, ReLU and step to perform the

projection fpro; ().

12)

6

Algorithm 1 Hierarchical clustering for THD

Input: o: the threshold relative entropy
T': the number of temporal states in a HMM
C': the number of gesture categories
Dall(C,T): A dictionary of T' temporal states, and each
temporal state contains C' kinds of HMM states from the C
gestures at that state.

Output: Dth(n,T): The THD of T temporal states, and each
temporal state contains n clusters, the n changes in each
temporal states.
for ¢t in T do

calculate REM using Eq.3
if £ =1 then
clusters < Dall(C, 1)
else
clusters <— Dth(n,t — 1)
end if
unclustered < clusters
i=1
for cluster in clusters do
while not (unclustered is null) do
select baseline (the state with min relative entropy
to the rest).
for state in unclustered do
if REM (state,baseline) > o then
merge state to baseline as Dth(i,t)
delete state from unclustered
end if
end for
i++
end while
end for
end for

The sigmoid projective function is constructed as fproj1 :

0.5

foroj1(Lp,q) = 15 e +0.5,Lp,q 20, (13)
where 0 is the threshold to fit the function to represent the
projection and set as half of the maximum distance, L,, , is
the distance calculated from Lie algebra (the same as below).

The ReLU projective function is built as fpj0:

fproj2(Lp q) = min(1,6L, ; 4+ 0.5), L, , > 0, (14)

where 0 is coefficient of the ReLU function and assigned with
the inverse of the value of the maximum distance.
The step function is formed as fpro;3:

1 0 g LP#I < 517

P1 01 < Lpg < 02,

fprojB(Lp,q) =

Pn-1 Op—1 < Lpg < 6n, (15)
0 Lpeq 2 6717

0<pp_1..p1 <1,

where 61, ..., are the thresholds for each stage of the step
function.
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Fig. 6. The mass function and relative entropy maps calculated based on the Chalearn 2014 dataset. The top part (a) shows the three distinct mass function
p(z) maps calculated from the Lie algebra distances with the three different projective functions: fproj1, fproj2 and fproj3. For each mass function p(x)
map, there are ten sub-maps which are in relation to the ten temporal steps. Since the dataset contains 20 gesture categories, each mass function map has 20
columns and 20 rows in which all the gestures classes are compared. Similarly, the bottom part (b) shows the three distinct relative entropy D(p||g) maps
calculated from the mass functions of those three projective functions. The cross point at column m and row n in the t*" map stands for the relative entropy
of gesture m and gesture n at the same time step ¢. The right part (c) shows the distributions of HMM states in the two kinds of the dictionary. The top one

is an original flat structured dictionary and the bottom one is a THD.

Then, at each temporal step of the HMM, we can calculate
the relative entropy of the HMM states of their corresponding
gesture classes. The implemented the relative entropy calcu-
lation for skeletal gesture recognition task is formulated as
below:

D(pllq) ~ H(r)

- Z r(x)log r(x)

Zgzl > foroj (Lp,q(2))l0g fproj (Lp,q(2))
N b

(16)

where n stands for the training gesture sample index for ¢ =
1,---,N.

At last, the relative entropy map (REM) can be calculated
based on the Eq. 16 as:

REM = {D(pm.

(o) [t =1, , N}, (17)
where m,n € Cy; stand for the gesture index. We then
investigate the HMM states from all the gesture classes with
REM. The result is shown in Fig. 6. The parameter settings
for the different projective functions can be seen in the later
experimental section.

According to Fig. 6, we can see that, at the beginning steps,
the overall entropy is much higher than that of the following
temporal steps and thus can be largely compressed. Taking
the entropy information calculated above into account, we
conclude the below criteria for constructing a THD:

1. Gesture configurations registered at hidden layers are
non-repetitive movements and its temporal stream is
irreversible.

2. With the information captured from the gesture accumu-
lating, the confidence of recognizing a gesture will keep
increasing based on the past information captured.

3. For the gestures at a certain temporal step, the un-
certainty of distinguishing them is proportional to the
geometric distance of their high dimensional represen-
tations, which can be measured by relative entropy. It
also reveals the information randomness at that stage.

4) Temporal Hierarchical Dictionary (THD): In the light of
the criteria above, we exploit the proposed REM to construct
a THD, with which the candidate HMM states can be merged
and organized with a temporal structure.

Specifically, we propose a hierarchical clustering algorithm
to build the THD. The clustering process is conducted as, at
each temporal step, the HMM states from all the gestures at
that temporal step are collected as candidates. Then, we cluster
those candidates by setting a minimum relative entropy as the
threshold. The clustering details can be seen in Algorithm 1.

This will result in a hierarchical structure in the temporal
direction. For instance, due to the high relative entropy at the
beginning step, few HMM states will be assigned at this time
step to reduce the uncertainty of recognition. When it comes to
the latter states with the entropy decreasing, more HMM states
will be assigned at that temporal step for more confidence in
the exact gesture recognition.
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Fig. 7. Network architecture for our hybrid DNN-HMM model. The temporal attention layer computes frame-agnostic attention weights for each LSTM step.
The spatial attention layer computes feature-agnostic attention weights for each GRU. The final output is a probability estimation of HMM hidden states.

Here are several principles to implement this automatic
clustering. First, the clustering procedure is unidirectional and
irreversible. Second, the minimum relative entropy always
reaches before mid states, as shown in Fig. 6 (a) (b). It means
the distinction of the gestures is done before the ending and the
rest HMM states will be uncompressed and all kept. At last,
too small relative entropy will cause a severe information loss.
Thus, the threshold of the minimum relative entropy should
be set carefully, which can be adjusted automatically in future
work.

The final constructed temporal hierarchical structure has
several advantages over the original one: (1) instead of travers-
ing all the HMM states in the dictionary at each decoding
step, it narrows down the search range and largely reduces
the number of HMM states used in the transition phase; (2)
it embeds temporal hierarchical information into the decoding
for a more discriminate state to make a recognition; (3) it
utilizes the relative entropy to capture the information change
of a temporal sequence, which produces a dictionary with less
redundancy. The distributions of HMM states in both the THD
and the original dictionary are presented in Fig. 6 (c). We can
see that the HMM states in a THD are much more sparse to
avoid redundancy and ambiguity.

V. PROGRESSIVE LEARNING OF HYBRID
DNN-HMM SYSTEM

In this section, we introduce an iterative re-alignment strat-
egy to train the hybrid DNN-HMM framework as shown in
Fig. 7.

Firstly, we define the classifier W’ for the HMM state
recognition as shown in Fig. 7 (b). We exploit a Bi-LSTM
network as the classifier W’ for the HMM hidden state estima-
tion. The propagation of the Gated Recurrent Units (GRU) in
the Bi-LSTM layer is both forward and backward. The input
of the Bi-LSTM network is a five-step 3D skeleton feature
extracted from the current five frames. Skeleton features from
each frame are fed into each step of the LSTM. Besides, we
introduce the attention mechanism into the network for both

spatial and temporal domains. A temporal attention layer is
used for computing frame-agnostic attention weights for every
LSTM step, and a spatial one is used for that of each GRU.
At last, the final structure of the classifier W'’ is a Spatial-
Temporal Attention BiLSTM network, called STABNet for
short.

Training the system is in a progressive procedure for both
the HMM and the classifier W’ (the STABNet). The whole
training process is elaborated as shown in Fig. 7 (a). In the
initialization, one gesture sequence is divided evenly into T’
temporal segments as 7' HMM states. The STABNet is then
trained with the initial alignment as ground truth. During the
training phase, Viterbi algorithm is used to give the utmost
HMM alignment among all the possible paths efficiently [36].
The decoded sequence § is determined as:

g=arg mg:z: p(x1,xo ..., by, ho ... hy), (18)
where z; and h; are the observation state and hidden state of
a gesture at temporal step ¢. To obtain the maximum value for
this emission probability, we get:

(a3

p(x1,22... 27, h1,ha .. A7)

T T (19)
w(ho) [T p(helhe—) [T (el ).
t=2 t=1

By using Eq. 19, we can break down the problem of solving
the utmost probability of main gesture class into solving HMM
states probability with hidden states hq, hs, ..., hp. Once the
HMM states being aligned, the test sequence can be inferred
with gestures being segmented and recognized.

After the STABNet and HMM being trained with the initial
HMM alignment, they can be used to estimate a new HMM
alignment. The new alignment can be used as labels to retrain
the framework with Eq. 18. The new aligned HMM path can
be more accurate and natural than the previous one. This step
will be iterated until convergence as shown in Fig 7 (a).

With the framework iteratively approximates the optimal
HMM hidden states on the training data, we define a stop
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The time step of a gesture
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Fig. 8. (a) A comparison of using different three projective functions. The
sigmoid one shows a better representing capability than that of the ReLU
function and step function, especially in the beginning temporal steps. (b)
A comparison of the relative entropy of the original dictionary and the four
distinct THDs. The original dictionary contains the highest relative entropy
at each time step. The four compared THDs are obtained by clustering the
ambiguous HMM states to reduce the relative entropy. The thresholds of the
min relative entropy are set as 0.4, 0.3, 0.2 and 0.1 bits respectively.

criterion based on the training accuracy. Let valacc(i) denote
the validation accuracy of the training set at iteration i. We
stop the iteration if the accuracy improvement is less than a
threshold 6,

valace(i) — valace(i — 1) < 6 — stop. (20)

In practical training, to ensure the new alignment is correct,
before the new HMM alignment, we enforce the start three and
the end three frames to be labeled as the pre-designed HMM
states in the dictionary. Also, we set a minimum loss to avoid
over-fitting. An early stop will be conducted if the minimum
loss is achieved or the improvement of the validation accuracy
is less than 6.

To realize the online segmentation task, we introduce an
extra non-gesture class as a specific HMM state. The seg-
mentation is conducted by decoding the HMM states with the
transition of the non-gesture class and gesture classes.

VI. EXPERIMENTS

In this section, details of the experiments are illustrated.
We evaluate our method on three well-known gesture datasets:
Chalearn 2014 gesture dataset [37], MSRC dataset [38] and
online action detection (OAD) dataset [39]. In all these
datasets, multiple gesture or action instances are contained
in each long skeleton stream, thus the segmentation task is
involved.

A. Datasets

ChaLearn 2014 dataset includes 20 Italian sign gesture
categories with 20 joints estimated by Kinect in the dataset.
It contains 470 labeled sequences for training, 230 sequences
for validating and the rest 240 sequences for testing. In each
sequence, 10 to 20 gestures are performed and in total, more
than 14,000 gestures are contained in the whole dataset.

MSRC gesture dataset includes 594 sequences from 30
subjects performing 12 kinds of gestures with 20 joints esti-
mated by Kinect. Note that gestures in the MSRC dataset are
only labeled at the mid point of each gesture motion instead
of a certain boundary of the gesture duration. To train the

network, we encode a window of 90 frames centered on the
gesture point from the ground truth. This coarse labeling can
be improved with the later progressive learning.

The last OAD action dataset includes 10 daily human action
categories. It was captured as long video sequences with
Kinect v2. The start and end frames are annotated. There are
more than 50 long sequences in total and 30 of them are used
for training, 20 for testing and rest of the sequences are for
processing speed validation.

B. Features

In the Charlearn 2014 and MSRC datasets, for the
computational-consuming issue and gesture-orientated goal,
we only use the coordinates of the 11 skeleton joints from
the upper body. Then we adopt the work of [23] and ex-
tract features called “MovingPose”. It is an efficient feature
for skeleton data including relative position, relative veloc-
ities/accelerates and joint angles, which results in a feature
dimension of 154 for each input step of the STABNet. For the
skeleton feature extraction, we conduct a normalization to the
coordinates. The coordinates are transformed into a person-
centric coordinate system with the hip center as the origin.

In OAD action dataset, all the 25 skeletal body joints are
used to generate features. “MovingPose” is also adopted to
enhance the performance, which results in a feature dimension
of 525 for each frame. Since the annotation of OAD dataset
is different from others that, the start frame and end frame
are within peak duration (not a from-none-to-action pattern),
we compensate A frames to the beginning of actions to learn
pre-action information for better online recognition. The A\ is
set as 12 in the implementation.

C. Building THD with the Relative Entropy

Firstly, we investigate the relative entropy in an ordinary
HMM dictionary Dall with REM in Fig. 6. As shown in
the figure that, at the beginning steps, the overall entropy
is much higher than that of the following temporal steps.
It means achieving an exact recognition at starting temporal
steps suffers from the high uncertainty of recognition. Only
after certain temporal steps being performed, the uncertainty of
recognition gets low. Thus forcing an exact recognition before
entropy gets lower are not necessary and will even bring noisy.

Then we try to construct the REMs of the original dictionary
D,;; with the three different projective functions. The param-
eter settings are § = 15 for fyroj1, 0 = 35 for fhrej2 and
01 =4,02 = 9,03 = 12,04 = 20 for fp,,53 respectively. The
relative entropy calculated with the three projective functions
fprojis fproj2 and fpro;3 for the original dictionary can be
seen in Fig. 8 (a). The setting can be slightly different with
the sample numbers and datasets.

Obviously, the sigmoid fproj1 shows a better representing
capability than that of the ReLU function fp,.jo and step
function fp-o;3 especially in the beginning temporal steps.
Specifically, the representing capability of the ReLU projec-
tive function fp,q;2 (0.22 bits from 0.16 to 0.38) and the step
projective function fy,,0;3 (0.18 bits from 0.25 to 0.43) are
not as good as the sigmoid function fp.,;1 (0.33 bits from
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0.11 to 0.44). Thus, we choose the sigmotid function as the
projection fprq;.

At last, as shown in Fig. 8 (b), using Algorithm 1, we
build the THD with the sigmoid projection. In the figure,
we quantitatively represent how the entropy changes when
the original dictionary D, is temporal hierarchical structured
into THD Dy,. We construct four distinct THDs by setting
four distinct thresholds of the minimum relative entropy as
0.4, 0.3, 0.2 and 0.1 bits respectively and represent their
the entropy curves. It can be seen that, without processing
the ambiguous HMM states, the original dictionary contains
the highest relative entropy at each time step. By setting a
threshold for ambigous HMM states, like 0.3 and 0.4 bits,
all of the relative entropy is reduced and the information is
kept. When the threshold is set too low such as 0.1 and 0.2
bits, even though the relative entropy is much lower than the
original one, it can cause an excessive compression of HMM
states and the information lost. That’s why the performance of
THD sometimes can be worse than other compared methods,
such as lines 1 and 4 in Table II (0.778 of HMM and 0.763
of THD-HMM). Thus, a proper setting of the relative entropy
threshold is vital to a THD. In the practical experiments, we
fix the HMM state number as 10 and set the thresholds of
the minimum relative entropy for the Chalearn 2014 dataset,
MSRC and OAD dataset as 0.24, 0.31 and 0.6 bits to obtain
the best THDs. Furthermore, we visualize the distributions of
HMM states in the original dictionary D,;; and the produced
THD Dy, are shown in Fig. 6 (b). The ambiguous states are
clustered based on the REM in the THD to avoid uncertain
recognition.

D. Comparison of Proposed Neural Network with Baseline
Architectures

We conduct experiments with the following architectures
on Chalearn dataset (parameter setting is slightly different in
OAD and MSRC):

(1) STABNet. The spatio-temporal attention BiLSTM
network is our proposed model for 3D gesture predic-
tion. We set our seven-layer STABNet architecture as
[NX7 Ntema NLSTM17 Nspaa NLSTMh NDensea Noutput]~
Here Nx is input feature layer, namely, the HMM observation
layer with five steps of the LSTM. Ni.,, is the temporal
attention layer with five steps. The BiLSTM layers Ny s
and Ny s7are contain 2000 GRUs and 1000 GRUs separately.
The layer between the two BiLSTM layers N, is the spatial
attention layer with 2000 units. The dense layer Npepse of
1000 units is stacked with the sigmoid activation. Noy¢pus 1S
the total hidden state number.

(2) TABLNet. Temporal-Attention BILSTM Network (TAB-
Net) is similar to STABNet, but the spatial attention layer is
removed. We configure the structure to verify the contribution
brought by the temporal attention layer.

(3) SABLNet. Spatial-Attention BiLSTM Network (SAB-
Net) is similar to TABNet, but with the spatial attention layer.

(4) BLNet. It is a basic BiLSTM Network similar to
STABNet but without any attention layers.

(5) 2-FC. A two-layer fully connected network is set to
verify how the BiLSTM contribute to the recognition result

10

TABLE I
A COMPARISON OF DISTINCT NETWORKS ON CHALEARN 2014 DATASET.
Jacc. Score
Network structure HMM temporal step
6 10 14
2-FC 0.756  0.757  0.693
BLNet 0.730  0.732  0.670
TABNet 0.728 0.733  0.701
SABNet 0.770  0.778 0.752
STABNet 0.790 0.812 0.761
TABLE II

A COMPARISON OF THD Dyj, AND ORDINARY DICTIONARY D,;; ON
CHALEARN 2014 DATASET.

Temporal HMM J S Decoding

steps states acc. Seore speed(fps)
Oridinar 6 120 0.778 646.9
dicﬁoamy 10 200 0.780 314.3
y 14 280 0.754 185.7
6 87 0.763 920.4
THD 10 121 0.812 652.1
14 152 0.781 540.4

replacing BiLSTM layers with dense connected layers with
a 0.1 dropout rate. Note that we just flat the 5-step length
features of the LSTM input into a 1-dimensional feature as
the input here.

We present the performance validations of the distinct
networks on Chalearn 2014 dataset as shown in Table 1. Note
that to make a fair comparison, we compare all the networks
with the same skeleton features for the experimental settings.
Results in bold for our methods, with underlines for the best
method, the same as below.

The experimental results show that, for distinct temporal
steps (in 6, 10, 14), a simple fully-connected network can
achieve a better recognition result than that of BLNet. The
training process can explain it as, a simple fully-connected
network can learn the HMM states in a fast speed than a more
complex BLNet. As well, the complex BLNet is also hard to be
trained. However, by introducing temporal and spatial attention
layers into BLNet, the STABNet can gain an improvement of
0.48 in Jacc. Score. It proves that the attention layers could
efficiently mine the potential of BLNet. On the other side,
a large redundancy (too many HMM states) also causes a
significant negative impact on the accuracy which can be seen
in the 14-state for all the networks. It is interesting to see that,
our STABNet can handle the dictionary with a large size (280
HMM states) and redundancy (0.754 of STABNet to 0.693 to
2-FC) when the temporal step is 14.

E. Comparison of THD and Ordinary Dictionary

A comparison of a THD and an ordinary dictionary is
presented in Table II. The results show our THD generally
yields better performance and leads to a substantial decrease
in the number of HMM states than the original one. When
modeling gestures with ten temporal steps, our THD obtains
0.812 Jacc. Score by only using 121 HMM states while an
ordinary dictionary can only achieve 0.780 Jacc. Score by
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TABLE III
THE PERFORMANCE OF PROGRESSIVE LEARNING ON THE MSRC
DATASET.
. Training  Validating HMM alignment
Iteration
accuracy  accuracy F-score

1 84.1% 69.8% 0.762

2 92.6% 76.8% 0.840

3 95.4% 80.4% 0.867

4 96.2% 81.0% 0.871

5 96.9% 80.1% -

using 200 HMM states. In the case of six HMM states, the
performance of our THD decreases and not as good as that
of the original one. As demonstrated in Fig. 8, when the
relative entropy is already low enough, minimizing it might
cause the information loss. In this way, a good THD structure
should make a balance between information loss and statistical
redundancy.

The HMM decoding speeds of the THD and ordinary
dictionary are also compared. For each temporal step setting
(6, 10, 14), our THD yields faster decoding speeds than that
of the ordinary dictionary (920.4 v.s. 646.9 fps, 652.1 vs.
314.3 fps, 540.4 v.s. 185.7 fps). The speeds of our system in
each setting also prove that the performance of our system is
sufficient for online segmentation and recognition tasks.

F. Performance of Progressive learning

We validate the contribution of progressive learning to our
system. The performance of progressive learning is presented
on MSRC gesture dataset as shown in Table III. Note that in
this dataset, the measurement during the training is accuracy,
but changes to F-score in the final testing phase.

As shown in Table III, the HMM re-alignment will bring
an improvement of 8.5% on the validation set and 0.078 on
the test set in F-score. The next re-alignment iteration seems
to have a smaller impact with an improvement of 2.8% on the
validation set and 0.27 on the test set in F-score. Thus, the
initial re-alignment brings significant improvements over the
state of the arts. During the iteration, it is prone to get over-
fitting for those networks, so we have to use an early stopping
strategy to train the networks. If the early stopping strategy
did not take part in the training phase, the validating accuracy
could be above 98% but the test F-score drops to 0.23, which
means the network will be obviously over-fitted without an
early stopping.

G. Performance of the Early Detection

Furthermore, the early recognition capability of our frame-
work is validated by using the measurement of Activity
Monitoring Operating Characteristic (AMOC) [41]. AMOC is
obtained by changing the observational ratio (the proportion
of the gesture that has been observed at the time of decision).
The evaluation is conducted on both Chalearn 2014 and OAD
dataset. Here, we set the observed ratio of the instances
ranging from 10% to 100%.

For Chalearn dataset, we compare our THD based meth-
ods with several state-of-the-art frameworks for online ges-
ture recognition tasks. As shown in Table IV, generally,
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TABLE IV
THE EARLY DETECTION PERFORMANCES ON CHALEARN 2014 DATASET.

Accuracy
Observational Ratio 10% 30% 50% 80% 100%
Sliding-LSTM [26] 13.4%  65.1% 642% 579%  55.6%
Moddrop [16] 202%  637%  652%  66.1%  54.6%
DBN-HMM [40] 574%  713% 72.0% 72.5%  72.5%
THD-HMM 28.0% 683% 79.0% 80.1% 80.1%
THD-HMM guided 60.3% 73.1% 812% 812% 81.2%
TABLE V

A COMPARISON OF THE STATE-OF-THE-ART METHODS ON CHALEARN
2014 GESTURE DATASET.

Method Results (Jacc.)
Fisher Vector [42] 0.747
DNN-ES-HMM [40] 0.787
HOG, Boosted classifier [43] 0.789
HOG, MRF [44] 0.792
ModDrop [16] 0.808
THD-HMM (online) 0.812
THD-HMM + postprocessing  0.834

HMM-based methods perform better than sliding window-
based methods, which is proved by comparing THD-HMM
guided (60.3%, 73.1%, 81.2%, 81.2%, 81.2%) and DBN-
HMM (57.4%, 71.3%, 72.0%, 72.5%, 72.5%) to sliding-LSTM
(13.4%, 65.1%, 64.2%, 57.9%, 55.6%). We offer the perfor-
mance of only using THD for HMM, it shows better results
only after 50% observational ratio (28.0%, 68.3%, 79.0%,
80.1%, 80.1%) than that of the DBN-HMM. It is the cost
of reducing the relative entropy that, exact gesture recognition
can not be achieved in the beginning several temporal steps
as gestures share the same HMM states. So, we use the THD
as a prior to guide a HMM decoding with candidates from
an ordinary dictionary. It especially works in the beginning
temporal steps (from 28.0% to 60.3%). By combining THD
into an ordinary dictionary as shown in the last line in the
Table, we obtain the best online recognition results at the
distinct observational ratios. It performs better (81.2%) than
a conventional HMM based method DBN-HMM (72.5%). It
is proved that our proposed framework can be implemented
to continuous gesture streams and achieve gesture recognition
even when they are halfway performed (recognition accuracy
of 81.2% at the observational ratios as 50%). Note that, to
make it fair and purely compare the recognition performance,
all the compared methods above use raw skeleton data as input.

For the OAD dataset, the early detection performance is
shown in Table VII. We can see that, our hybrid DNN-
HMM framework (STABNet-HMM) can have satisfying per-
formances (above 79.9%, 84.1% and 84.4%) of online recog-
nition at each observational ratio (10%, 50% and 90%). The
early recognition accuracy can achieve 87.2% even the actions
are only 10% performed.

H. Comparison with the state of the arts

At last, we represent the-state-of-the-art techniques as well
as ours on Chalearn 2014, MSRC and OAD action datasets
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TABLE VI
A COMPARISON OF THE STATE-OF-THE-ART METHODS ON MSRC
GESTURE DATASET.

Methods Results (F-score)
Randomized Forestg [38] 0.62+0.04
Structured Streaming Skeletons [45] 0.7184+0.159
DBN-ES-HMM [6] 0.7243
THD-HMM 0.7621+0.053
THD-HMM + progressive learning  0.8711+0.013

TABLE VII
THE EARLY DETECTION PERFORMANCE OF OUR FRAMEWORK ON THE
OAD DATASET USING SKELETON DATA COMPARED WITH THE STOA

METHODS.

Acurracy Processing speed
Observational Ratio 10% 50% 90%
ST-LSTM [46] 60.0%  753%  77.5% -
Attention Net [47] 59.0%  75.8%  18.3% -
JCR-RNN [39] 62.0% 713%  78.8% 1230 fps
SSNet [48] 65.6%  7192%  81.6% 70 fps
STABNet-
HMM (RS) 799% 84.1%  84.4% 744 fps
STABNet-
HMM-THD (RS) 809% 88.2%  88.2% 1822 fps
STABNet-
HMM (MP) 87.2% 91.0% 91.0% 720 fps
STABNet- 872% 920% 93.1% 1720 fps

HMM-THD (MP)

RS: raw skeleton, MP: MovingPose feature.

in Table V, VI and VII respectively.

For the Chalearn 2014 dataset, we follow the evaluation
protocol in [16] and quantify model performance with the
Jaccard index (Jacc.). The Jaccard index measures the accuracy
of both the classification and the segmentation at the frame
level. It is defined as follows:

A, N Bn
AnLJ-Bn7

where A,, is the ground truth of gesture n and B, is the
predicted class for the given gesture. A correct recognition
will lead the term A,, (] B,, to be 1 while an incorrect one will
lead it to be 0. Good segmentation performance is obtained
with a large intersection and a small union of A, and B,.
Our THD-HMM shows the best performance in skeleton-based
gesture segmentation and recognition tasks for both the online
and offline settings. Similar to [16], for the offline setting, we
implement a detection classifier trained with approximately
93% accuracy to recognize motion and non-motion gestures.

In the MSRC gesture dataset, F-score is always used for
validation. It is the harmonic mean of recall and precision in
a tolerated latency. On this dataset, the latency is set as 333ms,
the same leave-subjects-out protocol and settings as [38] and
[6] are used. Note that the DBN-ES-HMM method is our
baseline method, encoding a conventional HMM dictionary
with temporal hierarchical structure will bring around 0.038
improvements in F-score. The progressive learning contributes
a significant increase of 0.109. The reason is that MSRC
gesture dataset is labeled only with key points of gestures, and
this coarse labeling can be fined with progressive learning.

Jn = 21
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In the OAD dataset, we use the same protocol as [48] that
sets different observation ratios to validate the algorithm, thus
the accuracy is reported for this dataset. We can see that,
our hybrid DNN-HMM framework (STABNet-HMM) can
largely improve the performance of online recognition (84.4%
with raw skeleton input). By implementing MovingPose, our
algorithm gains another substantial improvement (by 6.8% for
STABNet-HMM framework). Not only that, our THD can
further enhance the performance of STABNet-HMM by 3.8%
(with raw skeleton) and 2.1% (with MovingPose features). As
a result, our proposed framework THD-HMM with “Mov-
ingPose” features performs the best (recognition accuracy
of 87.2%, 92.0% and 93.1% at the observational ratios as
10%, 50% and 90%). At last, by comparing STABNet-HMM-
THD with STABNet-HMM, it proves that our proposed THD
algorithm can largely improve the recognition accuracy and
online processing speed by reducing the redundancy HMM
states and ambiguity (from 744 fps of STABNet-HMM-RS to
1822 fps of STABNet-HMM-THD-RS).

1. Computational setup

For the Chalearn 2014 dataset, the training parameters are
set as 128, 0.01, 0.95, 0.5, 2, 50 for the batch size, the learning
rate, the momentum, the factor of reducing learning rate, the
early stopping patience and the epoch iteration respectively.
For the MSRC gesture dataset, the training parameters are
set as 64, 0.01, 0.95, 0.5 for the batch size, the learning
rate, the momentum, the factor of reducing the learning rate
respectively. We fix the training epoch as 25 to avoid over-
fitting in this dataset and set the minimum loss of progressive
learning as 0.08. In the OAD dataset, the batch size and
training epoch number are set as 32 and 10 respectively. The
learning rate is fixed as 0.001. The distribution platform is
Tensorflow with a single GPU: NVidia 1080Ti (RAM: 12 GB).
The CPU is Intel Core i7 8700 with 12 cores.

VII. CONCLUSION

In this paper, for the 3D skeleton based online gesture
segmentation and recognition task, we introduce the relative
entropy to investigate the redundancy in gesture phases. Based
on it, we further propose a Temporal Hierarchical Dictionary
with HMM (THD-HMM). The experimental results prove
that there exists large redundancy in online HMM decoding
process and our THD-HMM can successfully guide the HMM
decoding to the most discriminate states and narrowing down
the search range of neural networks. THD-HMM can not only
largely improve the online and early recognition accuracy but
also increase the processing speed. Progressive learning of the
attention-BiLSTM is further proposed for a robust recognition
of HMM states which is proved efficient in improving HMM
alignment at the fine-grained frame level. The experimental
results on three gesture datasets show the effectiveness of the
proposed method compared with state-of-the-art performances.
Future research is to develop the supervised HMM state
clustering into unsupervised learning and explore more com-
plementary representations from heterogeneous inputs such as
RGB and audio data.
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