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Abstract—Rain-like layer removal from hot-rolled steel strip 

surface is proved to be a workable measure for suppressing the 
false alarms frequently triggered in automated visual inspection 
(AVI) instrument. This paper extends the scope of “rain-like 
layer” from dispersed waterdrops to splashing water streaks and 
tiny white droplets. And a targeted method with both channel-
wise and spatial-wise attention, namely attentive dual residual 
generative adversarial network (ADRGAN), is proposed. 
Meanwhile, a newly updated steel surface image dataset with 
typical natures of “rain-like layer” gathered from actual hot-
rolling line, Steel_Rain, is opened for the first time. The 
comparison experimental results between our proposed network 
and eleven prestigious networks show that our ADRGAN-
restored images are the closest to the ground-truth images on six 
public datasets, especially on the newly-opened industrial dataset 
Steel_Rain, it yeilds the best scores of 56.8627 peak signal to noise 
ratio (PSNR), 0.9980 structural similarity index (SSIM), 0.134 
mean-square error (MSE) and 0.006 learned perceptual image 
patch similarity (LPIPS). In the final verification test, the concept 
of rain-like layer removal has been proved to perform best in 
defect inspection, where four traditional defect detection 
algorithms are involved. And as expected, defect detection 
methods assisted by ADRGAN yield the minimum false-alarms1. 
 

Index Terms—Automated visual inspection (AVI), hot-rolled 
steel strip, rain-like layer removal, generative adversarial 
network (GAN).  

I. INTRODUCTION 
teel is one of the fundamental materials for manufacturing 
enterprises, and its quality seriously affects the production 

of many subsequent industrial chains. The instrument of 
automatic visual inspection (AVI) has great practical value in 
ensuring the quality of steel products [1] [2] [3]. It is worth 
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Fig.1 The influence of different de-raining algorithms on real defect detection. 
(a) The original hot-rolled steel strip image. (b) Detection result of PReGAN-
restored images. (c) DuRN-PSP. (d) Ours. Some rain-like pseudo defects are 
incorrectly identified as real defects in (b), and some real defects are lost in (c) 
due to over removal of rain-like layer. Our proposed network (ADRGAN) can 
help the AVI instrument correctly locate the real defects. 

noting that the layout of average hot-rolling production lines is 
pretty compact, thus there is always limited installation space 
for the AVI instrument. Taking Valin Steel for an example, 
the total length from the finishing mill F7 to the recoiling 
machine is about 18 meters, excluding the positions occupied 
by the laminar cooling devices and hot-rolling mill 
instruments, our AVI instrument can only be arranged around 
6 meters closed to the recoiling machine, where is at the 
downstream site of the laminar colling devices. Therefore, it is 
inevitable that some waterdrops, water clothes or rain lines, 
essentially pseudo defects [4], are randomly distributed on the 
images of hot-rolled steel strip, triggering false alarms. Worse 
still, some real defects are partially or completely covered. 
Consequently, the defect inspection accuracy and efficiency of 
AVI instrument decrease sharply. 

Many studies have attempted to detect [5]-[10] and classify 
[11] [12] [13] various defects directly from original steel strip 
images captured in the above-mentioned harsh environment, 
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but they have some limitations in practical application. 
Defects of hot-rolled steel strip can be generally divided into 
two categories: Periodic defects and occasional defects. The 
frequency of occasional defects is low, so it is generally 
difficult to accumulate enough image samples for the training 
of neural networks, while occasional defects cannot be ignored 
in quality inspection of steel strips. Therefore, algorithms 
based on statistical learning [14]-[17] are usually used in 
practical industrial production lines, which are disturbed by 
rain-like pseudo defects. 

Aiming at solving the above problem, a fine-grained image 
restoration algorithm, PReGAN, was proposed in [18], making 
attempt to locate and remove waterdrops while preserving the 
real defects. It takes GAN [37] as the backbone and adopts the 
progressive image rainline removal network (PReNet) 
proposed by Ren et al. [38] as the generator. The achieved 
effects are mainly based a concept of considering the single 
pseudo defect of waterdrops as “rain-like layer”. But the 
typical pseudo defects of splashing water streaks and tiny 
white droplets are totally ignored. Thus, it has removal 
limitation when being applied in the actual production line 
even using our improved dataset from Section Ⅳ for training. 
Since the distribution of cooling water is uneven in an image, 
PReGAN tends to have some under de-rain problem caused by 
the area with high rain density.  

As declared in [19], the under and over de-raining are the 
major challenges for rain-like layer removal. As shown in Fig. 
1, under de-raining increases the number of false alarms 
because rain-like pseudo defects are not adequately removed. 
Instead, over de-raining incorrectly removes some real defects 
and greatly affects the accuracy of defect detection. The 
primary task for solving this problem is to construct an image 
restoration method with strong robustness to prevent under (or 
over) de-rain problem. 

This paper is an extensibility study of the previous works 
[18]. We attempt to propose a global search algorithm with 
both channel-wise and spatial-wise attention to remove hybrid 
rain-like pseudo defect clusters on the hot-rolled steel surface 
while preserving edge and texture details, as well as to 
improve image dataset construction method for rain-like layer 
removal in [18]. The paper highlights are listed as below. 

(1) We found that the rain-like layer should not only focus 
on the single pseudo defect of waterdrops [18], but consider 
the splashing water streaks suspended in the imaging space 
and the tiny water droplets caused by the high-speed rolling of 
the steel strip. Therefore, we generalize the concept of rain-
like layer to massive dispersed waterdrops, splashing water 
streaks and tiny white droplets, with typical rain-like 
characteristics, to make the removal of hybrid pseudo defect 
clusters on the surface of the steel strip more universal. 
(2) For improving the generalization of the algorithm, we 
propose a novel rain-like layer removal method of attentive 
dual residual generative adversarial network (ADRGAN), 
which is compatible with channel-wise attention and spatial-
wise attention. For channel-wise attention: A dual-residual-
based periodic structure with double SE configuration, namely 
DuRN-PSP, is designed as the generator for tracking and 
restoring the generalized rain-like pseudo defects aggressively. 

For spatial-wise attention: A conventional attention scheme 
with manual mask is imported between the generator and the 
discriminator to form a self-optimizing closed-loop in the 
training stage, and the prior knowledge of the generalized 
rain-like layer is implicitly but cleverly mined to deal with the 
occasional misidentification resulting from the aggressive 
searching stratagem based on pure data processing in the 
DuRN-PSP. 

(3) The splashing water streaks and tiny white droplets are 
added to expand our previously-opened raindrop removal 
dataset only focusing waterdrops on steel surface [18]. These 
1,455 pairs of images with rain-like pseudo defects might be 
an open testbench, stimulating the focused rain removal topic. 

This paper consists of six sections. After an introduction, 
Section II reviews the related works of rain streaks and 
raindrop removal. Section III and IV demonstrate the details 
of the proposed ADRGAN and rain-like layer dataset 
respectively. Before concluding this paper in Section VI, 
extensive experiments are analyzed and discussed in Section 
V to compare the proposed ADRGAN network with stage-of-
the-art de-raining methods. 

II. RELATED WORKS 
Rain-like layer removal, which mainly tests the global 

attention and the image restoration ability of networks, can be 
divided into water streak removal and waterdrop removal. In 
recent years, Rain Detection and Removal has long flourished 
in the field of image restoration and video quality 
enhancement [20]-[38], providing references for our works. 

A. Rain streaks 
Kang et al. [20] used sparse coding to extract the rain 

streaks components from the high-frequency (HF) parts of 
rainy images. For separating rain streaks from background 
images, Luo et al.[21] proposed a discriminative sparse coding 
algorithm. Later, Li et al. [22] considered the correlation 
between different stages of de-raining and proposed a neural 
network to remove rain streaks step by step. However, it has a 
limitation that the performance of the input images is affected 
by the number of iterations, which is not a uniform criterion. 
Hu et al. [25] proposed a new image recognition struction—
Squeeze-and-Excitation (SE) Block, and enabled it to 
reinforce the features of important channels and weaken 
others, so as to effectively enhance the attention of the 
network. Deng et al. [28] put forward DRD-Net, a 
combination of rain residual network and detail repair network, 
within which the former combines SE operation with residual 
blocks to remove rain streaks by making full use of spatial 
context information. The experimental results demonstrated 
that implementing SE Block can efficiently advance the 
attention model (AM). Du et al. [30] proposed a method based 
on conditional variational auto-encoder to predict rainy images 
under different spatial locations and color channels. Jiang et al. 
[31] proposed IADN, which decomposed rain streaks into 
multiple rain layers and abstracted them at multiple levels. 
IADN can learn the correlation of overall spatial features to 
make use of similar features of rain information, and adopt a 
hybrid attention mechanism to guide its optimization direction,  
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Fig.2 The overall structure of the proposed attentive dual residual generative adversarial network (ADRGAN). It basically contains three parts: generator, guider 
and discriminator. The generator restores input rain-like layer images to clean background images. The discriminator distinguishes the authenticity of generated 
images. The guider is an attention mechanism to guide the above two networks by making full use of the prior knowledge of rain-like pseudo defect distribution. 

so as to ensure the removal of rain streaks while preserving 
rich textural details. Vincent et al. [51] proposed denoising 
auto-encoder (DAE) and combined it with a depth generation 
model, to obtain better images denoising results, which can 
also be used in rain streak removal. 

B. Raindrops 
Some methods also have been proposed for raindrop 

detection and removal. Roser and Geiger [32] came up with a 
way to compare synthetic raindrops with patches which might 
contain massive raindrops, but the mutability of raindrop 
morphology prevents it from being treated in the same way. 
For raindrop removal, Eigen et al. [33] used a pair of normal 
and rainy images with the same background to train 
convolutional neural network (CNN). This method only 
effectively removes sparse small raindrops, while being 
completely helpless for larger amd dense raindrops, which 
may be caused by the limited network capacity and the loss 
function insufficient to provide comprehensive limiting factors. 

In [34], the performance of K-means clustering and median 
filtering in raindrop removal is also unappealing. The 
effectiveness of pairwise operation in various image 
processing tasks is proved by Liu et al. [35], they put forward 
an innovative way of residual connection, namely dual 
residual connection. They use this connection to design a 
structure called DuRN-S-P to solve the problem of hybrid rain 
layers, and achieve better results in comparison with Attentive 
GAN [23]. Pix2Pix [36] applies GAN to image-to-image 
translation, which can transform one image into another. This 
general mapping can also be used for the removal of raindrops. 

C. Mask Mechanism 
Mask is an attention mechanism that pays more attention to 

spatial information, which has great practical value in rain 
removal. In [23], Qian et al put forward Attentive GAN, 
which introduces the visual attention mechanism and injects it 
into both generation and discrimination networks. Ahn et al. 
[19] proposed a method including two sequential networks.  
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Fig.3 The primary structure of DuRN-PSP, a hybrid dual residual network composing with one DuRB-P, one DuRB-DS and one DuRB-P head to tail for three 
times. This dual-residual-based three-cycle search-repair structure is dedicated to make better balance between defect recognition and restoration, by avoiding the 
occasional misidentification resulting from aggressive searching stratagem especially in cases of vastly different sizes of water droplets. 

 
Fig.4 (a) is the architecture of discriminator; Conv is a convolutional layer 
with 3×3 kernels; (b) is the structure of Res2Net. 

The network can estimate the rain maps and transmit them 
into the image restoration network for rain streaks removal. 
Yang et al. [29] proposed a recurrent dilated network, which 
can estimate the rain streaks image with the help of the rain 
mask and remove the rain region on each pixel. Those 

methods will produce an attention map indicating raindrop 
regions before removing the raindrops. But they have the 
limitation that the attention map cannot be optimized 
dynamically during rain degradation, leading to the inadequate 
removal of tiny raindrops. In addition, rain streaks images 
cannot fully reflect the density information, leading to over 
de-raining in some areas of the generated images. To alleviate 
the above problems, a generator with periodic structure is 
proposed in ADRGAN for attentive backtracking. The mask 
images used in our guider can instruct our generator to make 
attention corrections, dynamically update the rain distribution 
image during rain degradation. 

The formation mechanism and morphology of rain-like 
layer are different from the real raindrops and rain streaks. The 
above-mentioned methods can hardly be applied to the rain-
like layer removal from hot-rolled steel strip. Based on these 
research background, a global search algorithm called 
ADRGAN is designed in this paper to remove hybrid rain-like 
pseudo defects, while multiple attention mechanisms are 
introduced to enhance detail-preserving image restoration 
ability. In Section V, some experimental results using the 
same dataset to train are presented among our ADRGAN and 
some state-of-art methods for comparison. 

III. RAIN-LIKE LAYER REMOVAL USING ATTENTIVE DUAL 
RESIDUAL GENERATIVE ADVERSARIAL NETWORK 

Fig. 2 illustrates the overall structure of our ADRGAN 
framework. The generalized application of GAN from game 
theory to deep learning neural networks can produce clearer 
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and more realistic results by using adversarial training. 
Therefore, we develop our rain-like layer removal network as 
GAN [37] style, it basically contains three parts: generator, 
guider and discriminator. The goal function of GAN is defined 
as: 
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where G and D refers to the generator and discriminator 
separately. I, worked as the input of generator, is the sample 
with rain-like layer. R means ground-truth clean images. The 
goal of G is to generate near-real images to deceive D, while 
D needs to find the difference between generated images and 
real images as much as possible: 

* = arg min max ( , )
G D

G V G D                       (2) 

* = arg max ( , )
D

D V D G                             (3) 

The whole network takes pairs of images as input, including 
ground-truth clean images and their corresponding images 
with rain-like layer. The generator we developed will generate 
pristine images to its largest realistic extent. The guider can 
instruct the generator and the discriminator by comparing the 
differences between generated images and their corresponding 
clean images. For the over de-rain problem caused by low 
frequency components, attention mask images are introduced 
to reflect the information about rain intensity in spatial 
dimension. In this way, the generator is guided to estimate the 
distribution of pseudo defects, so as to restore images 
purposefully. For the under de-rain problem caused by high 
frequency components, the generated images will be 
transferred to the discriminator for authenticity identification. 
The following introduces the detailed design and innovation of 
our network. 

A. Generator 
As shown in Fig. 3, an attentive dual residual network 

called DuRN-PSP is designed as the generator of GAN, which 
is based on encoder-decoder structure. As for its bottleneck, a 
periodic combinatorial structure is proposed, each consists of 
two DuRB-P and one DuRB-DS in between. 

DuRB-P is an image restoration block,which makes the best 
of the context information and increase the capability of multi-
scale feature representation by increasing the receptive fields 
of convolution. DuRB-DS is a channel-wise attention block, 
which can localize rain-like pseudo defects in a coarse-to-fine 
manner by decreasing dilation rates (12, 8, and 6) in the 
forward direction. The role of Dual Residual Blocks in each 
stage is explained as follows. 

The fundamental framework of the dual residual blocks 
(DuRB) with dual residual connections are exhibited in Fig. 3. 
T l 

1  and T l 
2  are the containers for paired operations, which 

represent up-sampling and down-sampling respectively. x_r 
refers to residual information and its initial value is the input 
feature map x. Conv indicates convolution operation. The 
normalization operation and the rectified linear unit (ReLU) 
[39] are performed after each Conv. 

The DuRB-P include three aspects: 
(1) After receiving x, the Conv is performed twice and x_r 

is added to the output value, which can accelerate the 
convergence rate of the model. The final output is passed to T l 

1 . 
(2) The whole process of T l 

1  mainly up-samples the input 
values and adds to res after that. It is worth noting that this 
final output of T  l 

1  will be the res input for the next dual 
residual block. 

(3) Corresponding to the previous stage, the convolution 
layer of T  l 

2  performs down-sampling operation, and the 
resulting output combined with x_r will be the input x of the 
next residual block. 

The proposed DuRB-DS is similar to the DuRB-P, except 
that the SE blocks [25] are set in T l 

1  and T l 
2 . The double SE 

configuration has better global attention than only one in the 
down-sampling process, which helps to infer the distribution 
of rain-like pseudo defects from actual steel strip images. 

Further, our DuRN-PSP realizes the searching and restoring 
rain-like layer by repeating triple times in each epoch, for 
avoiding the occasional misidentification resulting from 
aggressive searching stratagem especially in cases of vastly 
different sizes of water droplets. Compared with [35], the 
fineness of the DuRN-PSP is greatly improved, to ensure tiny 
pseudo defects can be targeted for locating and eliminating.  

Finally, the rain-like layer can be removed by repeatedly 
passing rainy image through the DuRN-PSP. However, due to 
the pure data processing in the DuRN-PSP, it is to some blind 
and unreliable occasionally, and some real defects may be 
misidentified as pseudo defects and removed (see Fig. 1(c) 
over de-rain). Hence, we design a reliable guider to deal with 
the occasional misidentification, and it is introduced in the 
upcoming subsection.  

B. Guider 
With the attention blocks [25], the DuRB-DS can obtain 

information of rain density actively, however, the information 
of rain streaks intensity in spatial dimension are ignored. 
Therefore, it is difficult for the generator to understand the 
correlation of features at different positions in a rainy image. 
As shown in Fig. 2, mask images are imported between the 
generator and the discriminator as the guider to form a self-
optimizing closed-loop in the training stage, which exploits 
the potential of the prior knowledge from the generalized rain-
like layer, to deal with the problems of edge blurring and loss 
of detail resulting from insufficient attention to spatial features 
in the DuRN-PSP. The generation method of mask images is a 
threshold-based binary classification strategy, the equation can 
be expressed as: 

-     300
( )  

1
rain like layer cleanif Pixel Pixel

Mask x
else

− ≤
= 


  (4) 

Mask images strengthens the attention of ADRGAN to the 
rain-like layer, but the edge consistency of restoration areas is 
ignored. This paper constructed a weighted sum of L1 and 
SSIM [41] loss to supervise the rain-like layer removal. In 
addition to generating realistic images to deceive the 
discriminator, the generator is also guided by the loss values 
of L1 and SSIM to recover the local details of the mask and 
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consider the global features to ensure that the generated image 
is not distorted. The composition of each loss value is as 
follows: 

1 1_ * _ * _
2 2

Loss Total Loss Mask Loss Overall= +  (5) 

where Loss_Mask indicates the loss value of rain-like layer 
and Loss_Overall represents the loss value of the whole image. 
Eq. (5) is used to calculate the total loss of L1 or SSIM. 

Structural Similarity (SSIM) can solve the problem of image 
distortion, which is an indicator used to measure the similarity 
of pictures. The image distortion is smaller when its value is 
larger. Here lists the SSIM loss function in the generator of 
ADRGAN: 

SSIM R ,I  
[ 0.5* ( ( ), )

                            0.5* ( ( ) , )]

~ p ~ pclean rain like layer
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= −

−

I R

I M R M

Ε
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   (6) 

where o  represents elementwise multiplication, G indicates 
the generative network. R and I represent rain images and 
clean images, respectively, and M indicates the corresponding 
mask images. 

Noted as the Least Absolute Deviation (LAD) or the 
LeastAbsolute Error (LAE), the L1 loss function is the error 
obtained by the sum of the absolute difference between the 
target value and the estimated value. It comes as: 

( ) ( )
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m
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L y y y y

=

= −∑,                        (7) 

where y(i) means each pixel’s value on the target image, and 
( )iy  indicates that on the estimation image. Therefore, L1 loss 

function in ADRGAN generator is formulated as: 
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   (8)  

where ||∙||1 indicates L1-norm, other variables are defined in 
the same way as Eq. (6). 

Since the GAN objective function is mixed with other 
losses, the prediction results of the model are comprehensively 
measured, and the operating performance is improved. 
Accordingly, the loss function of the final generator on the 
basis of fusion strategy is expressed as: 

*
1 1 2 SSIMarg min max ( , )+( + )LG D

G V G D r L r L= ⋅ ⋅  (9) 

where r1 is set to 0.75. r2 is set to 1.1. 
The quantitative and qualitative experiments in Section V 

show that, the guider is a reliable mechanism of visual 
attention. Under its guidance, our generator can identify 
pseudo defects correctly, not as blind as before, which greatly 
enhances the image restoration ability of our ADRGAN. 

C. Discriminator 
The generator only realizes low frequency loss and 

perception loss, and the recovery effect of high frequency 
pseudo defects is not ideal during image generation. Therefore, 

there is an urgent need for the discriminator to distinguish the 
authenticity of high frequency components in generated 
images, which will also make the training of the whole GAN 
more stable with faster convergence speed. Inspired by above-
mentioned theories, our discriminator adopts the idea of 
Res2Net [40]. Fig. 4(a) shows the structure of the 
discriminator. 

This discriminator with multi-scale features at granular 
level gradually raises the receptive fields of each network 
layer. In Fig. 4(b), input feature map is divided into four 
blocks after a convolution and each part is denoted as xi, (i∈
{1,2,3,4}), with the form of Convolution-BatchNorm-Relu as 
corresponding modules [42] represented by Ki(). The 
characteristic subset xi is added to the output of Ki-1() and fed 
into Ki(). Here is the equation: 

1
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( ) 2

i

i i i
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             (10) 

In order to increase the number of channels while reducing 
the parameters, we omit the form of xi, which can also be 
viewed as the reuse of features. Finally, we use yi() to 
represent the output of Ki() and concat them for the result of 
final output.  

Res2Net enjoys significant advantages. It can improve 
multi-scale feature extraction without increasing the 
computational cost, make the texture of the generator recover 
image more finely and the trained model focus more on details. 
Its final objective function is the same as Eq. (1). 

IV. RAIN-LIKE LAYER DATASET OF HOT-ROLLED STEEL 
STRIP SURFACE: STEEL_RAIN 

In this paper, the generator in GAN needs to learn and 
generate images by referring to the training set, while the 
discriminator needs ground-truth images with clean 
background to guide the generator to obtain more realistic 
images. All of these are inseparable from an excellent image 
dataset, which has a direct link with the quality of the final 
generated images. 

However, the image acquisition at the scene of hot-rolled 
steel strip suffers with cooling water dispersion, mechanical 
vibration and high temperature, etc. This terrible working 
condition requires strictly on data collection, resulting in high 
acquisition costs. Moreover, due to the rapid production 
rhythm, it is impossible to get a strict pair of training images 
with and without waterdrops for a certain surface position of 
steel strip at the same time. This challenging has also been 
claimed in our previous paper [18]. That is why we need to 
generate rain or streak mask to synthesize the other half 
images with raindrop pollution, other than directly taking rain-
drop-polluted images from the raw captured images.  

All the 1,455 pairs of clean images with a resolution of 
1000 ×1000 pixel are cropped from the raw images 
(4096×1024 pixel) captured by line-scan cameras. And the 
actual size of the image samples is 500×500 mm because the 
pixel physical resolution is 0.5×0.5mm per pixel. For 
obtaining absolutely clean raw surface images, we need to 
select the operation condition very carefully and patiently.  
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Fig.5 Samples in our high-resolution dataset for the rain-like layer removal in the field of automatic steel surface inspection. (a) are the images with scattered 
waterdrops; (b)~(d) are the images with splashing water streaks of diverse angles and sizes, while (e) and (f) are the images with tiny white droplets. 

TABLE I THE NUMBER OF IMAGES FOR EACH PSEUDO DEFECT IN OUR DATASET 

Steel_Rain 
Rain-like pseudo defect 

Scattered 
waterdrops 

Splashing 
water streaks 

Tiny white 
droplets Hybrid 

Training set 
(1305 pairs) 674 220 280 131 

Test set 
(150 pairs) 56 24 34 36 

The other half (i.e., 1,455 images with raindrop pollution) are 
artificially made images by pasting different masks of 
waterdrops and water streaks with disparate angles and sizes 
on the clean images. The main types of pseudo defects are 
scattered waterdrops, splashing water streaks and tiny white  
droplets: 

(1) Scattered waterdrops: for the improvement of the 
generalization of the model, the real waterdrops extracted 
from original images are mixed with synthetic raindrops, and 
then pasted them into clean background images.  

(2) Splashing water streaks: the rain-like water streaks 
with 4 kinds of incline angles and 6 kinds of aspect ratios were 
made by gaussian noise, and they were superimposed with the 
background map in proper proportion. 

(3) Tiny white droplets: after a careful study of the pixel-
wise presentation of tiny white droplets caused by the high- 
speed rolling of the steel strip in the original images, it was 
simulated to produce pseudo defects of different sizes. 

We call this fresh dataset as Steel_Rain, Fig. 5 shows some 
samples of the dataset. The images in the first row are clean 
background images while the other row are corresponding 
images with different types of pseudo defects. TABLE I 
shows the proportion of pseudo defects for each type in the 
Steel_Rain dataset, which strictly follows their respective 
probabilities of occurrence in the actual production line. After 
testing with real rain-like layer images in those experiments 
from Section V.E, it is proved that the dataset is suitable for 
the training requirements. In addition, we use real-world 
images to prove the practicability of our ADRGAN. 

V. EXPERIMENTS 

A. Evaluation Criteria and methodology 
Quantitative evaluation: The peak signal-to-noise ratio 

(PSNR) [43], structural similarity index (SSIM) [41], mean-
square error (MSE) and learned perceptual image patch 
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Fig.6 Failure cases of our ADRGAN on six datasets. (a) and (b) are failure cases of removing inadequately, (c), (d) and (e) are failure cases of losing details. 

 
Fig.7 The images generated by the models proposed in development of ADRGAN. From left to right: Real rain-like image (input image), DuRN-DS, DuRN-P, 
DuRN-S-P, DuRN-PSP, DuRN-MaskPSP and ADRGAN. 

similarity (LPIPS) [50] are adopted for quantitative analysis of 
the network performance in the removal of rain-like layer on 
the steel surface.The image quality becomes better as the 
PSNR gets larger. SSIM considers the strong correlation 
between natural image pixels, which can make up for the 
deficiency that PSNR cannot measure the similarity of image 
structure. MSE and LPIPS are used to measure the difference 
between the generated image and the ground truth image, and 
LPIPS is more consistent with human perception. In addition, 

we introduced runtime, model size and floating-point 
operations (FLOPs) to assess the complexity of models. 

Qualitative evaluation: It is the subjective qualitative 
evaluation of the image by human observer. According to 
their own knowledge and understanding, human beings 
evaluate the degree of image restoration and distinguish 
whether a cleaner image can be obtained after removing the 
rain layer. For space saving, we only gave analysis of failure 
cases as the qualitative evaluation on the public datasets, and 
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TABLE II COMPARISON TEST WITH STATE-OF-THE-ART ALGORITHMS ON SIX PUBLIC DATASETS 

Method DAE Attentive 
GAN 

DID-
MDN 

JORDER-
E RESCAN Pix2Pix PReNet IADN DuRN

-S-P PReGAN DRD-
Net ADRGAN 

Rain 
100L  

PSNR 31.80 33.69 33.64 36.61 37.52 36.76 36.49 37.44 37.63 37.65 37.89 37.66 
SSIM 0.911 0.947 0.953 0.952 0.953 0.957 0.961 0.961 0.973 0.962 0.965 0.977 
MSE 42.96 27.80 28.12 14.19 11.51 13.71 14.59 11.72 11.22 11.17 10.57 11.15 

LPIPS 0.047 0.031 0.033 0.027 0.024 0.026 0.028 0.024 0.022 0.023 0.019 0.021 

Rain 
100H 

PSNR 26.32 27.03 27.44 27.12 28.69 29.16 29.13 29.81 29.60 30.02 29.97 30.85 
SSIM 0.783 0.810 0.822 0.873 0.840 0.893 0.892 0.899 0.893 0.896 0.890 0.912 
MSE 151.73 128.85 117.24 126.21 87.92 78.90 79.45 67.93 71.30 64.73 65.48 53.47 

LPIPS 0.107 0.089 0.082 0.084 0.078 0.077 0.077 0.073 0.074 0.069 0.072 0.066 

Rain 
200H 

PSNR 24.19 25.71 25.95 26.37 27.81 28.83 28.84 28.68 28.22 28.31 28.89 28.75 
SSIM 0.778 0.802 0.804 0.849 0.834 0.887 0.891 0.893 0.887 0.891 0.892 0.895 
MSE 247.79 174.61 165.23 150.00 107.67 85.13 84.93 88.12 97.97 95.96 83.96 86.71 

LPIPS 0.144 0.128 0.125 0.121 0.116 0.104 0.103 0.104 0.108 0.105 0.102 0.093 

Rain 
12 

PSNR 27.96 29.87 30.07 34.99 35.53 35.45 35.38 35.59 35.63 35.73 35.90 35.76 
SSIM 0.841 0.889 0.895 0.924 0.922 0.919 0.921 0.936 0.944 0.930 0.941 0.961 
MSE 104.01 67.00 63.99 20.61 18.20 18.54 18.84 17.95 17.79 17.38 16.71 17.26 

LPIPS 0.110 0.072 0.069 0.047 0.040 0.042 0.041 0.039 0.038 0.038 0.035 0.036 

DDN 

PSNR 28.72 30.14 30.34 30.59 33.18 33.18 33.19 33.36 33.07 33.14 33.50 33.16 
SSIM 0.835 0.846 0.871 0.894 0.916 0.909 0.915 0.922 0.916 0.911 0.932 0.935 
MSE 87.31 62.96 60.13 56.76 31.27 31.27 31.19 30.00 32.07 31.56 29.05 31.41 

LPIPS 0.083 0.068 0.064 0.062 0.048 0.047 0.046 0.044 0.048 0.047 0.043 0.041 

DID-
MDN 

PSNR 28.57 29.08 29.33 31.41 33.24 33.96 34.42 34.47 34.50 34.38 34.51 34.63 
SSIM 0.841 0.837 0.855 0.970 0.891 0.887 0.891 0.919 0.922 0.914 0.930 0.931 
MSE 90.38 80.37 75.87 47.00 30.84 26.13 23.50 23.23 23.07 23.72 23.02 22.39 

LPIPS 0.114 0.101 0.098 0.081 0.074 0.067 0.063 0.061 0.060 0.062 0.059 0.059 

TABLE Ⅲ ABLATION STUDY 

Structure Method 
Metric 

Time 
(s/img) PSNR SSIM 

6DS DuRN-DS 0.0960 47.5667 0.9778 

6P DuRN-P 
[35] 0.0878 48.1995 0.9864 

(3S) + (6P) DuRN-S-P 
[35] 0.0921 51.4286 0.9956 

3(P + DS + P) DuRN-PSP 0.0889 52.2203 0.9958 
DuRN-PSP  
using the guider 

DuRN-
MaskPSP 0.0794 54.8607 0.9965 

DuRN-MaskPSP  
using the GAN  ADRGAN 0.0826 56.8627 0.9980 

more on the Steel_Rain dataset involves. 
Real-world verification: The removal of rain-like layer 

on steel surface is dedicated to the reduce the false alarms in 
the final stage of defect detection triggered by rain-like 
pseudo defects. The generated images can be considered as 
waterless if the false detections are less enough and within 
the acceptable range of AVI instruments. Four simple and 
typical defect detection algorithms were applied on the steel 
surface images before and after rain-like layer removal to 
verify the benefits brought by the proposed methodologies.  

B. Comparison SOTA methods and experimental settings 
To verify the generalization of the method, we include 

eleven state-of-the-art (SOTA) algorithms for the comparative 
experiments, which are the denoising auto-encoder (DAE) 
[51], Attentive GAN [23], Pix2Pix [36], PReNet [38], IADN 
[31], DuRN-S-P [35], DID-MDN [45], JORDER-E [29], 
RESCAN [22], DRD-Net [28] and PReGAN [18]. And six 
public datasets in the field of rain removal and one fresh 
dataset in the actual hot-rolling line are selected as test 

benches, which are Rain100L,  Rain100H, Rain200H [29], 
[46], DDN [47], [48], DIDMDN [45], Rain12 [22], and the 
Steel_Rain set up in the Section IV. To be specific: 

 Rain100L & Rain100H & Rain200H. We choose 2,400 
pairs of synthetic clean images for training (RainTrainH 
and RainTrainL) and 400 images for testing (Rain100L, 
Rain100H, and Rain200H) to evaluate the performance 
under the conditions with extreme rain density and rain 
streaks intensity. 

 DDN. We utilize totally 12,600 and 1,400pairs of images 
for training and testing, respectively. These images are 
synthesized by combining rain streaks with different 
directions and shapes on the same background. 
 DIDMDN. We tend to verify the generalization of the 

algorithms by selecting 13,200 composite images with 
heavy, middle, and light rain density. 
 Rain12. We also select the challenging dataset containing 

12 synthetic images with extreme rain density for testing. 
All experiments are carried out on 24GB Nvidia RTX3090 

TURBO GPU, 3.7GHz Intel Xeon W-2255 CPU and 64GB 
RAM. 

C. Experiments on public datasets 
Quantitative Evaluation: The quantitative test results of 

the twelve competitors on six public datasets are given in the 
TABLE Ⅱ. In most cases, our ADRGAN possesses the 
competitive PSNR to those of others. Although the PSNR of 
ADRGAN is slightly lower than that of DRD-Net sometimes, 
it yields the highest SSIM in any cases. Moreover, on the 
Rain100H, Rain200H and DID-MDN datasets, ADRGAN 
obtained the best scores on both MSE and LPIPS metrics, 
indicating that our proposed method showed great superiority 
under the condition of heavy rain. These metrics proves that 
the proposed algorithm produces the images closest to the  
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Fig.8 Rain-like layer removal effects for different methods. From left to right: Real images with rain-like layer(input images), DAE [51], Attentive GAN [23], 
IADN [31], PReNet [38], Pix2Pix [36], DuRN-S-P [35], PReGAN [18]  and our method. Nearly all rain-like pseudo defects are removed by our method despite 
the diversity of their sizes and shapes.  

TABLE Ⅳ COMPARISON TEST ON THE STEEL_RAIN DATASET 

Method Metric Reference 
PSNR SSIM MSE LPIPS Time (s/img) Size (MB)  FLOPs (G) 

DAE [51] 38.9035 0.8258 8.370 0.033 0.0840 131.60 12.60 JMLR 2010 
Attentive GAN [23] 40.8463 0.8554 5.351 0.031 0.0975 572.07 52.79 CVPR 2018 
DID-MDN [45] 43.6727 0.9470 2.791 0.027 0.3159 307.88 29.49 CVPR 2018 
JORDER-E [29] 45.9128 0.9653 1.666 0.023 0.4795 192.42 18.43 TPAMI 2019 
RESCAN [22] 47.2806 0.9704 1.216 0.021 0.5536 267.94 26.66 ECCV 2018 
Pix2Pix [36] 47.6178 0.9551 1.125 0.020 0.1251 366.91 35.14 CVPR 2016 
PReNet [38] 47.6311 0.9772 1.122 0.020 0.1774 376.12 36.02 CVPR 2019 
IADN [31] 49.1751 0.9804 0.786 0.018 0.1332 379.63 36.36 TCSVT 2021 
DuRN-S-P [35] 51.4286 0.9956 0.468 0.014 0.0921 355.02 33.20 CVPR 2019 
PReGAN [18] 52.7235 0.9714 0.347 0.011 0.1663 413.29 39.08 TIM 2021 
DRD-Net [28] 54.2948 0.9877 0.242 0.009 0.3754 447.35 42.84 CVPR 2020 
ADRGAN 56.8627 0.9980 0.134 0.006 0.0826 385.03 36.83 Ours 

ground truth. The qualitative results with vivid images can be 
reached via the open codes, where the rain removal effects are 
available especially on heavy rains. The possible reason why 
the DRD-Net wins higher PSNR in some cases is that it 
introduces two parallel sub-networks with a comprehensive 
loss function which synergize to de-rain and recover the lost 
details caused by de-raining. 

Analysis of Failure cases: As shown in Fig. 6, some 
difficult images still posed challenged to our method. We can 
see from Fig. 6(a)~(b) that our method is lack of integrity in 
restoring the high-density area of partial images containing 
white stripes. Fig. 6(c)~(e) indicate that some edge details 
without obvious color difference will be blurred. The main 
reason for those cases is the lack of training images with 
backgrounds similar in shape and color to raindrops. We will 
work on these problems in the future. 

D. Experiments on fresh datasets 
We randomly select 1,305 pairs of images from our newly-

built Steel_Rain dataset as the network training samples, and 
the batch size is set to 24. The remaining 150 pairs are used as  

the testing samples. Two evaluation aspects are involved: 
Ablation study: As shown in TABLE Ⅲ, we evaluate the 

six steps gradually to learn about the performance of each part 
of the ADRGAN by removing them progressively. From the 
values top to bottom, the PSNR is gradually increased from 
47.5667 of the most basic DuRN-DS to 56.8627 of the most 
advanced ADRGAN, this improvement on PSNR proves the 
proposed method has really workable on image enhancement 
by tackling the pseudo defect removal. In addition, the DuRN-
MaskPSP enhances the performance of raindrop removal and 
reduces running times through a compatible structure with 
both channel-wise and spatial-wise attention. Although 
ADRGAN adds few computational overheads, the pixels 
covered by the waterdrops are effectively restored, which has 
been verified from the final striking SSIM of 0.998. 

To be specific, as shown in Fig. 7, benefited from the 
proposed attentional block of double SE, no matter the large or 
small water droplet will attract the attention by this sub-block. 
Hence, the rain removal effect in Fig. 7(b) is more satisfactory 
than that in Fig. 7(c), which indicates the DuRN-DS performs 
better than DuRN-P on recognition ability of pseudo defects.  
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TABLE Ⅴ THE AVERAGE NUMBER OF FALSE ALARMS DETECTED IN 60 REAL RAIN-LIKE LAYER IMAGES BEFORE AND AFTER IMAGE RESTORATION 

Method Original 
image Attentive GAN Pix2Pix PReNet IADN DuRN-S-P PReGAN Ours 

our method
real raindrop image

 

Thresholding 43 29 22 18 10 12 10 5 0.13 
LBP 39 31 20 21 19 7 17 6 0.14 

Canny 33 27 24 21 22 18 13 9 0.27 
Gabor filtering 46 37 19 24 17 14 21 11 0.24 

However, its image restoration ability is relatively weak, many 
repairing traces (marked with red arrows) could be found if 
you zoom the green image patch in the upper figure or yellow 
image patch in the down lower figure in Fig. 7(b), that is why 
the DuRN-DS get the lowest scores on both PSNR and SSIM 
in the TABLE Ⅲ. In contrast, such kind of repairing traces is 
absent in the Fig. 7(c) when the DuRN-P arrives, which shows 
its better detail maintaining ability. This phenomenon is highly 
consistent with the concept proposed in DuRN-S-P [35] that 
combining the blocks of DuRN-DS and DuRN-P is beneficial 
to obtain better object identification ability and prevent well 
the edge details being destroyed. Inheriting well this concept, 
we propose the three-cycle search-repair structure (refer to Fig. 
3) to handle the occasional misidentification resulting from 
aggressive searching stratagem in the disposable structure of 
DuRN-PSP. The scores of the initial structure of DuRN-PSP 
are slightly higher than those of DuRN-S-P in TABLE Ⅲ. 
This result can also be reachable in the Fig. 7(d) and Fig. 7(e). 
All of the preliminary results prove that the dual-residual-
based periodic structure with double SE configuration can 
track and restore the rain-like pseudo defects effectively. 

Further, the guider insists the generator to avoid over de-
rain problem by utilizing the spatial features of the rain-like 
layer, obtaining higher scores on PSNR and SSIM one more 
time. Then we introduce the framework of GAN to remove 
residual high-frequency pseudo defects in Fig. 7(f), and 
ultimately obtain a sufficiently clean image (see Fig. 7(g)). 

Comparison test: As shown in Table Ⅳ, our ADRGAN 
beats all the eleven competitors on four criteria. Notably, the 
SSIM is pushed to nearly equal to 1, which means images 
polluted by the rain-like pseudo defects have been restored to 
the previous ground truth incredibly. Moreover, MSE and 
LPIPS measure the difference between clean and generated 
images from the pixel level and perceptual level respectively, 
and our method both achieved the minimum values. For model 
complexity, our model takes 0.0826s average interference time 
of per image, 385.03 MB model size and 36.83G FLOPs. 
Compared to the DAE, RESCAN, DID-MDN and JORDER-E, 
our ADRGAN pays more attention to the image restoration 
accuracy, but at the expense of increasing additional 
parameters costs. Our method also achieves better score in 
average interference time. These comparative results proved 
that the multiple cycles of searching and restoring are really 
beneficial to the dynamical removal of rain-like pseudo 
defects and the detail preservation of actual defects, which 
have pretty application potential to promote the performance 
of AVI instrument for surface defect inspection, especially 
under harsh production environment. 

Qualitative Evaluation: For space saving, we only take 
DAE [51], Attentive GAN [23], Pix2Pix [36], PReNet [38], 
DuRN-S-P [35] and PReGAN [18]. from TABLE III for the 

qualitative evaluation in Fig. 8. To be specific, Fig. 8(a) are 
the real images polluted by the so-called rain-like layer, As 
shown in Fig. 8(b), DAE can wipe out main water streaks, but 
the recovery of image texture is extremely limited, which 
probably due to its lack of attention mechanisms and 
scalability for high-dimensional features, resulting in the loss 
of many valid details. Fig. 8(c) shows the images generated by 
Attentive GAN, which can barely see large waterdrops, but it 
fails to suppress the water streaks and tiny white droplets, let 
alone the global distortion. As can be seen from Fig. 8(d), 
Pix2Pix cannot completely remove waterdrops, although the 
generated images have no apparent color difference. In 
addition, it might remove some real defects erroneously such 
as tiny roll marks, which result in undetected problem at the 
subsequent stage of defect inspection. In Fig. 8(e), PReNet 
obtains better global attention. However, there are still some 
tiny waterdrops left in the dark image areas. As discussed in 
TABLE Ⅳ, neither Fig. 8(g) nor Fig. 8(h) generated by 
DuRN-S-P and PReGAN respectively can handle tiny white 
droplets and water streaks well, increasing false detection rate 
to AVI instrument. Notably, all of these rain-like pseudo 
defects have been eliminated nearly completely by our 
ADRGAN in Fig. 8(h). These positive results prove that our 
algorithm indeed enable the enhanced images more identical 
to the ground truth. Furthermore, it also indicates that our 
fresh Steel_Rain dataset can simulate the morphology and 
distribution of pseudo defects effectively, so as to achieve the 
purpose of removing rain-like layer of images captured from 
real industrial production line. 

E. Industrial verification 
The rain-like layer removal belongs to the pre-processing 

step of hot-rolled steel strip images and its ultimate purpose is 
to promote the accuracy and efficiency of defect identification. 
We try to verify the practical industrial value of our method by 
comparing the false detection rate of four simple and typical 
defect detection algorithms when assisted with the rain-like 
layer removal or not. They are simple thresholding algorithm 
based on block variance, textual analysis algorithm based on 
local binary patterns (LBP), edge detection algorithm based on 
Canny operator, and filtering algorithm based on Gabor 
transform. For fair comparison, the dynamic homogenizing 
compensation (DHC) [44] and mean shift filtering were 
performed on the original images before using the above four 
detection algorithms, to refrain the illumination changes and 
occasional noises. 

We selected 60 original hot-rolled steel images randomly 
from the Steel_Rain datasets, and further obtained quantitative 
and qualitative evaluation. First from Table Ⅴ, our proposed 
method has efficiently decreased the false alarms for all four 
involved detection algorithms. Notably, the average number of 
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Fig.9 The comparative results of original images restored by ADRGAN using a defect detection method based on variance threshold. (a) and (d) are the original 
images and the rain-like layer removal images respectively; (b) and (e) are the corresponding enhanced images; (c) and (f) are the defect detection results. 

 
Fig.10 The comparative results of images restored by ADRGAN and its competitors using a simple defect detection method, variance thresholding. 

false alarms using our ADRGAN were reduced by at least 
70%, even more significantly, cutting by more than 85% on 
both LBP- and thresholding-based algorithms, compared with 
those without any rain removal measure, which is inseparable 
from our efforts in the removal of splashing water streaks and 
tiny white droplets. The least false alarms obtained in Table Ⅴ 
benefits from the best quantitative figures in Table Ⅳ. 

To be honest, we believe that an excellent target recognition 
method can complete the defect inspection task to challenging 
images in a harsh industrial environment. However, if we have 
an excellent pre-processing algorithm to tackle the dirty 
images to be sufficiently clean, why not adopt such a kind of 
roadmap as an optional, that is, applying extremely simple 
inspection algorithm on sufficiently clean surface images? All 
in all, stability is everything for industrial AVI equipment. It is 

undeniable that rain-like layer removal can indeed reduce the 
false detection rate of AVI instruments, providing a reasonable 
and efficient choice for surface defect inspection. Certainly, if 
conditions permit, the AVI instrument is highly recommended 
to be installed at the upstream site of the laminar colling 
devices, so as to avoid the false alarms triggered by the rain-
like pseudo defects thoroughly. 

For more insights, the simplest variance-based thresholding 
method is selected for some visual investigation. Fig. 9 takes 
four randomly chosen samples for elaboration. Particularly, 
three kinds of defects are involved, oxide scales, inclusions 
and scratches. As can be seen from the left half side, a large 
number of rain-like pseudo defects are incorrectly identified as 
defects, triggering false alarms on AVI instrument, which 
proves the necessity of rain-like layer removal, one more time. 
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As for the right half figure, after using ADRGAN, the false 
alarms are apparently reduced, and the surface defect is easier 
to be inspected. It is important to mention that, due to the 
limitations of the detection methods, a few numbers of false 
alarms also exist in the experimental results after using our 
ADRGAN (see Fig. 9(f)). This issue can be easily solved by 
improving or replacing the current simple detection algorithms. 
Few-shot learning [49], which might be a feasible road map to 
inspect the steel surface defect more robustly under the 
challenging environment on the hot-rolling line, which will be 
our nearly future work, making attempts to inspect defects 
more accurately and reliably among even complicated 
interferences. 

Again, Fig. 10 continues to compare the proposed 
ADRGAN with its six opponents—Attentative GAN, Pix2Pix, 
PReNet, IADN, DuRN-S-P and PReGAN. In Fig. 10(a), the 
original image samples suffered with rain-like pseudo defects, 
triggers a huge amount of false alarms. In Fig. 10(b), Attentive 
GAN tackles the above-mention challenge to the maximum, 
but water streaks and tiny white droplets are stubbornly 
survived. From Fig. 10(c)~(g), all methods are difficult to 
overcome the challenges brought by splashing water streaks 
and tiny white droplets, simultaneously, and our ADRGAN  
obtains the least false alarms due to its robustest global 
attention and image restoration ability in Fig. 10(h). The above 
experiments show that the rain-like layer removal concept  
possesses believable stability, which can be applied to steel 
surface AVI instrument. 

VI. CONCLUSION 
Aiming at solving the serious false-alarm problem caused 

by the hybrid rain-like pseudo defects, in this paper, a global 
search algorithm called attentive dual residual generative 
adversarial network (ADRGAN) is developed to remove the 
“rain-like layer” in the steel surface image under the premise 
of preserving edge and texture details. In the extensive 
comparison experiments with eleven state-of-the-art rain 
removal methods on six public dataset and our newly-opened 
industrial dataset, our method has reliably maintained the most 
excellent capabilities of rain-like layer identification and detail 
restoration from both aspects of quantitative and qualitative 
evaluation. The verification tests on four simple and typicle 
defect inspection methods prove that steel surface images 
enhanced by ADRGAN suffered with the least false alarms, 
which proves that the rain-like layer removal method in this 
paper provides a feasible optional for addressing the 
remaining problem that is not yet solved due to the limitations 
of practical scenarios. 

Our previously-opened high-resolution dataset [18] for the 
rain-like layer removal in automatic steel surface inspection 
are expanded in this paper. In addition to cooling water 
droplets, we also consider splashing water streaks and tiny 
water droplets. This continuously opened datasets are 
expected to stimulate more petential rain-like layer removal 
algorithms for surface inspection of industrial sheet meterials, 
especially in the real-world scenario.  
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