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Abstract— Extensive user check-in data incorporating
user preferences for location is collected through Internet
of Things (IoT) devices. including cell phones and other
sensing devices in Location-based Social Network (LB-
SN). It can help travelling enterprises intelligently predict
users’ interests and preferences, provide them with scien-
tific tourism paths and increase the enterprises income.
Thus, successive Point-of-Interest (POI) recommendation
has become hot research topic in Augmented Intelligence
of Things (AIoT). Presently, various methods have been
applied to successive POI recommendations. Among them,
the Recurrent Neural Network (RNN)-based approaches are
committed to mining the sequence relationship between
POIs, but ignore the high-order relationship between users
and POIs. The Graph Neural Network (GNN)-based methods
can capture the high-order connectivity, but it does not take
the dynamic timeliness of POIs into account. Therefore, we
propose an Interaction-enhanced and Time-aware Graph
Convolution Network (ITGCN) for successive POI recom-
mendation. Specifically, we design an improved graph con-
volution network for learning the dynamic representation of
users and POIs. We also designed a self-attention aggrega-
tor to embed high-order connectivity into the node repre-
sentation selectively. The Enterprise Management Systems
(EMS) can predict the preferences of users, which is helpful
for future planning and development. Finally, experimental
results prove that ITGCN bring better results compared to
the existing methods.

Index Terms— Augmented Intelligence of Things, aggre-
gator, Graph Convolution Network, self-attention, succes-
sive Point-of-Interest recommendation
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I. INTRODUCTION

W ITH the rapid development of sensing technology [1],
Augmented Intelligence of Things (AIoT) [2] [3] and

smart city construction [4] increase the data amount expo-
nentially. To help users mine relevant information from the
massive data, the recommendation system came into being.
The recommendation systems provided great support for the
Enterprise Management Systems (EMS) [5]. The smart en-
terprise systems collect the behavior data of users through
sensors, so that the smart enterprise can use the historical data
to predict the users’ preferences. After mastering the users’
preferences by using appropriate recommendation algorithms,
smart enterprises can carry out targeted enterprise planning
and work arrangements, so as to improve economic benefits
and promote the construction of the smart city. Specifically,
the successive Point-of-Interest (POI) recommendation has
dramatically promoted the intelligent development of travel-
ling enterprises. Through the historical interest preferences of
users, travelling enterprises can predict the POIs that users
may like in the future to make intelligent recommendations.
This method can significantly improve user satisfaction and
enterprise income. Using users’ check-in to predict users’ POI
preference is also important research in computer science, so-
ciology, and complexity science. It also has important practical
and academic value in location-based social network (LBSN)
services, smart city construction, augmented Intelligence of
Things for smart enterprise systems, etc.

In LBSNs, people can use their location sensors to check
in at their favorite POIs. Therefore, travelling enterprises can
mine users’ interests from check-in data to predict the POIs
that users may like in the future. However, the traditional
POI recommendation often faces a problem: it ignores the
timeliness of users’ check-in. It only predicts the possible
check-ins of users in the future, ignoring the specific time
information. Suppose we predict the POIs that users may
be interested in the next six months, which often has low
practical value. Therefore, to make the POI recommendation
more timely, successive POI recommendation has attracted
more researchers’ attention. This research needs more focus
on the sequence information of users’ check-in.

Presently, most researchers focus on the one-way informa-
tion of the sequence, and use machine learning [6] or deep
learning [7] to make successive POI recommendations, such as
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Hidden Markov Model (HMM) or Recurrent Neural Network
(RNN). However, the HMM-based method has no after effect.
It assumes that the user’s next location is only related to the
current location, but not to other historical check-ins. Obvious-
ly, this assumption does not correspond to the actual situation.
The users’ historical check-ins often have different influences
on future check-ins. Thus, the HMM-based methods often per-
form poorly in long sequence recommendations. Although the
RNN-based method has been able to mine the long sequence
information, it still faces some challenges. First, it focuses on
users and ignores the temporal dynamics of POIs. In fact, POIs
have stable static attributes and unstable dynamic attributes.
A POI may show different temporal dynamics at different
time points [8]. Second, although the RNN can process the
users’ sequence information well, it only considers the first-
order interaction. And it ignores the high-order connectivity
between users and POIs [9].

To solve the above challenges, we proposed an Interaction-
enhanced and Time-aware Graph Convolutional Network (IT-
GCN) for successive POI recommendation in travelling enter-
prises. Firstly, we construct a bipartite graph of the interaction
between POIs and users, and mine their hidden features. Then,
we use GCN to get the embedding representation of users
and POIs. In addition, to model the sequence information
of users and POIs at the same time and realize its dynamic
representation, we combine GCN with the self-attention aggre-
gator. Through the above design, we can capture the sequence
information and the high-order connectivity of user interaction
with POIs. In short, our contributions are summarized as
follows:
• We propose an Interaction-enhanced and Time-aware

GCN for successive POI recommendations in travelling
enterprises. It can learn the indirect relationship between
users and POIs, and realize the dynamic representation
of the nodes.

• We design a novel aggregator to embed high-order
connectivity into the node representation selectively. At
the same time, the aggregator can pay attention to the
influence of interaction location and time information. It
can also be used to update the dynamic representation of
nodes.

• We have conducted experiments on four datasets. The
experiments prove that ITGCN brings better results com-
pared to the existing methods.

II. RELATED WORK

A. Traditional POI recommendation

The traditional POI recommendation in travelling enterpris-
es mainly focuses on the historical POIs of users. Specifically,
the frequency-based method will recommend users’ most
frequently visited POIs. Miyamoto et al. [10] weighed the
accuracy and diversity of recommendations according to the
frequency of items. Besides, Collaborative Filtering (CF) is
also a classical method in traditional POI recommendations. At
present, many researchers have used the CF-based method to
recommend POIs. Wasid et al. [11] proposed a new frequency
counting method to capture context information. Then they

applied context information to CF to improve similarity mea-
surement. Wang et al. [12] used CF to find similar users. They
not only considered the influence of geography and time but
also considered the trust between users. This method improved
the accuracy and recall of POI recommendations.

However, the methods based on CF are seriously affected by
the cold start. It is difficult to get good recommendation results
by using sparse user check-in data. Various researchers have
made efforts to solve cold start. Liu et al. [13] tried to use the
scores of other fields to alleviate the cold start. And Liu et al.
[14] utilized Local Collaborative Ranking (LCR) for POI rec-
ommendation. Yin et al. [15] first expressed the user’s personal
preference hierarchically using geographical area information,
which can improve the recommendation performance in the
cold start scenario. However, these methods could alleviate
the cold start problem, but they could not pay attention to
the impact of time on user preferences. The traditional POI
recommendation only predicts the POIs that users may like
in the future but ignores the specific time information. For
example, users may visit the recommended POIs immediately
or five months later. This result will make the recommendation
lack timeliness. No matter how to improve the accuracy of
recommendations, the problem of timeliness cannot be solved.

B. Successive POI recommendation

With the wide application of sensors in the era of Internet of
things [16] [17], successive POI recommendation has become
a research hotspot in travelling enterprises. It needs to use
the sequence information of users’ check-ins fully. Therefore,
some studies used HMM to capture the sequence information.
However, due to the unfollow-up effect of HMM, the HMM-
based methods could only capture users’ short-term prefer-
ences but could not capture long-term preferences. Therefore,
it is not effective in solving the problem of long-term sequence
prediction. Deep learning methods have attracted extensive
attention in the industry [18]. The method based on deep learn-
ing, mainly based on RNN, is trendy in sequence prediction
[19]. Similarly, Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) are widely used as excellent variants of
RNN. Although these methods can capture the long and short-
term preferences of users, they can not capture the indirect
relationship between users and POIs. Liu et al. [20] improved
the above method to alleviate the information loss using
bidirectional GRU to replace the basic GRU and added a time
sliding window. Although these methods could improve the
recommendation performance, they only considered limited
influencing factors and did not consider group influence and
privacy protection. Moreover, they only researched the POI
category recommendation and did not further focus on the
successive POI recommendation.

Recently, the method based on GNN has been widely used
in the fields of recommendation systems and so on [21] [22].
Due to GNN can mine the high-order connectivity, it can
genuinely improve the recommendation accuracy. Zhang et al.
[23] used GNN to learn the representation of nodes from node
information and topology and applied attention mechanism
to learn heterogeneous social relations, which improved the
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accuracy of recommendation. Chen et al. [24] considered the
heterogeneity and sparsity of check-in records, combined with
the irregularity of time and distance to capture and learn
complex sequential transformations. Wang et al. [25] used
GNN to understand the different effects of different users
and used hyperbolic translation to measure the rationality of
recommendation. Although travelling enterprises have made a
lot of efforts for successive POI recommendation [26], those
methods still leave a lot to be desired. Precisely, the HMM-
based method can not capture the long-term preferences. The
RNN-based approach can not capture high-order connectivity.
The GNN-based method ignores the dynamic timeliness of
POIs. To overcome the above shortcomings, we have proposed
ITGCN for POI recommendation. It can not only capture the
dynamic timeliness of users and POIs but also capture the
indirect relationship between users and POIs.

III. APPROACH

ITGCN can learn the dynamic embedding between users
and POIs and capture the high-order connectivity. ITGCN
mainly contains three components: the embedding, convolu-
tion, and prediction components, as illustrated in Figure 1.
Details are as follows.

A. Definition

Definition 1. Check-in: U represents the user set in LBSN,
and P represents the POI set. Then, we define the user check-
in as cu,p,t = (u, p, b, t), representing the user u check-in at
the POI p at time t. And the b is the interaction index in the
ordered set of interactions.

Definition 2. User-POI interaction graph: A user-POI
interaction graph is a bipartite graph G. Specifically, the vertex
set of the graph contains users and POIs, and the edge set of
the graph represents the interaction relationship between users
and points-of-interest.

Definition 3. User subset: The user subset represents the
latest interaction set of the user u. It includes the latest m
interactions which can be shown as Su,t = {cu,p,tx |p ∈ P, n−
m < x 6 n}.

Definition 4. POI subset: The POI subset represents the
latest interaction set of the POI p. It includes the latest m
interactions which can be shown as Sp,t = {cu,p,tx |u ∈ U, n−
m < x 6 n}.

Definition 5. Successive POI recommendation in trav-
elling enterprises: Given the historical check-in records of
target users, for example, the user u checked in at time tM .
We will predict the Top-K POIs that the user u may visit at
tM+1.

B. The Embedding Component

This component mainly generates four types of embedding:
user embedding, point-of-interest embedding, time embed-
ding, and interaction embedding. First, this component needs
to generate user embedding. For each user, we train a d-
dimensional vector ui,t of each user ui. So we can obtain
the user embedding matrix UM ∈ R|U |×d. Similarly, for each

POI, we also train it as a d-dimensional vector pj,t, and then
get a point-of-interest embedding matrix PM ∈ R|P |×d, where
|U | indicates the total number of users, |P | indicates the total
number of POIs.

Next, this component needs to generate time embedding.
Time is a critical factor in successive POI recommendations.
However, time is difficult to express directly because of its
dynamics. Inspired by [27] and [9], we adopt a specific time
encoding technique. We define a continuous function φ(·) to
map the time intervals to d-dimensional vectors t ∈ Rd. In
addition, we use the user subset and the POI subset to update
user embedding ui,t and time embedding pj,t.

Finally, we generate interaction embedding inspired by [28].
In the User-POI interaction graph, we first select the latest m
interactions as the user subset (or the POI subset). Then, we
use the information in the user subset (or the POI subset) to
get interactive embedding li,t ∈ Rd of ui (or lj,t ∈ Rd of pj).

C. The Convolution Component
The convolution component’s goal is to model the indirect

relationship. For each embedding representation in the previ-
ous component, we first connect the embedding representation-
s and then assign different weights to them. Then, we connect
the output of the attention mechanism to a feed-forward
neural network to introduce nonlinearity into the convolution
layer. Finally, an attention network is connected to assign
different weights to the output. After that, we stack multi-layer
convolution to capture more neighbor information of users and
POIs. Here, we update the embedding representation using the
of users’ subset and POIs’ subset, which combines time and
interaction influence. The specific details are as follows.

We use a GCN to learn the node representation in the User-
POI interaction graph. For each node, we use the neighbor
information (i.e., user subset or POI subset) to update the
information of this node. Therefore, the node information will
incorporate the hidden characteristics of neighbor information.
Specifically, for the target user u at the b-th iteration, GCN
will use his subset Su to update the node information o

(b)
u ,

and aggregate the subset feature vectors o(b)Su
. Details are as

follows:

o
(b)
Su

= AGGREGATE
({

o
(b−1)
u′ | u′ ∈ Su

})
(1)

o(b)
u = σ

(
w(b) · CONCAT

(
o(b−1)
u ,o

(b)
Su

))
(2)

where o
(b−1)
u is the current representation of the node, o(b)

u

is the next update representation of the node, o
(b)
Su

is the
subset representation of the node, AGGREGATE(·) is an
aggregation function, w(b) is the weight matrix, and σ is
sigmoid activation function.

However, GCN can capture the high-order connectivity by
updating node information, but there are still two problems that
traditional GCN cannot achieve. First, GCN cannot capture
the interactive location information between users and POIs.
In addition, GCN ignores the time influence, and then it
does not have the ability to capture the sequence information.
Therefore, we propose ITGCN model to capture the sequence
information and generate the dynamic representation of nodes
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Fig. 1. Illustration of ITGCN for the successive POI recommendation task in travelling enterprises.

in G. Concretely, for the target user ui and its interactive
subset Su,t = {cu,p,tx |p ∈ P, n − m < x 6 n}, GCN will
use the subset Su,t to update the node information o

(b)
sui,tn

by concatenating its current representation and aggregate the
subset feature vectors o

(b)
sui

. Details are as follows:

o
(b)
Sui,tn

= AGGREGATE
({(

p
(b−1)
j,t , t, lj,t

)
|

cui,pj ,t ∈ Sui,tn

}) (3)

u
(b)
i,tn

= wU2
· σ
(
wU1

· CONCAT
(
u
(b−1)
i,tn

,o(b)
sui,tn

))
(4)

Here, (p
(b−1)
j,t , t, lj,t) is the representations of the POI nodes

in osui,tn
at the b-th iteration, cui,pj ,t ∈ Sui,tn is the check-in

of the target user ui, u
(b−1)
i,tn

is the current representation of the
ui node, u(b)

i,tn
is the subsequent update representation of the

ui node, o(b)
sui,tn

is the subset representation of the ui node,
wU1 ,wU2 ∈ Rd×d are the corresponding weight matrices.
According to similar calculations, we can get the dynamic
representation of each POI.

o
(b)
Spj,tn

= AGGREGATE
({(

u
(b−1)
i,t , t, li,t

)
|

cui,pj ,t ∈ Spj ,tn

}) (5)

p
(b)
j,tn

= σ
(
wP2

· CONCAT
(
wP1

· p(b−1)
j,tn

,o
(b)
Sui,tn

))
(6)

Here, (u
(b−1)
i,t , t, li,t) is the representations of the user nodes

in Spj ,tn at the b-th iteration, cui,pj ,t ∈ Spj ,tn is the check-
in of the target POI pj , p(b−1)

j,tn
is the current representation

of the pj node, p(b)
j,tn

is the next update representation of the
pj node, o(b)

Spj,tn
is the subset representation of the pj node,

wP1
,wP2

∈ R2d×d are the corresponding weight matrices.

To model the sequence information of user check-in, in-
spired by [2], we used the self-attention mechanism aggre-
gator of aggregation function in the above calculation. Each
aggregator has K self-attention layers, feed-forward layers,
and vanilla attention layers. Details of the aggregator are as
follows.

Step 1: For each check-in cui,pj ,t ∈ Sui,tn at the b-th
iteration, we first need to can get a whole representation.
Specifically, we make a simple splicing of its POI embedding
p
(b)
j,t , time embedding t and interactive embedding lj,t. By this

way, we can get a whole representation e(b,0)j .

e
(b,0)
j = p

(b)
j,t + t + lj,t (7)

Then, through weight calculation, we can get the e
(b,k)
j for

each pj (or e(b,k)i for each ui) in the k-th layers. Here, the
a
(b,k)
jr can be calculated by using the softmax function.

e
(b,k)
j =

m∑
r=1

a
(b,k)
jr e(b,k−1)r (8)

a
(b,k)
jr =

exp
(
Sim

(b,k)
jr

)
∑m

r=1 exp
(
Sim

(b,k)
jr

) (9)

where the Sim(b,k)
jr is the similarity between POIj and POIr,

which can be calculated by (10).

Sim
(b,k)
jr =

e
(b,k−1)
j ·

(
e
(b,k−1)
r

)T
√
d

(10)

Step 2: We use linear transformation to introduce non-
linearity into the convolution layer. Here, W k

1 , W k
2 represent
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the training parameter matrices.

f
(b,k)
j = FFN

(
e
(b,k)
j

)
(11)

FFN
(
e
(b,k)
j

)
= Layer Norm

(
Dropout

(
ReLU

(
W

(k)
1 ·

e
(b,k)
j

)
W

(k)
2 + e

(b,k)
j

(12)
Step 3: After getting the output f (b,k)j of feed-forward

neural network, we connect another attention layer. We still
use the softmax function to calculate a weight coefficient a(b)ij .

a
(b)
ij =

exp
(
Sim

(b)
ij

)
∑m

j=1 exp
(
Sim

(b)
ij

) (13)

where the similarity Sim(b)
ij between U (b)

i,t and f (b,k)j is com-
puted as follows:

Sim
(b)
ij =

U
(b)
i,t ·

(
f
(b,k)
j

)T
√
d

(14)

Finally, we can get the output C(b)
Sui

,t of the aggregator of
Sui,tn .

C
(b)
Sui

,t =

m∑
j=1

a
(b)
ij f

(b,k)
j (15)

We can get the dynamic representation of users and POIs
through the above operations, and capture their interaction
information. In addition, we can stack multi-layer convolution
to find more neighbor information between users and POIs.
The algorithm for generating dynamic representation is shown
in Algorithm 1.

D. The Prediction Component
According to the latest embedding representation incorpo-

rating dynamic time information and interactive information,
we can predict the POI that users may visit next. In addition.
We also design an optimization method to optimize the ranking
of the recommendation list by using negative sampling. After
getting the dynamic representation of users and POIs, we
can make successive POI recommendation. We perform inner
product operation between user embedding zui,t and POI
embedding zpj ,t, and finally get the recommendation result
ŷ (ui, pj , t).

ŷ (ui, pj , t) = (zui,t)
T · zpj ,t (16)

Here, we have adopted the appropriate optimization method.
Binary cross-entropy loss function can be well used. When
the predicted value is close to the true value, the loss can
be very small. When the predicted value is far away from
the true value, the loss can be very large. This feature is
conducive to the learning of the model. In order to optimize
the recommendation order of interest points, we add negative
POI p′j and use negative sampling to optimize the order. It is
defined as follows:
−
∑

<ITui,t
,ITpj,t

,ITp′
j
,t>

[log (σ (ŷ (ui, pj , t))) + log(1

−σ
(
ŷ
(
ui, p

′
j , t
))]

+ λ‖W‖
(17)

Algorithm 1 Embedding generation
Input: User-POI interaction graph G =< (U,P )C >, user

set U , POI set P , check-in cu,p,t = (u, p, b, t), user subset
Su,t = {cu,p,tx |p ∈ P, n − m < x 6 n}, POI subset
Sp,t = {cu,p,tx |u ∈ U, n−m < x 6 n}, depth B

Output: Dynamic representation of users zui,t and POIs zpj ,t

1: if node in U then
2: US(B) ← UuSu,t

3: for b = B to 2 do
4: US(b−1) ← US(b)

5: for each cui,pj ,t in US(b) do
6: US(b−1) ← US(b−1) ∪ S(cui,pj ,t)
7: end for
8: end for
9: for b = 1 to B do

10: for each cui,pj ,t in US(b) do
11: Aggregate the POI nodes in Su,t

12: Update the embedding u
(b)
i,tn

13: Get the output zui,t

14: end for
15: end for
16: end if
17: if node in P then
18: PS(B) ← PpSp,t

19: for b = B to 2 do
20: PS(b−1) ← PS(b)

21: for each cui,pj ,t in PS(b) do
22: PS(b−1) ← PS(b−1) ∪ S(cui,pj ,t)
23: end for
24: end for
25: for b = 1 to B do
26: for each cui,pj ,t in PS(b) do
27: Aggregate the POI nodes in Sp,t

28: Update the embedding p
(b)
j,tn

29: get the output zpj ,t

30: end for
31: end for
32: end if
33: return zui,t and zpj ,t

Furthermore, The algorithm for training the ITGCN model is
shown in Algorithm 2.

IV. EXPERIMENTS

A. Datasets, Evaluation Metrics and Baselines

We conducted experiments on four available datasets (i.e.,
Foursquare1, Gowalla2, NYC, and TKY [29]). In experiments,
we removed unusual POIs with less than five user check-ins.
Specifically, the detailed statistic information is illustrated in
Table I.

We selected two common indicators to measure recom-
mendation performance: Recall@K (R@k) and NDCG@K

1https://sites.google.com/site/yangdingqi/home/foursquare-dataset
2http://snap.stanford.edu/data/loc-gowalla.html
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Algorithm 2 ITGCN model
Input: Training set < ITui,t, ITpj , t >
Output: ITGCN model’s parameter set

Initialize parameter set ∆
1: for each cui,pj ,t do
2: Calculate the user embedding zui,t

3: Calculate the POI embedding zpj ,t

4: Calculate the negative sampling embedding zp′
j ,t

5: end for
6: Find ∆ to minimize the Eq.17
7: return ∆

TABLE I
BASIC DATASET STATISTICS

Users POIs Check-ins
Foursquare 7642 9989 179468

Gowalla 5628 26339 606220
New York City 1083 9989 179468

Tokyo 2293 15177 494807

(N@K). Here, Recall@K can be used to measure the pro-
portion of POIs accurately recommended, and NDCG@K can
be used to measure the ranking performance.

R @k =
1

|U |

|U |∑
u=1

|Fu(k) ∩ Trueu|
|Trueu|

(18)

N@k =
1

|U |

|U |∑
u=1

1

Zu

k∑
j=1

2I(|{f
j
u}∩Trueu|) − 1

log2(j + 1)
(19)

where Fu(k) donates the recommended POIs, Trueu donates
the POIs of the user who will check-in, where f ju donates the
j-th recommended POI in Fu(k), I(·) denotes the indicator
function and Z is a normalized constant that is the maximum
value of DCG@k.

We compare ITGCN with other advanced models. Specif-
ically, we compared ITGCN with LGLMF [30], which used
matrix decomposition to mine the spatial information of POIs,
so as to make recommendations. Next, we compare ITGCN
with FPMC [31], which used Factorized Personalized Markov
Chain to mine users’ location preferences. We also compared
ITGCN with STGN [32], GSTN [33] and DSPR [34], which
used improved LSTM, Graph-enhanced Spatial-Temporal net-
work, attention-based LSTM respectively to make POI recom-
mendations. Finally, we visualized the comparison results in
Fig 2 and Fig 3.

(a) (b)

Fig. 2. Comparison of recommendation results in Foursquare.

(a) (b)

Fig. 3. Comparison of recommendation results in Gowalla.

(a) (b)

Fig. 4. Recommendation results of ITGCN in four datasets.

B. Experimental Results and Discussions

In the experiment, we choose k = 1, 5 and 10 as the
recommended number. k = 1 is selected to provide users with
unique choices, and k = 5 and k = 10 are selected to provide
users with diverse choices. The comparison results between
ITGCN and other models in Foursquare and Gowalla are listed
in Table II and visualized in Fig 2 and Fig 3. It shows that
when the number of recommendations is 1, 5 and 10, the recall
and nDCG of ITGCN are the best. For example, compared
with the DSPR [34] model, the recall of ITGCN increased
by 7.63%, 4.18% and 5.68% respectively, and the nDCG of
ITGCN increased by 5.11%, 13.8% and 7.23% respectively
in the Foursquare dataset. Similarly, the recall of ITGCN
increased by 13.92%, 13.6% and 7.93% respectively, and the
nDCG of ITGCN increased by 14.14%, 17.37% and 15.08%
respectively in the Gowalla dataset. Compared with the GSTN
model, the recall of ITGCN increased by 8.68%, 15.65% and
20.27% respectively, and the nDCG of ITGCN increased by
9.64%, 12.16% and 13.66% respectively in the Foursquare
dataset. Similarly, the recall of ITGCN increased by 22.19%,
39.85% and 46.41% respectively, and the nDCG of ITGCN
increased by 23.86%, 31.97% and 34.1% respectively in the
Gowalla dataset. This is because ITGCN can not only capture
the high-order connectivity between users and POIs, but also
capture the time impact between users and POIs.

We show the comparison of recall and nDCG in the
Foursquare dataset in Fig 2. It can be seen that the recall and
nDCG of ITGCN model is the highest. Similarly, we show
the comparison of recall and nDCG in the Gowalla dataset
in Fig 3. In addition, we also visualize the recommended
performance of ITGCN in four datasets in Fig 4 to reflect
the impact of different datasets on ITGCN. In Fig 4, ITGCN
has the best performance in foursquare, followed by Gowalla,
TKY and NYC. This shows that ITGCN is indeed affected by
the dataset, and the more data, the better the recommendation
performance of ITGCN. However, our model can still main-
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TABLE II
THE COMPARISON OF EXPERIMENTAL RESULTS

Foursquare Gowalla
R@1 N@1 R@5 N@5 R@10 N@10 R@1 N@1 R@5 N@5 R@10 N@10

LGLMF 0.0077 0.0443 0.0263 0.0325 0.0427 0.0286 0.0054 0.0542 0.0221 0.0449 0.0376 0.0406
FPMC 0.0937 0.0921 0.3219 0.1439 0.4120 0.1547 0.0955 0.0631 0.1139 0.0967 0.1698 0.1167
STGN 0.1098 0.1052 0.1743 0.1324 0.2345 0.1558 0.1139 0.1227 0.2029 0.1579 0.2698 0.1866
GSTN 0.1233 0.1137 0.2713 0.2019 0.3416 0.2246 0.0984 0.0817 0.2146 0.1541 0.2791 0.1749
DSPR 0.1338 0.1590 0.3860 0.1855 0.4875 0.2889 0.1811 0.1789 0.4771 0.3001 0.6639 0.3651

ITGCN 0.2101 0.2101 0.4278 0.3235 0.5443 0.3612 0.3203 0.3203 0.6131 0.4738 0.7432 0.5159

tain relatively high recommendation performance even in the
smallest dataset (i.e., NYC dataset), which also proves that
ITGCN has the advantages of good universality.

The method we proposed that considered some factors that
other researchers have not considered, but there are also some
influencing factors have not been included in our research.
We select some factors to summarize, and the results are
briefly shown in Table III. Our summary and analysis of
advantages and disadvantages are as follows. For the advan-
tages, the ITGCN we proposed can both consider the time
influence and interaction influence. It can pay attention to
the changes of user preferences over time, and can mine the
indirect interactive information between users and POIs (i.e.,
High-order connectivity, Hoc). For the disadvantages, in the
experiments, we delete the POIs with less than 5 check-in
times to alleviate the negative impact of data sparsity. Our
goal is not to solve the cold start problem. In addition, we
don’t pay attention to the privacy protection in successive
point-of-interest recommendation. We default the model we
proposed is used by a single smart enterprise, and there is no
data interaction between smart enterprises. In the era of big
data, information interaction between smart enterprises may be
unavoidable. In the future, we will also try to make successive
POI recommendation that takes the privacy protection and high
precision into account.

TABLE III
INFLUENCING FACTORS CONSIDERED IN ITGCN MODEL

Time Hoc Interaction Cold-start Privacy
ITGCN

√ √ √
× ×

C. Parameter Selection
• Embedding dimension. Setting appropriate embedding

dimension can improve the performance of the model.
When converting a graph node into a vector represen-
tation, we need to specify the dimension of the vector.
Because the vector dimension will influence recommen-
dation results. In this experiment, we list four candidates:
120, 160, 200, and 240. With the increase of embedding
dimension, we try to find embedding dimension that
can achieve better prediction performance of the model.
Later, we train the performance of ITGCN on four public
datasets. The training results are visualized in Fig 5.
With the increase of embedding dimension, the recall and
nDCG of ITGCN also increase, but when the dimension

Fig. 5. Results of different embedding dimensions.

exceeds 200, the performance of ITGCN will decline.
This phenomenon may be caused by over fitting. Finally,
the embedding dimension we selected for ITGCN is equal
to 200.

• Self-attention layer. Properly increasing the attention
layer can make ITGCN have better expression ability,
whereas too many layers of attention will also make the
calculation too complex. In this experiment, we give four
candidates: 0, 1, 2, and 4. Then the results of ITGCN on
the four public datasets are visualized in Fig 6. When the
number of layers is 1, the performance of the ITGCN is
greatly improved, and then the performance of the model
tends to be stable. Therefore, the number of self-attention
layers we selected for ITGCN equals 1.

V. CONCLUSION

This paper proposed a novel model (i.e., ITGCN) for
Successive Point-of-Interest Recommendation in travelling en-
terprises. Experiments on four datasets prove the effectiveness
of ITGCN in augmented Intelligence of Things for smart enter-
prise systems. In our future work, we hope to make successive
POI recommendation that takes the privacy protection and high
precision into account. We may try to use Locality-Sensitive
Hashing, learning to hash and other methods to carry out our
next work.

VI. ACKNOWLEDGMENT

his research is supported by the National Key Research
and Development Program of China (No.2020YFB1707600)

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3200067

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Oulu University. Downloaded on September 01,2022 at 12:47:54 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

Fig. 6. Results of different self-attention layers.
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