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Abstract—Automated visual inspection (AVI) instrument of 

surface defects for hot-rolled steel strips is conventionally 

installed closely before the terminal crimping machine, where the 

adjacent upstream process is laminar spray cooling. Waterdrops, 

spreading more or less over the steel strip surface, often trigger 

false-alarm, which is a quite common problem in AVI. Stimulated 

by the idea of image rain removal in visual enhancement field, this 

paper considers the surface waterdrops, pseudo defects in essence, 

as a conceptual “rain-like layer”. A targeted method, namely 

progressive recurrent generative adversarial network (PreGAN), 

is designed for active waterdrop tracking and fine-grained image 

inpainting. Meanwhile, a steel surface database (2400 raw images 

with the resolution of 1000×1000) captured from actual 

hot-rolling line is constructed for the first time for open evaluation 

of waterdrop removal. The experimental results indicate that 

images enhanced by the PreGAN perform the most informative 

and spotless, with 52.2073 peak signal-to-noise ratio (PSNR) and 

0.9502 structural similarity index (SSIM), when compared with 

four prestigious networks. Assisted by the PreGAN, the false 

alarms are proved to be reduced at least a half during the 

application tests using four traditional simple detection methods. 

 
Index Terms—Automated visual inspection (AVI), hot-rolled 

steel strip, waterdrop removal, image deraining, generative 

adversarial network (GAN). 

I. INTRODUCTION 

utomated visual inspection (AVI) instrument plays an 

essential role for hot-rolled steel mills to ensure product 

quality [1] [2] [3]. Regularly, this kind of AVI instrument is 

arranged at the end of the hot-rolling line as far as possible, 

while the adjacent upstream process is the spray cooling. 

Consequently, great quantities of waterdrops, water clothes and 

rain lines widely distribute on the steel surface in random 
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manner, which are captured by the AVI system and erroneously 

recognized as defects, essentially, pseudo defects [4]. Further, a 

tremendous amount of false-alarms will be triggered especially 

when suffered with heterogeneous pseudo defects. What is 

worse, some actual defects are entirely or partially masked, 

which will seriously decrease the detection accuracy of AVI 

instrument.  

In essential, building a robust image enhancement method 

that can precisely track and remove waterdrop masks, and to 

finalize the image lost area inpainting is the key to solve the 

aforementioned problem. For surface quality inspection of 

hot-rolled steel strips, last five years have witnessed a great 

progress in deep learning methodologies [5] [6] [7] [8]. 

However, nearly all of them are focused on defect detection [9] 

[10] [11] [12] [13] or classification [4] [5] [14]. Such an 

important research issue of waterdrop removal seems to have 

been ignored by researchers. Fortunately, the topic of rain 

removal has been extensively studied in the field of film and 

television enhancement [15] [16] [17] [18]. Notably in [15], 

Qian et al. proposed Attentive GAN and realized outstanding 

raindrop removal from a single image based on a self-made 

database, where a typical application scene characteristic can 

be investigated that the raindrops are near the camera lens but 

the background scene is far away from the camera lens. In most 

cases, some raindrops are kind of blurred because cameras 

always focus on the background in scenery photograph. It 

should be noted that, for the surface images of hot-rolled steel 

strips, the imaging distance of waterdrops and steel plate is 

almost identical, resulting that the waterdrops are clear and the 

information of corresponding part occluded by the waterdrops 

are completely lost. As narrated above, those outstanding 

methods for raindrop removal popularized in film and 

television enhancement cannot be directly applied on the 

waterdrop removal for hot-rolled steel strips.  

Another challenge is how to set up an image database to 

serve the task of surface waterdrop removal on the actual 

high-speed hot-rolling production line. Assuming that the 

image with waterdrops was taken from one position on the steel 

strip, it would be almost impossible to obtain a clean image in 

the same position. Because the hot-rolled steel strip has already 

left at a high speed. That means, it is impossible to get a strict 

pair of training images with and without waterdrops for a 

certain surface position of steel strip at the same time.  

This paper makes attempt to develop a targeted algorithm to 

effectively remove waterdrops in the surface images of 

hot-rolled steel strip, as well as to explore easy-to-use solution 
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for constructing image database for surface waterdrop removal. 

The key contributions of this paper are highlighted as follows. 

(1) We creatively defined the pseudo defect of waterdrops on 

the surface of hot-rolled steel strips as rain-like layer, and 

proposed a novel waterdrop removal method of progressive 

recurrent generative adversarial network (PReGAN). Feeding 

with clean images enhanced by the PReGAN, the detection 

accuracy of AVI instrument could be boosted significantly. 

(2) A steel surface image database containing 1200 pairs of 

images has been constructed, half of which are raw clean 

images with the resolution of 1000×1000 captured from actual 

hot-rolling line, corresponding the other half are same 

background with waterdrops made artificially. To our best 

knowledge, this is the first open high-resolution database in the 

field of waterdrop removal for automated surface defect 

inspection of hot-rolled steel strips, which provides solid 

support for surface quality automatic inspection of industrial 

planar materials. 

The rest of this paper is organized as follows. Section II 

discusses the related works about waterdrops detection and 

removal. Section III elaborates the proposed PReGAN in 

detail. Afterwards, Section IV describes how to obtain the 

image database of waterdrops on hot-rolled steel strips for 

training. Further, our experiments are evaluated 

quantitatively and qualitatively, and the effect of the 

experimental results on defect detection is assessed in 

Section V. Finally, Section VI concludes this paper. 

II. RELATED WORKS 

Some methods have been proposed to detect raindrops. 

Kurihata et al. [19] used primcipal component analysis (PCA) 

to learn the template of raindrops to achieve detection, which 

tried to match the regions in the test image with the regions 

learned from raindrops. Because the raindrops were transparent 

and of different shapes, the PCA could not guarantee the 

adequate modeling of each type of raindrops, so it has 

insufficent ability to prevent the regions similar to the raindrops 

from being detected by error. To overcome this problem, Roser 

and Geiger [20] [21] compared the generated raindrops to 

patches that might have raindrops, where raindrop shapes are 

assumed, but the actual shape and size of raindrops always vary, 

which can't be treated in the same way.  

Some popular depth model-based methods are also used. 

Eigen et al. [22] focused on raindrop removal in a single image. 

Their basic idea was to train the convolutional neural network 

(CNN) with a pair of degenerated images with raindrops and 

corresponding raindrop-free images, which only take effects on 

sparse small raindrops and dust, while has little effect on larger, 

relatively dense raindrops. Ramensh et al. [23] proposed a 

method based on K-means clustering and median filtering to 

estimate clean images, but the final output result was fuzzy. 

Generative advernisal network (GAN) is often used for image 

generation, Innovatively. Qian et al. [15] fused attention 

mechanism into the traditional GAN to achieve the learning and 

generation from images stained with raindrops to clean images. 

Their method not only learns the mapping from the input 

images to the output, but includes a variety of loss functions. 

Nevertheless, due to the extremely complex and complete 

network structure, compared with the simple network structure, 

it is not conducive to further expand the network on this basis. 

A novel style of residual connection named dual residual 

connection was put forward by Liu et al. [24], and 5 image 

restoration tasks were experimentally evaluated in 9 databases. 

Among which the removal of raindrops uses the database made 

and published by Qian et al. [15]. It uses DuRN-S-P network 

which has dual residual connection to get better results in terms 

of indicators than Attentive GAN. Although Pix2Pix [25] is not 

specifically designed to deal with waterdrops, it provides a 

condition GAN (CGAN) that can transform one image into 

another, which is a universal mapping and can also be used for 

the removal of waterdrops.  

Previously, several outstanding publications have been 

reported on raindrop removal, but these methods are hard to be 

directly applied on the waterdrop removal of hot-rolled steel 

strip, due to the formation mechanism and morphology of the 

waterdrops to be removed are completely different. In general, 

there is still a blank in the removal of waterdrops on the surface 

of hot-rolled steel strip and it is becoming increasingly difficult 

to ignore effect of waterdrops in practical application. Based on 

these research background, our method was designed to 

eliminate the negative effect of waterdrops, which would 

provide a precedent reference in this area. In our method, GAN 

[26] is served as the backbone of the network. Ren et al. [27] 

proposed a progressive image rainline removal network, that is 

PreNet, which belongs to a basic network with a very simple 

structure and was mainly used for rainline removal. Compared 

with the networks mentioned before, especially Attentive GAN, 

PReNet has simpler structure and stronger expansibility, which 

makes it easier to create new networks based on it. Due to these 

merits, its baseline network was adopted as the generator of 

GAN in this paper. In Section V, we will show some 

experimental results between our PReGAN with [15], [24], 

[25], [27] for comparison. 

III. WATERDROP REMOVAL USING PROGRESSIVE RECURRENT 

GENERATIVE ADVERSARIAL NETWORK 

We hereby present the overall structure of the network which 

we built to track and remove waterdrops precisely and restore 

lost area in Fig. 1. Like all GANs, the network mainly consists 

of two parts: generator and discriminator. The reasons for 

building the network structure as shown in Fig. 1 are as follows:  

PReNet has a certain ability of removing waterdrops, but the 

effect is not satisfactory. In order to improve the ability of 

waterdrop removal, the PReNet was extended to form our 

special network for waterdrop removal, and of which the 

baseline network was used as the generator of GAN. Moreover, 

to improve image recovery ability after removing waterdrops, 

we added a Markovian discriminator, known as PatchGAN 

[25], which is a discriminator network that helps generate 

clearer and more realistic clean images. 

The overall flow of operations is: after import degenerated 

hot-rolled steel strip images with waterdrops, our generator will 

generate the images as realistically as possible without 

waterdrops. The generated images will be delivered into the 

discriminator to distinguish whether the generated images are 

realistic or not. The objective function of GAN can be 

described as follows: 
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Fig.1 (a) is the overall structure of progressive recurrent generative adversarial network (PReGAN). The generator is a progressive recurrent network[27] and (b) is 

the network structure of each stage. (c) is the discriminator which is a PatchGAN[25]. 
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Fig.2 The network structure of each stage, where fin is a convolution layer with 

ReLU, fres is ResBlocks, fout is a convolution layer, frecurrent is a LSTM 

structure. 
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Fig.3 The network structure of LSTM, which consists of an input gate it, a 

forget gate ft, an output gate ot and a cell state Ct. 
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where G and D represent the generator and discriminator, 

respectively. I is a sample with waterdrops extracted from our 

database of hot-rolled steel strips which is served as the input of 

generator. R refers to a waterdrop-free sample. Where G tries to 

minimize the goal while D tries to maximize to against each 

other: 

*= arg min max ( , )
G D

G V G D                       (2) 

*= arg max ( , )
D

D V D G                             (3) 

A. Generator 

The generator as a progressive recurrent network is shown in 

Fig. 1(a). Progressive recurrent network is divided into several 

stages, each of which contains a shallow ResNet (see Fig. 1(b)). 

For an image with waterdrops, multistage means these 

waterdrops cannot be removed only in one step,  

which is a step-by-step process. As shown in Fig. 2, the 

network in each stage consists of four parts: 

(1) A convolutional layer receives the input of the network, 

ReLU is chosen as activation function. 

(2) Long and short term memory layer (LSTM) [28] [29] is 

served as the recurrent layer. 

(3) Several ResBlocks are used for depth representation. 

(4) A convolutional layer is the output of the network, which 

is applied to export the image after waterdrop removal. 

The size of all filters is 3×3 and the filling size is 1×1. In each 

stage of the network, the input layer fin is a one-layer 

convolution with ReLU non-linearity activation function [30]. 

frecurrent, which is a recurrent recursion layer, is a LSTM 

structure. The structure of our LSTM unit is shown in Fig. 3. 

The interaction equations between states and gates is expressed 

as: 

 
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where it, ft, ot represents input gate, forget gate and output gate, 

respectively. Ct refers to a cell state which will be transferred to 

the LSTM of next recurrent state. ht represents the output of the 

LSTM unit. Operator ﹡ denotes the convolution operation. 

The long-term memory of LSTM is derived from forgetting and 

preservation mechanisms. In the process of removing 

waterdrops, LSTM can transfer the information of the previous 

stage to the next stage, with transmitting the important 

information of  the previous stage without being lost, 

meanwhile forgetting the worthless information. Therefore, the 

waterdrop removal  effectiveness of our network can be 

guaranteed. 

Five ResBlocks compose the fres. fout is a one-layer 

convolution. The input of each stage of the generator consists of 

two parts: the output of the previous stage xt-1  and the original 

image with waterdrops y. They are both 3-channel RGB images 

and have cascade connection. Therefore, fin has 6 channels of 

input and 32 channels of output in each stage. By parity of 

reasoning, fout takes 32-channel output from frecurrent as input and 

outputs a 3-channel RGB image. All convolutional layers used 

in frecurrent and fres  have 32 input channels and 32 output channels. 

And fres is the critical components of extracting depth 

representation to remove waterdrops. The diagram of the 

network structure of each stage showed in Fig. 2 can be 

expressed as: 

0.5 in 1

recurrent 1 0.5

out res

x (x y)
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t t
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t t
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f f

− −

− −

=

=

=

,
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where fin, fres and fout are stage-invariant, that is, network 

parameters can be reused in different stages, which can greatly 

reduce the memory and computing consumption. The recurrent 

layer frecurrent uses xt-0.5 and the recurrent state st-1 as input in 

stage t−1.  

fin passes the currently obtained xt-1 into the next stage along 

with the original image y. Compared with only transferring xt-1  

in [31], the waterdrop removal performance of the generator 

can be further improved by including the original image y as 

input in each stage, which is mainly due to the introduction of 

more auxiliary prior information. The LSTM has advantages in 

image elimination to achieve recurrent waterdrop removal. 

Mixing the objective function of GAN with other losses can 

enhance operation performance, because the prediction results 

of the model can be comprehensively measured. In this paper, 

L1 and SSIM [32] loss functions are combined. As the 

discriminator of GAN, the function remains the same, but the 

task of the generator is increased. It not only needs to generate 

realistic image deceiving discriminator, but also needs to make 

it closer to L1 and SSIM of ground truth. When training 

generator, the same background image pairs with and without 

waterdrops from database of hot-rolled steel strips were used.  

In the generator of PReGAN, the SSIM loss function is 

expressed as: 

SSIM ( ( ), )L SSIM G= − I R                        (6) 

SSIM refers to the operation of structural similarity, which will 

be specifically introduced in Section V (A). The negative value 

is taken when the loss is expressed, and the better when the 

SSIM is bigger. 

The L1 loss function is also known as the LeastAbsolute 

Deviation (LAD) or the LeastAbsolute Error (LAE). In general, 

it minimizes the sum of the absolute difference between the 

target value and the estimated value. The L1 loss can be 

denoted as: 

( ) ( )

0

ˆ ˆ1( ) | |
m

i i

i

L y y y y
=

= −,                        (7) 

where ( )iy  indicates the value of each pixel on the target image, 

and ( )ˆ iy  refers to the pixel value on the estimation image. Then, 

in PReGAN generator, L1 loss function is expressed as: 

1 1R ,I
( ) [|| ( ) || ]L ~ p ~ p

clean waterdrop
L G G= −R IΕ             (8) 

Therefore, based on the mixed strategy ,the loss function of 

the final generator is: 
*

1 SSIMarg min max ( , )+( + )L
G D

G V G D L L  =     (9) 

where   is set to 0.75.   is set to 1.1.  is set to 50. 

B. Discriminator 

L1 loss term only achieves the correctness of the low 

frequency such as color blocks in the images, which will 

produce fuzzy results in image generation. In this case, the 

discriminator of GAN is badly needed to model the high 

frequency structures such as edges in the images. In addition, 

modeling for high frequency, it is sufficient to focus our 

attention only on the structures in the local image patches. 

Based on these above theories, PatchGAN [25] is employed in 

our discriminator. The architecture of the discriminator is 

shown as Fig. 1(c). 

This discriminator uses the form of Convolution 

-BatchNorm-Relu as modules [33], and the network determines 

whether each N×N color block in the image is positive. The 

input of ordinary GAN discriminator is mapped into a real 

number, and the final output is a vector of real (1) or fasle (0), 

representing the evaluation to judge whether the whole image is 

true or false. While PatchGAN maps the input to patch matrix 

X of N×N. In the original image, each patch corresponds to a 

vector of real (1) or Fasle (0), and its label is also set as an N×N 

matrix with all real (1) or fasle (0). In other words, each output 

in the output matrix corresponds to a patch of the original image. 

Intuitively, it is made up entirely of convolutional layers and 

the results of all blocks are averaged to get the final output of 

the discriminator. It is worth noting that N can be much smaller 

than the entire size of the image, and each X is the feature map 

output by the convolutional layer. We can trace back to a patch 

in the original image from this feature map, and see the 

influence of this position on the final output result. 

The merits of PatchGAN are fewer parameters, faster 

running speed, and high resolution. Besides , it can achieve the 

high detail maintenance of generated images. In essential, 

PatchGAN can be interpreted as a form of a texture or style loss, 

which can help the generator to better recover image texture 

features and make the trained model pay more attention to 

details. The final objective function of GAN remains 

unchanged, which is still expressed as same as Eq. (3). 
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IV. WATERDROP DATABASE OF HOT-ROLLED STEEL STRIPS 

SURFACE 

Deep learning networks usually require a large number of 

samples for models and parameter learnings. Similar to the 

general deep network used for image restoration, GANs also 

need more image data for training. By generator, the required 

images are learned and generated, and then the discriminator 

further guides the generator to produce more realistic images. 

Therefore, for GAN, the image database is extremely critical 

which is directly related to the quality of the final generated 

images. 

However, the scene environment of image acquisition of 

hot-rolled steel strip suffers from complex, high temperature, 

mechanical vibration, frequently occured cooling water 

dispersion, etc. The poor production environment has the high 

requirement of data collection and the acquisition is often 

costly. In addition, the strip moves so fast on a production line 

that it is extremely difficult to obtain effective images, as a 

result, only high-speed cameras can be selected to capture the 

strip images. In this paper, the network needs to feed a group of 

images for training. The background of two images in each pair 

is basically the same, and the only difference between the pair 

of images is that whether there are waterdrops or not. Yet now, 

it is impossible to directly capture a pair of images with and 

without waterdrops required by the training network in the 

same rolling steel background using high-speed cameras, 

which cannot meet the requirements of training image database. 

Unfortunately, the available open hot-rolled steel strip database 

is quite scarce, which greatly limits the development of the 

algorithms of pesudo defect removal of hot-rolled steel strips. 

Faced with the above bottlenecks, we have self-made a 

database of surface images of hot-rolled steel strip to serve the 

task of surface waterdrop removel from the actual production 

line. Because there is no actual industrial production line can 

get the image pairs we need, and the various waterdrops on the 

steel strip surfaces are dynamic and vibratory, which cannot be 

fully simulated. Besides, the field of rain removal often uses 

artificial database for training networks. Therefore, we have to 

make the image database artificially. Photoshop is artifically 

used to strictly create a database containing pairs of images 

with exactly the same background, with or without waterdrops. 

The original images captured by high-speed cameras have the 

resolution of 4096×1024 containing images with and without 

waterdrops. We truncated the clean surface images of 

1000×1000 from the original images as the background images, 

then extracted the real waterdrop parts of  

 
Fig.4 Samples in our hot-rolled steel surface image database. Top: Images 

degraded with waterdrops. Bottom: The corresponding clean background 

images. 

the original images and pasted it on the background images, and 

finally 1200 pairs of images with a rigorous production process 

were produced. Experiments were tested with real waterdrop 

images to demonstrate that the datebase can meet the 

requirements of training. Some of the database samples are 

shown in Fig. 4. The top four images are images with 

waterdrops while the bottom four are corresponding clean 

background images. 

V. EXPERIMENTS 

A. Evaluation Criteria 

It was considered that quantitative measures would usefully 

supplement and extend the qualiative analysis. Our 

experiments were evaluated both quantitatively and 

qualitatively. Finally, to assess the influence of waterdrop 

removal to the subsequent algorithm, defect detection 

algorithm is used to test the result before and after waterdrop 

removal. 

(1) Peak signal-to-noise ratio (PSNR) [34] and structural 

similarity index (SSIM) [32], which are two commonly used 

indicators, are used to quantitatively evaluate the network's 

performance in removing waterdrops on the surfaces of 

hot-rolled steel strips. PSNR is the most common and widely 

used objective evaluation index. It is built on the error between 

corresponding pixel points, which is the image quality 

evaluation method depended on the error sensitivity.  However, 

many experiments have shown that the PSNR score is not 

exactly consistent with the huaman visual quality, it is possible 

that a higher PSNR actually looks worse than a lower, for the 

intrinsic reason is that PSNR is a linear transformation to 

decompose image signals does not involve correlation. PSNR is 

defined as follows: 
2

10 10=10 log ( )=20 log ( )
MAX MAX

PSNR
MSE MSE

 R R  (10) 

Where MAXR is the maximum value which represents the color 

of an image point. If each sample point is denoted by 8 bits, it 

equals 255. MSE stands for mean square error. The smaller the 

MSE, the larger the PSNR; which can explain why the better 

image quality when the larger PSNR. 

Natural images are highly structured and there is a strong 

correlation between pixels, but most error sensitivity based 

assessment methods always ignore correlation. SSIM is a 

measure of how similar two images are. From the view of 

image composition, structural similarity index defines 

structural information as independent of brightness and contrast, 

reflecting the property of object structure in the scene, and 

modeling distortion as the combination of luminance, contrast 

and structure. The expression of the three and SSIM are:  
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TABLE I 

 COMPARISON OF PREGAN MODELS (T = 6) AT STAGE T = 1,2, …,6, RESPECTIVELY 

( T = 6 )Stage t 1 2 3 4 5 6 

Metric 
PSNR 22.0901 25.3139 39.5474 44.7469 42.1231 49.5242 

SSIM 0.0349 0.0843 0.6020 0.7872 0.7023 0.8641 

 
TABLE II 

COMPARISON OF PREGAN MODELS WITH DIFFERENT T STAGES 

Stages( T ) 2 3 4 5 6 7* 

Metric 
PSNR 49.0149 47.1919 52.2073 47.0660 49.5242 54.8458/- 

SSIM 0.8567 0.9449 0.9502 0.9490 0.8641 0.9518/- 

*When T=7, overfitting occurs in the model 
 

TABLE III 

QUANTITATIVE EVALUATION RESULTS 

Method 
Metric 

PSNR SSIM 

Attentive GAN [15] 15.8075 0.8138 

PReNet [27] 47.2200 0.9423 

Pix2Pix [25] 48.1232 0.8007 

DuRN-S-P [24] 48.6845 0.9558 

Ours (PReGAN) 52.2073 0.9502 
 

( ) 1 ( ) 2

2 2 2 2

( ) 1 ( ) 2

( , ( )) = ( ( , ( )), ( , ( )), ( , ( )))

(2 )(2 )
                         =

( )( )
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G G

SSIM G f l G c G s G

c c

c c

  

   

+ +
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R I R I

R I R I
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(14) 

where
( ), G 

R I
 are the mean values of the R and G(I). 

2 2

( ), G R I
denote the variance of the images R and G(I), 

respectively. 
( )G R I

 indicates the covariance of the two. c1, 

c2, and c3 are constants to avoid the instability caused when 

the denominator approaches 0. c3 is usually equal to c2/2. 

When two images are identical, the value of SSIM is equal to 1. 

Under normal circumstance, a larger PSNR or SSIM usually 

suggests better results, indicates that the image distortion is 

less.  

(2) Qualitatively, human visual perception was used to 

observe and evaluate the removal effect of waterdrops on the 

image surfaces. We focus on the degree of image recovery 

after waterdrop removal by various methods and whether a 

cleaner image can be obtained, which is the people’s 

subjective feeling and different feelings may lead to 

evaluation varies. 

(3) Various defect detection algorithms were used before and 

after waterdrop removal for images respectively. The purpose 

of waterdrop removal on steel surface is to reduce the false 

alarm during defect detection and improve the final detection 

accuracy. Therefore, it is necessary to determine the influence 

of our waterdrop removal on the subsequent algorithm.  

In this paper, The experiment was performed on PyTorch 

framework and trained on 12GB Nvidia Titan XP GPU, 

2.2GHz Intel Xeon E5-2630 CPU and 64GB RAM. 1100 pairs 

of image data were randomly extracted as the training set of the 

network, while the total data pair set is 1200, and the remaining 

100 pairs were used as the testing set to obtain quantitative 

indicators in Section V (B). The qualitative index of the image 

is mainly obtained by importing the real hot-rolled steel strip 

images with waterdrops into the network after training in 

Section V (C), so as to prove that the database produced can 

indeed remove waterdrops in the real images in Section V (D). 

B. Quantitative Evaluation 

The comparison between PSNR and SSIM of PReGAN 

model (T=6) during stages from 1 to 6 is presented in Table I. 

From the table, we can see the PSNR and SSIM are gradually 

increase, indicating that with the iterations through the stages, 

the waterdrops on the image are gradually removed stage by 

stage, that is because more precise waterdrops characteristics 

are learned through these stages. 

The complexity of the model greatly affects the processing 

result. Simple structure will lead to insufficient image learning 

and failure to obtain accurate features of waterdrops, so that it is 

inadequate to remove the waterdrops and repair the area after 

removing the waterdrops. Corresponding, too complex model 

will also contribute to degenerated results due to the 

over-fitting. To find an optimal structure, Table II shows the 

PSNR and SSIM comparison of PReGAN models with 

different T stages, and different T is related to models with 

different levels of complexity. During the experiment, when 

T=7, a relatively good result can occasionally happen, but it 

often lost in overfit and may collapse. Therefore, the iteration 

from 2 to 6 only compares, numerous experiments have shown 

that a better result can be obtained at T=4. 

Our method and other existing methods, including Attentive 

GAN [15], PReNet [27], Pix2Pix [25], DuRN-S-P [24] are also 

compared in Table III. From the table, our method is 

significantly superior to other methods in PSNR. Meanwhile, 

SSIM is higher than other methods except Durn-S-P, but the 

difference between the two is very small. Undoubtedly, 

indicated by these two indicators, the results obtained by our 

method are closer to the image without pseudo defects, and the 

main reason is that our network is more sensitive to the removal 

of waterdrops. 

C. Qualitative Evaluation 

Qualitative Evaluation is applied to more intuitively feel the 

effects of the waterdrop removal. Fig. 5 shows the image output 

effect of each stage of the generator (T=6). As can be seen, the 

waterdrops in the image are gradually removed as the stages 

progress. When t=4, the waterdrops have been removed 

relatively cleanly. When the last layer is reached, a basically 

clean image is finally obtained.  
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t=1 t=2 t=3 t=4 t=5 t=6Real waterdrop image  
Fig.5 The image output at each stage. From left to right: real waterdrop image, the output of PReGAN (T=6) from the stage 1 to 6. 

Artificial waterdrop image T=2 T=3 T=4 T=5 T=6Ground truth
 

Fig.6 The images of PReGAN models with different T stages. From left to right: artificial waterdrop image (input image), ground truth, the output of PReGAN with 

T from 2 to 6.  

(a) Real waterdrop image (b) Attentive GAN[15] (c) PReNet[27] (d) Pix2Pix[25] (e) DuRN-S-P[24] (f) Our method
 

Fig.7 Waterdrop removal effects for different methods. From left to right: Real waterdrop image (input image), Attentive GAN [15], PReNet [27], Pix2Pix [25], 

DuRN-S-P [24] and our method. Nearly all waterdrops are removed by our method despite the diversity of their sizes and shapes.
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TABLE IV 

THE AVERAGE NUMBER OF FALSE ALARMS DETECTED IN EACH IMAGE OF 45 REAL WATERDROP IMAGES BEFORE AND AFTER WATERDROP REMOVAL 

Method 
Real waterdrop 

image 

Attentive 

GAN PReNet Pix2Pix DuRN-S-P 
Our 

method 

our method

real raindrop image
 

Canny 26 13 16 20 17 12 0.46 

LBP 34 45 18 21 19 17 0.50 

Gabor filtering 43 30 16 43 27 15 0.35 

Thresholding 53 19 10 17 15 9 0.17 
 

oxide 
scale

inclusions

scratches

inclusions

scratches

inclusions

oxide 
scale

inclusions

(a)

(b)

(c)

DHC + mean shift filtering 

Detection method based on thresholding

PReGAN

DHC + mean shift filtering 

Detection method based on thresholding
(f)

(d)

(e)

 

Fig.8 Variance thresholding-based defect detection results before and after waterdrop removal by using PReGAN. (a), (b) and (c) are respectively the raw images, 

enhanced images and the defect detection results, (d), (e), (f) are respectively the waterdrop removed images, enhanced images and the defect detection results. 

inclusions

scratches

(b) Attentive GAN(a) Real waterdrop image (c) PReNet (f) Our method(d) Pix2Pix (e) DuRN-S-P
 

Fig.9 Comparative variance thresholding-based defect detection results after waterdrop removal by using PReGAN and its competitors. (a) without waterdrop 

removal method, (b) ~ (f) show the defect detection results after using Attentive GAN, PReNet, Pix2Pix, DuRN-S-P and our method. 

Qualitative assessment of PReGAN models with different T 

is showed in Fig. 6. When T=4, PReGAN has a better effect of 

removing waterdrops. When T=2 or 3, due to the simple 

structure of the model, there are still obvious traces of 

waterdrops after removal. Some waterdrops are also not 

removed completely. When T=5 or 6, for the reason that the 

model is difficult to train due to the complex structure of the 

model. When T=4, the removal of waterdrops is the cleanest, 

and the surface texture is also the best repaired after the 

removal of waterdrops, mainly because the structure is optimal 

at this time. 

In Fig. 7, we compare the results of Attentive GAN [15], 

PReNet [27], Pix2Pix [25], DuRN-S-P [24] with our results.  

Our database is artificial. Although it is very close to the real 

image data, there is still some slight differences compared with 

the real images. What the model ultimately needs to remove is 

the images obtained on the real industrial production line, so we 

used the real hot-rolled steel strip images to conduct the test. 
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Fig. 7 (a) is the real waterdrop image under test, and the 

resolution is also 1000×1000, the same as the training image. 

From Fig. 7 (b) we can see, although all waterdrops are 

removed from Attentive GAN, the steel strip surface texture 

was changed and the whole image had color difference with the 

original image. Fig. 7 (c) is obtained by PReNet, there is no 

color difference. However, it does not remove waterdrops 

completely, and the image repair ability of this network is 

insufficient compared with our method. In Fig. 7(d), the 

Pix2Pix gains good de-watering results in the image with 

higher brightness, but in the dark image, the waterdrops part 

cannot be totally repaired and tiny drops still residual. In 

addition, there will be some markings on the black part of the 

image edge, which will affect the later defect detection. 

Although the DURN-S-P in Fig. 7(e) does not produce color 

aberration and has higher repair ability, it cannot remove fine 

waterdrops. Despite the SSIM of our method is slightly lower 

than Durn-S-P, it can be seen from Fig. 7(f) that tiny waterdrops 

can be removed thoroughly. Why our methods work well is 

originated from that the GAN can enhance the image recovery 

ability compared with the simple PReNet. Therefore, images 

obtained by our method are closer to the ground truth. 

D. Application 

The ultimate goal of waterdrop removal is to improve the 

accuracy of surface defect detection of hot-rolled steel strips. 

We used four defect detection algorithms to detect the real 

images before and after the removal of waterdrops. They are 

edge detection algorithm based on Canny operator, textual 

analysis algorithm based on Local Binary Patterns (LBP), 

filtering algorithm based on Gabor transform and thresholding 

detection algorithm based on block variance. For fair 

comparison, before using the above four detection algorithms, 

the raw images are preprocessed by using dynamic 

homogenizing compensation (DHC) [35] and mean shift 

filtering to suppress the illumination changes and unexpected 

noises. 

For overall evaluation, 45 real hot-rolled steel strip images 

with 1000*1000 resolution including defects and waterdrops 

are randomly selected for test. The first step is to estimate the 

triggered false alarms before and after rain removal. TABLE IV 

shows the average false alarms per image among the 45 

samples after defect detection. In most cases, no matter which 

detection algorithm is used, the number of false alarms is 

decreased after rain removal. Notably, the situation using our 

PReGAN has lowest false alarms, the total average number is 

reduced even more than a half before that without waterdrop 

removal. Interestingly, the PReGAN-based waterdrop removal 

algorithm has cut 83% false alarms when using the simplest 

variance-thresholding detection method. Nevertheless, there 

are still a few false alarms after waterdrop removal, some of 

them are triggered by the tiny waterlines which are out of the 

repairing scope of the PReGAN, the others are even triggered 

by the un-repaired water marks, that is why we emphasize the 

waterdrop repairing effect. Not surprisingly, better quantitative 

figures in TABLE III brought less false alarm in TABLE IV. 

Again, from TABLE IV, an open issue can be discussed here, 

for surface defect inspection, do we need a better preprocessing 

algorithm or a better defect detection algorithm? Our proposal 

is, you can use dirty and messy images to challenge your 

detection algorithm, as do this could make your algorithm more 

intelligent and robust, but do not do the same to your AVI 

instrument installed on the actual production line. For industrial 

instruments, stability is everything. Back to the theme, to make 

the raw images clearer and more informative is the design goal 

of the proposed PReGAN, which assists detection algorithms to 

trace surface defects more easily and accurately. In this case, 

the detection results are quite different even for the simplest 

variance thresholding-like methods. 

For more insights, we select the above variance thresholding 

method for some visual investigation. As shown in Fig. 8, we 

randomly choose four samples for illustration. In particular, 

three kinds of defects, oxide scales, inclusions and scratches are 

involved. From the left half side, although the image quality has 

been greatly improved by using the image enhancement 

algorithm, massive false alarms are still triggered for the 

massive waterdrops spreading on the steel surface. After using 

PReGAN in the right half figure, the false alarms are 

dramatically decreased and the surface defect can be inspected 

easer. It is worth mentioning that, In the case of the image 

representation effect of Fig. 8(e), the remaining few false 

alarms can be easily addressed by improve or replace the 

thresholding-based detection method, because this paper 

mainly focuses on waterdrop removal rather than defect 

detection, we did not further expand this part.  

Further, Fig. 9 performs a comparison test between the 

proposed PReGAN and its competitors, Attentative GAN, 

PReNet, Pix2Pix, DuRN-S-P. Similarly, we randomly select 

two image samples from the test in TALBE IV. As shown in 

Fig. 9(a), for the raw images, not surprisingly, a large quantities 

of false alarm are triggered especially in the left part of the 

image samples. Then in Fig. 9(b), the Attentive GAN addresses 

this problem to a large extent but another side effect arises, 

bringing some other false alarms for the texture morphology is 

changed unexpectly. From Fig. 9(c)~(f), all of these methods 

can identify defects except for some small and non-obvious roll 

marks, the false alarms are decreased to a large extent at the 

same time. As expect, our method obtained the least false 

detection. The above preliminary experiments show good 

evidance that our proposed waterdrop removal algorithm could 

be considered by the AVI instrument of steel surface as a 

efficient image preprocessing method. 

VI. CONCLUSION 

A fundamental issue that the pseudo-defects like waterdrops 

spreading over the hot-rolled steel strip surfce can be 

considered as a “rain-like layer” has been investigated in this 

paper. Aiming at the tough false-alarm problem triggered these 

waterdrops, a progressive recurrent generation advernisal 

network (PReGAN) is designed for active waterdrop tracking 

and fine-grained image inpainting. Extensive experiments 

prove that the images enhanced by our method perform the 

most informative and spotless, with 52.2073 peak 

signal-to-noise ratio (PSNR) and 0.9502 structural similarity 

index (SSIM), when compared with three prestigious networks, 

which indicate that our method can robustly suppress the 

interference of waterdrops while preserve other image details 

reliably. In addition, a high-resolution image database for steel 

surface waterdrop removal is opened for the first time in this 

paper. As for as we known, this is the first attempt to build a 
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learning method to promote the defect inspection perfomance 

of the current AVI instrument from a fresh perspective of 

pseudo defect removal for hot-rolled steel strips. This progress 

shows a positive sign that it is possible to carry out the visual 

inspection after the laminar spray cooling process, moving one 

step for the traditional layout that the AVI instrument is placed 

closely after the final hot-rolling mill and before the spray 

cooling process, where the AVI components always survive 

hard to anti the ultra-high temperature.  

However, the above preliminary results are obtained in a 

single production line and single spray cooling system, Valin 

Lian Steel. The proposed PReGAN waterdrop removal method 

might not universally adapt to other steel mills, as the surface 

water droplet distribution rule in different steel mill varies a lot. 

Updating the image database and retraining the algorithm are 

highly recommended. The generalizability of the proposed 

method should be verified urgently in the near future. 
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