
SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, MARCH 2021 1

Multi-Discriminator Sobolev Defense-GAN Against
Adversarial Attacks for End-to-End Speech Systems

Mohammad Esmaeilpour, Student Member, IEEE, Patrick Cardinal, Member, IEEE, and Alessandro Lameiras
Koerich, Member, IEEE

Abstract—This paper introduces a defense approach against
end-to-end adversarial attacks developed for cutting-edge speech-
to-text systems. The proposed defense algorithm has four major
steps. First, we represent speech signals with 2D spectrograms
using the short-time Fourier transform. Second, we iteratively
find a safe vector using a spectrogram subspace projection oper-
ation. This operation minimizes the chordal distance adjustment
between spectrograms with an additional regularization term.
Third, we synthesize a spectrogram with such a safe vector
using a novel GAN architecture trained with Sobolev integral
probability metric. To improve the model’s performance in terms
of stability and the total number of learned modes, we impose
an additional constraint on the generator network. Finally, we
reconstruct the signal from the synthesized spectrogram and
the Griffin-Lim phase approximation technique. We evaluate the
proposed defense approach against six strong white and black-
box adversarial attacks benchmarked on DeepSpeech, Kaldi, and
Lingvo models. Our experimental results show that our algorithm
outperforms other state-of-the-art defense algorithms both in
terms of accuracy and signal quality.

Index Terms—Speech adversarial attack, spectrogram, short
time Fourier transform, generative adversarial networks, Sobolev
integral probability metric, Schur decomposition, chordal dis-
tance, adversarial defense.

I. INTRODUCTION

THERE is a large volume of publications on applying deep
learning algorithms for audio and speech classification

(i.e., transcription), which report high recognition accuracy
[1]–[3]. During the last decade, the primary focus has been de-
signing new architectures, for instance, variants of convolution
[4], recurrent [5], and attention configurations [6] to improve
classification accuracy and model generalizability. However,
it has been proven that these advanced models might undergo
extreme vulnerability against carefully crafted adversarial sig-
nals both in 1D and 2D representation (spectrogram) domains
[7], [8].

The major focus of this paper is in response to this vul-
nerability issue. We have developed an adversarial defense
approach against varieties of end-to-end speech-to-text attack
algorithms. Toward this end, we firstly review the state-of-
the-art adversarial attacks in Section II. We also provide
details about the background of the defense approaches in
Section III. Section IV introduces the proposed adversarial
defense algorithm followed by comprehensive experimental
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results in Section V. In summary, we make the following
contributions in this paper:

(i) introducing a novel adversarial defense approach based
on a multi-discriminator generative adversarial network
(GAN) in the restricted Sobolev space [9];

(ii) establishing simple yet effective architectures for both
the generator and discriminator networks;

(iii) developing an adjusted chordal distance with a comple-
mentary regularization term toward achieving a safe input
vector for the generator model;

(iv) characterizing a constraining technique for improving the
stability of our generative model in adverse environmen-
tal scenarios;

(v) experimentally proving the effectiveness of the proposed
defense approach for white and black-box as well as
targeted and non-targeted attack scenarios.

II. BACKGROUND: ADVERSARIAL ATTACK

An adversarial signal ~xadv carries inaudible perturbation δ,
and it can fool the victim classifier (the transcription model)
toward any target phrase ŷ defined by the adversary [7]. The
actual value of δ is dependent on the length of ŷ (the number
of characters) and the characteristics of the original carrier
signal ~xorg (~xadv = ~xorg + δ) [7], [10]. For measuring the
loudness (distortion) of this perturbation relative to the carrier
signal, a logarithmic-scale metric has been proposed by Carlini
and Wagner [7]:

ldB(~xadv) = ldB(δ)− ldB(~xorg) (1)

where l(·) denotes the loudness of the original 1D signal
~xorg ∈ Rn×m in dB, and n and m denote the length and
number of channels, respectively. For ldB(~xadv) < ε where
ε is a small threshold, ~xadv sounds almost seamless to ~xorg
according to the C&W attack for the speech-to-text model [7]:

min |δ|22+
∑
i

ci.Li(~xorg,i+δi, πi) s.t. ldB(~xadv) < ε (2)

where ci is a scaling coefficient for the connectionist temporal
classification loss function L(·) [11]. Additionally, πi denotes
string tokens without duplication, which should reduce to the
character alignments ŷi (ŷi 6= yi, where the latter refers to the
ground truth character alignment) [7]. The C&W attack has
been primarily developed for the speech-to-text DeepSpeech
model [3], and the experiments have shown a complete col-
lapse of this victim model against adversarial signals crafted
through Eq. 2 [7].
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The C&W attack splits the input signal into 50 frames
per second, and it eventually yields a universal perturbation
for the entire chunks in ~xorg. This operation reduces the
computational complexity of the attack algorithm compared to
optimizing fine-grained δi for every chunk. However, it might
negatively affect the robustness of ~xadv in a real-world envi-
ronment. In other words, playing these speech chunks over the
air and recording them by another microphone, involving envi-
ronmental reverberating and signal echo, might easily remove
the adversarial effect (δ) [12]. Several algorithms crafting more
resilient adversarial signals in natural environments have been
proposed in response to this issue. These algorithms are based
on psychoacoustic loss function [13], feature vector analysis
[14], and employing a set of filters (band-pass, impulse re-
sponse, and white Gaussian noise) [15]. However, these ap-
proaches have been evaluated within static environments with
predefined room setups, which might reduce these algorithms’
generalizability in more challenging scenarios [12]. Inspired
by Athalye et al. [16], which introduces the expectation over
transformation (EOT) to the attack optimization formulation
for regularizing the cost function (similar to Eq. 2), many
other EOT variants have been proposed for the speech domain
[10], [12], [17]. These regularizations help craft more robust
adversarial signals for non-static environments, which fit in
both white and black-box attack scenarios.

The EOT proposed by Qin et al. [10] is based on an
acoustic room simulator, which generates artificial utterances
and environmental reverberations. This algorithm is known as
Robust Attack and encodes the EOT regularization into the
loss function of a speech-to-text model as [10]:

`(~xorg,i, δi,yi) = Et∼τ [`net (yi, ŷi) + α`m(~xorg,i, δi)] (3)

where α is a static scaling factor, `net(·) denotes the cross
entropy loss and `m(·) indicates the loss function for masking
threshold (ε). In fact, `m(·) constrains over the normalized
power spectral density function of ~xorg and contributes to the
imperceptibility of the adversarial signal [10]. Additionally, τ
refers to the transformation set including room reverberation
settings. This attack has been tested on the Lingvo speech-to-
text system [2] and could achieve a very high fooling rate on
this advanced system.

The Imperio attack proposes another variant of EOT, which
implements simulated room impulse response (RIR) filters,
taking advantage of a simple deep neural network (DNN)
architecture [12]. Additionally, this attack embeds psychoa-
coustic thresholding for reducing adversarial distortion similar
to Qin et al. [10] (see Eq. 4 in [12]).

~xadv = arg max
~xi

Eh∼Hdim
[P (ŷi|~xi,h)] (4)

where h ∈ Hdim denotes a RIR filter and dim indicates
the dimension of the filter set. The Imperio is an iterative
algorithm and minimizes the adversarial perturbation δ via
approximating the ∇~xorg = ∂`net(y, ŷ)/∂f∗(~xorg) where
f∗(·) denotes the post activation function. In each iteration and
according to the distribution of Hdim, an adversarial candidate
~xadv = ~xi + κ∇~xi with the learning rate κ should satisfy
ŷi 6= yi. This procedure continues up to reach the predefined

audible threshold ε. This attack was evaluated on the Kaldi
speech-to-text system [18], which employs both DNN and
hidden Markov model (HMM) configurations for real-time
speech transcription. It has been shown that under various
environmental settings, including lecture, meeting, and office
rooms, the Imperio attack has considerably turned down the
transcription performance of the Kaldi system [12].

The EOT regularization in the Metamorph adversarial attack
[17] is similar to the RIR filtration in the Imperio algorithm
with one major difference: it implements channel impulse
response (CIR) to characterize potential over the air distortions
on δ. This attack algorithm employs M pairs of microphone-
speaker transmission in different distances (similar to Hdim) to
encompass a wide range of reverberations in yielding minimal
perturbation:

arg min
δ
αtldB(~xadv) +

1

M
L(~xorg + δi, πi) (5)

where αt denotes a trade-off scalar between the fooling rate of
the model and the signal quality. Similar to the C&W attack,
the Metamorph attack was evaluated on the DeepSpeech
victim model. The experiments showed an attack success rate
of around 90% and low Mel-cepstral distortion for this white-
box algorithm [17].

Since integrating the EOT regularization into the adversarial
optimization problem requires access to the victim model’s
cost function, the black-box attacks can not directly incor-
porate it into their formulations. For addressing this issue, a
surrogate technique has been proposed and called the over-
the-line approach, which provides multiple varieties of the
adversarial signals to the victim model before playbacks over
the air [14]. This operation helps the adversary to capture the
environmental scene distribution without directly simulate it
through reverberation filters. However, the performance of this
approach is directly dependent on the comprehensiveness of
the over-the-line adversarial signals. More straightforward yet
effective black-box adversarial attacks, which do not incorpo-
rate EOT regularization with competitive performance on the
DeepSpeech system, are the genetic algorithm attack (GAA)
[19] and multi-objective optimization attack (MOOA) [20].
These algorithms were tested for targeted and non-targeted
attacks and achieved high fooling rates.

While all the aforementioned adversarial attacks pose major
security concerns against cutting-edge speech-to-text mod-
els, namely DeepSpeech, Kaldi, and Lingvo, there are few
investigations on defense algorithms. The following section
reviews the state-of-the-art defense approaches developed for
counteracting white and black-box adversarial attacks.

III. BACKGROUND: ADVERSARIAL DEFENSE

Developing defense approaches against robust adversarial
attack algorithms can be very challenging due to several rea-
sons. Firstly, standard speech signals have high dimensionality
(e.g., 8 kHz), and even running effective compression tech-
niques [21] for potentially discarding adversarial perturbations
can be time-consuming in real-time speech-to-text transcrip-
tion. Secondly, speech signals often have various channels
for quality enhancement purposes [22]. Thus an adversary



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, MARCH 2021 3

can optimize δ for such channel(s), which human auditory
systems are less sensitive to them and more effectively fool
the victim model [23]. Thirdly, usually, speech signals carry
environmental and microphone-speaker noises, which makes
distinguishing a noisy signal from an adversarial very difficult
even after band-pass filtering [24]. In the following, we briefly
review a couple of multiscale approaches that have been able
to tackle these challenges to some extent.

Inspired by Das et al. [25], a compression-based approach
has been introduced for removing the potential adversarial
perturbation on the speech signals [21]. This algorithm im-
plements both adaptive multi-rate and MPEG audio layer-
3 encoding for such an aim. Reported results showed the
effectiveness of this approach in adverse scenarios for short-
length signals [21]. Furthermore, for sophisticated adversarial
signals, which have been precisely optimized through running
the Robust Attack [10], this defense scheme failed to remove
adversarial perturbations [26].

Autoencoder-based defense GAN (A-GAN) [27] is struc-
turally similar to the compression approach mentioned above.
Instead of low-level signal filtering, it implements high-level
feature transformation. The intuition behind this approach
is transforming the signal into a similar recording using an
autoencoder. The proposed autoencoder implements a complex
architecture for reconstructing feature vectors to remove po-
tential adversarial perturbation δ. Extensive experiments of A-
GAN on DeepSpeech and Lingvo systems have been reported
by Esmaeilpour et al. [26].

Since it has been proven that adversarial subspace is distinct
from original and noisy signals [28], a defense GAN based
on this fact has been developed by Esmaeilpour et al. [26].
Unlike the compression approach and A-GAN approaches, this
defense algorithm employs neither low nor high-level transfor-
mations for discarding adversarial perturbations directly on the
signal. Instead, it uses a class-conditional GAN for computing
a refined latent variable zi for the generator network via:

∇zi ‖γ [G(zi),xi]‖22 (6)

where zi ∈ Rdz with dimension dz is the random variable
from pz ∼ N (0, 0.4I) and G(·) with distribution pg denotes
the generator network. Additionally, γ[·] is the chordal distant
adjustment function between the input spectrogram xi and
G(zi). Eq. 6 is iterative and finds the optimal latent variable
z∗i , which not only forces G(z∗i ) to lie in the original signal
subspace, but also generate a spectrogram very similar to xi.

The effectiveness of this class-conditional defense GAN
(CC-DGAN) has been evaluated against the C&W attack, the
Robust Attack, and the GAA for both DeepSpeech and Lingvo
systems [26]. However, it might fail for long-length signals
(above six seconds) due to the generator network’s instability
in around 10k iterations. For addressing this issue, we propose
two techniques: (i) introducing a multi-discriminator GAN to
provide more informative gradients to the generator network;
(ii) implementing such a GAN in the restricted Sobolev
space [9] and training the generator network according to
the Sobolev function class with a bounded dominant measure.
Since a special case of this restricted space is proportional to
the 2D Fourier transform representation (spectrogram) [9], we

can train our generative model in a much lower dimensionality
compared to 1D speech signals. In the following section, we
explain these steps as part of the proposed defense scheme.

IV. PROPOSED ADVERSARIAL DEFENSE METHOD:
SOBOLEV DEFENSE GAN (SOBOLEV-DGAN)

The proposed adversarial defense approach against speech
attacks has four steps, as depicted in Fig. 1: (i) signal rep-
resentation (conversion from 1D vector to 2D matrix) using
short-time Fourier transform (STFT) [29]; (ii) chordal distance
adjustment with a complementary regularization term for pro-
jecting the given input spectrogram onto the original subspace
(the process shown in the green color); (iii) spectrogram
synthesis using a Sobolev GAN and an optimal safe vector
z∗i (yellow block in Fig. 1); (iv) inverse STFT (i-STFT) for
reconstructing the speech signal.

A. Spectrogram: 2D Representation of 1D Speech Signal
There are several standard transformations in the audio

and speech processing domains for representing a signal into
a 2D spectrogram, such as continuous or discrete wavelet
transform, Mel-frequency cepstral coefficients, and STFT. All
these transformations have some advantages over each other,
and they have been widely used for unsupervised, weakly su-
pervised, and supervised learning tasks. Moreover, the highest
recognition accuracies have been often reported for the models
trained on these representations over 1D signals [3], [31]. This
is presumably due to the lower dimensionality of spectrograms
and the inherent ability of these transformations in extracting
more distinctive learning features compared to 1D signals [32].

This paper uses the STFT to generate spectrograms from
the given speech signals since it is more closely related to
the Sobolev integral probability metric (IPM) [33], which we
employ to train our generator network. This metric correlates
well with the Fourier coefficients encoded in the STFT spec-
trograms and likely helps extract more distinctive features. The
theoretical approach for crafting an STFT spectrogram is as
follows.

For a given discrete signal a[n] with length n (sampled from
a 1D speech signal ~x in the time domain), we can define the
Fourier transform using a Hann function A[·] as [29]:

STFT
{
a[n]

}
(k, ω) =

∞∑
n=−∞

a[n]A[n− k]e−jωn (7)

where k is the shifting scale (k � n) and ω indicates the
frequency coefficients. For capturing more features from a[n],
this operation applies on the overlapping signal chunks (i.e.,
50 ms) according to a predefined sampling rate (e.g., 16 kHz).
For generating the spectrogram, we need to compute the power
spectrum of Eq. 7 as:

(8)SPSTFT

{
a[n]

}
(k, ω) =

∣∣∣∣∣
∞∑

n=−∞
a[n]A[n− k]e−jωn

∣∣∣∣∣
2

where it generates a 2D matrix for a given speech signal ~xi.
In the next subsection, we explain the second step of the
proposed defense approach, which finds a refined z∗i from the
combination of a random zi ∈ Rdz and the original input
spectrogram (xi).
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1D Speech
Signal STFT

i-STFT
Input Sequence

1D Speech
Signal

Output Sequence

Fig. 1: An overview of the proposed defense GAN approach. The 1D speech signal (~xi) is converted to a STFT spectrogram
(xi). Moreover, γ [·] denotes the chordal distance adjustment required for making xi in the same subspace of the synthesized
spectrogram G(zi) (zi ∈ Rdz is the latent random variable). The output speech signal (~̂xi) is reconstructed using the i-STFT
operation and the Griffin-Lim phase approximation approach [30]. Additionally, rank(xi) refers to the input spectrogram’s
rank according to its eigenvalues computed in the Schur decomposition domain.

B. Chordal Distance Adjustment for Spectrogram Projection

Generally, there are two categories in developing defense
approaches against adversarial attacks: running low or high-
level transformations for filtering the input signal aiming at
discarding potential adversarial perturbation (as discussed in
Section III); synthesizing a very similar signal to a given
input vector without running any filtration operation [26],
[34]. While most of the introduced algorithms fall into the
first category, they are often less reliable since they obfuscate
gradient vectors [35]. However, developing a synthesis-based
defense algorithm is more challenging since it requires two key
steps — a projection of the input space and a stable generative
model. Since the proposed defense approach fits the second
category, therefore we introduce novel techniques for these
steps.

The main goal in this step is finding a safe z∗i ∈ Rdz for the
generator network according to two main conditions: G(z∗i )
should lie in the subspace of the original signal distribution
represented by pr (approximated by pg); the synthesized
spectrogram G(z∗i ) should be very similar to the spectrogram
of the given 1D speech signal (xi) using the `2 distance metric.
Toward this end, for every input spectrogram xi, we solve
an optimization problem searching all possible zi ∈ Rdz to
find the z∗i that meets the conditions above. Fig. 2 shows an
overview of this operation.

Inspired by Xingjun et al. [37], which proved that adversar-
ial examples lie in distinct subspaces from original and noisy
input samples, the chordal distance metric has been introduced
for measuring interspaces among spectrogram manifolds [28].
This metric, defined in the Schur decomposition domain for
the triplet of original, noisy, and adversarial spectrograms, can
be written as [36]:

chord(λ[G(zi)], λ[xi]) ≤
ε√[(

ΦHG(zi)Γ
)

+
(
ΦHxiΓ

)]2
(9)

where ε ≤ 20dB is the maximum audible perturbation thresh-
old, which can be defined (or optimized) by the adversary,
λ[·] denotes the eigenvalue vector function class obtained with
Schur decomposition. Γ, Φ, and ΦH (conjugate transpose of
Φ) are random unit 2-norm operators, which satisfy [36]:

xiΓ = λ[xi]G(zi)Γ and ΦHxi = λ[G(zi)]Φ
HG(zi)

(10)
For simplicity, we assume that these operators are static for all
samples. Although this assumption simplifies the computation,
it might result in ill-conditioned cases where an adjustment

γ[·] is needed (chord(·) + γ[·]) [36]. It has been shown that
this adjustment is relatively large for adversarial spectrograms
compared to original and noisy samples [28]. Therefore,
iteratively minimizing over γ[·] for chord(λ[G(zi)], λ[xi])
considerably increases the chance of finding the safe z∗i that
satisfies the conditions mentioned above [26], [28].

Since λ[·], defined in the Schur decomposition domain, is
sorted (descending) and it is inductive (coefficient of both
λ[G(zi)] and λ[xi] have upper bound [9]), according to Zorn
lemma [9] there exists a relative maximal coefficient for both
G(zi) and xi in the Hahn–Banach analytic form. Thus, we
define:

γ[λ[G(zj)], λ[xj ]]︸ ︷︷ ︸
γ∗[·]

≤ γ[λ[G(zi)], λ[xi]] for j � i (11)

where j should be chosen according to the properties of the
spectrograms. However, we empirically set j .

= max(i) · 0.25
to make a reasonable trade-off between spectrogram quality
and computational complexity (75% improvement). On the
other hand, this operation might constitute ill-conditioned pen-
cils (a pencil is a manifold in the closed-form of ψG(zi)−xi
where ψ ∝ pg [36]) by discarding (i − j) eigenvectors. To
tackle this challenge, we add a complementary regularization
term to the spectrogram subspace projection formulation:

∇zi ‖γ∗ [G(zi),xi]‖2F +∇zi ‖span(G(zi)− xi)‖1︸ ︷︷ ︸
regularization

(12)

where span(·) computes a linearly independent manifold in the
Schur decomposition domain from the difference between the
input and synthesized spectrograms [36]. The intuition behind
this regularization term is tying G(zi) as close as possible to
xi and counteracting with the potential ill-conditioned pencils
imposed from γ∗[·]. Ill-conditioned cases often happen when
γ∗[·] is minimized, but G(zi) and xi are not similar.

Upon solving this optimization problem (Eq. 12), we
achieve a candidate set Zf = {zf,i} among all the possible
zi ∈ Rdz . Finally, we find the most optimal vector from Zf
via solving for:

z∗i := arg min
zi∈Zf

‖γ∗ [G(zi),xi]‖F (13)

where z∗i is presumably refined to provide a safe input
vector for the generator model. We do not directly filter the
spectrograms to remove adversarial perturbation δ. We find a
reliable vector for a generative model to synthesize a similar
spectrogram. However, the performance of all these operations
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Subsampling
times

Fig. 2: Overview of the proposed spectrogram subspace projection using the chordal distance adjustment and a complementary
regularization term. The subsampling process is implemented with the distribution N (0.5, 0.5I) (ratio of 0.5) for avoiding
ill-conditioned pencils [36], and a dotted line shows the internal loop. Upon producing a candidate set of Zf vectors from the
given inputs, we select that zi which minimizes the adjusted chordal distance between the synthesized spectrogram G(zi) and
the input spectrogram xi.

is highly dependent on the generalizability and stability of the
GAN model.

C. Spectrogram Synthesis Using a Sobolev-GAN

The generative model proposed for synthesizing spectro-
grams is based on the vanilla GAN [38] but with an integral
probability metric defined in the Sobolev space [9], [33].
Since a specific case of such a space correlates with Fourier
transform, we use this measure for training our GAN on STFT
spectrograms. Moreover, we introduce novel architectures for
both generator and discriminator networks. For improving
the generalizability and the stability of the entire model, we
propose imposing a constraint on the restricted Sobolev space
and incorporating multiple discriminator networks.

The task of a generator network in a GAN configuration
is minimizing the discrepancies between the synthesized (pg)
and real/original (pr) sample distributions based on a specific
measure [38]. The choice of such a measure is quite important
since it contributes to the generalizability of the entire model
(both generator and discriminator networks) [39]. During the
last years, many improvements have been made in designing
comprehensive distance measures on top of the ϕ-divergence
[38] such as Wasserstein [39], Stein [40], Cramér [41], maxi-
mum mean discrepancy (MMD) [42], [43], and µ-Fisher IPM
[44]. The function which measures this discrepancy is called
critic, and it can be formulated (in the closed-form) as [45]:

sup
f∈F

[
EG(xi)∼pgf(G(xi))− Exorg∼prf(xorg)

]
(14)

where F refers to the function class, which is independent
of pg and pr [46]. For improving the GAN stability during
training, restriction often applies to the critic function fol-
lowing the characteristics of F such as Lipschitz continuity
(‖f‖Lip ≤ 1) in Wasserstein-GAN [39] and kernel Hilbert
unit ball (‖f‖Hil ≤ 1) in MMD-GAN [43]. Moreover, these
restrictions should be inline with the properties of the training
sample modality. They might result in a weak or unstable
generative model, especially for sequence generation (e.g., text
and speech) [33].

The similarity measure used for training our GAN is the
Sobolev IPM, adapted for sequence-to-sequence generation
[33] such as chunks of speech signals. Formally, the function
class in the Sobolev space with the zero boundary condition

and the dominant probability density function µ(·) has the
following definition [9], [33]:

(15)
F =

{
X → Rdz || X → Lps(Rdz ), f ∈W ks,ps(X , µ),

Ex∼µ ‖∇xf(x)‖2 ≤ 1, µ ∼ P(pr, pg), ks, ps ∈ N
}

where X ∈ Rdz is a compact open subset, L(·) indicates the
Lebesgue norm for 1 ≤ ps ≤ ∞, ks denotes the order of
the critic function, and P is the probability density function.
The special case of the function class F is for ps = 2 where
it forms a Hilbert space Hks = W ks,2 in connection with
Fourier transform as follows [9]:

Hks(·) '
∑

αs

∣∣∣f̂(x)
∣∣∣2 <∞, f ∈ L2(·) (16)

where αs is a scalar, and f̂(x) refers to the Fourier series for
f(·). Since a spectrogram is also a set of Fourier coefficients,
W ks,2 provides a meaningful domain for capturing local
distributions of SPSTFT. We also assume ks = 1 and simplify
the underlying Sobolev space as [33]:

W 1,2(X , µ) =

{
f : X → Rdz ,

∫
X
‖∇xf(x)‖2 µ(x)dx <∞

}
(17)

where this restricted Sobolev space also constraints the critic
function f into a unit ball Ex∼µ ‖∇xf(x)‖2 ≤ 1. There are
numerous possible choices for defining the dominant measure
µ(·) according to this restricted space’s properties. However,
we initialize it to µ(·) = 0.5 · (pr + pg) which is the optimal
case in training a GAN [33]. Based on these explanations and
using Eq. 14, we can formulate the Sobolev GAN as [33]:

(18)

min
Gθg

[
sup

fϑ,
1
N

∑N
i=1‖∇xfϑ(x̃)‖2≤1

]
E(fϑ, Gθg ) =

1

N

(
N∑
i=1

fϑ(G(zi))−
N∑
i=1

fϑ(xi)

)
, ϑ ≥ 2

where the critic function fϑ follows the imposed constraint in
Eq. 17, and ϑ is the degree of the critic function. Additionally,
N refers to the total number of training samples, and θg
denotes the weight vectors of the generator network. Moreover,
for supporting the continuity and smoothness of fϑ, especially
for higher-order ϑ, it is recommended to define [47]:

x̃i = αϑ (uxr,i + (1− u)G(zi)) (19)
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where u ∼ U [0, 1] and αϑ is an empirical hyperparameter (we
initialize it to αϑ = 0.9). This change of variable implicitly
interpolates between pr and pg to enhance generator model
stability [47]. However, this enhancement is also dependent on
the configurations of both the generator network in optimizing
for Eq. 18 and the discriminator network, which provides
gradient vectors to Gθg .

Our proposed architecture for the generator network em-
ploys convolution and residual blocks due to their representa-
tion power in capturing continuous density functions of the
input space [48], [49] such as spectrograms (see Fig. 3).
The generator network contains a fully connected 1D vector
layer equivalent to the total dimension of the spectrogram
(128×128), followed by batch normalization (BN) and recti-
fied linear unit activation function (ReLU). This network’s first
hidden layers are two convolution blocks with the receptive
field and stride of 5×5×1. The second hidden layer contains
three consecutive residual blocks where each of them has
dilated convolution operation with aggregation. Inspired by
Kumar et al. [50], the filter size of these blocks are identical.
Finally, this network’s output layer is a transposed convolution
[51], which yields an RGB spectrogram.

Since the discriminator network provides gradients to the
generator and has a crucial role in the entire model’s stabil-
ity [52], we empirically embedded five discriminators with
identical architectures. However, we unloaded these networks
from residual and long short-term memory (LSTM) blocks
to avoid unnecessary complications. The filter sizes in these
networks are different and, they escalate by a factor of two so
that encompassing a broader range of spectrum distribution.
Unlike the generator network, all the convolution layers in
the discriminators deploy leaky ReLU (LReLU), as discussed
in [53]. The general formulation for training these GANs is:

min
G

max
Di

Ex∼pr [logDi(x)] + Ez∼pz [log (1−Di(G(z)))]

(20)
where ∀i = 1 : 5 and pz ∼ N (0, I). The loss function of these
networks is similar to the hinge objective function introduced
in [52]. However, according to the Sobolev IPM:

(21)
LS(ϑ, θg, θd, %s) = E(fϑ, G) + %s(1− Ωs(fϑ, G))

−ρ
2

(Ωs(fϑ, G)− 1)2

and in this definition, Ωs(·) in the restricted Sobolev space
W 1,2(X , µ) is differentiable and regarding Eq. 18, it is defined
as [33]:

(22)
1

2N

(
N∑
i=1

‖∇xfϑ(xi)‖2 +

N∑
i=1

‖∇xfϑ(G(zi))‖2
)

Moreover, %s, θd, and ρ > 0 denote the Lagrange multiplier,
the weight vectors of each discriminator network, and the
penalty weight for providing higher smoothness in training,
respectively [44]. One potential side effect of training the gen-
erator with multiple discriminators is the difficulty of making
a trade-off between sample variety an quality. For tackling
this challenge, we use orthogonal regularization (OR) for all

the discriminator networks using a simple linear similarity
measure [54]:

R$ = $
∥∥θ>d θd � (1− I)

∥∥2

F
(23)

where empirically $ ∈ (10−5, 10−5] is a small tuning
coefficient, and 1 indicates a matrix with constant values
of one [49]. This regularization forces the discriminator
network to reduce dissimilarity among filters to learn more
distinctive features. However, this might negatively affect the
generator performance in capturing all the possible modes
from the spectrogram, cause instability in a higher number
of iterations, and generate oversmoothed samples [55]. In
response to this issue, we propose a new constraint for the
critic function fϑ as the following.

Proposition: There is an achievable upperbound (supremum)
for the continuous (and partially differentiable) critic function
fϑ(·) in the restricted Sobolev space W 1,2(X , µ) with:

Lη(X ) =
{
fϑ : X → R, |fϑ|η ∈ L1(X )

}
(24)

where ‖f‖L1 = ‖f‖1 and 1 ≤ η ≤ ∞. This reduces the space
definition in Eq. 17 to

∫
X ‖∇xf(x)‖2 µ(x)dx ≤ cΥ where

cΥ is a positive static scalar.

Proof: According to the rigid constraint Ex∼µ ‖∇xf(x)‖2 ≤
1 imposed on W 1,2(X , µ) in Eq. 17, it always supports
‖∇xf(x)‖2 ∈ Lη (the Lebesgue norm). If we bind µ(x) ∈ Lη′

where η′ denotes the conjugate exponent of η (1/η+1/η′ = 1),
then using the Hölder’s inequality [9], we can write:∫

X
‖∇xf(x)‖2 µ(x)dx ≤ ‖∇xf(x)‖2η ‖µ(x)‖η′︸ ︷︷ ︸

cΥ<<∞

� (25)

where cΥ is dependent on the cumulative distribution of
µ(x). This constraint forces the generator network to discard
local sample distributions which lie far from the optimal
generator distribution (dpr + pge /2). It also implicitly helps
the discriminator network avoid shattering gradients vectors
since the learning space bound to cΥ.

For synthesizing a spectrogram similar to the given xi,
the generator network maps the safe vector z∗i onto x̂i and
then tunes the generated spectrogram with the xi’s rank [36]
in the Schur decomposition domain. Even if this tuning is
optional, it improves the quality of x̂i and reduces the potential
dissimilarity between G(z∗i ) and xi.

The last step of the proposed adversarial defense approach
is transforming the synthesized spectrograms into the time
domain using the inverse STFT operation. This step is nec-
essary only for end-to-end speech-to-text victim models upon
adversary’s discern.

Reconstructing an audio or speech signal from a spectro-
gram requires the associated phase vectors from the trans-
formation function (e.g., STFT). There are two main ap-
proaches for such an aim: using original phase vectors and
approximating phase vectors. Obviously, in the first approach,
the reconstructed signals’ quality will be very similar to the
original counterparts since they share the same timing. How-
ever, original phase vectors might not always be accessible,
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Conv. BN+LReLU

FC Loss

DiscriminatorsGenerator
Fig. 3: Overview of the proposed GAN architecture (one generator and five discriminators Di,θ for ∀i = 1 : 5) for spectrogram
synthesis. Fully connected (FC), convolution (Conv.), dilated convolution (D-Conv.), transposed convolution (T-Conv.), and
residual (Res.) layers are followed by weight normalization. The top and bottom parts of the layers refer to the input and
output filters’ dimensions, respectively. Moreover, νi for ∀i = 1 : 5 denotes the logits of the discriminator.

contrary to the second signal reconstruction approach. On the
other hand, approximated phase vectors usually add audible
noise to the reconstructed signal and degrade its quality.
Therefore we opted for the second approach since accessing
the original phase vectors might be prohibitive in some senses.
Specifically, we use the recognized Griffin-Lim algorithm for
the i-STFT procedure [30]. Since this may raise concerns
about the quality of the reconstructed signals, we measure their
peculiarity with some metrics.

V. EXPERIMENTAL RESULTS

In this section, we analyze the proposed defense scheme’s
performance from two points of view: the defense algorithm’s
success rate by measuring the word error rate and sentence-
level accuracy scores, and the quality of the signals from the
synthesized spectrograms and the approximated phase vectors.
The latter also includes comparing signals after filtration by
various defense algorithms. This shows the impact of defense
algorithms on speech signals.

Our benchmarking victim models are DeepSpeech, Kaldi,
and Lingvo, which employ both the conventional and cutting-
edge learning blocks, such as HMM, convolutional, recurrent,
LSTM, and residual configurations. These models are trained
on Mozilla common voice (MCV) [57] and LibriSpeech [58]
comprehensive datasets, including numerous utterances. More-
over, they contain above 1,000 hours of recordings organized
in short (≤ 6 sec) and long (> 6 sec) voice clips.

In all our experiments, we use a combination of strong white
and black-box end-to-end adversarial attacks, as discussed
in Section II. For every adversarial signal, regardless of
EOT type, we assign ten targeted incorrect different phrases,
including silence [7], and five non-targeted incorrect random

phrases with different lengths to more effectively challenge
defense approaches. Meanwhile, we take identical assumptions
for those algorithms that require environmental settings such as
CIR and RIR filter sets for fairness in comparison. Following
a common practice in adversarial studies [7], [10], [19], we
also craft adversarial signals for a group of randomly selected
portions (with shuffling) of the datasets mentioned above.
More specifically, we randomly choose 25k English-speaking
samples from both MCV and LibriSpeech with an almost
equal number of genders (male and female), accent (e.g.,
United States, England, etc.), and age (the majority between
19 to 39 regarding the dataset limitation). We assign almost
60% of these samples for training, tuning, and validating our
generative model. Hence, the remaining portion will be used
for developing adversarial signals using six attack algorithms.

Since we train our GAN on the spectrograms, we firstly
convert speech signals into SPSTFT with a sampling rate of
22.05 kHz. Additionally, we set the total number of Mel-
frequency coefficients to 20 per frame with an overlapping
ratio of 0.5 and the hop length of 512. The Hann window
length is initialized to 2048 with reflect padding.

We discard checkpoints with unstable learning curves during
training and opt to early stop when any signs of instability
become present [49]. For all the architectures (the generator
and five discriminators) we use Adam optimizer with a static
learning rate of 2 · 10−5 and hyperparameters β1 = 0 and
β2 = 0.9. We empirically set the required number of steps for
the generator network over the discriminators to two with a
decay ratio of 0.99 on four NVIDIA GTX-1080-Ti and two 64-
bit Intel Core-i7-7700 (3.6 GHz) with 8×11GB and 2×64GB
memory, respectively.

For evaluating the performance of the proposed defense
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algorithm against adversarial attacks, we also use the word
error rate (WER) and sentence level accuracy (SLA) [10]. The
first metric measures the summation of total phrase insertion,
substitution, and deletion over the ground-truth phrases (yi).
The second metric measures the ratio of correctly transcripted
phrases over the total number of test speech signals. To avoid
bias in our analysis, we repeat each experiment 10 times and
report the average WER and SLA for each defense algorithm.
Table I summarizes the achieved results.

Table I shows that for most cases, the proposed defense
approach (Sobolev-DGAN∗) and its variant without employing
the constraining proposition (Sobolev-DGAN) introduced in
Section IV-C outperform other defense algorithms against
six strong end-to-end speech attacks. Averaged over all the
conducted experiments on the three victim speech-to-text
models, Sobolev-DGANs have similar performance on white
(C&W, Metamorph, Imperio, and Robust Attack) and black-
box (GAA and MOOA) attack algorithms. That indicates
the independence of our defense algorithm to the adversarial
attack scenarios. Moreover, the total number of required iter-
ations (f) toward achieving the safe input vector z∗i for the
C&W attack and the Robust Attacks is relatively more than
others. That could be interpreted as the higher power of these
attacks in yielding more destructive adversarial signals since
they demand an additional cost for our defense algorithm to
find the input vector. However, any discussion on the resiliency
of adversarial attacks and their potentials in optimizing upscale
examples is beyond this paper’s scope.

Furthermore, Table I also proves the effectiveness of the
proposed constraining technique for the critic function fϑ as
discussed in Section IV-C. Except for the GAA, Sobolev-
DGAN∗ has shown higher SLA than the Sobolev-DGAN on
all the victim speech-to-text models.

For evaluating the potential negative impact of running
defense algorithms on the crafted adversarial signals, we use
four objective speech quality metrics: perceptual evaluation
of speech quality (PESQ) [59], segmental signal to noise ratio
(segSNR) [60], short-term objective intelligibility (STOI) [61],
and log-likelihood ratio (LLR) [60]. The first metric is based
on cognitive modeling, and the input filter set aligns with
identifying noisy intervals (high-level quality analysis). The
second metric is the enhanced version of the conventional
signal-to-noise ratio in audible logarithmic scale for chunks of
speech signals (low-level quality analysis). The third metric
evaluates the ratio of band-pass local noise perceptibility to
the entire signal chunks. Unfortunately, these metrics are not
normalized in a scaled interval. However, there is a direct
relationship between their magnitudes and signal quality. The
fourth metric is associated with a logarithmic noise ratio
relative to the ground-truth scaled between [0, 1]. Therefore,
high-quality signals have lower LLR. As shown in Table I, for
the most cases, averaged over ten times experiment repetitions,
both the Sobolev-DGAN∗ and Sobolev-DGAN outperform
others in keeping the quality of the signals after running the
defense filtration.

In Section IV-C, we mentioned that W ks,2 provides a mean-
ingful (and comprehensive) domain for capturing local distri-
butions of spectrograms. To investigate this claim, Fig. 4 shows

the relation between the Sobolev IPM and extracted local and
global probability distributions from spectrograms compared
to others. Toward this end, inspired by Mao et al. [51],
we compare the mode collapse issue between the GANs
trained with various IPMs as mentioned in Section IV-C. We
have used an identical architecture for all generative models
(generator and discriminators depicted in Fig. 3) for fairness
in comparison. Additionally, we have used the same settings
for these networks.

Fig. 4: Monitoring the average learned modes (per batch size
of 2×512) by our GAN model during training on SPSTFT

with different IPMs indicates potential collapse over the total
number of iterations.

Fig. 4 shows that the average number of learned modes
has an increasing behavior of up to 20k iterations for MMD
and µ-Fisher IPMs. For Wasserstein and Cramér IPMs, this
behavior reaches around 26k iterations. Among these, the
Sobolev IPM keeps its incremental behavior up to 30k iteration
with considerable bias (along the y-axis). That demonstrates
the higher performance of fϑ in capturing the local distribution
of spectrograms in the restricted Sobolev space compared to
other IPM. However, it does not immune our generative model
against the mode collapse issue. As depicted in Fig. 4, our
GAN gradually starts losing sample modes after 31k iterations.
For tackling this issue, we used OR, spectral normalization
[52], and early stopped at checkpoints before the collapse.

Since there is a direct relationship between stability and
generalizability of the GAN and our proposed defense al-
gorithm, even a partially unstable generator network might
result in absolute divergence in the chordal distance adjust-
ment operation. In other words, if the GAN model is not
comprehensive enough in terms of the number of learned
modes, the process shown in Fig. 2 might never converge.
This poses more concerns for long signals with too much
environmental noise. Additionally, for multi-speaker speech
signals, our proposed Sobolev-DGANs not only might not be
able to learn enough modes but also might recover adversarial
perturbation after the i-STFT procedure. We believe that
employing more constraining conditions on both the generator
and discriminators may improve model stability. Moreover,
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TABLE I: Comparison of the defense algorithms against strong white and black-box adversarial attacks for the DeepSpeech,
Kaldi, and Lingvo victim speech-to-text models. Whereas WER and LLR, higher values for the SLA, PESQ, segSNR, and
STOI metrics are better. The difference between Sobolev-DGAN∗ and Sobolev-DGAN is the latter does not incorporate the
constraint proposition (Eq. 25) mentioned in Section IV-C. Outperforming results are shown in boldface.

Model Attack Defense Average f WER (%) SLA (%) PESQ segSNR STOI LLR

DeepSpeech

C&W

Compression [21] − 19.14± 2.36 49.26± 2.67 1.64 09.31 0.85 0.44
A-GAN − 26.32± 3.03 36.21± 0.12 1.15 06.95 0.87 0.41

CC-DGAN − 14.52± 1.16 61.23± 1.02 2.01 12.56 0.89 0.38
Sobolev-DGAN 163 07.61± 0.47 76.15± 2.18 2.36 18.73 0.91 0.31

Sobolev-DGAN∗ 159 04.21± 1.39 79.24± 1.17 2.71 19.91 0.95 0.30

Metamorph

Compression [21] − 21.54± 2.17 51.57± 1.91 1.55 10.34 0.76 0.48
A-GAN − 19.81± 3.72 58.39± 0.49 1.59 10.86 0.83 0.32

CC-DGAN − 11.89± 1.23 71.94± 1.56 1.96 11.08 0.85 0.35
Sobolev-DGAN 039 09.37± 1.12 75.19± 2.18 2.17 14.76 0.88 0.34

Sobolev-DGAN∗ 027 06.79± 0.19 80.34± 3.67 2.45 16.01 0.93 0.31

GAA

Compression [21] − 27.41± 3.61 43.71± 1.32 2.14 14.37 0.87 0.39
A-GAN − 29.49± 5.26 40.88± 5.37 1.66 12.53 0.88 0.37

CC-DGAN − 14.98± 3.56 69.46± 2.37 2.03 13.52 0.90 0.34
Sobolev-DGAN 101 09.68± 2.73 73.98± 0.77 2.39 16.02 0.93 0.29

Sobolev-DGAN∗ 097 05.01± 0.11 72.88± 4.28 2.38 18.91 0.94 0.30

MOOA

Compression [21] − 17.06± 0.19 55.16± 3.86 1.87 19.42 0.92 0.38
A-GAN − 18.74± 43.21 53.07± 3.06 1.85 14.63 0.87 0.41

CC-DGAN − 15.69± 1.97 61.11± 2.99 1.99 17.81 0.89 0.39
Sobolev-DGAN 051 12.25± 2.84 68.84± 1.56 2.46 19.35 0.90 0.36

Sobolev-DGAN∗ 049 04.23± 2.32 79.36± 2.16 2.30 18.06 0.91 0.39

Kaldi Imperio

Compression [21] − 16.29± 5.17 56.42± 6.11 2.42 15.79 0.83 0.32
A-GAN − 17.76± 0.16 54.28± 1.90 1.23 09.76 0.74 0.48

CC-DGAN − 10.19± 2.93 69.62± 2.63 1.84 16.53 0.78 0.45
Sobolev-DGAN 093 06.78± 0.91 75.33± 2.97 1.96 13.98 0.81 0.41

Sobolev-DGAN∗ 047 03.29± 1.14 82.37± 3.62 2.35 16.52 0.89 0.35

Lingvo Robust Attack

Compression [21] − 21.56± 4.15 55.11± 3.05 2.06 15.08 0.74 0.33
A-GAN − 17.90± 4.21 59.98± 1.38 2.17 14.43 0.72 0.34

CC-DGAN − 14.46± 0.35 64.16± 2.14 1.71 11.09 0.79 0.28
Sobolev-DGAN 114 11.99± 2.76 69.33± 0.81 1.92 12.25 0.76 0.34

Sobolev-DGAN∗ 136 05.86± 1.64 83.46± 2.27 1.96 17.07 0.81 0.22

conditioning the discriminator networks aligned with time-
distributed filter sets can provide more distinctive features for
the discriminator network to resolve the multi-speaker issue.
We are determined to address these issues in future work.

VI. CONCLUSION

In this paper, we proposed a novel approach for defensing
speech-to-text models against end-to-end adversarial attacks.
Our approach is based on reconstructing signals from syn-
thesized spectrograms and approximated phase vectors. For
spectrogram synthesis, we use a multi-discriminator GAN
defined in the restricted Sobolev space. Our GAN genera-
tor network requires a safe input vector achievable through
an iterative spectrogram subspace projection operation using
the adjusted chordal distance. To improve our implemented
generative model’s performance, we impose a constraint for
the critic function that learns discrepancies between real and
synthesized sample distributions. We evaluated our defense
approach against six strong white and black-box adversarial
attacks on advanced DeepSpeech, Kaldi, and Lingvo victim
models. The proposed defense approach, averaged over the
total number of experiments, outperformed other algorithms
according to WER and SLA metrics. Furthermore, we used
four objective quality metrics for measuring the impact of
running defense algorithms on speech signals. For the majority
of the cases, our defense approach demonstrated higher signal
quality compared to other algorithms.
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