
LIU et al.: 3D SKELETAL GESTURE RECOGNITION VIA HIDDEN STATES EXPLORATION 1

3D Skeletal Gesture Recognition via Hidden States
Exploration

Xin Liu, Henglin Shi, Xiaopeng Hong, Haoyu Chen,
Dacheng Tao, Fellow, IEEE, and Guoying Zhao, Senior Member, IEEE

Abstract—Temporal dynamics is an open issue for modeling
human body gestures. A solution is resorting to the generative
models, such as the hidden Markov model (HMM). Nevertheless,
most of the work assumes fixed anchors for each hidden state,
which make it hard to describe the explicit temporal structure of
gestures. Based on the observation that a gesture is a time series
with distinctly defined phases, we propose a new formulation to
build temporal compositions of gestures by the low-rank matrix
decomposition. The only assumption is that the gesture’s “hold”
phases with static poses are linearly correlated among each other.
As such, a gesture sequence could be segmented into temporal
states with semantically meaningful and discriminative concepts.
Furthermore, different to traditional HMMs which tend to use
specific distance metric for clustering and ignore the temporal
contextual information when estimating the emission probability,
we utilize the long short-term memory to learn probability distri-
butions over states of HMM. The proposed method is validated
on multiple challenging datasets. Experiments demonstrate that
our approach can effectively work on a wide range of gestures,
and achieve state-of-the-art performance.

Index Terms—Gesture recognition, hidden Markov model,
deep neural networks, matrix decomposition

I. INTRODUCTION

Human body gesture analysis is one of the core components
in the thriving research fields of human-computer interaction,
intelligent security surveillance, and video games. Recently,
3D skeletal data is gaining popularity as it simplifies the task
from using monocular RGB cameras to more sophisticated
sensors, such as the Kinect [1] [2]. This feature can explicitly
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localize gesture performers and produce the trajectories of
human skeletal joints. Compared to RGB input, skeletal data is
robust to background dynamics and invariant to camera view.

Over the last few years, numerous 3D skeleton-based
models have been developed for human activity recognition,
ranging from handcrafted-based feature representations, like
histogram of 3D joints (HOJ3D) [7], EigenJoints by principal
component analysis (PCA) [8], manifold representations [9]–
[12], discriminative key-frames [13], histogram of oriented 4D
normals (HON4D) [14], sequence of most informative joints
(SMIJ) [15], rotation and relative velocity (RVV) [16]; to
various forms of parametric approaches such as actionlets en-
semble [17] [18], maximum entropy Markov model (MEMM)
[19], latent structural SVM (pose-based) [20], hidden Markov
models (HMM) [21] [22], conditional random field (CRF)
[23] [24], latent Dirichlet allocation (LDA) [25], naive Bayes
nearest neighbor (NBNN) [26], latent max-margin multitask
learning (LM3TL) [27]; and also including plenty of deep
learning methods, i.e. deep belief network (DBN) [28] [29],
convolutional neural network (CNN) [30] [31], and recurrent
neural network (RNN) [32]–[38]. Rather than covering all
works exhaustively, we refer interested readers to recent sur-
veys [39] [40].

Despite the encouraging progresses having been made by
various studies, accurate recognition of the human gestures in
unconstrained settings is still challenging. Especially, one open
issue of human gestures recognition lies in the temporal dy-
namics. For instance, even the same gesture performed by the
same person can occur at different speeds and different start-
ing/ending points, let alone for cases with different performers.
Consequently, the variance of a category of human behavior
can be very large, and if temporal dynamics are ignored, the
accuracy of recognition would undoubtedly deteriorate [12].

Recently, researchers have been resorting to modelling
human behaviors by studying temporal structures, e.g. [10]
[26] [41]. However, most of these models focus on human
actions rather than body gestures. Compared to actions, the
structural property of gestures is more semantically meaning-
ful and discriminative. According to the research on gesture
movements [5] [6], a gesture instance can be decomposed into
the following gesticular phases (see examples in Fig. 1):
1) Resting: see Fig. 1 (a).
2) Stroke: hands movement that expresses the meaning of the
gesture, see Fig. 1 (a)→(b)→(c).
3) Post-stroke hold: brief pause at the end of a stroke,
maintaining the hands’ configuration and position, see Fig.
1 (c).
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Fig. 1. Frames (cropped) selected from two gestures [3] representing the meanings of “basta (enough)” and “furbo (clever)” respectively [4]. These frames
illustrate a gesture consists of a series of “gesticular phases”: Resting→Stroke→Post-stroke hold →Retraction→Resting [5] [6]. (a) Resting, (a)→(b)→(c)
Stroke, (c) Post-stroke hold, (c)→(d)→(e) Retraction, (e) Resting. It is noted that two additional phases, namely the Preparation and Pre-stroke hold are
defined in [5] [6], but they are optional and can be merged into the obligatory phase Stroke [6]. For example, the lasting time of Pre-stroke hold in “furbo
(clever)” is too short to be determined.

4) Retraction: the hands move back to a rest position to
conclude a gesture unit, see Fig. 1 (c)→(d)→(e).
5) Resting: see Fig. 1 (e).

From the above definitions, we can conclude that two phases
(2) and (4) with hands movements, namely the Stroke and
Retraction are partitioned by three “hold” phases (1, 3, 5)
with static poses, namely Resting (Independent hold [6]),
Post-stroke hold, and Resting again. In other words, once we
can identify these “hold” phases, the temporal structure of a
gesture can be obtained.

Based on this observation, in this paper, we develop a novel
model for human gesture recognition aiming to address the
difficulties of modeling temporal dynamics (see Fig. 2). We
treat one human gesture as a series of separated phases, each
of which is associated with a segment of an unfixed-length, as
Fig. 3 (c) illustrates, and we propose to globally capture the
temporal evolution of gestures by a generative model which is
built upon a recurrent neural network to memorize contextual
information for better prediction of transition and emission
probabilities. We formulate the problem in a unified framework
named Hidden States Learning by Long Short-Term Memory
(HSL-LSTM). The main contributions are summarized as
follows:

• We propose a new formulation to explore the temporal
structure of human gestures based on a low-rank matrix
decomposition algorithm. The only assumption is that
the gesture’s “hold” phases with static poses are linearly
correlated with each other, which can be captured by
the low-rank matrix. We also explicitly consider the
column-block prior of the outlier signals, the part of hand
movements (phases) which cannot be fitted into the low-
rank model. Thus, the temporal structure alignment is
interpreted as a binary clustering problem (illustrated in
Fig. 2 (c)). In contrast to conventional methods using
fixed anchors (Fig. 3 (d)), the proposed method can
segment a gesture sequence into temporal compositions
(phases) with semantically meaningful and discriminative

(b)
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= +(c)
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SE(3)×···×SE(3)  

Lie algebra
se(3)×···×se(3)  

Fig. 2. (a) Frames (cropped) selected from gesture “basta (enough)” [3] which
is composed by five distinctly phases, three “hold” phases with the black
border and two “motion” phases with the red border. (b) Representation of
a gesture (skeletal sequence) as a curve on the Lie group SE(3) × · · · ×
SE(3) (manifold curved space), and can be mapped into its Lie algebra
(vector space). (c) Illustration of matrix decomposition for exploring hidden
states.

concepts (Fig. 3 (c)).
• We propose a new hidden states learning model based

on an RNN. Different temporal compositions actually
correspond to the different hidden states of HMM. The
usage of HMM allows us to distribute heterogeneous
information of one gesture class over many states (phas-
es), and is key to improve the capability of modeling
complex patterns. Different from traditional HMMs using
the Gaussian mixture model (GMM) [42] which ignores
the temporal contextual information and uses specific
distance metrics for clustering, the LSTM is utilized to
enhance the HMM by estimating better probabilities as it
provides robust classification of small temporal chunks.

• We introduce a Lie group based feature to better represent
the 3D geometric relationships between various body
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Fig. 3. Illustration of phases (hidden states) of a gesture sequence with temporal structures. (a) Frames selected from a gesture [3] representing the meaning
of “basta (enough)”, (b) Skeletons (corresponding to selected frames) of static poses from “hold” phases, (c) Temporal structure (phases) segmentation by
proposed, resulting hidden states h1 (Resting), h2 (Stroke), h3 (Post-stroke hold), h4 (Retraction), h5 (Resting), (d) Fixed anchors based methods with
equal-sized segmentation, resulting in hidden states h

′
1, h

′
2, h

′
3, h

′
4, h

′
5.

parts (illustrated in Fig. 2 (b)). Moreover, we propose
a new gesture recognition framework by absorbing the
advantages of the HMM and LSTM. Rather than model
the whole sequences (a gesture) within the LSTM as
conventional RNN methods [32] [34] [36] do, we feed the
network by temporal compositions (hidden states) with
shorter temporal length and more training samples. There-
fore, the parameter learning for LSTM with large size of
training data is not needed. Experiments demonstrate that
our approach achieves state-of-the-art performance on 3D
skeleton based human gesture recognition benchmarks.

The remainder of this paper is organized as follows. Section
II reviews related methods. In Section III, the gesture modeling
problem in HMM is formulated. In Section IV, the Lie group
based 3D skeleton representation is briefly described. In Sec-
tion V, the low-rank and column-block sparsity decomposition
for temporal structure segmentation is proposed. In Section VI,
the hidden states learning via LSTM is presented. Experiments
and discussions are presented in Section VII and conclusions
are drawn in Section VIII.

The preliminary work has appeared in [4].

II. RELATED METHODS

For addressing the temporal dynamics problem of human
activity analysis (including actions and gestures) on 3D skele-
ton data, a variety of different approaches have been proposed.
We provide a categorized overview of the related literature
mainly on local temporal modeling, generative models, and
recurrent neural networks.

A. Approaches with local temporal modeling

To account for temporal dynamics, a common treatment is
the dynamic time warping (DTW), as in Lie group [9], RVV
[16], and LM3TL [27]. DTW resorts to finding an optimal
temporal alignment (reference), then warp all sequences of the
same category to that nominal reference. Finally, a classifier
such as the SVM is typically utilized to perform the recog-
nition task. Nevertheless, the performance of DTW is heavily
dependent on the metric used to measure the similarity of

frames (features). Furthermore, for periodic gestures, DTW
tends to produce large temporal misalignments, which may
encumber the accuracy of classification [17]. Gong et al.
[10] proposed a dynamic manifold warping (DMW) method to
calculate the motion similarity among video sequences, which
is an adaptation of DTW methods in the manifold space.
In [11], the 3D skeleton joint trajectories were modeled by
curves in the Riemannian manifold space, and a dynamic
programming (DP) based distance function was applied to
compare them. Wang et al. [17] [18] introduced the local
occupancy pattern (LOP) to represent 3D human activities,
and proposed the Fourier temporal pyramid (FTP) to capture
local temporal patterns, which is more robust to noise and
temporal misalignments than DTW. On the other hand, FTP is
restricted by the width of the time window and can only utilize
limited contextual information [32]. In [13], Zanfir et al. pro-
posed a moving pose descriptor by integrating the normalized
positions of joints from discriminative key-frames, as well as
their velocities and accelerations. Then, a non-parametric K-
nearest-neighbors (KNN) is adopted for action classification.
Leveraging key-frames can help to exclude frames that are
less relevant to the underlying gestures, but in comparison to
the holistic-based approaches, damaged essential information
is inevitable. In these methods, the local temporal dynamics
is represented within a certain time window, so they cannot
globally capture the temporal evolution of gestures [32].

B. Approaches with generative models

One widely used scheme to deal with the issue of tem-
poral dynamics is the generative models, where time series
are reorganized by a sequential prototype (state). Thus, the
temporal dynamics of gestures are trained as a set of transi-
tions among these prototypes [12]. A representative work is
the HMM. It can globally model the temporal evolution of
gestures, which is more robust to the temporal warping of the
sequence. This algorithm has been adopted in [21] [7] [22]
[28] [29]. However, in HMM, the input sequences have to be
previously segmented, which in itself is a challenging problem.
Commonly, HMM-based methods divide each sequence into
a fixed number of segments with equal-length. An example is
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shown in Fig. 3 (d), states h
′

1, ..., h
′

5 are assigned to frames
from equal-sized segments correspondingly. Nevertheless, it
may be hard to deal with complex gestures composed of
diverse temporal durations. Another popular generative model
is the conditional random field (CRF). Koppula and Saxena
[23] [24] modeled the human-object interactions with a spatio-
temporal CRF. However, the structure of the graphs has to be
fully known, which makes this method highly dependent on
the quality of annotated video data. In [25], Wu et al. proposed
a latent Dirichlet allocation (LDA) based method to model
the co-occurrence and temporal relation among short actions
(words) in long term videos, and the authors used a K-means
based clustering to build action-words and model activities as
sequences of these words. It is noted that a standard K-means
segmentation approach ignored the temporal information and
thus its performance is usually inferior to the traditional
transition state clustering [43]. In fact, existing methods always
face the same difficulty in determining the accurate states from
observations without careful selection of the features, which
undermines the performance of such generative models [17].

C. Approaches with recurrent neural network

Another popular technique for addressing the issue of
temporal dynamics is RNN [32]–[38]. Specifically, the LSTM
[44] carefully designs a suit of schemes to memorize con-
textual information observed from previous sequential inputs,
which enables tracking the long-term temporal dependency. In
[32], Du et al. presented a bi-directional LSTMs for action
recognition, where the entire skeleton was divided into five
groups of joints and each group was fed into a group specific
LSTM subnetwork. Then the system fused the outputs of these
subnetworks hierarchically and finally fed them into another
set of higher level LSTMs to represent the global body move-
ments. Zhu et al. [33] added a group sparse regularization
term to the cost function of LSTM, which enables the network
to learn the co-occurrence of discriminative skeleton joints
automatically. In [36], Liu et al. introduced a trust gate into
the LSTM to learn the reliability of the inputs and accordingly
adjust their confidence in updating the context information.
In [34], an encoding/decoding LSTMs scheme is proposed
for action recognition based on both skeletal and RGB data.
The encoder is trained in an unsupervised manner on 3D
skeleton sequences. Then, the manifold is used to regularize
the supervised learning of decoding LSTM for RGB data
based recognition. In [35], Li et al. utilized a Gaussian-like
curve to measure the confidences of the starting and ending
frame of actions, and introduced a joint classification regres-
sion LSTM to solve online action detection and recognition
problem. In [37], Liu et al. proposed a global context-aware
attention LSTM (GCALSTM), which aimed to handle LSTM’s
restriction in perceiving the global contextual information.
Although LSTM is powerful in modeling sequential data, it
still suffers from remembering the information of the entire
sequence with many time steps (states) [31] [45]. Moreover,
compared with the progress of data augmentation in RGB
images, research on 3D skeleton data is still at a rather early
stage. As such, it is still challenging to train the LSTM on a

limited amount of data [17]. In [46], Koller et al. embed an
HMM into a deep CNN-BLSTM network for sign language
recognition which is a problem closely related to temporal
gesture segmentation. They firstly trained a CNN using weak
frame level annotations, then used an LSTM to generate the
Bayesian posteriors for HMM inferences and made use of the
inferred (resulted) hidden states of each frame for CNN fine-
tuning. This model is based on the hypothesis that certain
boundaries can be determined by some rules in continuous
sequences. Obviously, the output of temporal segment is at
the “words” level but not the “phase” level with semantically
meaningful and discriminative concepts. For example, this
temporal boundary based segmentation may run into a stone
wall when a gesture is composed of many different poses
with temporal boundaries and a subject performs this gesture
cyclically with different rates and orders. Besides, the number
of hidden states is very hard to be determined by the “words”
based model, the method in [46] utilized six hidden states
empirically without clearly defined meanings.

III. HMM FOR GESTURE MODELING

In this paper, the gesture modeling via HMM is formulated
by the following definitions.

Given a set Θ = {θ1, θ2, · · · , θK−1, θK} which contains K
gesture sequences with arbitrary lengths. Any gesture sequence
θk can be denoted as θk = {fk,1, fk,2, · · · , fk,Tk−1, fk,Tk},
where fk,t is the tth frame (or representation of a frame) of
θk, and Tk denotes its length. For any θk from Θ, its label δc
satisfies δc ∈ ∆, where ∆ is the set of C gesture labels which
is denoted as ∆ = {δ1, δ2, · · · , δC−1, δC}.

Specifically, given an observed gesture sequence as X =
{x1, x2, · · ·xT−1, xT }, where X ∈ Θ, we use the HMM to
infer a hidden state sequence H = {h1, h2, · · ·hT−1, hT }.
Any state ht from H fulfills ht ∈ Ψ (1 ≤ t ≤ T ), where
Ψ denotes a universal set which contains all possible Markov
hidden states.

Typically, the state alignment is conducted based on a
hypothesis that gestures are completed by uniformly per-
forming Z defined hidden states in order, and hidden states
from different gesture classes are not overlapping. Then, for
gestures from class δc, given a unique hidden states set
{ψc,1, ψc,2, · · · , ψc,Z−1, ψc,Z}, we generalize this concept for
all gesture classes, and define a universal set of hidden states
for all gesture classes, as

Ψ =


ψ1,1 ψ1,2 · · · ψ1,Z−1 ψ1,Z

ψ2,1 ψ2,2 · · · ψ2,Z−1 ψ2,Z

· · · · · · ψc,z · · · · · ·
ψC−1,1 ψC−1,2 · · · ψC−1,Z−1 ψC−1,Z
ψC,1 ψC,2 · · · ψC,Z−1 ψC,Z

 ,

where ψc,z denotes the zth hidden state of gesture class δc,
1 ≤ δc ≤ C and 1 ≤ z ≤ Z. So in total there are E different
states for all gestures, where E = Z × C.

Thus, according to the HMM full probability model

P (H,X) = P (h1)P (x1|h1)

T∏
t=2

P (ht|ht−1)P (xt|ht), (1)
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where the goal of the gesture modeling problem is to find an
optimal hidden state sequence Ĥ which can maximize the joint
probability P (Ĥ,X), based on a given set of observations X .
Because the observation X is equivalent for all hidden state
combinations H , so the optimization problem for solving Ĥ
could be rewritten as

Ĥ = arg max
H

P (H|X) ∝
X

arg max
H

P (H,X). (2)

From the above discussion, we can conclude that HMM-
based gesture recognition has two critical problems which
need to be carefully solved:
• Given an observation of gesture sequence, how can a

corresponding hidden state sequence be selected that is
optimal in some meaningful sense to best explain the
observation?

• Three sets of parameters need to be estimated to complete
the specification of an HMM, namely the initial proba-
bility of the first hidden state prior P (h1), the hidden
state transition probability P (ht|ht−1), and the emission
probability P (xt|ht) of generating an observation at
time t when given the hidden state ht. How can these
parameters (distributions) be efficiently computed?

For the first problem, Wu et al. [28] [29] employed a deep
belief network (DBN) to estimate the emission probability,
while the authors used a forced alignment scheme to divide
video sequences temporally equal. In [7], a spherical histogram
of the locations of 12 manually selected 3D skeleton joints
is computed. These histograms are projected using linear
discriminant analysis and then clustered into K posture words.
Finally, each action is characterized as a time series of these
words (hidden states). Nevertheless, this one frame one posture
label (state) tactic cannot fully model the motion temporality
since it ignores the contextual information. Actually, an ex-
plicit definition of hidden states of the sequences is necessary,
including the number of states and the number of distinct
frames per state. Although the states are hidden, for many
practical applications there is often some physical significance
attached to the states. For gesture recognition, the gestures
themselves exhibit an internal temporal structure. As defined
in Section I, gestures typically have definite gesticular phases
with varying durations and starting/ending times. To illustrate
this, two examples are given in Fig. 1. Based on this obser-
vation, in this paper, gestures are modeled as compositions
of different gesticular phases. Once the gestures have distinct
phases, models that exploit hidden states are advantageous.
As such, the different gesticular phases correspond to the
different hidden states of HMM and the usage of HMM
allows heterogeneous information of one gesture class to be
distributed over many states (phases), which is key to improve
the ability to model complex patterns.

With the second issue, Gaussian mixture model (GMM)
[21] [22] [42] is widely utilized as the dominant technique for
estimating the emission distribution of HMM. In [28] [29], a
DBN is used as a generative model to replace the traditional
GMM for estimating the emission probability. However, there
exists a conflict that any frame within a sequence usually has
contextual information and is correlated with previous frames.

bm
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y
z
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bn bn

Fig. 4. (a) Illustration of a skeleton consisting of 20 joints and 19 bones,
(b) Representation of bone bm in the local coordinate system of bn, (c)
Representation of bone bn in the local coordinate system of bm.

Nevertheless, this is ignored in previous works. Both the DBN
and GMM treat input frames at each time as independent
variables so that output emission probability in the current
time step only relates to the current input. To solve this issue
and acquire the emission probability more appropriately, the
LSTM [44] is utilized for its stronger contextual information
modeling ability. As a special type of RNN, the LSTM also
utilizes memory cells to store contextual information learned
from previous sequential inputs and stored information can
affect the output of the network.

IV. LIE GROUP BASED SKELETON REPRESENTATION

One important step of modeling gesture is the choice of
features to capture the variability of 3D skeletons, within
and across gesture classes. In this paper, the Lie group-based
representation [47] [9] is introduced. Instead of using the
absolute coordinate, we utilize the relative geometry between
different body parts to characterize the body configuration.

Mathematically, any rigid body displacement can be realized
by a rotation about an axis combined with a translation parallel
to that axis [47]. This 3D rigid body displacement forms
a SE(3), the special Euclidean group in three dimensions.
SE(3) can be identified with the space of 4 × 4 matrices of
the form

P (R,~v) =

[
R ~v
0 1

]
, (3)

where R ∈ SO(3) is a point in the special orthogonal group
SO(3), denotes the rotation matrix, and ~v ∈ R3 denotes the
translation vector.

The human skeleton can be modeled by an articulated
system of rigid segments connected by joints. As such, let
S = (J,B) be a skeleton, where J = {j1, · · · , jN} indicates
the set of body joints, and B = {b1, · · · , bM} indicates the set
of body bones (oriented edges). The relative geometry between
a pair of body parts (bones) can be represented as a point in
SE(3). More specifically, given a pair of bones bm and bn,
their relative geometry can be represented in a local coordinate
system attached to others [9]. Let bi1 ∈ R3, bi2 ∈ R3 denote
the starting and end points of bones bi respectively. The local
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coordinate system of bone bn is calculated by rotating with
minimum rotation and translating the global coordinate system
so that bn1 act as the origin and bn coincides with the x−axis,
Fig. 4 gives an example to explain this pictorially. As such, at
time t, the representation of bone bm in the local coordinate
system of bn (Fig. 4 (b)), the starting point bnm1(t) ∈ R3 and
end point bnm2(t) ∈ R3 are given by

[
bnm1(t) bnm2(t)

1 1

]
=

[
Rm,n(t) ~vm,n(t)

0 1

]
0 lm
0
0
1

0
0
1

 ,
(4)

where Rm,n(t) and ~vm,n(t) respectively denote the rotation
and translation measured in the local coordinate system at-
tached to bn, and lm is the length of bm. In the same way,
the representation of bone bn in the local coordinate system of
bm can be obtained by Rn,m(t), ~vn,m(t), and ln (Fig. 4 (c)).
According to the theory of rigid body kinematics, the lengths
of bones (body parts) do not vary with time. Therefore, the
relative geometries of bm and bn at time t can be described
by

Pm,n(t) =

[
Rm,n(t) ~vm,n(t)

0 1

]
∈ SE(3),

Pn,m(t) =

[
Rn,m(t) ~vn,m(t)

0 1

]
∈ SE(3).

(5)

Let M denotes the number of bones. The resulting
feature of a skeleton is interpreted by the relative ge-
ometry between all pairs of bones, as a point C(t) =
(P1,2(t), P2,1(t), . . . , PM−1,M (t), PM,M−1(t)) on the product
space of SE(3) × · · · × SE(3), which is a group for the
standard matrix multiplication, and that it can be endowed
with a differentiable structure. It is therefore a Lie group.
This relative geometry has natural stability and consistency.
For example, if a pair of bones undergo the same rotation,
their relative geometry matrix would not be altered. However,
the Lie group is endowed with the Riemannian manifold such
that standard classification and clustering algorithms are not
directly applicable to this non-Euclidean space.

The tangent space of SE(3) at the identity I4 is called
its Lie algebra, denoted by se(3), which is isomorphic to the
space of twists and therefore provides a natural setting for
analyzing instantaneous motions [47]. In that way, the former
classification tasks in manifold curve space are converted into
the classification problems in typical vector space. The se(3)
can be identified with 4× 4 matrices of the form

ξ̂ =

[
ω̂ ~v
0 0

]
=


0 −ω3 ω2 v1
ω3 0 −ω1 v2
−ω2 ω1 0 v3

0 0 0 0

 , (6)

where ω̂ is a 3 × 3 skew-symmetric matrix and can be thus
identified with a vector ω = [ω1, ω2, ω3]T ∈ R3, and ~v ∈ R3.
In other words, each element of se(3) can be identified with
a vector ξ = [ω1, ω2, ω3, v1, v2, v3]T ∈ R6.

The logarithm map logP : SE(3)→ se(3) between the Lie
group and Lie algebra [47] is given by

ξ̂ = log

[
R ~v
0 1

]
=

[
ω̂ A−1~v
0 0

]
, (7)

where ω̂ = logR and

A−1 = I − 1

2
ω̂+

2 sin ‖ω‖ − ‖ω‖ (1 + cos ‖ω‖)
2‖ω‖2 sin ‖ω‖

ω̂2 ω 6= 0.

(8)
If ω = 0 then A = I . Here, since the logP is not unique,
typically, the value with the smallest norm is used [9].

As a result, a skeleton can be represented by a point in the
product space of the Lie group SE(3) × · · · × SE(3), and
the number of SE(3) is 2C2

M , where C2
M is the combination

formula. Furthermore, this SE(3) × · · · × SE(3) can be
mapped to its Lie algebra se(3) × · · · × se(3) (illustrated in
Fig. 2 (b)), and each se(3) can be identified with a vector
[ω1, ω2, ω3, v1, v2, v3]T ∈ R6. As such, at time t, a human
skeleton G can be modeled by a 6M(M − 1) dimensional
vector, then G ∈ R6M(M−1).

V. LOW-RANK DECOMPOSITION FOR EXPLORING
GESTURE TEMPORAL STRUCTURES

In this section, we attempt to discover the temporal struc-
tures (phases) of gesture sequences and formulate a model
over the temporal domain which is able to explore the hidden
states of gestures.

Given an observed sequence (T frames), for a gesture per-
former, we can construct a matrix D by stacking (Lie algebra
based) skeletal representations of every frame horizontally
(column wise), then D ∈ RG×T . Since the gesture’s “hold”
phases are with static poses, and Lie group (algebra)-based
representation has properties of view-invariance and stability
for dynamics, these static poses (“hold” phases) should be
captured by a low-rank matrix, and hand movements (phases)
means gesture changes which cannot be fitted into the low-
rank model of static poses, and thus should be treated as out-
liers. Based on this observation, we consider the hidden states
exploration from the viewpoint of a matrix decomposition and
optimization problem, which can be expressed as

D = L+ S, (9)

where L and S denote the “hold” states (phases) and hand
movement signals (phases) respectively. We assume that the
static poses of “hold” states are linearly correlated with each
other, forming a low-rank matrix L. Component S should be
a column-block sparse matrix with non-zero columns corre-
sponding to the outliers. In order to eliminate ambiguity, the
columns of the low-rank matrix L corresponding to the outlier
columns are assumed to be zeros. To formalize column-block
priors on outliers, we introduce the `2,1-norm and then propose
a Low-rank and Column-Block sparsity matrix Decomposition
(LCBD) method, as

min
L,S
‖L‖∗ + κλ‖S‖2,1 + κ (1− λ) ‖L‖2,1 s.t. D = L+ S,

(10)
where ‖L‖∗ means the nuclear norm of matrix L, the sum of
its singular values, and ‖S‖2,1 means `1-norm of the vector
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Algorithm 1 Low-rank and Column-Block sparsity matrix
Decomposition
Input: Given Matrix D ∈ RG×T and the parameters κ, λ.
Output: Estimate of (L, S).

1: Parameters initialization: S0 = Y0 = 0; L0 = 0;
µ0 = 40/‖sign (D)‖2; ρ > 1; κ = 0.041; λ = 0.73; k = 0.

2: While not converged do
3: //Line 4-11 solve Lk+1 = arg minLfµ (L, Sk, Yk), as Eq.

(13).
4: GL=D − Sk + µ−1

k Yk.
5: j ← 0, L0

k+1 = GL.
6: While not converged do
7: L

(j+1/2)
k+1 = USβ (

∑
)V T where L

(j)
k+1 = U

∑
V T is the

SVD of L(j)
k+1.

8: Π = αj

(
τ βκ(1−λ)

1+βµk

(
2L

(j+1/2)
k+1

−L(j)
k+1

+βµkG
L

1+βµk

)
− L(j+1/2)

k+1

)
9: L

(j+1)
k+1 = L

(j)
k+1 + Π.

10: j ← j + 1.
11: end while.
12: Lk+1 = L

(j+1/2)
k+1 .

13: //Line 14-15 solve Sk+1 = arg minSfµ (Lk+1, S, Yk).
14: GS=D − Lk+1 + µ−1

k Yk.
15: Sk+1 = τ κλ

µk

(
GS
)
.

16: Yk+1 = Yk + µk (D − Lk+1 − Sk+1).
17: µk+1 = ρµk; k ← k + 1.
18: end while.
19: L← Lk, S ← Sk.

formed by taking the `2-norms of the columns of matrix S,
as

‖S‖2,1 =

T∑
i=1

‖Si‖2, (11)

where Si denotes the ith column of S.
The extra introduced term κ (1− λ) ‖L‖2,1 ensures that

recovered matrix L has exact zero columns corresponding to
S [48] [49] [50]. Eq. (10) is an optimization problem and we
could solve it based on the augmented Lagrange multiplier
(ALM) [48] [51] [52], which can be defined as

L (L, S, Y ;µ) = ‖L‖∗ + κλ‖S‖2,1 + κ (1− λ) ‖L‖2,1+

〈Y,D − L− S〉+
µ

2
‖D − L− S‖2F ,

(12)

where Y is a vector of Lagrange multipliers, µ is a positive
scalar. ALM solves (12) by alternating between optimizing
the prime variables L and S and updating the dual variable
Y , which solves the following three sub-problems Lk+1 = arg minLL1 (L, Sk, Yk;µk)

Sk+1 = arg minSL1 (Lk+1, S, Yk;µk)
Yk+1 = Yk + µk (D − Lk+1 − Sk+1)

. (13)

The first problem in (13) which solves for L at fixed S and
Y , can be explicitly expressed as the following form

min
L
{‖L‖∗ + κ (1− λ)‖L‖2,1+

µ

2

∥∥(D − Sk + µ−1k Yk
)
− L

∥∥2
F
}.

(14)

In each iteration, the (14) can be rewritten as

Lk+1 =

arg min
L

{
‖L‖∗ + κ (1− λ) ‖L‖2,1 +

µk
2

∥∥GL − L∥∥2
F

}
,

(15)

where GL = D−Sk+µ−1k Yk. We use the Douglas/ Peaceman
Rachford (DR) monotone operator splitting method [53] [54]
to iteratively solve (15).

Define f1 (L) = κ (1− λ) ‖L‖2,1 + µk
2

∥∥GL − L∥∥2
F

and
f2 (L) = ‖L‖∗. For β > 0 and a sequence αj ∈ (0, 2), the
DR iteration for (15) is expressed as

L(j+1/2) = proxβf2
(
L(j)

)
,

L(j+1) = L(j) + αj
(
proxβf1

(
2L(j+1/2) − L(j)

)
− L(j+1/2)

)
,

(16)
where the two proximity operators involved in DR iteration
are defined as

proxβf1 (L) = τ βκ(1−λ)
1+βµk

(
L+βµkG

L

1+βµk

)
,

proxβf2 (L) = USβ (
∑

)V T ,

τη (Gp) = Gp max
(

0, 1− η
‖Gp‖2

)
, p = 1, 2, ..., n

Sβ (x) = max (0, x− β) , x ≥ 0, β > 0.

(17)

With the same idea of developing (14), the second problem
in (13) can be shown as the following equivalent formula:

min
S

µk
2

∥∥(D − Lk+1 + µ−1k Yk
)
− S

∥∥2
F

+ κλ‖S‖2,1. (18)

Similarly, note GS = D − Lk + µ−1Yk. Then,

S = τ κλ
µk

(
GS
)
. (19)

The whole algorithm is summarized in Algorithm 1. In the
processing of iteration, the error in outer loop is computed
as ‖D − Lk − Sk‖F /‖D‖F . The outer loop stops when it
reaches the value lower than 10−7 or the maximal iteration
number 500 is reached. The error in the inner loop stops when
the difference between successive matrices Ljk equals to 10−6

or a maximal iteration equals to 20. The tuning parameters
κ and λ are set to 0.041 and 0.73, respectively. For the DR
iteration, αj ≡ 1, and β is set to 0.57. The ALM parameter
ρ = 1.1. The convergence is guaranteed by the ALM algorithm
(we refer the interested readers to [48]).

Here we investigate the complexity of the proposed LCBD.
For the optimization method shown in Algorithm 1, each outer
iteration consists of three updating parts, namely the L, S,
and Y . For minimizing the variable L, DR monotone operator
splitting algorithm is proceeded to solve the singular value
decomposition (SVD) and shrinkage operations alternately.
Since the size of the matrix D is G×T , according to formulae
quoted by Golub and Van Loan [55], an exact SVD requires
4G2T + 8GT 2 + 9T 3 flops (floating-point operations), and
the multiplication of the shrank singular value matrix with
two singular vectors matrices which costs (G + T )r2 flops
[56], where r is the rank of the matrix D (commonly, r
is much smaller than G and T ). Also, the complexity of
shrinkage operations is O(GT ). Therefore, to sum up, the
major computations of solving L cost O(k1(G2T+GT 2+T 3+
(G+T )r2+GT )) = O(k1(G2T+GT 2+T 3)), where k1 is the
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Fig. 5. Illustration of the pipelines of the proposed method. (a) training
pipeline, (b) testing pipeline. Please note the purpose we use ft rather than
xt in P (ht|ft) is to emphasize the Lie group based representation.

maximum iteration number of inner loop. Updating S involves
element-wise addition and the shrinkage operations of G× T
matrices, then the computational cost is O(GT ). Updating
multiplier Y only requires element-wise addition, so its time
complexity is O(GT ). In summary, the main computational
complexity of each outer iteration of the proposed LCBD is
O(k1(G2T +GT 2 + T 3)).

VI. HIDDEN STATES LEARNING VIA LSTM

As reported in the previous section, we initialize the hidden
states of the temporal segments for each training sample,
according to the most discriminative phases of sequences as
presented in Section V. Based on these hidden states we can
calculate three sets of HMM parameters in a more meaningful
sense than in previous methods.

For representing the probability of the first hidden state
prior, we use π = (πi)E×1, where πi = P (h1 = ψi), and
ψi is the ith state of hidden states set Ψ. As defined in Section
III, E is the number of hidden state types for all gestures.
Then we can estimate πi by calculating

πi =

∑K
k=1(hk,1 == ψi)

K
, (20)

where k denotes the index of an observation, and K is the
total number of observations (gesture sequences).

Next, the hidden states transition parameter (matrix) is de-
noted as A = [ai,j ]E×E , where ai,j = P (ht = ψj |ht−1 = ψi).
We can calculate ai,j by

ai,j =

∑K
k=1

∑Tk
t=2((hk,t−1 == ψi)AND(hk,t == ψj))∑K

k=1

∑Tk
t=2(hk,t−1 == ψi)

.

(21)
Then, for representing the probability of the hidden state

prior P (ht), we use % = (%i)E×1, where %i = P (ht = ψi),
and ψi is the ith state of hidden states set Ψ. Then we can
estimate %i by calculating

%i =

∑K
k=1(hk,t == ψi)

Π
, (22)

where k denotes the index of an observation, and Π is the
total number of frames of all observations.

Another important parameter is the emission probability.
Compared to DBN and GMM models are widely used in
previous methods, LSTM can learn the contextual information
from sequential data, which provides a powerful capability for
sequential data modeling. On one hand, it receives the output
from the previous one step and uses it as a part of the input in
the current time step. On the other hand, it uses memory cells
to store contextual information learned from the input and uses
gate units to maintain the stored contextual information.

In order to ensure that the LSTM generates outputs in the
form of the emission probability P (xt|ht), we use a softmax
loss function to train the network. It can instruct the LSTM
network to generate a posterior distribution P (ht|xt, ζ), where
ζ is the network parameter shared by all time steps. Thus, we
can use such network to infer the emission probability by

P (xt|ht) =
P (ht|xt)P (xt)

P (ht)
∝
xt

P (ht|xt)
P (ht)

. (23)

Lastly, by combining (1), (2) and (23), we can arrive at our
final objective function as follows

Ĥ = arg max
H

P (h1|x1)

T∏
t=2

P (ht|ht−1)
P (ht|xt)
P (ht)

, (24)

where Ĥ denotes the optimal hidden state sequence. The
optimization problem of (24) can be easily solved by Viterbi
path decoding [42]. The pipelines (training and testing) of the
proposed method are shown in Fig. 5. In the training pipeline
(see Fig. 5 (a)), the input of LSTM is the Lie group based
representation ft of frame xt (an 3D skeleton), and its label is
a hidden state ψc,z which is obtained by the proposed LCBD
method, where the subscript c is the gesture category and z is
the hidden state index. The purpose of training is to force the
LSTM to generate the posterior probabilities for modelling the
HMM emission probabilities. More specifically, in the testing
(see Fig. 5 (b)), given a new observation xt (Lie algebra feature
ft), the pre-trained LSTM can yield posterior probabilities
P (ht|xt), which are needed for Eq. (24). Finally, a brief block
diagram of the proposed system is summarized in Fig. 6.

It is noted that LSTM based methods commonly feed the
network with a whole gesture or action sequence (frames
with the same label). Although LSTMs are designed to learn
the long-term temporal dependency, it is still challenging for



9

LSTMLCBD

Training 

Data

LSTMHMM

Testing 

Data

Markov hidden states 

(label for LSTM) Emission probabilities of HMM

(a) Training (b) Testing 

Fig. 6. Block diagram of the proposed method.

(a) (b)

(c) (d)
|   Resting  |             Stroke           |     Post-stroke hold    |                Retraction            |Resting|

Fig. 7. Illustration of arrangement of matrix L. (a) the original L with many chunks (continuous frames with same property), the columns in gray are the
low-rank part, and the white columns denote the non-low-rank part, (b) “dilation” operation with interval threshold 2 to enlarge the boundaries of chunks, (c)
“erosion” operation with length threshold 2 to erode away the isolated small chunks, (d) “dilation” operation with interval threshold 3.

LSTM to memorize the information of the entire sequence
with many states [31] [45]. In addition, with a limited amount
of training data, training an LSTM is prone to overfitting [18].
In our scheme, the shorter video segments (states) are fed into
the network to bypass the difficulty of LSTM when modeling
long-term gestures with temporal dynamics. Furthermore, this
states-based feeding enlarges the number of training samples
but without any data augmentation operations. Experiments
demonstrate that our method outperforms LSTM with the
simple mode of feeding the whole sequence.

VII. EXPERIMENTS

In this section, a series of experiments are performed to
evaluate the proposed approach. Four benchmark datasets,
ChaLearn 2014 gesture [3], MSR Action3D [57], UTKinect-
Action3D [7], and SBU Kinect interaction [58] datasets are
used for evaluation purposes.

A. Implementation Details and Settings

In the proposed method, the emission probability is esti-
mated by an RNN with four layers which are connected in
the following order: one LSTM layer with 512 units, a fully
connected layer with 256 neurons, a dropout layer with the
dropout ratio of 50%, and a softmax loss layer to force the
network to generate the likelihood P (ht|xt, ζ). When training
the network, we set the batch size to 400. The learning rate is
fixed to 0.01 for the ChaLearn 2014 gesture dataset, and 0.002
for MSR Action3D, UTKinect-Action3D and SBU Kinect
interaction datasets. The network is trained until the validation

accuracy and the loss are stable after a number of iterations
depending on the size of training data. We set 70 as the max
training epoch for the ChaLearn 2014 gesture dataset due to
its large training data size. For the MSR Action3D, UTKinect-
Action3D and SBU Kinect interaction datasets, the training
epoch is set to 200.

An important parameter of the proposed method is Z, the
number of hidden states. As mentioned in Section I, a gesture
is typically composed by five phases [5] [6], as such, the Z is
set to 5. The outputs (matrix L) of matrix decomposition may
not always in the form of 5 chunks (continuous frames with
the same property) because the low-rank matrix decomposition
is an unsupervised method, another reason is the disturbances
from noises and misalignments of the skeleton. Therefore, we
need a post-processing step to arrange the matrix L which
ensures that L can be segmented into 5 chunks (an example
is illustrated in Fig. 7 (a)). Based on the phase definition of
the gesture [5] [6], we can conclude that both the beginning
and ending phases are Resting. Thus, the first and last several
frames (at least the first and the last frame) of each gesture
sequence should be low-rank parts (the columns in gray colors,
as illustrated in Fig. 7 (a)) of the matrix L, and they could
be initialized as Resting phases. Next, the longest low-rank
chunk (except two Resting phases) of matrix L is selected
to initialize the Post-stroke hold phase. The final arrangement
should make matrix L to have three low-rank chunks (two
Resting phases and a Post-stroke hold phase) and two non-
low-rank ones (Stroke and Retraction phases), as an example
shown in Fig. 7 (d). After the initialization of phases, there
will be two particular situations if the number of chunks is
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smaller than 5, namely, there is only one chunk when all
columns of matrix L are low-rank (or non-low-rank), or there
will be two low-rank chunks (Resting phases) and a non-low-
rank chunk in matrix L. For the above two cases, an equal
division scheme can be utilized to obtain 5 phases (chunks).
But in most cases, the number of chunks is greater than 5. In
this paper, inspired by the morphology processing of image
binarization, for a low-rank chunk, an operation similar to
“dilation” is adopted to enlarge its boundaries through merging
the adjacent low-rank chunks, if the interval among them is
smaller than a given threshold. The merged chunk will repeat
this operation until the above condition cannot be satisfied. The
“dilation” is operated only on three chunks corresponding to
the initialized low-rank phases. Also, the “erosion” operation is
utilized to erode away the isolated small chunks whose length
is smaller than a given threshold. In the proposed method,
we employ an iterative process to perform the arrangement.
More specifically, a “dilation” and an “erosion” operation are
executed successively in each iteration until the number of
chunks (phases) is equal to five, and we increase the thresholds
of interval and chunk length after each iteration. The starting
thresholds and step size are set to 2 and 1, respectively.

The effectiveness of the proposed method is compared to
eighteen state-of-the-art approaches, which are simply divided
into three groups.

The first group’s methods are the most related to our model,
including four HMM related methods, namely HMM with
GMM (HMM-GMM) [42], HMM with AdaBoost (HMM-
AdaBoost) [21], HMM with DBN (HMM-DBN) [28] and its
extension (HMM-DBN-ext) [29].

The methods selected as the second group are based on clas-
sic feature representations, including histogram of 3D joints
(HOJ3D) [7], EigenJoints [8], actionlet ensemble (Actionlet)
[17] [18], histogram of oriented 4D normals (HON4D) [14],
discriminative key-frames (Key-frames) [13], Lie group [9],
Riemannian manifold (Manifold) [11], rotation and relative
velocity with DTW (RVV+DTW) [16], latent max-margin
multitask learning (LM3TL) [27], and spatio-temporal naive-
bayes nearest-neighbor (ST-NBNN) [26]. The last group in-
cludes four deep neural networks, namely the convolutional
neural network based ModDrop (CNN) [30], LSTM [44],
hierarchical recurrent neural network (HBRNN) [32], and
spatio-temporal LSTM with trust gates (ST-LSTM-TG) [36].
The baseline results are reported in the original papers. Note
that some of the compared methods were developed for multi-
modal data such as the HMM-DBN-ext [29] which utilized
RGB frames and skeletons, while the proposed method only
uses 3D skeleton data.

For the sake of better understanding the performance of
the proposed algorithm, we analyze the contributions of each
component (ablation study) to the final performance of the
system. Firstly, to clarify how much of the improvement in the
results is coming from Lie group based representation, the raw
data should be fed to the proposed HSL-LSTM. Here, instead
of using the original skeleton data (absolute location of the per-
former), all 3D joint coordinates are simply transformed from
the global coordinate system to a person-centric coordinate
system by placing the hip center at the origin (person-centric).

vattene vieni qui            perfetto furbo che due palle

go away               come here                perfect                  clever                  that sucks

fame               tanto tempo      buonissimo messid'accordo sono stufo

hungry          a long time ago        very good                 agreed I've had enough

ok                 cosa ti farei            basta                   prendere          non ce ne piu

OK           what would you do?      enough         want to be beaten?       no more

che vuoi d’accordo sei pazzo combinato freganiente

what do you want?   getting along       you are crazy       what you did?         I don’t care

Fig. 8. Example RGB frames sampled from 20 gesture classes of the
ChaLearn 2014 [3] dataset. The meanings of these gestures in Italian and
English (in italics) are given.

Next, in order to verify the effectiveness of the hidden states
partitioning via proposed low-rank and column block sparsity
decomposition (LCBD), we compared its performance with
the equal-length division (fixed anchors).

TABLE I
COMPARISON OF RECOGNITION ACCURACY (%) WITH EXISTING

SKELETON-BASED METHODS ON CHALEARN 2014 [3] DATASET (BEST:
BOLD, SECOND BEST: UNDERLINE).

Methods Accuracy
HMM-GMM [42] 49.1
HMM-DBN [28] 83.6
HMM-DBN-ext [29]* 86.4
EigenJoints [8] 59.3
Lie group [9] 79.2
ModDrop (CNN) [30]* 93.1
LSTM [44] 82.0
Ours (person-centric + fixed anchors) 87.7
Ours (Lie group + fixed anchors) 89.1
Ours (person-centric + LCBD) 93.2
Ours (Lie group + LCBD) 93.8

* The methods use skeleton and RGB-D data.
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Fig. 9. Visualization results (by t-SNE) of gesture data (ChaLearn 2014 [3]
dataset) with obtained hidden states. (a) a gesture sequence. (b) 10 randomly
selected sequences from a category of the basta.

B. ChaLearn 2014 gesture Dataset

The ChaLearn 2014 is a gesture dataset of Looking At
People (LAP) challenge [3] with multi-modality, including
data of RGB frames, depth maps, user body masks, and 3D
skeletal joint positions. This dataset collects 940 videos and
each one contains 10 to 20 Italian cultural gesture instances.
In total, there are 13,585 gesture instances from 20 classes.
Fig. 8 gives sampled frames from each gesture class.

To illustrate the hidden states (temporal structure) of a
gesture are discriminative and testify the efficient of the
proposed LCBD, we visualize the gesture data (Lie algebra
feature) with the obtained hidden states (by LCBD) in a 2D
feature space. As reported in Section IV, the utilized Lie
algebra is a high dimensional feature vector (6M(M − 1)).
The t-Distributed Stochastic Neighbor Embedding (t-SNE)
[59] is employed since it is an algorithm for dimensionality
reduction that is well-suited to visualizing high-dimensional
data [59]. In the experiments, a gesture instance is selected
randomly from ChaLearn 2014 [3] dataset, as shown in Fig.
9 (a), the visualization result of this gesture sequence has
verified that the data of three “hold” phases (hidden states)
h1 (Resting), h3 (Post-stroke hold), and h5 (Resting) are
clusters in the 2D feature space. It is noted that the h1 and
h5 are close to each other, this is because both of them are
Resting (states) performed by a subject which have similar

appearances (static resting poses). In contrast to three “hold”
states, h2 (Stroke) and h4 (Retraction) are hand movements
(phases) which represent gesture changes, it can be seen from
Fig. 9 (a), their data are dispersed in the 2D feature space.
Furthermore, 10 sequences are selected in a random manner
from a gesture category of basta (enough), their visualization
results are illustrated in Fig. 9 (b). Obviously, all sequences
have clear clusters of h1 (Resting), h3 (Post-stroke hold), and
h5 (Resting), which can prove the discrimination of the gesture
again. Please note several sequences’ h3 are close to each
other, as shown in the upper-right corner of Fig. 9 (b). It can
be explained as a bigger cluster since they are performed in
a similar pose (Post-stroke hold) to express the same gesture
(category).

92.7

   

   

0.9

   

1.2

   

1.0

   

   

   

   

   

   

   

   

   

   

   

   

   

91.3

   

   

   

   

   

1.3

   

1.5

   

   

0.8

   

   

   

4.1

   

   

   

   

0.8

93.7

   

   

2.2

   

   

   

   

   

   

1.7

   

0.8

   

1.0

   

   

   

2.2

1.2

   

95.4

   

   

   

1.9

   

0.5

   

   

   

   

   

   

   

3.7

   

1.2

   

   

   

   

96.4

   

1.0

   

   

   

   

   

   

   

   

1.2

   

   

   

0.7

2.0

   

2.8

   

   

90.3

   

   

   

   

0.7

1.6

   

   

   

   

   

   

1.5

   

   

   

   

   

   

   

96.6

   

   

   

1.1

   

   

   

   

0.8

   

   

   

   

3.1

   

   

   

   

   

   

88.3

   

   

   

   

   

1.3

   

   

   

   

   

   

   

   

   

   

   

1.5

   

   

93.1

0.8

   

   

   

   

   

   

   

2.0

1.6

   

   

2.0

   

   

   

   

   

   

   

95.6

   

   

   

   

   

   

   

   

   

1.7

   

   

   

   

   

2.0

   

   

1.1

   

94.7

   

   

   

1.0

   

   

0.7

   

   

   

1.2

   

   

   

2.8

0.8

1.4

   

   

   

94.3

2.1

   

   

1.4

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

1.1

95.4

   

   

   

   

   

1.3

   

   

   

   

   

1.5

   

   

2.9

   

   

   

1.6

   

95.0

   

1.4

   

   

   

1.5

   

   

2.5

   

   

   

   

   

   

   

1.9

   

   

   

98.2

   

   

   

   

1.9

   

   

   

   

   

   

   

1.3

   

   

   

   

   

2.0

   

94.3

   

   

   

0.9

   

3.5

1.0

   

   

   

   

   

0.9

   

   

   

   

   

   

   

93.1

1.1

   

   

   

   

   

2.7

   

   

   

   

2.5

1.6

1.6

   

   

   

   

   

1.8

92.5

   

   

   

   

   

   

   

   

   

1.9

2.4

   

   

   

   

   

   

0.9

   

   

94.2

2.1

   

   

   

1.0

2.1

   

1.6

   

   

   

   

1.4

   

1.7

   

   

   

   

1.4

90.0

va
tte

ne

vie
ni q

ui

per
fet

to
fu

rb
o

ch
e d

ue p
all

e

ch
e v

uoi

d'ac
co

rd
o

se
i p

az
zo

co
m

bin
at

o

fre
ga

nien
te ok

co
sa

 ti
 fa

re
i
bas

ta

pre
nder

e

non
 ce

 ne p
iu

fa
m

e

ta
nto

 te
m

po

buon
iss

im
o

m
es

sid
'ac

co
rd

o

so
no s

tu
fo

vattene

vieni qui

perfetto

furbo

che due palle

che vuoi

d'accordo

sei pazzo

combinato

freganiente

ok

cosa ti farei

basta

prendere

non ce ne piu

fame

tanto tempo

buonissimo

messid'accordo

sono stufo

Fig. 10. Confusion matrix of the proposed method on ChaLearn 2014 [3]
gesture dataset.

For quantitative evaluations, we use the protocol provided
by the dataset which assigns fixed 7,754 gesture sequences for
training, 3,362 sequences for validating, and 2,742 sequences
for testing. It is noted that the Jaccard index score recommend-
ed by the publisher of Chalearn 2014 dataset is a frame-level
metric. However, the proposed method is a sequential based
model, so the Jaccard index score is not suitable to use as
a metric in this study. As shown in Table I, all the results
reported are in accuracy, which makes a fair comparison. To
verify the effectiveness of the hidden states exploration, we
compared the proposed method with three HMM-based state
of the arts. It can be seen that the recognition accuracies of
HMM with GMM [42] and with DBN (HMM-DBN) [28]
are only 49.1% and 83.6%. This is mainly because both of
the DBN and GMM treat input frames at each time step as
the independent variable, thus the contextual information is
ignored when learning the emission probability. The HMM-
DBN-ext [29] can reach up to 86.4%, while it used skeleton,
RGB, and depth information. It also can be observed that
the accuracy of the LSTM [44] is 5.7 percent less than the
proposed method with person-centric data input and fixed
anchors division. As discussed in the introduction, LSTM is
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designed to explore the long-term temporal dependency, but
it is still challenging for LSTM to memorize the information
of the entire sequence with many states [31] [45]. Moreover,
with a limited amount of training data, training an LSTM
is prone to overfitting [18]. In the proposed method, shorter
gesture segments (states) are fed into the network to bypass the
difficulty of LSTM when modeling multi-states gestures with
temporal dynamics. Furthermore, this states-based feeding
enlarges the number of training samples but without any data
augmentation operations. Take the Chalern 2014 dataset for
example, we obtained 38,770 gesture (hidden states) segments
for training, which is five times more training samples than
LSTM with raw (7,754) gesture sequences. The method in
[9] utilized the same Lie group to represent the 3D skeletons
as ours, and it employed the DTW to deal with the temporal
dynamics issue. However, DTW cannot globally capture the
temporal evolution of whole sequences, so its performance
is inferior to the proposed. Through the ablation study of
the proposed, we can see that the results improved only 1.4
and 0.6 percent by using Lie group representation. Obviously,
the main improvements in the results are coming from better
partitioning of the sequences, namely the proposed LCBD.
It is notable that the ModDrop [30] was the winner of the
2014 LAP Challenge (track 3). The proposed method can
achieve superior performance to ModDrop even without using
the RGB-D data.

Next, in order to present the accuracy of the proposed
method on individual gestures, the confusion matrix is shown
in Fig. 10. As can be seen, the proposed method achieves high
accuracies for most of the gesture categories. There are a few
confusions between similar gestures with very small values,
such as the tanto tempo and vieni qui, and also in the case of
furbo and buonissimo.

C. MSR Action3D Dataset

The MSR Action3D [57] is a commonly used actions recog-
nition dataset, especially for evaluating the effectiveness of
temporal dynamics modeling techniques, since this dataset is
challenging where actions are highly similar to each other and
have typical large temporal misalignments. MSR Action3D
dataset comprises of 567 pre-segmented action instances.
There are 10 subjects performing 20 classes of actions. This
dataset has attracted lots of attention and many researchers
have reported their results on it. For a fair comparison, the
same evaluation protocol, namely the cross-subject test as
described in [57] is followed, where half of the subjects are
used for training (subjects number 1, 3, 5, 7, 9) and the
remainder for testing (2, 4, 6, 8, 10).

The recognition accuracies are presented in Table II. It
can be seen that the proposed (with LCBD) achieve better
performance than DTW-based recognition approaches, such
as Lie group [9] and RVV+DTW [16]. In [13], the authors
emphasized the importance of discriminative key-frames for
action recognition. However, the key-frames selection itself
is a difficult task, which usually suffers from an issue of
information losing. The HMM-DBN [28] employed a deep
neural network to learn the parameters of HMM, while it

TABLE II
COMPARISON OF RECOGNITION ACCURACY (%) WITH EXISTING

SKELETON-BASED METHODS ON MSR ACTION3D [57] DATASET (BEST:
BOLD, SECOND BEST: UNDERLINE).

Methods Accuracy
HMM-AdaBoost [21] 63.0
HMM-GMM [42] 81.5
HMM-DBN [28] 82.0
EigenJoints [8] 82.3
Actionlet [17] [18]* 88.2
HOJ3D [7] 78.9
HON4D [14]* 88.9
Key-frames [13] 91.7
Lie group [9] 92.5
Manifold [11] 92.1
RVV+DTW [16] 93.4
LM3TL [27] 95.6
ST-NBNN [26] 94.8
LSTM [44] 88.9
HBRNN [32] 94.5
ST-LSTM-TG [36] 94.8
Ours (person-centric + fixed anchors) 92.6
Ours (Lie group + fixed anchors) 93.7
Ours (person-centric + LCBD) 95.9
Ours (Lie group + LCBD) 96.3

* The methods use skeleton and RGB-D data.

utilized the fixed anchors for obtaining the hidden states.
On the contrary, we formulate a model over the temporal
domain that is able to capture the static poses between sub-
gestures, therefore, a gesture sequence could be segmented
into temporal compositions (states) with semantically mean-
ingful and discriminative concepts. Compared with HMM-
DBN, the experimental results on MSR Action3D dataset
verifies the effectiveness of the proposed method again. In
the ablation study of the proposed method, the person-centric
inputs with fixed anchors hidden states setting can yield a
better result than LSTM and HMM-based methods. As can be
seen, the main improvements in the results are coming from
better hidden states settings by LCBD, rather than the Lie
group features. Actually, in all of the 16 methods, our models
with LCBD achieve the highest recognition accuracies.

In Fig. 11, we report the accuracy of each action in the
form of a confusion matrix. It can be found that the proposed
method works very well on the MSR Action3D dataset, where-
as the performances on some actions still need to improve,
such as the hand catch and hammer. The classification errors
occur if the way of performing these two actions varies a lot
by different subjects between the training and test sets. As can
be observed, the most confused actions are between bend and
pick up & throw. This can be explained by the fact that the
occlusion is so large that the skeleton tracker fails frequently
in these actions.

D. UTKinect-Action3D and SBU Kinect Interaction Datasets

The experimental results show that the proposed method is
effective and achieves state-of-the-art performance on gesture
recognition. In order to better understand our performance
on action recognition, we also test the proposed method on
two popular skeleton-based datasets commonly used in the
action recognition literature, namely the UTKinect-Action3D



13

96.4

   

   

   

   

1.2

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

100.0

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

87.0

5.3

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

2.9

81.6

   

2.1

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

5.5

6.2

89.4

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

5.4

4.6

95.2

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

2.8

1.5

   

   

91.8

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

6.5

100.0

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

100.0

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

100.0

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

100.0

2.5

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

94.4

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

96.8

   

   

   

   

   

   

7.6

   

   

   

   

   

   

   

   

   

   

   

   

   

100.0

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

100.0

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

2.0

   

   

   

100.0

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

1.1

   

   

   

   

100.0

   

   

   

3.6

   

   

   

   

1.5

   

   

   

   

   

   

   

   

   

   

   

100.0

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

100.0

   

   

   

1.8

   

6.0

   

1.7

   

   

   

   

   

3.2

   

   

   

   

   

   

92.4

high
 ar

m
 w

av
e

hor
izo

nta
l w

av
e

ham
m

er

han
d ca

tch

fo
rw

ar
d punch

high
 th

ro
w

dra
w x

dra
w ti

ck

dra
w ci

rc
le

han
d cl

ap

tw
o h

an
d w

av
e

sid
e b

ox
in

g
ben

d

fo
rw

ar
d kick

sid
e k

ick

jo
gg

in
g

ten
nis 

sw
in

g

ten
nis 

se
rv

e

go
lf 

sw
in

g

pick
 up &

 th
ro

w

high arm wave

horizontal wave

hammer

hand catch

forward punch

high throw

draw x

draw tick

draw circle

hand clap

two hand wave

side boxing

bend

forward kick

side kick

jogging

tennis swing

tennis serve

golf swing

pick up & throw

Fig. 11. Confusion matrix of the proposed method on MSR Action3D [57]
dataset.

[7] and SBU Kinect interaction dataset [58]. The UTKinect-
Action3D is a difficult benchmark due to its high intra-class
variations. This dataset collects 10 types of actions using
the Kinect. Each action is performed by 10 subjects for two
times. As a result, a totally 200 action instances are collected
in 20 video sequences. We follow [7] and use the Leave-
One-Sequence-Out Cross Validation setting which selects each
sequence as the testing sample in turn, regards others as
training samples and calculates the average (20 rounds of
testing) recognition rate. The SBU-Kinect interaction dataset
contains 8 types of two-person interactions. We perform 5-
fold cross validation on this dataset by using the same testing
protocol as in [58]. In the process of experiments, we noticed
that the low-rank assumption on video sequences from these
two datasets cannot always be satisfied. This is because
many videos contain person interactions, compared to regular
gesture recognition, those (mutual) action sequences don’t
have distinct temporal structures that can be segmented by the
low-rank matrix decomposition. To complete the experiments,
we use fixed anchors to obtain hidden states. We summarize
the classification accuracy results in Table III. It can be seen
on both of two datasets, the proposed method can yield the
superior results to HMM-based algorithms and LSTM [44],
and achieve state-of-the-art performance.

E. Ablation study of the hidden states number

The number of hidden states Z is a critical parameter
of the proposed method, which is set to 5 based on the
assumption that regular gesture sequences have five distinct
phases. To clarify the effect of the number of hidden states
to the performance of the proposed method, an ablation study
of Z is carried out. As such, the datasets of ChaLearn 2014
[3] with regular gestures and SBU Kinect interaction [58]
with interactive actions are selected to provide different forms
(activities) of testing. For the SBU Kinect interaction dataset,
we follow to use the fixed anchors (different amounts) to

TABLE III
COMPARISON OF RECOGNITION ACCURACY (%) WITH EXISTING

SKELETON-BASED METHODS ON UTKINECT-ACTION3D [7] (UTK) [7]
AND SBU KINECT INTERACTION (SBU) [58] DATASETS (BEST: BOLD,

SECOND BEST: UNDERLINE).

Methods Accuracy
UTK SBU

HMM-GMM [42] 84.4 71.9
HMM-DBN [28] 93.7 89.4
EigenJoints [8] 92.4 -
HOJ3D [7] 90.9 -
HON4D [14]* 90.9 -
Lie group [9] 97.1 -
Manifold [11] 91.5 -
LM3TL [27] 98.8 -
LSTM [44] 72.7 86.0
HBRNN [32] - 80.4
ST-LSTM-TG [36] 97.0 93.3
ST-NBNN [26] 98.0 -
Ours (person-centric + fixed anchors) 96.3 91.2
Ours (Lie group + fixed anchors) 98.5 93.5

* The method use skeleton and RGB-D data.

TABLE IV
ABLATION STUDY OF HIDDEN STATES NUMBER (Z) ON CHALEARN 2014

(CHA) [3] AND SBU KINECT INTERACTION (SBU) [58] DATASETS
(BEST: BOLD, SECOND BEST: UNDERLINE) (%).

Z
Accuracy

CHA SBU
3 86.2 87.5
4 91.9 91.8
5 93.8 93.5
6 93.4 93.7
7 93.2 93.3

obtain the hidden states. To acquire various amounts (except
5) of hidden states on ChaLearn 2014 dataset, the states of h2
(Stroke), h3 (Post-stroke hold), and h4 (Retraction) (yielded
by LCBD) are merged into a “new-state”. Then, this “new-
state” is divided equally to get the wanted quantity of hidden
states. For example, the “new-state” could be divided into two
parts (states) equally, then plus two Resting states h1 and h5 to
achieve Z = 4. We report the recognition accuracies in Table
IV with Z range from 3 to 7. It can be seen on both of two
datasets the scores will drop down when the number of hidden
states becomes smaller than 5. On ChaLearn 2014 dataset,
although we increased Z, the recognition rates are not better
than five hidden states setting. Different from the performance
on ChaLearn 2014 dataset, the SBU Kinect interaction dataset
with Z = 6 is slightly superior to Z = 5, this is because those
complicated interactive activities may contain more temporal
phases than regular gestures. It is noted that the classification
accuracies are getting worse when keep increasing Z. It can
be concluded that the setting of the number of hidden states
should match or close to the real temporal phases of sequences.

VIII. CONCLUSION

In the study of human movement, a gesture could be
explained as a sequence of separated sub-gestures or phases,
each of which is associated with a video segment of unfixed
length. Based on that observation, this paper focuses on
studying HMM-based approaches to explore more appropriate
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hidden states alignment of skeletal gesture data. We propose a
novel skeleton based recognition framework that integrates the
powers of the generative models (HMM) and deep recurrent
neural network (LSTM).

As discussed in Section VII, the proposed Low-rank de-
composition model is still hard to handle interactive activities,
such as sequences from the SBU Kinetic dataset. However,
many of them indeed have temporal structures. For example,
they can be simply segmented as “two persons are approaching
to each other” and “two persons have a contact”. We believe
information or priors like these would be beneficial to the
task of action/gesture analysis. Therefore, in future research,
how to separate temporal structures of those interactive actions
robustly and make divisions interpretable is an interesting topic
for us. Another possible directions for future work include
studying the embedding problem of the Lie group for 3D
human behavior analysis. Typically, the embedding is obtained
by flattening the manifold via tangent spaces, such as the Lie
algebra. However, in that way, only distances between points
to the tangent pole are equal to true geodesic distances, which
may lead to an inaccurate modeling issue. As such, a novel
embedding method will be explored to keep the estimation of
the distances is performed in the framework of Riemannian
computing.
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