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Gaussian Markov Random Field Priors in
Ionospheric 3-D Multi-Instrument Tomography

Johannes Norberg , Juha Vierinen, Lassi Roininen, Mikko Orispää, Kirsti Kauristie,
William C. Rideout, Anthea J. Coster, and Markku S. Lehtinen

Abstract— In ionospheric tomography, the atmospheric
electron density is reconstructed from different electron density
related measurements, most often from ground-based measure-
ments of satellite signals. Typically, ionospheric tomography
suffers from two major complications. First, the information
provided by measurements is insufficient and additional infor-
mation is required to obtain a unique solution. Second, with
necessary spatial and temporal resolutions, the problem becomes
very high dimensional, and hence, computationally infeasible.
With Bayesian framework, the required additional information
can be given with prior probability distributions. The approach
then provides physically quantifiable probabilistic interpreta-
tion for all model variables. Here, Gaussian Markov random
fields (GMRFs) are used for constructing the prior electron
density distribution. The use of GMRF introduces sparsity to
the linear system, making the problem computationally feasible.
The method is demonstrated over Fennoscandia with measure-
ments from global navigation satellite system (GNSS) and low
Earth orbit (LEO) satellite receiver networks, GNSS occultation
receivers, LEO satellite Langmuir probes, and ionosonde and
incoherent scatter radar measurements.

Index Terms— Bayesian, Gaussian Markov random fields
(GMRFs), ionospheric tomography, multi-instrument.

I. INTRODUCTION

IONOSPHERIC tomography involves reconstruction of the
atmospheric electron density within a volume, using a

number of different measurements of electron density. The
first studies on ionospheric tomography were made in [1].
A general introduction to the topic is provided in [2].

The electron density measurements can be divided to indi-
rect and direct measurements. Indirect measurements refer
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Fig. 1. Multi-instrument ionospheric electron density measurements. GNSS
satellites provide line-integrated measurements all the way up to the plasma-
sphere, but as the satellites move relatively slow, the measurement geometry
with respect to ground stations does not change significantly. The inclination
angles of different GNSSs are low. LEO beacon satellites, which cover the
ionosphere up to about 1000 km, can have a polar orbit and move relatively
fast, allowing a 2-D slice of the ionosphere to be covered. LEO satellites
with GNSS receivers provide variable look angles through the topside of the
ionosphere. Langmuir probe provides the only in situ measurements available.
Ionosondes provide localized bottomside profiles. ISRs provide localized
profiles of electron density.

here to satellite-to-ground and satellite-to-satellite measure-
ments, where the measurements are modeled as integrals over
electron density. In this paper, ground-based total electron
content (TEC) measurements from global navigation satellite
system (GNSS) and low Earth orbit (LEO) satellites and
GNSS occultation TEC measurements are employed. These
measurements have a lower accuracy of structural information,
but typically a large spatial coverage can be attained. Direct
measurements, such as different radar and satellite in situ
measurements, provide relatively accurate structural informa-
tion, but from a restricted area. This paper utilizes a satellite
on-board Langmuir probe, incoherent scatter radars (ISRs),
and ionosondes as direct measurements. However, even within
these two categories the different measurements have different
strengths and weaknesses, and are highly complementary.
A 2-D simplification of measurement geometries is shown
in Fig. 1.

Typically, the available measurements are predominantly
indirect satellite measurements with limited elevation angles,
and the resulting information, particularly on vertical gradients
is low. Consequently, the electron density cannot be solved
uniquely without some additional structural information. The
essential difference between different ionospheric tomography
methods follows from how this information is implemented
into the algorithm.
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In [3], an extensive overview on different approaches and
their development is provided. More recently, the topic has
been studied in [4]–[7].

With Bayesian statistical approach, the required additional
information can be given as a prior probability distribu-
tion. When Gaussian distributions are assumed, the prior
information can be represented with the mean and covari-
ance. In ionospheric tomography, the prior mean corresponds
to most probable state of the atmospheric electron den-
sity, whereas the covariance describes its uncertainty. All
the parameters included in the prior have, thus, a clear
probabilistic interpretation with physical quantities. Hence,
when the measurement and model errors are modeled cor-
rectly, in principle, the model has no free parameters that
need to be calibrated. If additional tuning is nevertheless
required, all the changes in the parameters have a clear
meaning.

A comprehensive introduction to statistical inverse prob-
lems is provided in [8] and [9]. In ionospheric tomography,
the Bayesian inference has been applied in [10]–[13]. The
Ionospheric Data Assimilation Three-Dimensional (IDA3D)
presented in [14] is based on the Three-Dimensional Varia-
tional Data Assimilation Technique (3DVAR) and uses slightly
different terminology. However, with Gaussian prior and error
distributions, the Bayesian statistical approach and 3DVAR are
computationally identical.

The drawback of Bayesian approach is in computa-
tion, as the solution requires operations of large covari-
ance matrices. In this paper, Gaussian Markov random field
(GMRF) [15] priors for ionospheric tomography, presented
in [12] and [13], are generalized to the 3-D multi-instrument
case. The GMRF approach provides an extension to Bayesian
and 3DVAR methods, as the prior covariance can be replaced
with a sparse matrix approximation. Essentially, by imple-
menting GMRF with sparse systems solvers, the computational
cost in the high-dimensional matrix operations is reduced
significantly.

This paper is organized as follows. In Section II, the mod-
els for different measurements are described. In Section III,
the Bayesian statistical approach for linear tomography is
revisited. In Section IV, the GMRF approximation of prior
precision matrix is described, with a short summary of alterna-
tive ways to overcome the computational issues. In Section V,
the performance of the considered method is presented. First,
with a simulated example using the International Reference
Ionosphere 2012 (IRI-2012) model as the unknown, and then
with real multi-instrument data. The EISCAT ISR measure-
ments are included for validation. Discussion and conclusion
of the study are given in Sections VI and VII. The future plans
are considered in Section VIII.

II. MEASUREMENTS

The approach presented in this paper can exploit any
measurement depending linearly on the ionospheric elec-
tron density with estimable measurement error. The electron
density is given here as function Ne(t, z), where t is the time
and z = {zlat, zlong, zalt} ∈ R3 is the spatial coordinates.

A. Indirect Measurements

A GNSS TEC measurement along signal path Lsat,rec(t)
between satellite sat and receiver rec at time t can be modeled
as a line integral

msat,rec(t)=
�

Lsat,rec(t)
Ne(t, z)dl+asat(t)+brec(t)+εsat,rec(t)

(1)

where asat(t) and brec(t) are the receiver and satellite instru-
ment biases. Discretization and assumption of time homo-
geneous ionosphere cause errors that need to be taken into
account in the model. Here, the modeling errors are assumed
independent of the unknown electron densities and added all
together in εsat,rec(t).

The forward model for GNSS occultation measurements is
the same as for the ground-based measurements given in (1).
The practical difference is that the on-board receiver is also
in motion.

The relative TEC (RTEC) measurement between a LEO
beacon satellite and a ground-based receiver can be modeled as

msat,rec(t) =
�

Lsat,rec (t)
Ne(t, z)dl + γsat,rec + εsat,rec(t) (2)

where the phase ambiguity is given with γsat,rec and it is
different for each signal lock [16].

Despite the similarity of the TEC measurement models,
there are significant practical differences. By combining the
different observables, the GNSS TEC does not suffer from
the phase ambiguity [17]. The remaining GNSS satellite and
receiver biases can have a significant effect on the TEC
measurement. However, the changes in these biases are rela-
tively slow and they can be estimated before the tomographic
analysis [18], [19], thus the bias-corrected GNSS measure-
ments can be assumed to be close to absolute TEC. On the
other hand, as the bias estimation requires several simplifying
assumptions, it is beneficial to keep the parameters asat and
brec in the model and assume that after the bias correction,
they are closer to zero, but not completely eliminated.

Due to lower signal frequencies (150 and 400 MHz),
the LEO TEC measurements are more sensitive for detailed
ionospheric structures, however, as the phase ambiguity is
typically in the magnitude of current local maximum TEC,
the measurement is relative and γsat,rec needs to be solved
as an additional unknown in the tomographic analysis. The
orbital inclinations of GNSS satellites are relatively low
[GPS 55◦, Global Navigation Satellite System (GLONASS)
64.13◦, GALILEO 56◦]. For the polar regions, the low incli-
nation induces low elevation angles making the measure-
ments susceptible for larger errors. LEO beacon satellites can
have orbital inclinations close to polar orbits (CASSIOPE/e-
POP 80.99◦, COSMOS 2407 and 2463 83◦), thus providing
high-elevation measurements also from high-latitude receivers.
Following from the higher orbital altitudes of GNSS satellites
(GLONASS 19 140 km, GPS 20 180 km, and GALILEO
23 222 km), the plasmaspheric contribution in the TEC mea-
surement can be significant. With orbital altitudes around
1000 km, there is no plasmaspheric contribution in the LEO
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RTEC measurements. The lower altitude also results in a
higher relative satellite velocity, and hence better spatial
coverage for the individual satellite when present. Multiple
GNSS satellites can be viewed from all locations and at all
times, especially now there are several satellite constellations.
GNSS observations are also easily obtained as large receiver
networks exist. This differs from the case of LEO satellites as
there are fewer receivers (LEO receivers are built specifically
for this purpose) and there are only few suitable satellites.
Hence, in general, the GNSS TEC measurements are the most
important data component, providing constant spatiotemporal
coverage with absolute measurements. LEO RTEC measure-
ments provide more detailed information and provide higher
elevation data in polar areas, but the spatiotemporal availability
is inferior to GNSS.

B. Direct Measurements

When the electron density is detected in a specific location,
as is the case with different radar and satellite in situ mea-
surements, the direct measurement from instrument I can be
modeled simply as

mI(t, z) = Ne(t, z) + εI(t, z). (3)

With satellite in situ measurements z = (zlat, zlon, zalt) is
the location of the Langmuir probe, and with ISR, it is the
location of measurement integration. With inverted, real-height
ionosonde electron density profiles (zlat, zlong) is the location
of the instrument and zalt is the real reflection height.

In comparison to any indirect measurement, these measure-
ments provide significantly more accurate and detailed infor-
mation on ionospheric structures. As a downside, the spatial
coverage of measurements is typically limited.

III. BAYESIAN STATISTICAL APPROACH

By assuming stationary electron density for a given time
interval and discretizing the measurement models (1)–(3),
all the ionospheric measurements can be combined and
written as

m = AX + ε (4)

where m ∈ RM is a vector of all measurements. Geometry
matrix A ∈ RM×N is a linear mapping from discretized spatial
domain to measurement space. Vector

X =
�

x
ζ

�
∈ RN

consists of unknown electron densities x ∈ Rn , as well
as all the additional unknown error parameters ζ =
(asat1 . . . asatA , brec1, . . . , brecB , γ1,1 . . . γC,D, ρ)T, where ρ is
the plasmaspheric electron density contribution per meter,
A, B , C , and D are the counts of GNSS satellites, GNSS
receivers, LEO satellites, and LEO receivers, respectively, and
n + A + B + C × D + 1 = N . Vector ε ∈ RM contains all the
measurement and modeling errors. Here, it is assumed that the
error vector follows a multivariate normal distribution

ε ∼ N (0,�ε)

and that the realistic states of the ionosphere and additional
parameters can be described satisfactorily with a prior distri-
bution, which is also multivariate normal

X ∼ N (Xpr,�pr) (5)

where Xpr is the prior mean of the ionosphere and additional
parameters. Covariance �pr describes the related prior uncer-
tainties. Following the Bayes theorem [9], the posterior distri-
bution for X is then also a multivariate normal distribution

X|m ∼ N (XMAP,�post)

where maximum a posteriori (MAP) estimator

XMAP = �post
�
AT�−1

ε m + �−1
pr Xpr

�
(6)

and posterior covariance estimator

�post = �
AT�−1

ε A + �−1
pr

�−1
. (7)

In an application to ionospheric tomography, the MAP
estimator XMAP can be understood as the most probable
state of the ionospheric electron density and other unknown
parameters, whereas the remaining uncertainty is given with
the error covariance �post.

IV. COMPUTATION

The downside of Bayesian statistical approach for inverse
problems is that the assumption of a proper prior distribu-
tion (5) results with a dense N × N covariance matrix �pr.
The estimators (6) and (7) contain inverted covariance matrices
and the posterior covariance estimator involves one more
matrix inversion. Hence, the solution becomes exceedingly
demanding computationally. To ease the computational bur-
den, the dimensions would need to be reduced or sparsity
would need to be introduced into the linear system. Two
previously applied approaches are first revisited, before intro-
ducing the GMRF approach for sparse approximation of the
covariance matrix.

A. Generalized Tikhonov Regularization

When independent measurement errors are assumed,
the measurement covariance matrix is diagonal, �ε = σ 2

ε I, and
due to the nature of the measurements, the geometry matrix A
is a sparse matrix. If the inverted covariance matrix, i.e., the
prior precision matrix �−1

pr could be given also as a sparse
matrix, the memory required for storage would decrease and
optimized solvers for sparse linear systems could be utilized
for the computation.

In more general sense, the MAP estimator (6) is a regular-
ized least squares solution. Selecting �−1

pr = 0 reduces it to
ordinary least squares estimator. With �−1

pr = δI, the estimator
corresponds to Ridge regression and Tikhonov regularized
solution. When �−1

pr is any suitably chosen matrix, the esti-
mator is called the generalized Tikhonov regularization [9].
Typically, �−1

pr = δ�T�, where � is a difference matrix. These
can be extremely sparse systems and the inversion in (7) is
possible even for relatively high-dimensional problems. With
these approaches, it is possible to add structural constraints for
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the solution. For ionospheric tomography, in [4] and [10], a
vertical weight profile is included in matrices � to regularize
the problem more strictly at the very low and high altitudes
and to allow more variability to electron densities at altitudes
where the highest values and dynamics are expected. The
constraint ends up to provide essentially similar information
than a full prior covariance would, but as it lacks some of the
interpretation, it requires ad hoc calibration.

B. Data Space Solution

With matrix inversion lemma, the MAP estimator (6) can
be written equivalently as

XMAP = Xpr + �prAT�
A�prAT + �ε

�−1
(m − AXpr) (8)

and

�post = �pr − �prAT�
A�prAT + �ε

�−1A�pr. (9)

This form is preferred by IDA3D [14] and in the standard for-
mulation of Kalman filter. The advantage is that the inversion
is done for M × M matrix, whereas in (6), an N × N matrix
is inverted. Typically, in ionospheric tomography, M � N
which can unburden the inversion. Here, the computational
bottleneck is in representing and storing the covariance matrix
�pr and performing the matrix multiplications. In case of
global ionospheric tomography, it can be assumed that loca-
tions with long enough distance have a zero correlation. This
covariance tapering [20] introduces sparsity to the system.
However, in local tomography, the correlation lengths extend
over the domain, hence, the prior covariance is a dense matrix.

C. Gaussian Markov Random Field Prior

The idea here is the following. As the estimator (6) does
not require actual covariance matrices, but rather precision
matrices, a sparse precision matrix Q is constructed so that

Q−1 ≈ �pr (10)

where the matrix Q is built with the formalism of GMRFs.
When parameterized correctly, a GMRF gives rise to a known
spatial covariance. So, even though the actual covariance
matrix is never constructed, the precision matrix can be
determined by its covariance properties.

The detailed theoretical background for these types of
GMRFs is given in [21]–[24]. Here, an example is given,
where the target precision �−1

pr is determined with a squared
exponential covariance function

Cov(zi − z j ) = α(zi , z j ) exp

�
− 1

2

� �
zi,lat − z j,lat

�lat

�2

+
�

zi,long−z j,long

�long

�2

+
�

zi,alt −z j,alt

�alt

�2 ��

(11)

where �lat, �long, and �alt > 0 are the correlation lengths
homogeneous in each coordinate direction and α(zi , z j ) > 0
is a location-dependent variance mask.

Following [24], an anisotropic continuous GMRF with a
covariance approximating (11) can be formed as a solution
to a stochastic partial differential equation

⎛
⎜⎜⎜⎜⎜⎝

√
c0 I√

c1�lat∂lat√
c1�alt∂alt√

c1�long∂long√
c2

�
�2

lat∂
2
lat + �2

alt∂
2
alt + �2

long∂
2
long

�

⎞
⎟⎟⎟⎟⎟⎠

X (z) = �
α(z)�lat�alt�long

⎛
⎜⎜⎜⎜⎝

W(0)(z)
W(1,lat)(z)
W(1,alt)(z)
W(1,long)(z)
W(2)(z)

⎞
⎟⎟⎟⎟⎠ (12)

where X (z) and W(·)(z), z ∈ R3 are the continuous ran-
dom fields and independent continuous white noise fields,
respectively. For squared exponential covariance function (11),
the shape parameters ck = 2−k/k!, with k corresponding to
the order of the derivative.

To make (12) applicable for computations, there are two
objects to discretize the differential operator on the left-hand
side and the white noise on the right-hand side. By using finite
difference methods, a 3-D domain is defined with dimensions
nlat×nalt×nlong = n and voxel widths hlat, halt and hlong in the
different coordinate directions. To simplify the following for-
mulation, new parameters slat := (hlat/�lat), salt := (halt/�alt)
and slong := (hlong/�long) are defined. Here, only the unknown
electron densities x = (x1, . . . , x j , . . . xn)

T are considered.
The additional error parameters ζ are independent of x and
are included after the field is discretized at the end of the
section.

The discrete approximation for white noise is

W (k)
j ∼ N

�
0,

α j

ck

1

slatsaltslong

�

where the superscript k is an index for the order of difference.
The discrete white noise process is then set as

x j = W (0)
j . (13)

The first-order differences are


latx j := 1

slat
(x j+1 − x j ) = W (1,lat)

j


altx j := 1

salt
(x j+nlat − x j ) = W (1,alt)

j


longx j := 1

slong
(x j+nlatnalt − x j ) = W (1,long)

j (14)

where the first superscript on the right-hand side is the
order of difference and the second superscript is the effective
coordinate direction. The second-order differences are given as


2 x j := 
2
latx j + 
2

altx j + 
2
longx j = W (2)

j (15)
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where


2
latx j :=

�
x j+1 − x j

slat
− x j − x j−1

slat

�
1

slat


2
altx j :=

�
x j+nlat − x j

salt
− x j − x j−nlat

salt

�
1

salt


2
longx j :=

�
x j+nlatnalt − x j

slong
− x j − x j−nlatnalt

slong

�
1

slong
.

The white noise W (k)
j can be standardized as�

ck

α j
slatsaltslong W (k)

j = ξ
(k)
j ∼ N (0, 1)

and for all indices j and k as

ξ0 = �
ξ

(0)
1 , . . . , ξ (0)

n

� ∼ N (0, In),

ξ1 = �
ξ

(1,lat)
1 , . . . , ξ (1,long)

n

� ∼ N (0, I3n),

ξ2 = �
ξ

(2)
1 , . . . , ξ (2)

n

� ∼ N (0, In).

Now the differences (13)–(15) can be written in matrix form
as follows.

For the standardized white noise process, the matrix form is�
c0

α
slatsaltslong ◦ [Inlong ⊗ Inalt ⊗ Inlat ]x =: L0x = ξ0 (16)

where Is are identity matrices with diagonal length corre-
sponding to the subscript, the variance mask is given as

1

α
:=

⎡
⎢⎣

1
...
1

⎤
⎥⎦ ⊗



1

α1
, . . . ,

1

αn

�
∈ Rn×n

the symbol “◦” is the Hadamard product and the symbol “⊗”
is the Kronecker product.

For the first-order differences, the different coordinate direc-
tions are given in matrix form separately at their own rows⎛

⎜⎜⎜⎝
�

c1
α

saltslong
slat

◦ [Inlong ⊗ Inalt ⊗ Lnlat ]�
c1
α

slatslong
salt

◦ [Inlong ⊗ Lnalt ⊗ Inlat ]�
c1
α

slatsalt
slong

◦ [Lnlong ⊗ Inalt ⊗ Inlat ]

⎞
⎟⎟⎟⎠ x =: L1x = ξ1 (17)

where Lnlat , Lnalt , and Lnlong are difference matrices with
structure ⎛

⎜⎜⎜⎝
−1 1

−1 1
. . .

. . .

1 −1

⎞
⎟⎟⎟⎠

and dimensions nlat × nlat, nalt × nalt, and nlong × nlong,
correspondingly.

The second-order differences are given in matrix form as��
c2

α

saltslong

s3
lat

◦ �
Inlong ⊗ Inalt ⊗ �

LT
nlat

Lnlat

��

+
�

c2

α

slatslong

s3
alt

◦ �
Inlong ⊗ �

LT
nalt

Lnalt

� ⊗ Inlat

�

+
�

c2

α

slatsalt

s3
long

◦ ��
LT

nlong
Lnlong

�⊗Inalt ⊗Inlat

��
x =: L2x = ξ2.

(18)

Finally, the matrix equations (16)–(18) can be stacked as⎛
⎝L0

L1
L2

⎞
⎠ x =

⎛
⎝ξ0

ξ1
ξ2

⎞
⎠ =: Lx = ξ ∼ N (0, I5n). (19)

The solution for x is the desired prior GMRF with an n × n
precision matrix LTL. The precision matrix can then be
completed to N × N dimensions, to also take into account
the additional error parameters ζ as�

LTL 0
0 diag

�
σ−2

ζpr

�� = Q (20)

where a prior distribution ζ ∼ N �
ζpr, diag

�
σ 2

ζpr

��
is assumed,

with prior mean ζpr ∈ R(N−n) and diagonal prior covariance
matrix diag

�
σ 2

ζpr

� ∈ R(N−n)×(N−n) .

Now, the matrix inversion Q−1 is a close approxima-
tion for �pr, with the covariance structure for x given
in (11). Most importantly, the matrix LTL in Q consists
only of 25 × n nonzero elements, whereas the corresponding
covariance would be a dense n × n matrix. Obviously, in 3-D
cases, n is orders of magnitude greater than 25.

With the given discretization, the methodology provides
inhomogeneous GMRF priors, which take into account
the discretization of the unknown, hence providing a
discretization-invariant reconstruction method (for references
on discretization invariance, see [22]). From the practical
point of view, this means that the posterior distributions
and reconstructions on different computational meshes are
essentially the same, given dense enough mesh. In this
section, in (13)–(19), a regular discretization was used.
However, an irregular grid could be used as well, and in the
example of Section V, this is the case. The use of irregular
discretization is straightforward, but, as the parameters h and
s become vectors and for one index, the discretization step
can be different depending on which side the difference is
taken, the indexing of the previous equations would become
more difficult to follow.

V. RESULTS

A time window on November 8, 2015 from 10:18:00 to
10:38:00 UTC is chosen for analysis as all the observation
types described in Section II are available at that time. The
corresponding magnetic local time interval at EISCAT site,
Tromsø, is approximately from 12:35 to 12:55.

The analyzed period was geomagnetically quiet with the
Auroral Electrojet index [25] being clearly below 100 nT.
However, a major geomagnetic storm took place during the
previous day and during the prior 12 h, a couple of minor
(B and C-level) solar flares were apparent. During the after-
noon and evening hours of November 8, auroral electrojet
activity index activity enhanced again to levels above 1000 nT.

The receiver and measurement locations are presented
in Figs. 2 and 3. The observations include: 1) seven in-sight
GPS satellites measured with 81 Geotrim,1 324 SWEPOS,2

and 123 International GNSS Service receivers, all first col-
lected with 30 s and then averaged to 300 s time resolu-
tion; 2) simultaneous COSMOS 2407 and 2463 LEO beacon

1http://www.geotrim.fi
2https://swepos.lantmateriet.se
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Fig. 2. Locations of available ground-based instruments. Only the area of
the dashed rectangle is shown in the following 3-D reconstructions.

satellite overflights, both measured with seven ground-based
TomoScand receivers [16]; 3) Swarm B satellite overflight
providing Langmuir probe in situ measurements, as well
as satellite occultation TEC measurements from one GPS
satellite [26]; 4) EISCAT Dynasonde electron density profiles
with 120 s time resolution 3 [27]; 5) EISCAT ultra high
frequency (UHF) ISR measurements with elevation = 35◦ and
azimuth = 145◦; and 6) EISCAT very high frequency (VHF)
ISR measurements with elevation = 90◦.4

Two prior mean options were used. First, a simple zero
profile and then an altitude dependent ionosonde profile. With
the ionosonde prior mean, the lower profile is taken as the
altitude medians from 10 EISCAT Dynasonde profiles from the
given time interval. Above the peak electron density altitude,
an exponential profile is used with scale height of 180 km.
For covariance, a squared exponential spatial function was
chosen with correlation lengths: �lat = 20◦, �long = 25◦, and
�alt = 400 km. The correlation length is defined here as the
distance where the covariance drops to 10% of variance. The
altitude-dependent variance scaling profile α is determined
here with standard deviation (SD). The SD is given as a Chap-
man profile with peak altitude taken from EISCAT Dynasonde

3http://dynserv.eiscat.uit.no/DD/login.php
4https://www.eiscat.se/madrigal/

Fig. 3. Locations of available ground-based instruments, ionospheric pierce
points of satellite measurements, and Swarm satellite measurements. Only the
area of the dashed rectangle is shown in the following 3-D reconstructions.

real-height peak and electron density corresponds to 50% of
Dynasonde’s peak electron density. The scale height is set
to 140 km.

Approximations for the measurement error SDs are pro-
vided with the data. SD of 2 total electron content units
(TECU) is assumed for modeling errors. For preprocessed
GPS station biases, zero mean with 1 TECU SD and for GPS
satellite biases zero mean with 0.1 TECU SD is assumed.
The phase constants of LEO measurements are given an SD
of 10 TECU. The plasmaspheric contribution above 1250 km
altitude is assumed to be uniformly 0.1 TECU for 2 ×104 km
with SD of 0.1 TECU.

The 3-D spatial domain chosen for analysis covers latitudes
from 54◦ to 80◦, with 2◦ resolution at boundaries and 0.25◦
resolution between the latitudes 58◦ and 74◦; longitudes from
5◦ to 40◦ with 2◦ resolution at boundaries and 0.25◦ resolution
between the longitudes 9◦ and 36◦; and altitudes from ground
level to 750 km with 25 km resolution and then up to
1250 km with 50 km resolution. This results as a grid of
n = 309 120 voxels. Combined with phase constant, bias, and
plasma parameters, the total number of unknown variables in
this case is N = 309 648.

Now, when using the GMRF approach of Section IV,
the resulting prior precision matrix has only 0.008% nonzero
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Fig. 4. IRI-2012 model electron density with default parameters for
November 8, 2015 10:30:00 UTC.

Fig. 5. Vertically integrated TEC (0–1250 km) from IRI-2012 model electron
density with default parameters for November 8, 2015 10:30:00 UTC.

elements. When the prior precision is added together with
the measurement information, in case, where all available
instruments are used, the posterior precision that needs to be
inverted in (6) still only has 0.034% nonzero elements.

Next, a simulation study is carried out, where the perfor-
mance of the method is demonstrated with a known ionosphere
taken from the IRI-2012 model. After simulation, the tomog-
raphy is performed for the real measurements.

A. Simulation

The IRI-2012 model [28] electron densities are shown
in Fig. 4, and the altitude integrated electron densities in Fig. 5.
The IRI-2012 model was used with its default parameter val-
ues.5 The previously described electron density measurements

5https://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html

Fig. 6. Simulation case: reconstruction from simulated LEO beacon mea-
surements with zero-mean GMRF prior.

Fig. 7. Simulation case: reconstruction from simulated ground-based LEO
satellite measurements. Simulated ionosonde measurements are used in the
scaling of GMRF prior mean and variance mask.

are simulated with coordinates corresponding to real measure-
ments. The measurement errors are simulated according to the
estimated and assumed error distributions given earlier.

The tomographic inversion is then performed several times
by adding the measurement sets one by one. The results are
shown in Figs. 6–12.

In Fig. 6, only the LEO satellite measurements are used with
a zero prior mean profile xpr = 0. The reconstructed electron
density differs from zero only in the vicinity of the areas where
the LEO beacon measurements are made. Even in the area of
measurements, the electron density is underestimated.

In Fig. 7, again only the LEO satellite measurements are
used, but the prior mean for electron densities xpr are taken
from the simulated ionosonde profile corresponding to the
location of EISCAT Dynasonde. The prior mean profile is
used as such for the whole domain. Areas far from the
measurements remain unchanged from the given prior value.
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Fig. 8. Simulation case: reconstruction from simulated ground-based LEO
and GPS satellite measurements. Simulated ionosonde measurements are used
in the scaling of GMRF prior mean and variance mask.

Fig. 9. Simulation case: reconstruction from simulations of ground-based
LEO and GPS satellite measurements, ionosonde, satellite in situ, and satellite
occultation measurements. Simulated ionosonde measurements are used in the
scaling of GMRF prior mean and variance mask.

In Fig. 8, the simulated GPS measurements are added to
the inversion. The reconstructed electron densities are changed
from prior in a much wider area. However, due to the low incli-
nation of GPS satellites, at the higher latitudes, the solution is
somewhat dictated by the prior, especially in Northwest corner
of the domain.

In Fig. 9, all simulated measurements are added to the
inversion. When the ground-based GPS satellite observations
are already included, the effect of satellite occultation and
in situ measurements is mostly invisible. In Fig. 10, the recon-
structed electron density is integrated along the altitude similar
to Fig. 5. The relative differences between the vertically
integrated TEC of IRI-2012 and the last reconstruction with
all simulated measurements are shown in Fig. 11.

To demonstrate another aspect of Bayesian approach,
the prior and posterior variances, σ 2

pr = diag(�pr) and

Fig. 10. Simulation case: vertically integrated TEC (0–1250 km) from
tomographic reconstruction in Fig. 9.

Fig. 11. Simulation case: relative error in vertically integrated TEC
(0–1250 km) between IRI-2012 model in Fig. 5 and the tomographic recon-
struction in Fig. 9.

σ 2
post = diag(�post), respectively, are computed to derive

σ 2
expl = (1 − (σ 2

post)/(σ
2
pr)) × 100% to describe how much

of the prior variance is explained with the measurements. If
σ 2

pr is not affected by the measurements at all, σ 2
expl will be

zero and if the information of the measurements is high, σ 2
expl

will be close to hundred.
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Fig. 12. Explained variance σ 2
expl presents the relative difference of prior and

posterior variances. When σ 2
expl = 0%, the prior assumption is not improved

by the measurements at all. When σ 2
expl = 100%, the prior uncertainty is

explained completely by the measurements. The explained variance depends
only on measurement geometry, error and prior covariance. Here, the planes
are shifted to longitudes intersecting the ionosonde and Swarm overflight
locations.

In Fig. 12, σ 2
expl is given for the case where all measure-

ments are included in the computation of σ 2
post. As σ 2

expl
can be visualized in the original grid for the electron density
parameters, the uncertainty of the solution can be assessed at
different locations. At areas with best measurement coverage,
σ 2

expl is high. The planes in Fig. 12 are moved to intersect
the longitudes of EISCAT Dynasonde and Swarm in situ
measurements to demonstrate the superior accuracy of the
direct measurements. Fig. 12 shows that the satellite in situ
measurements add information to system, but in this case,
the measurements are in such a good agreement that the actual
reconstruction is almost unchanged between Figs. 8 and 9.

B. Real Data

The actual GPS measurements are first presented with a
single-layer model [17] in Fig. 13, where slant TEC mea-
surements are mapped to vertical TEC, projected to location
of 350 km ionospheric pierce points and bilinearly interpo-
lated. The actual pierce points are also shown. Fig. 13 indicates
lower TEC compared to IRI model from the same time
in Fig. 5; hence, a lower scale is selected to the following
visualizations of real data analysis.

In the inversion with real measurements the prior parameter
values are unchanged, except for the mean and variance
parameters that are scaled according to ionosonde. The 3-D
electron density reconstruction is presented in Fig. 14, and
the corresponding vertically integrated TEC in Fig. 15. The
EISCAT UHF radar beam is projected in Fig. 15, and both
ISR profiles are shown in Fig. 16. On top of the measured
ISR electron densities are the corresponding profiles from the
tomographic reconstruction.

VI. DISCUSSION

The EISCAT ISR validation presented in Fig. 16 is some-
what compromised with the proximity of EISCAT Dynasonde

Fig. 13. Real data case: GPS measurements on November 8, 2015 from
10:18:00 UTC to 10:38:00 UTC mapped to vertical TEC with the single-layer
model and bilinear interpolation.

Fig. 14. Real data case: tomographic reconstruction on November 8,
2015 from 10:18:00 UTC to 10:38:00 UTC. Data consist of ground-based
LEO and GPS satellite measurements, ionosonde, satellite in situ, and satellite
occultation measurements. Ionosonde measurements are used in the scaling
of GMRF prior mean and variance mask.

and ISR. Within the model resolution, the VHF radar and
Dynasonde are measuring from the very same location. How-
ever, as can be seen from Fig. 15, with the low-elevation UHF
profile, the location of the measured F-region maximum is
several hundred kilometers Southeast from the EISCAT base.
In comparison of vertical TEC mapped from GPS measure-
ments in Fig. 13 and TEC integrated from reconstruction
in Fig. 15, there is also an agreement between the main
features.
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Fig. 15. Real data case: vertically integrated TEC (0–1250 km) from
tomographic reconstruction in Fig. 14 with projected EISCAT UHF ISR beam
that is used for validation.

Fig. 16. Real data case: comparison between EISCAT ISR profiles and
corresponding profiles from the tomographic reconstruction.

Obviously, for an individual case the parameters could be
tuned endlessly; hence, more precise analysis on these results
would not give a realistic concept on the overall performance
from case to case. In the presented results, the prior parameters
were not tuned between the cases, except for the different
ionosonde profiles and the first trial with a zero prior. This
suggests consistency of the model, but on the other hand,
the robustness with respect to changes in the prior parameters

was not demonstrated. However, based on the development
and work with the model, it can be said that in general, when
a realistic prior is chosen, the changes in different parameters
produce anticipated changes in the results. Some particular
parameters are further discussed in the following.

In comparison of Figs. 13 and 15, the TEC map integrated
from the reconstruction might seem slightly over smoothed.
This is intuitive as the correlation length parameters were
not changed from the simulation case and are relatively long
considering the situation in Fig. 13. With shorter correla-
tion lengths, the prior allows more small scale structures in
the reconstruction, however, the prior mean dominates more
strongly the areas with no measurement, as the effect of the
nearby measurements is decreased.

When only LEO RTEC data are used, the distribution of
the phase constants γ can have a significant effect. If the
phase constant can be approximated beforehand, it improves
the accuracy of the absolute level of the solution. When GNSS
absolute TEC measurements and direct measurements are in
use, the absolute level of LEO TEC can be estimated more
accurately within the tomographic inversion.

The GPS measurements used here were already bias cor-
rected. Therefore, a relatively small prior SD could be given
for the GPS biases. A trial run was carried out also without
the GPS receiver bias correction. The resulting reconstructions
with larger bias SD were practically unchanged and the
solved biases were very close to preprocessed ones. However,
as the model was originally calibrated with bias-corrected data,
the performance might be exaggerated with this respect. Then
again, it is fair to assume that GNSS biases could be solved to
some degree within the inversion, but it would add to general
uncertainty of the solutions.

One of the last additions in the presented model was the
modeling error. The satellite phase measurements are very
accurate and can detect details much finer than a discrete
model of this scale can represent. Also, in the time scale of
tens of minutes, the changes in ionosphere can be significant.
It is then intuitive to relax the model for these factors. In the
presented case, the same model without any added modeling
error will overestimate the electron density parameters to
include unrealistic details.

Here, the nonzero prior mean was extrapolated from the
ionosonde measurements horizontally uniformly for the whole
domain. This is a rather simple approach and more detailed
prior information could also be included. Similar to [14], it is
possible to use other sources as the prior mean, for example,
ionospheric models such as IRI. However, in regional scale,
the models can be significantly off, hence, even a simple
model that is based on direct ionospheric measurements is
often preferable.

In [14], three methods for taking into account the time
propagation were discussed. The presented GMRF prior can
be used directly in the two first, where updates are not used at
all, or only the background, i.e., the previous MAP-estimate is
used without updating the covariance. In addition, instead of
full covariance matrix its diagonal, the posterior variance, can
be solved and used for scaling of the prediction covariance.
Once implemented, the formation of the GMRF precision
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matrix is so fast, that if the parameters of covariance function,
e.g., the covariance lengths, can be estimated meaningfully,
the change of covariance from one time to another does not
increase the computation time in practice. For the general case
of time propagation, the solution of posterior covariance is a
major computational issue. The prediction step is additive for
covariance, and the posterior covariance is needed for each
time step. Even with the GMRFs, the solution for posterior
covariance results a dense matrix and the parametric form is
not known. Hence, in the general case, the GMRF contributes
only to the first time step, and if the full posterior covariance is
required for the subsequent time steps, the sparseness is lost.

VII. CONCLUSION

It is well known that ionospheric tomography is a very
ill-posed problem and the atmospheric electron density cannot
be reconstructed without including additional information into
the system. It is mostly this information that separates the
different tomographic approaches from another. Therefore,
it is important to understand the nature of the constraining
information in use.

In this paper, first the Bayesian statistical approach for
multi-instrument ionospheric tomography is demonstrated.
When Gaussian likelihood and prior distributions are assumed,
the Bayesian method corresponds computationally to the
widely used 3DVAR method. The method provides a clear
physical interpretation for the required prior/background infor-
mation. However, the problem with n unknowns is that it
requires representation and operations of an n × n covari-
ance matrix, and thus becomes computationally complex with
large n.

Here, the approach is expanded with the use of GMRF
priors to make the problem computationally feasible. In the
presented example, a Gaussian prior field with a squared expo-
nential covariance function is approximated with a GMRF. The
resulting GMRF has a sparse prior precision matrix with only
25×n nonzero elements. In comparison to operating with n×n
covariance matrix, this results in a significant decrease in the
computational memory and time consumption. In the presented
numerical example, the sparse matrix approximation for the
309 6482 posterior precision matrix has only 0.034% nonzero
elements, making the computation possible with a modern PC.

It is here shown how the GMRF model is constructed with
physically interpretable covariance structure, parameterized
with correlation lengths and variance mask, without forming
the actual covariance matrix. The performance is validated
with results from simulated and real multi-instrument data with
comparisons to EISCAT ISR and vertical TEC mapped from
original data.

The operative performance depends on how the prior para-
meters can be fixed or selected dynamically to different
ionospheric conditions. Based on the presented results, it is
reasonable to expect that this can be done at the level of
any present ionospheric tomography system. Further validation
of parameter selection requires its own study, which should
be performed for consecutive reconstructions for longer time
intervals.

VIII. FUTURE WORK

The authors are currently working on a 4-D Bayesian fil-
tering for ionospheric tomography, where 3-D reconstructions
are made dynamically to consecutive time instants.
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