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Abstract—Recently, it has been shown that analog transmission
based federated learning enables more efficient usage of commu-
nication resources compared to the conventional digital transmis-
sion. In this paper, we propose an effective model compression
strategy enabling analog FL under constrained communication
bandwidth. To this end, the proposed approach is based on
pattern shared sparsification by setting the same sparsification
pattern of parameter vectors uploaded by edge devices, as op-
posed to each edge device independently applying sparsification.
In particular, we propose specific schemes for determining the
sparsification pattern and characterize the convergence of analog
FL leveraging these proposed sparsification strategies, by deriv-
ing a closed-form upper bound of convergence rate and residual
error. The closed-form expression allows to capture the effect of
communication bandwidth and power budget to the performance
of analog FL. In terms of convergence analysis, the model
parameter obtained with the proposed schemes is proven to
converge to the optimum of model parameter. Numerical results
show that leveraging the proposed pattern shared sparsification
consistently improves the performance of analog FL in various
settings of system parameters. The improvement in performance
is more significant under scarce communication bandwidth and
limited transmit power budget.

Index Terms—Distributed learning, federated learning, over-
the-air computation, compression, local gradient accumulation.

I. INTRODUCTION

AS the computational capabilities of edge devices con-
tinue to improve, distributed machine learning (ML)

has become one of the promising technologies to alleviate
the heavy cost of collecting training datasets in centralized
ML. Centralized ML is impractical when the huge amount of
datasets are collected through wireless communication due to
the limited communication resources such as power, time, and
bandwidth. Federated Learning (FL) was recently proposed
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as a privacy-preserving distributed ML scheme based on first-
order distributed optimization updates and periodic exchanges
of model parameter information between devices (or clients)
and a parameter server (PS) [1]–[5]. In numerous previous
works including [6]–[8], the superiority of FL has been
validated through numerical results and convergence analysis
in IID and non-IID datasets [9].

Nonetheless, to enable FL, tackling challenges related to the
large number of model is still an open problem. According
to [10], the 50-layer ResNet [11] has 26 millions model
parameters, and approximately 138 millions for VGGNet [12],
while the available channel bandwidth is relatively small due
to constrained communication resources, e.g., 1 LTE frame of
5MHz bandwidth and 10ms duration can carry 6000 complex
symbols. Thus, the main performance bottleneck in FL is in
the uplink communication, that is from devices to PS [13].
To alleviate this problem, there is a rich literature to reduce
the communication requirements in FL. Besides the periodic
communication [3], [14], [15], one well-known approach is
lossy compression through quantization or sparsification of
parameter vectors. The quantization technique reduces the
amount of information to be uploaded by quantizing each entry
of the parameter vector with low-bit precision [16]–[19] and
the sparsification techniques selectively sends the entries of the
parameter vector [20]–[23]. The most recent works propose
to accelerate the convergence of FL by applying the gradient
tracking, momentum, and sketching [24]–[27].

Recently, there has been a great effort to investigate methods
to improve the performance of FL taking into account wireless
communication. Considering the physical and network layer
aspects, [28]–[33] have established a new approach for im-
proving the performance of FL through scheduling policy and
allocation of communication resources such as power, time,
and frequency. On the other hand, wireless communication
links bring new opportunities due to the superposition property
of wireless transmission. As demonstrated in [34]–[36], the
superposition property can be leveraged to enable over-the-air
computation (AirComp) of aggregation of signals sent from
multiple devices without decoding each signal separately.

The idea of AirComp has been leveraged to improve the
efficiency of communication resources for model uploading
in uplink. This is done by directly estimating the average
parameters from the superposition of signals transmitted by
multiple devices over a multi-access channel, when each de-
vice adopts analog communication. In fact, it is not necessary
for devices to transmit their parameters through orthogonal0000–0000/00$00.00 © 2021 IEEE
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Fig. 1: Example of curse of primal averaging.

links for separate decoding since FL requires the sum of
parameters. As a result, analog FL with AirComp outperforms
FL with conventional digital communication [10], [37], [38].
The literature including [38]–[41] has addressed the issues for
effective implementation of analog FL such as user selection,
power allocation, and transmission protocol. In particular,
model aggregation in broadband analog transmission has been
studied and the latency gain obtained by AirComp has been
investigated, compared to the conventional orthogonal access
in [38].

Despite the efficient usage of communication bandwidth
under analog FL, it is still needed to compress the parameters
due to the available bandwidth. In the digital domain, lossy
compression at any required level is possible [37]. However,
quantization cannot be applied and the characteristic of analog
transmission makes the compression different from the com-
pression in the digital domain. While the issue is essential,
there are few related works comparing digital domain as
discussed next. This constitutes the focus of this work.

A. Related Work

To the authors’ best knowledge, only references [10], [37]
have addressed model compression enabling analog FL under
constrained communication bandwidth. Starting from these
works, we propose a new sparsification strategy for analog
FL, which shows considerable improvement in performance
in terms of test accuracy.

In [10], [37], local top-k sparsification [42] is considered to
compress the gradient estimates and local gradient accumula-
tion [20] is applied to accelerate the performance. Each device
independently sparsifies the gradient estimate by choosing the
k largest entries with absolute value. Then it accumulates
the unchosen entries to keep track of gradient estimates
losses due to compression and adds the accumulation to the
gradient estimate obtained at the next iteration. The local top-k
sparsification and local gradient accumulation are commonly
used in the literature since they have empirically shown great
performance [8], [17], [20], [43]. However, when the local top-
k sparsification is considered in analog transmission, only the
top-k values can be sent without the information of indices due
to the characteristic of analog transmission. To solve this issue,
a novel projection scheme inspired by compressed sensing
(CS) is proposed in [10], [37].

In the scheme, the devices apply the local top-k sparsi-
fication and simultaneously transmit the compressed vectors

which are projected to the available communication band-
width. Then, the PS reconstructs the summation of gradient
estimates by adopting the recovery algorithms in CS. For the
reliable reconstruction of the gradient estimate, the sparsity
level of the original vector must meet the specific constraint
[44]. However, it suffers curse of primal averaging, also
discussed in [45], where the desired summation of gradient
estimate may be rendered dense. Although each gradient
estimate is sparse, the averaging step in FL will definitely
yield the dense solution as illustrated in Fig. 1.

Motivated by the drawback of local top-k sparsification in
analog FL, we propose a novel pattern shared sparsification
(PSS) by setting the same sparsification pattern of gradient es-
timates among edge devices. Unlike the local top-k sparsifica-
tion, it is guaranteed that summation of gradient estimates can
be reconstructed without any recovery error since the indices
to be sparsified and reconstructed are previously shared. Fur-
thermore, there is no loss of communication bandwidth when
PSS is considered since the gradient estimates are compressed
to the same dimension with communication bandwidth. In this
work, we propose three wireless implementations of analog FL
based on the proposed PSS.

B. Our Contributions

• For effective compression in analog FL under the con-
strained communication bandwidth, we propose a coop-
erative compression strategy based on exploiting unbiased
gradient estimates while local top-k sparsification yields
biased gradient estimates. In particular, three schemes for
determining the shared pattern in PSS are respectively
established and validated numerically. Through numerical
results with various settings of system parameters, the
PSS schemes consistently outperforms the local top-k
sparsification and the performance improvement is more
significant under scarce communication bandwidth and
limited power budget.

• We prove the convergence of analog FL with PSS by
deriving the closed-form upper bound of the convergence
rate and residual error. Leveraging the closed-form ex-
pression, we describe the effect of communication band-
width and power budget to the performance of analog FL
with an explicit formula. The effect of communication
bandwidth and power budget obtained in the analysis co-
incides with the results observed in the numerical results.
Moreover, the gain coming from gradient accumulation is
derived as an explicit formula in the comparison between
the convergence rate with gradient accumulation and
convergence rate without gradient accumulation.

II. PROBLEM DEFINITION

A. System Set-Up

We consider a federated learning system comprising a
parameter server and M edge devices. Let θ ∈ RD denote
the shared network parameter to be optimized. The local loss
Fm (θ) at the m-th device is Fm (θ) = 1

|Dm|
∑

u∈Dm
f (θ,u),

where Dm is the dataset allocated at the m-th device and f (·)
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is the loss function determined by the network model. The
global loss F (θ) is defined as

F (θ) =
1∣∣∣⋃M

m=1 Dm

∣∣∣
∑

u∈
⋃M

m=1 Dm

f (θ,u)
(a)
=

1

M

M∑
m=1

Fm (θ) ,

(1)
where (a) holds if |Dm| are equal for all m. The goal in FL
is to learn the optimized parameter vector θ∗ minimizing (1),
namely

θ∗ = argmin F (θ) . (2)

To obtain θ∗, the model parameter is updated through iter-
ative stochastic gradient descent (SGD) allowing the parallel
computation of gradients at the edge devices. The parameter
vector θt at the t-th iteration is updated according to

θt+1 = θt − η
1

M

M∑
m=1

gm (θt) , (3)

where η is the learning rate and gm (θt) ∈ RD is the stochastic
gradient of the shared model parameter θt computed at the m-
th device as gm (θt) = 1

|Bm|
∑

u∈Bm
∇f (θt,u) , using the

available subdataset Bm. Following the iterative SGD with
parallel computation at the device, referred to as distributed
SGD (DSGD) or FedSGD, we establish the baseline FL with
error-free links in Algorithm 1.

Algorithm 1: Federated Learning (FL)

for each iteration t = 0, . . . , T
for each device m = 1, . . . ,M

download from PS the global parameter vector
θt

set initial learning model with θt
do SGD update using the available subdataset
Bm

upload the locally obtained gradient gm (θt)
compute (3) at PS

B. Communication Model

During the uplink communication of each global iteration,
all edge devices share a fading uplink multiple-access channel

y =

M∑
m=1

hmxm + z, (4)

where hm is the quasi-static flat fading channel from the
m-th device to the AP; xm is the I × 1 signal transmitted
by the m-th device; and z is I × 1 noise vector with
IID CN (0, 1) entries. The number of channel uses, I , is
the allowed number of channel uses during the given time
resource with the allocated frequency bandwidth at each global
iteration, i.e., the maximum number of transmitted symbols
at each global iteration, considering both time resource and
frequency bandwidth. Edge devices have power constraints
per channel use at each global iteration, ∥xm∥22/I ≤ P for
m = 1, . . . ,M . Downlink broadcast communication from the
AP to the devices is assumed to be error free in order to

Fig. 2: Analog federated learning enabled by local top-k sparsifica-
tion in [10], [37].

focus on the effect of the more challenging multi-access uplink
channel.

III. ANALOG FEDERATED LEARNING

In this section, we establish the wireless implementations
of the analog FL schemes. First of all, we review the analog-
DSGD (A-DSGD) [10], [37], where each device applies a local
top-k sparsification, as a benchmark scheme. We refer to A-
DSGD as “local top-k” to highlight the difference of local
top-k sparsification with the sparsification schemes proposed
in this paper. We also propose three wireless implementations
of analog FL based on PSS for the sparsification of gradient
estimates being uploaded. Each implementation is developed
based on a respective scheme for determining the shared
sparsity pattern. The proposed schemes are referred to as PSS
with random selection, PS-guided PSS, and device-guided PSS.

Under AirComp in analog FL, all devices simultaneously
transmit their information multiplied by a scalar factor to
the AP in an uncoded manner. The PS decodes the desired
sum directly after scaling the received signal (4). Therefore,
the scalar factor should be determined for establishing each
scheme of analog FL. Different types of methods for deter-
mining the scalar factor have been studied in the literature
including [46], [47], namely full-power transmission, channel
inversion, and optimal power control for AirComp. In this
paper, channel inversion is considered to enable the alignment
of scalar factors among devices as [38], but extensions are
conceptually straightforward. This requires the m-th device to
have knowledge of the channel to the AP, hm and the AP to
have all channels, hm, m = 1, . . . ,M .

A. Compression with Local Top-k Sparsification

In order to enable dimensionality reduction as in CS,
a pseudo-random matrix A ∈ R2I×D with IID entries
N (0, 1/2I) is generated and shared between the PS and the
devices before the start of the global iterations. At the start
of the t-th global iteration, the m-th device downloads the
global parameter vector θt and sets it as the initial model of
local training, as described in Algorithm 1. After the local
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computation update, the gradient vector gm (θt) ∈ RD is
obtained.

To compress the gradient vector with reduced dimension,
gm (θt) is sparsified to gsp

m (θt) defined as

gsp
m (θt) = Topk

(
gm (θt) +∆t

m

)
, (5)

where k(< 2I) is a parameter determining the sparsification
ratio, Topk denotes top-k sparsification, and ∆t

m is an accu-
mulated gradient which is updated as

∆t+1
m = ∆t

m + gm (θt)− gsp
m . (6)

After computing ĝm (θt) = Agsp
m (θt) ∈ R2I , the m-th device

transmits γ
hm

vt
m ∈ CI whose i-th entry, vtm,i, is defined as

Re(vtm,i) = ĝm,2i−1 (θt) , Im(vtm,i) = ĝm,2i (θt) (7)

by encoding two different values of ĝm (θt), i.e., ĝm,2i−1 (θt)
and ĝm,2i (θt), in the in-phase and quadrature components.
The scaling factor γt is determined by

γt = min
m

|ht
m|

√
PI

∥vt
m∥2

, (8)

ensuring the alignment of scalar factors under power con-
straints.

The PS receives yt ∈ CI in (4), which is the the aggregation
of xt

m = γt

ht
m
vt
m, m = 1, . . . ,M through the fading uplink

multiple-access channels. From the noisy observation, the PS
estimates

∑M
m=1 ĝm (θt) by ut ∈ R2I whose i-th entry is

defined as follows:

ut,i =


Re (yt,j)

γt
, if i = 2j − 1,

Im (yt,j)

γt
, if i = 2j,

(9)

for j = 1, . . . , I by scaling yt and decoding to the real values
for further recovery, where yt,j is the j-th element of yt. For
recovery from compressed vector, the approximate message
passing (AMP) [44] is applied to ut and the reconstructed
vector, AMPA (ut), is used to update the model parameter θt
to the new model parameter, θt+1 as

θt+1 = θt −
η

M
AMPA (u) . (10)

See Fig. 2 for an illustrative example.

B. Pattern Shared Sparsification (PSS)

In the local top-k sparsification, the m-th device sparsifies
the gradient estimate as in (5). For the recovery without any
indices of non-zero entries, the sparsified gradient estimates
are projected onto the communication bandwidth, multiplied
by a previously shared pseudo-random measurement matrix
A, as in CS. Then, all the devices simultaneously transmit the
compressed vectors to the PS based on analog communication.
After receiving the aggregation of compressed vectors, the PS
acquires

Rec

(
M∑

m=1

Agsp
m (θt)

)
= Rec

(
A

M∑
m=1

gsp
m (θt)

)
, (11)

Fig. 3: Analog FL enabled by pattern shared sparsification.

where Rec denotes recovery algorithms in CS such as Lasso,
orthogonal matching pursuit (OMP) and AMP as used in [10],
[37].

We note that the sum of sparsified gradient estimates,∑M
m=1 g

sp
m (θt), is obtained as observed in (11). It can lead

to the non-sparsity of the original vector for recovery since∑M
m=1 g

sp
m (θt) is not guaranteed to be sparse even though

gsp
m (θt) is sparse for each m. This curse of primal averaging

degrades the recovery performance and thereby the perfor-
mance of analog FL. This is due to the irregular sparsity
pattern among gradient estimates, which has been considered
as a main drawback of local top-k sparsification [26], [43].
Furthermore, as a coupling problem with non-sparsity, the
recovery algorithm is too bandwidth-consuming since the non-
zero entries should be much less than the communication
bandwidth for reliable recovery.

To address this issue, each device applies the previously
shared pattern of sparsification and direct projection of the
non-zero elements to the available communication bandwidth,
when the proposed PSS is considered. Therefore, it is guar-
anteed that

∑M
m=1 g

sp
m (θt) can be reconstructed without any

recovery error since the indices to be sparsified and recon-
structed are previously shared. Furthermore, there is no loss
of communication bandwidth since the gradient estimates
are compressed to the same dimension with communication
bandwidth. The key point for developing PSS is to seek a
shared sparsification pattern at each global iteration. For this
goal, we propose three different schemes for sparsification
which are PSS with random selection, PS-guided PSS, and
device-guided PSS.

1) PSS with random selection: As a first reference scheme,
we propose PSS with random selection where PS randomly
selects the entries of gradient vector to be non-zero and share
the determined sparsity pattern with devices at the start of each
global iteration. Using this scheme, the uploaded entries of
gradient vectors might not contain significant elements having
large absolute values. However, this scheme enables the same
sparsity pattern among the gradient estimates of devices and
the most efficient usage of communication bandwidth. In fact,
when PSS with random selection is applied, each device can
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Fig. 4: Download in PSS with random selection.

upload 2I elements of gradient vector which is the maximum
number using the available number of channel uses, I , without
the need to compress to a deeper level for the recovery in CS.

At the start of the t-th global iteration, the m-th device
downloads the model parameter θt ∈ RD and the sparsity
pattern which is defined by a diagonal matrix St ∈ {0, 1}D×D,
as shown in Fig. 4. The diagonal entries st,d, 1 ≤ d ≤ D of St

are 0 or 1 when
∑D

d=1 st,d = 2I , defining the random selection
of sparsified entries. The m-th device sets the initial model
of local training with θt and computes the gradient estimate
gm (θt) ∈ RD as described in Algorithm 1. For compression,
gm (θt) is sparsified to gsp

m (θt),

gsp
m (θt) = St

(
gm (θt) +∆t

m

)
, (12)

where ∆t
m is the accumulated gradient updated as (6). The

projection ĝm (θt) of gsp
m (θt) is obtained by eliminating all

zeros in gsp
m (θt) to have only non-zero entries in the reduced

dimension, and ĝm (θt) can be expressed as follows:

ĝm (θt) = Ŝt

(
gm (θt) +∆t

m

)
, (13)

where Ŝt is the 2I×D matrix which is obtained by removing
d-th row of St when st,d = 0.

Then, the m-th device transmits γt

ht
m
vt
m ∈ CI whose i-

th entry, vtm,i, is defined as (7) and the scaling factor γt is
determined by (8), ensuring the alignment of scalar factors
under power constraints. After the PS receives yt ∈ CI in (4),
the PS estimates

∑M
m=1 ĝm (θt) with ut ∈ R2I whose i-th

entry is defined as (9). For recovery from the compression
vector, each element of ut is matched to the entry of gradient
vector based on the known sparsity pattern St which can
be expressed as ŜT

t ut, where ŜT
t denotes transpose of Ŝt.

Finally, the reconstructed vector, ŜT
t ut, is used to update the

model parameter θt to the new model parameter, θt+1 as

θt+1 = θt −
η

M
ŜT
t ut. (14)

2) PS-guided PSS: Here, the PS determines the sparsity
pattern by selecting the significant entries of the gradient
vector computed at the PS. We assume that the PS has its

Fig. 5: Download in PS-guided PSS.

local dataset which can be a public dataset as in many literature
including [48]. This scheme enables the same sparsity pattern
among the gradient estimates of devices and the most effi-
cient usage of communication bandwidth similar to PSS with
random selection. Furthermore, the obtained sparsity pattern
is more relevant to the original gradient estimates than the
sparsity pattern obtained by random selection since the pattern
is guided by the gradient estimate computed at the PS with its
local dataset.

At the start of t-th global iteration, the PS computes the gra-
dient estimate, gPS (θt) ∈ RD, with its local dataset, denoted
by DPS . Then the sparsity pattern is obtained by selecting
the 2I entries having large absolute values in gPS (θt) which
can be expressed as a diagonal matrix St ∈ {0, 1}D×D whose
diagonal entries indicate the selected 2I entries. Accordingly,
the vector st of the diagonal entries in St is Top2I (gPS (θt))
whose non-zero elements are converted to ones. After each
device downloads θt and St, the same procedure used in
the PSS with random selection is followed. The downloading
process in PS-guided PSS is illustrated in Fig. 5.

3) Device-guided PSS: Here, one of the devices determines
the sparsity pattern by selecting the significant entries of
gradient vector and shares such pattern with the PS and other
devices with the help of PS. The sparsity pattern guides the
compression at the device level, maintaining the same sparsity
pattern among gradient estimates. In the implementation of
this scheme, the first ρI (0 < ρ < 1) channels are used for
uploading the determined sparsity pattern from a device to the
PS in the digital domain and the remaining (1− ρ) I channels
are used for uploading the compressed gradient vectors from
the other devices to the PS in the analog fashion. To this
end, we assume that the devices and PS are allowed to
communicate in a hybrid fashion enabling the selective use
of analog and digital communication. We additionally assume
that the communication in the downlink is error free.

At the start of t-th global iteration, devices download the
model parameter θt ∈ RD and set the initial model of
local training with it, as described in Algorithm 1. After the
local computation for update, the m̂-th device which has the
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Fig. 6: Device-guided PSS.

best channel gain to the PS, namely, m̂ = argmax
m

|hm| ,
determines the sparsity pattern by selecting the q entries of
gm (θt)+∆t

m having large absolute values. The sparsity pat-
tern is expressed as a diagonal matrix St ∈ {0, 1}D×D whose
diagonal entries indicate the selected q entries. Accordingly,
the vector of diagonal entries, st is Topq (gm (θt) +∆t

m)
whose non-zero elements are converted to ones, where q is
chosen as follows. When ρI is the number of channel uses
allowed for uploading St in a digital domain, the number of
bits that can be transmitted from m̂-th device is upper bounded
by

Bt = ρIlog2

(
1 +

|hm̂|2 P
ρ

)
, (15)

while the number of bits for the transmission of St is

bt =

⌈
log2

(
D

k

)⌉
. (16)

Therefore, q is chosen as the largest integer satisfying bt ≤
Bt. After receiving St for the ρI channels, PS modifies the
sparsity pattern St by adding the randomly selected 2(1−ρ)I−
q entries in the remaining D− q entries of sparsity pattern. In
fact, the q entries for sparsification are previously determined
and guided by the m̂-th device and the remaining number of
entries that can be uploaded by each device is 2(1− ρ)I − q.

For the sparsification of gradient estimates, each gm (θt) is
sparsified to gsp

m (θt) as in (12) and projected to ĝm (θt) as
in (13). Then, the m-th device transmits γt

ht
m
vt
m ∈ C(1−ρ)I

whose i-th entry, vtm,i, is defined as (7). The scaling factor γt
is determined by

γt = min
m̸=m̂

|ht
m|

√
PI

∥vt
m∥2

, (17)

modified from (8) since the m̂-th device transmits St for
the initial (1 − ρ)I channel uses. After the PS receives
yt ∈ C(1−ρ)I in (4), the same procedure used in the PSS with
random selection is followed. The overall process of device-
guided PSS is illustrated in Fig. 6.

IV. CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis of
analog FL leveraging PSS for gradient sparsification. We con-
sider the system set-up and communication model introduced
in Section II and establish the convergence analysis of PSS
with random selection, as a reference scheme. Since the other
PSS schemes outperform the PSS with random selection as
illustrated in the Section V, this analysis can be applied to the
other PSS schemes. The expectation of the squared l2 norm
between θt and θ∗, E

[
∥θt − θ∗∥22

]
is the main measure for

the convergence of θt to θ∗. We first introduce preliminaries
and then provide the convergence result and related analysis.

A. Preliminaries

We assume the available subdataset Bm of the m-th device
is equal to the allocated dataset Dm for simplicity of the
convergence analysis. Thus, the gradient vector gm (θt) is
∇Fm (θt) and the update of θt in (3) is expressed as

θt+1 = θt − η
1

M

M∑
m=1

∇Fm (θt) . (18)

We introduce the following assumptions related to the charac-
teristic of loss, which facilitate the convergence analysis:
Assumption 1. The local losses F1, . . . , FM are µ-strongly
convex; ∀ a, b ∈ Rd

Fm (a)− Fm (b) ≥ ⟨a− b,∇Fm (b)⟩+ µ

2
∥a− b∥22 , (19)

Assumption 2. The expectation of squared l2 norm of local
losses F1, . . . , FM are bounded by G; ∀ a ∈ Rd

E
[
∥∇Fm (a)∥22

]
≤ G2, (20)

Assumption 3. The local losses F1, . . . , FM are L-smooth; ∀
a, b ∈ Rd

Fm (a)− Fm (b) ≤ ⟨a− b,∇Fm (b)⟩+ L

2
∥a− b∥22 , (21)

Next, we introduced a lemma which was also used in [49].

Lemma 1. When random selection is considered for determin-
ing the sparsification pattern, the sparsity pattern of uploaded
gradients follows a uniform distribution, thus

E [gsp
m (θt)] =

2I

D
E
[
gm (θt) +∆t

m

]
, (22)

E
[
∥gsp

m (θt)∥22
]
=

2I

D
E
[∥∥gm (θt) +∆t

m

∥∥2
2

]
, (23)

for each m = 1, . . . ,M and t = 0, . . . , T .

Proof: In (22), we have

E [gsp
m (θt)]

(a)
= E

[
St

(
gm (θt) +∆t

m

)]
= E

[
E
[
St

(
gm (θt) +∆t

m

) ∣∣ gm (θt) +∆t
m

]]
(b)
=

2I

D
E
[
gm (θt) +∆t

m

]
, (24)

where (a) holds following the definition of gsp
m in (12) and

(b) is due to E [St] =
2I
D ID for a D×D identity matrix ID.
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In (23), we have

E
[
∥gsp

m (θt)∥22
]

(25)

= E
[∥∥St

(
gm (θt) +∆t

m

)∥∥2
2

]
= E

[(
gm (θt) +∆t

m

)T
ST
t St

(
gm (θt) +∆t

m

)]
= E

[(
gm (θt) +∆t

m

)T
St

(
gm (θt) +∆t

m

)]
=

2I

D
E
[∥∥gm (θt) +∆t

m

∥∥2
2

]
. (26)

B. Convergence Result

We prove the convergence of analog FL with local gradient
accumulation when PSS with random selection is considered
for determining the sparsity pattern of uploaded gradient
vectors. We consider two cases for the loss, which are (i)
Assumption 1+Assumption 2 and (ii) Assumption 1+Assump-
tion 2+Assumption 3. For each case, we provide corresponding
convergence result and the relevant analysis.

Theorem 1. When the case (i) is considered, we have

E
[
∥θt − θ∗∥22

]
≤ A (t) E

[
∥θ0 − θ∗∥22

]
+

DηG2

2Iµ

(
1 +

Ψ

P

)
,

(27)
for η < 1

µ , where Ψ = E
[

1
|hm|2

]
, A(t) =

∏t
t′=1 a(t

′), and

a(t′) = 1− ηµ

(
1−

(
1− 2I

D

)t′
)
. (28)

Proof: See Appendix A.

Theorem 2. When the case (ii) is considered, we have

E
[
∥θt − θ∗∥22

]
≤ B(t)E

[
∥θ0 − θ∗∥22

]
+

DηG2Ψ

2I (µ− L2η)P
,

(29)
for η < µ

L2 , where Ψ = E
[

1
|hm|2

]
, B(t) =

∏t
t′=1 b(t

′), and

b(t′) = 1− η
(
µ− L2η

)(
1−

(
1− 2I

D

)t
)
. (30)

Proof: See Appendix B.

Corollary 1. When the case (i) is considered,
E
[
∥θt − θ∗∥22

]
t−−→ ϵ for

η < min

(
1

µ
,

2PIµ

(P +Ψ)DηG2
ϵ

)
. (31)

Proof: If η < 1
µ , we have 0 < a(t′) < 1 and

E
[
∥θt − θ∗∥22

]
t−−→ DηG2

2Iµ

(
1 +

Ψ

P

)
, (32)

from Theorem 1, where DηG2

2Iµ

(
1 + Ψ

P

)
< ϵ.

Corollary 2. When the case (ii) is considered,

E
[
∥θt − θ∗∥22

]
t−−→ ϵ for

η < min

(
µ

L2
,
1

L2

(
1

µ
− DG2Ψ

DG2Ψ+ 2L2IPϵ

))
. (33)

Proof: If η < µ
L2 , we have 0 < b(t′) < 1 and

E
[
∥θt − θ∗∥22

]
t−−→ DηG2Ψ

2I (µ− L2η)P
, (34)

from Theorem 2, where DηG2Ψ
2I(µ−L2η)P < ϵ.

Remark 1. In (27) and (29), E
[
∥θt − θ∗∥22

]
is upper

bounded by

E
[
∥θt − θ∗∥22

]
≤ C1 (t) E

[
∥θ0 − θ∗∥22

]
+ C2, (35)

where C1 (t) is the convergence rate and C2 is a residual
error term. First of all, we observe that the number of channel
uses, I , the only communication factor determining C1 (t) and
C1 (t) decreases as I increases. In particular, C1 (t) is 1−ηµ
or 1−η

(
µ− L2η

)
when 2I = D. The residual error term, C2,

decreases as I , M , and P increases. Specifically, in (29), C2

is caused only by the noise in the uplink communication since
the additional term of C2 in (27) is derived to be contained
in C1(t) because of the additionally assumed L-smoothness
of the loss function. Thus C2 in (29) decreases to 0 as P
increases to ∞.

Remark 2. In Theorem 1 and 2, we consider analog FL
with local gradient accumulation when PSS with random
selection is applied. While the convergence rates are obtained
as (28) and (30), the convergence rate without local gradient
accumulation can be readily obtained as Â(t) =

∏t
t′=1 â(t

′)

and B̂(t) =
∏t

t′=1 b̂(t
′), where

â(t′) = 1− ηµ
2I

D
(36)

b̂(t′) = 1− η
(
µ− L2η

) 2I
D

, (37)

while

a(t′) = 1− ηµ

(
1−

(
1− 2I

D

)t′
)

(38)

b(t′) = 1− η
(
µ− L2η

)(
1−

(
1− 2I

D

)t
)
. (39)

in (28) and (30). Without local gradient accumulation, the
convergence rate decreases by a constant factor â(t′) or
b̂(t′). However, with local gradient accumulation, the factor
of convergence rate, a(t′) and b(t′), decreases to 1− ηµ and
1− η

(
µ− L2η

)
starting from â(t′) and b̂(t′), respectively.

V. NUMERICAL RESULTS

To validate the effectiveness of the proposed approach, we
consider two examples, reflecting both IID and non-IID data
allocation, where each device runs a five-layer Convolutional
Neural Network (CNN) that consists of two convolutional
layers, one max-pooling layer, and two fully-connected layers
for MNIST image classification. For the IID setting, we
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(a) Training loss in the case of IID data allocation. (b) Training loss in the case of non-IID data allocation.

Fig. 7: Training loss of analog FL schemes and D-DSGD considering I = 5000, P = 30, M = 50.

randomly select disjoint sets of 300 samples from the 60, 000
training MNIST examples, and allocate each set to a device.
For the non-IID case, we randomly select two labels for
each device and allocate 300 training MNIST examples of
the selected labels, hence each device has training examples
with only two labels. The size of total weight D is 21840;
the learning rate η is 0.3; the sparsity level for local top-k
is I; the ratio of channel uses in device-guided PSS, ρ, is
0.5; the channel hm follows a Nakagami distribution with
(m,Ω) = (3, 1). The performance metric is the average
test accuracy for all devices measured over 10, 000 randomly
selected images from the MNIST dataset. We assume that the
PS has the balanced 300 samples from the 60, 000 training
MNIST examples, when PSS with PS-guide is considered.
Even if the PS can acquire only the imbalanced dataset in
the case of non-IID data allocation, the performance of the
PSS with PS-guide is lower bounded by the performance of
the PSS with device-guide.

In Fig. 7-9, we compare the performance of the proposed
PSS schemes and local top-k in various communication envi-
ronments, considering IID and non-IID dataset allocation re-
spectively. As a benchmark scheme, we show the performance
of DSGD with no constraints on the wireless communication,
denoted by “error free links”. And we show the performance
of D-DSGD [10], [37], which is the state-of-the-art digital
scheme. In D-DSGD, the devices set all elements of the
gradient estimate to zero except for the elements of largest
value. The position and mean value of those elements are sent
by the digital transmission. Fig. 7 illustrates the training loss of
the schemes which are “error free links”, “PSS with ps-guide”,
“PSS with device-guide”, “PSS with random selection”, “local
top-k”, and “D-DSGD”. In Fig. 7, it is observed that the
proposed schemes converge faster than local top-k and D-
DSGD, comparably to the error free links.

In Fig. 8(a) and 9(a), we compare the performance of the
PSS schemes with the performance of local top-k, considering
I = 5000, P = 30, and M = 50. In Fig. 8(b) and 9(b), we

show the test accuracy of PSS schemes and local top-k at the
25-th global iteration for 500 ≤ I ≤ 10000, when P = 30 and
M = 50 are considered. In Fig. 8(c) and 9(c), we show the test
accuracy at the 25-th global iteration for −15 ≤ P ≤ 20 (dB),
when I = 5000 and M = 50 are considered. In Fig. 8(d) and
9(d), we consider 20 ≤ M ≤ 100 for the comparison, when
P = 30 and I = 5000.

In Fig. 8(a) - Fig. 8(d), it is observed that the PSS schemes
considerably outperform the local top-k and D-DSGD, and
the PSS with PS-guide and PSS with device-guide show
better performance than PSS with random selection though
the performance gap is relatively small. In Fig. 8(a), it is
shown that the performance of schemes converge and the gap
between the performance of error free links and that of the
PSS schemes is very small. Thus, the assumed environment
with I = 5000, P = 30, and M = 50 ensures that PSS
schemes have no loss in performance due to the wireless
factors. In Fig. 8(b), it is observed that utilizing more channel
uses at each global iteration improves the performances, as
expected. Besides that, the PSS schemes are robust to the
scarce communication bandwidth, while the performance of
local top-k significantly deteriorates by reducing the number
of channel uses to 500.

In Fig. 8(c), it is shown that the analog FL are robust to
the limited power budget, in particular the loss in performance
due to power constraints is nearly negligible for P ≥ −15dB.
The robustness stems from the added Gaussian noise to
the gradient estimates which does not seriously degrade the
learning performance. In fact, noise injection is a popular
technique for mitigating over-fitting. Moreover, it is observed
that the convergence rate is not directly related to the power
constraint in Theorem 1 and 2. This is in contrast to the
performance of D-DSGD which is severely degraded for low
power constraints. The degradation is due to the fact that
the low power budget reduces the communication bandwidth,
unlike the PSS schemes. In Fig. 8(d), the performance of
PSS schemes tends not to improve even if M is increased
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(a) Test accuracy considering I = 5000, P = 30,
M = 50.

(b) Test accuracy at the 25-th global iteration
for different values of I considering P = 30, M = 50.

(c) Test accuracy at the 25-th global iteration
for different values of P considering I = 5000, M = 50.

(d) Test accuracy at the 25-th global iteration
for different values of M considering I = 5000, P = 30.

Fig. 8: Classification accuracy of analog FL schemes and D-DSGD in the case of IID data allocation.

over 20, similarly to the performance of error free links. It is
remarkable that the performance of local top-k decreases when
M is larger than 20 since the non-sparsity of summation of
sparsified gradients increases while the gain from the number
of devices does not increase when M ≥ 20, as observed in
the error free performance. For D-DSGD, the performance
decreases since the devices share the resource of channel uses
for upload.

In Fig. 9(a) - Fig. 9(d), the proposed PSS schemes con-
siderably outperform local top-k and D-DSGD in the case
of non-IID data allocation. Moreover, the PSS with random
selection shows relatively improved performance compared to
the other PSS schemes. The relative improvement is because
the gain from the guide of the PS and device is less effective
compared to the IID counterpart.

In Fig. 9(a), it is shown that the performance of schemes
converge even in the case of non-IID data allocation and the
gap between the performance of error free links and that of the

PSS schemes is very small. In Fig. 9(b) and 9(c), we observe
the robustness of PSS schemes to the number of channel
uses and constrained power, while the performance of local
top-k and D-DSGD deteriorate more significantly under the
scarce communication bandwidth and lower power constraint,
compared to the IID case. Furthermore, it is observed that
the non-IID dataset allocation increases the minimum val-
ues of channel uses and constrained power guaranteeing the
performance of PSS schemes comparable with the error free
baseline. We note that the performance degradation due to
wireless communication is relatively severe in the case of non-
IID data from Figs. 9(b) and 9(c). In Fig. 9(d), the performance
of PSS schemes tends not to change for M ≥ 40, similarly
to the performance of error free links. It is observed that the
performance of local top-k does not decrease, unlike the case
of IID data allocation. It is because of the gain coming from
the number of the device in the case of non-IID data allocation.
For D-DSGD, the performance decreases as the case of IID
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(a) Test accuracy considering I = 5000, P = 30,
M = 50.

(b) Test accuracy at the 25-th global iteration
for different values of I considering P = 30, M = 50.

(c) Test accuracy at the 25-th global iteration
for different values of P considering I = 5000, M = 50.

(d) Test accuracy at the 25-th global iteration
for different values of M considering I = 5000, P = 30.

Fig. 9: Classification accuracy of analog FL schemes and D-DSGD in the case of non-IID data allocation.

data allocation.

A. Extended results and discussion

In order to demonstrate the effectiveness of the proposed
PSS schemes, we show the performance comparison of the
schemes in both case of IID allocation and non-IID allocation
for Fashion-MNIST dataset [50]. In Fig. 10, it is observed that
the proposed PSS schemes outperform the local top-k and D-
DSGD as the result for MNIST dataset. For more discussion
about the curse of primal averaging in the local top-k, we
compare the performance of local top-k and the local top-
k with error free links. In the local top-k with error free
links, each client sends the gradient estimate sparsified by
the local top-k without any error. As illustrated in Fig. 11
(a), the local top-k without any error shows the comparable
performance with the error free links while the performance of
local top-k significantly deteriorates due to the recovery error.

In Fig. 11 (b), we show the number of non-zero elements in
the sum of sparsified gradient estimates,

∑M
m=1 g

sp
m (θt), with

the number of total parameters and the non-zero elements in
gsp
m (θt) which are 21840 and 5000, respectively. Fig. 11 (b)

illustrates that the
∑M

m=1 g
sp
m (θt) is not sparse in both cases

and more dense in the case of non-IID allocation, where it
validates the motivation of the proposed PSS schemes.

VI. CONCLUSION

We have investigated the problem of analog federated
learning when the available communication bandwidth is
scarce calling for model compression strategies. We proposed
a pattern shared sparsification strategy by setting the same
sparsification pattern of gradient estimates uploaded at each
edge device, unlike previous works in which each edge device
independently applies a local top-k sparsification. Specifically,
we provided several specific schemes for determining sparsi-
fication patterns, namely PSS with random selection, device-
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(a) Test accuracy in the case of IID data allocation. (b) Test accuracy in the case of non-IID data allocation.

Fig. 10: Classification accuracy of analog FL schemes and D-DSGD in the case of Fashion-MNIST considering I = 5000,
P = 30, M = 50.

(a) Test accuracy in the case of non-IID data allocation
of MNIST dataset.

(b) Number of non-zero elements of gradient estimate
in the case of MNIST dataset.

Fig. 11: Demonstration of curse of primal averaging in the local top-k [10], [37] considering I = 5000, P = 30, M = 50.

guided PSS, and PS-guided PSS. The wireless implementation
for all these PSS schemes were developed and validated empir-
ically. In terms of convergence analysis, the model parameter
obtained with the PSS schemes is proven to converge to
the optimum of model parameter inducing minimal training
loss. The proof is done by deriving the upper bound of the
expectation of the squared l2 norm between the obtained
parameter and optimal parameter in closed-form. Numerical
results show that the proposed PSS scheme consistently out-
perform current compression strategies in various wireless
settings including the non-IID data regime. The PSS schemes
show significant improvement in terms of robustness under
scarce communication bandwidth and low power budget. In
particular, the effect of communication bandwidth and power
budget to the performance coincides with the results obtained

in the convergence analysis.

APPENDIX A
PROOF OF THE THEOREM 1

When the PSS with random selection is considered, we have

E
[
∥θt − θ∗∥22

]
= E

[∥∥∥θt−1 −
η

M
St−1Wt−1 − θ∗

∥∥∥2
2

]
= E

[
∥θt−1 − θ∗∥22

]
− 2η

M
E [⟨St−1Wt−1,θt−1 − θ∗⟩]

+
η2

M2
E
[
∥St−1Wt−1∥22

]
, (A.1)
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since θt is obtained as

θt = θt−1 −
η

M
St−1Wt−1, (A.2)

where Wt is defined as

Wt
∆
=

M∑
m=1

gm (θt) +∆t
m + zt, (A.3)

and zt denotes the added noise in the uplink communication
at the t-th global iteration. Since the PS scales the received
signal with 1

γt
, zt is a d×1 vector with IID N

(
0, 1

2γ2
t

)
entries.

For further derivation of (A.1), we introduce two lemmas with
proof.

Lemma A.1. The second term in (A.1) is upper bounded by

− 2η

M
E [⟨St−1Wt−1,θt−1 − θ∗⟩]

≤ −2Iηµ

D

(
t−1∑
t′=0

(
1− 2I

D

)t−1−t′

E
[
∥θt′ − θ∗∥22

])
.

(A.4)

Proof: First, we have

− 2η

M
E [⟨St−1Wt−1,θt−1 − θ∗⟩]

(a)
= − 4Iη

MD
E [⟨Wt−1,θt−1 − θ∗⟩] (A.5)

(b)
=

4Iη

MD
E

[〈
M∑

m=1

gm (θt−1) ,θt−1 − θ∗

〉]

− 4Iη

MD
E

[〈
M∑

m=1

∆t−1
m ,θt−1 − θ∗

〉]
, (A.6)

where (a) is because of Lemma 1 and (b) is since the mean
of each entry in zt−1 is 0. In (A.6), the first term is upper
bounded by

− 4Iη

MD
E

[〈
M∑

m=1

gm (θt−1) ,θt−1 − θ∗

〉]
(a)

≤ 4Iη

MD

M∑
m=1

E
[
Fm (θ∗)− Fm (θt−1)−

µ

2
∥θt−1 − θ∗∥22

]
(b)

≤ −2Iηµ

D
E
[
∥θt−1 − θ∗∥22

]
, (A.7)

where (a) is due to the Assumption 1 and (b) is since F (θ∗)−
F (θt−1) ≤ 0. And the second term of (A.6) is

− 4Iη

MD
E

[〈
M∑

m=1

∆t−1
m ,θt−1 − θ∗

〉]
(a)
= − 4Iη

MD
E [⟨(Id − St−2)Wt−2,θt−1 − θ∗⟩]

(b)
= − 4Iη

MD
E [⟨(Id − St−2)Wt−2,θt−2 − St−2Wt−2 − θ∗⟩]

(c)
= − 4Iη

MD
·
(
1− 2I

D

)
E [⟨Wt−2,θt−2 − θ∗⟩] , (A.8)

where (a) is obtained from the definition of ∆t−1
m ; (b) is due

to the (A.2); (c) holds because of

⟨(ID − St−2)Wt−2,St−2Wt−2⟩ = 0 (A.9)

and Lemma 1. Hence, (A.6) is upper bounded by

− 2Iηµ

D
E
[
∥θt−1 − θ∗∥22

]
− 4Iη

MD

(
1− 2I

D

)
· E [⟨Wt−2,θt−2 − θ∗⟩] , (A.10)

where we observe the recurrence relation of (A.5) as follows.
When we denote (A.5) as Xt−1, we have

Xt−1 ≤ −2Iηµ

D
E
[
∥θt−1 − θ∗∥22

]
+

(
1− 2I

D

)
Xt−2

(A.11)

(a)

≤ −2Iηµ

D

(
t−1∑
t′=0

(
1− 2I

D

)t−1−t′

E
[
∥θt′ − θ∗∥22

])
,

(A.12)

where (a) is obtained by solving the recurrence relation in
(A.11).

Lemma A.2. The third term in (A.1) is upper bounded by

η2

M2
E
[
∥St−1Wt−1∥22

]
≤
(
1 +

Ψ

P

)
G2η2. (A.13)

Proof: First, we have

E

∥∥∥∥∥
M∑

m=1

∆t
m

∥∥∥∥∥
2

2


= E

∥∥∥∥∥(ID − St−1)

(
M∑

m=1

gm (θt−1) +∆t−1
m

)∥∥∥∥∥
2

2


(a)
=

(
1− 2I

D

)
E

∥∥∥∥∥
M∑

m=1

gm (θt−1) +∆t−1
m

∥∥∥∥∥
2

2


(b)
=

(
1− 2I

D

)E

∥∥∥∥∥
M∑

m=1

gm (θt−1)

∥∥∥∥∥
2

2


+E

∥∥∥∥∥
M∑

m=1

∆t−1
m

∥∥∥∥∥
2

2

 (A.14)

(c)

≤
(
1− 2I

D

)M2G2 + E

∥∥∥∥∥
M∑

m=1

∆t−1
m

∥∥∥∥∥
2

2

 , (A.15)

where (a) is due to Lemma 1; (b) is since

E

[〈
M∑

m=1

gm (θt−1) ,

M∑
m=1

∆t−1
m

〉]
= 0, (A.16)

when we reasonably assume that E
[
∆t−1

m

]
= 0 and ∆t−1

m

is independent with θt−1; (c) is due to Assumption 2 and
Jensen’s inequality. In (A.15) we observe the recurrence rela-
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tion and have

E

∥∥∥∥∥
M∑

m=1

∆t
m

∥∥∥∥∥
2

2

 ≤ D − 2I

2I

(
1−

(
1− 2I

D

)t
)
M2G2

≤ D − 2I

2I
M2G2, (A.17)

by solving the recurrence relation. From (A.17), we can derive
(A.13) as follows:

η2

M2
E
[
∥St−1Wt−1∥22

]
(a)
=

2Iη2

M2D
E
[
∥Wt−1∥22

]
=

2Iη2

M2D
E

∥∥∥∥∥
M∑

m=1

gm (θt−1) +∆t−1
m + zt−1

∥∥∥∥∥
2

2


(b)

≤ 2Iη2

M2D

(
M2G2 +

D − 2I

2I
M2G2 + E

[
∥zt−1∥22

])
≤ G2η2 +

2Iη2

M2D
E
[
∥zt−1∥22

]
, (A.18)

where (a) is due to Lemma 1 and (b) is since each entry of
zt−1 has 0 as its mean. In (A.18), we can derive the upper
bound of E

[
∥zt−1∥22

]
as follows:

E
[
∥zt−1∥22

]
= D · E

[
1

2γ2
t−1

]
= D · E

[
1

2PI
max
m

∥∥vt−1
m

∥∥2
2∣∣ht−1

m

∣∣2
]

≤ D · E

[
maxm

∥∥St−1

(
gm (θt−1) +∆t−1

m

)∥∥2
2

2PI

]

· E

[
max
m

1∣∣ht−1
m

∣∣2
]

≤ DMΨ · E

[
M∑

m=1

∥∥St−1

(
gm (θt−1) +∆t−1

m

)∥∥2
2

2PI

]
(a)

≤ MΨ

P
E

[
M∑

m=1

∥∥(gm (θt−1) +∆t−1
m

)∥∥2
2

]
(b)

≤ MΨ

P

(
MG2 + E

[
M∑

m=1

∥∥∆t−1
m

∥∥2
2

])
(c)

≤ MΨ

P

(
MG2 +

D − 2I

2I
MG2

)
=

DΨ

2PI
M2G2, (A.19)

for γt defined in (8) and Ψ = E
[
max
m

1
|hm|2

]
, where (a) is

due to Lemma 1, (b) is due to Assumption 2 and Jensen’s
inequality, and (c) is since

E
[∥∥∆t−1

m

∥∥2
2

]
≤ D − 2I

2I
MG2, (A.20)

which can be readily derived in a similar manner to (A.17).

The combination of (A.18) and (A.19) concludes the proof.

By applying Lemma A.1 and A.2, we have

E
[
∥θt − θ∗∥22

]
≤ E

[
∥θt−1 − θ∗∥22

]
+

(
1 +

Ψ

P

)
G2η2

− 2Iηµ

D

(
t−1∑
t′=0

(
1− 2I

D

)t−1−t′

E
[
∥θt′ − θ∗∥22

])
(a)

≤

(
1− ηµ

(
1−

(
1− 2I

D

)t
))

E
[
∥θt−1 − θ∗∥22

]
+

(
1 +

Ψ

P

)
G2η2

≤ A (t) E
[
∥θ0 − θ∗∥22

]
+

(
1 +

Ψ

P

)
G2η2

1 +

t−2∑
t′=0

t′∏
t′′=0

a(t− t′′)


(b)

≤ A (t) E
[
∥θ0 − θ∗∥22

]
+

DηG2

2Iµ

(
1 +

Ψ

P

)
, (A.21)

for A(t) =
∏t

t′=1 a(t
′), and

a(t′) = 1− ηµ

(
1−

(
1− 2I

D

)t′
)
, (A.22)

where (a) is since we can reasonably assume that
E
[
∥θt−1 − θ∗∥22

]
≤ E

[
∥θt′ − θ∗∥22

]
for t′ ≤ t− 1, and (b)

is because a(t− t′′) ≤ a(1) for η < 1
µ .

APPENDIX B
PROOF OF THE THEOREM 2

With the same argument in the Appendix A, we have

E
[
∥θt − θ∗∥22

]
= E

[
∥θt−1 − θ∗∥22

]
− 2η

M
E [⟨St−1Wt−1,θt−1 − θ∗⟩]

+
η2

M2
E
[
∥St−1Wt−1∥22

]
. (B.1)

The third term of (B.1) is obtained in a different way from
Lemma A.2 and we introduce the other lemma that handles
the third term of (B.1) based on the Assumption 3.

Lemma B.1. The third term in (B.1) is upper bounded by

η2

M2
E
[
∥St−1Wt−1∥22

]
≤ L2η2

(
1−

(
1− 2I

D

)t
)
E
[
∥θt−1 − θ∗∥22

]
+

ΨG2η2

P
.

(B.2)
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Proof: In (A.14), we have

E

∥∥∥∥∥
M∑

m=1

∆t
m

∥∥∥∥∥
2

2


= E

∥∥∥∥∥(ID − St−1)

(
M∑

m=1

gm (θt−1) +∆t−1
m

)∥∥∥∥∥
2

2


=

(
1− 2I

D

)E

∥∥∥∥∥
M∑

m=1

gm (θt−1)

∥∥∥∥∥
2

2


+E

∥∥∥∥∥
M∑

m=1

∆t−1
m

∥∥∥∥∥
2

2

 , (B.3)

where we observe the recurrence relation and obtain

E

∥∥∥∥∥
M∑

m=1

∆t
m

∥∥∥∥∥
2

2


≤ D − 2I

2I

(
1−

(
1− 2I

D

)t
)
E

∥∥∥∥∥
M∑

m=1

gm (θt−1)

∥∥∥∥∥
2

2

 ,

(B.4)

by solving the recurrence relation. And we have

η2

M2
E
[
∥St−1Wt−1∥22

]
=

2Iη2

M2D
E
[
∥Wt−1∥22

]
(a)

≤ 2Iη2

M2D

E

∥∥∥∥∥
M∑

m=1

gm (θt−1)

∥∥∥∥∥
2

2

+ E
[∥∥∆t−1

m

∥∥2
2

]
+E

[
∥zt−1∥22

])
(b)

≤ 2Iη2

M2D

(
1 +

D − 2I

2I

(
1−

(
1− 2I

D

)t−1
))

· E

∥∥∥∥∥
M∑

m=1

gm (θt−1)

∥∥∥∥∥
2

2

+
ΨG2η2

P

=
η2

M2

(
1−

(
1− 2I

D

)t
)
E

∥∥∥∥∥
M∑

m=1

gm (θt−1)

∥∥∥∥∥
2

2

+
ΨG2η2

P
,

(B.5)

where (a) is because of the same argument in (A.14) and
(A.18), and (b) is due to (B.4) and (A.19). Finally we obtain

η2

M2
E
[
∥St−1Wt−1∥22

]
≤ L2η2

(
1−

(
1− 2I

D

)t
)
E
[
∥θt−1 − θ∗∥22

]
+

ΨG2η2

P
,

(B.6)

since we have

E

∥∥∥∥∥
M∑

m=1

gm (θt−1)

∥∥∥∥∥
2

2


(a)
= E

∥∥∥∥∥
M∑

m=1

gm (θt−1)−
M∑

m=1

gm (θ∗)

∥∥∥∥∥
2

2


(b)

≤ M

M∑
m=1

E
[
∥gm (θt−1)− gm (θ∗)∥22

]
(c)

≤ M2L2E
[
∥θt−1 − θ∗∥22

]
, (B.7)

where (a) is due to the differentiability of loss and ∇F (θ∗) =
0, (b) because of Jensen’s inequality, and (c) is derived
by applying the equivalent definition of L-smoothness in
Assumption 3.

By applying Lemma A.1 and B.1, we have

E
[
∥θt − θ∗∥22

]
≤ E

[
∥θt−1 − θ∗∥22

]
− 2Iηµ

D

(
t−1∑
t′=0

(
1− 2I

D

)t−1−t′

E
[
∥θt′ − θ∗∥22

])

+ L2η2

(
1−

(
1− 2I

D

)t
)
E
[
∥θt−1 − θ∗∥22

]
+

ΨG2η2

P

(a)

≤

(
1− η

(
µ− L2η

)(
1−

(
1− 2I

D

)t
))

· E
[
∥θt−1 − θ∗∥22

]
+

ΨG2η2

P

≤ B (t) E
[
∥θ0 − θ∗∥22

]
+

ΨG2η2

P

1 +

t−2∑
t′=0

t′∏
t′′=0

b(t− t′′)


(b)

≤ B (t) E
[
∥θ0 − θ∗∥22

]
+

DηG2Ψ

2I (µ− L2η)P
(B.8)

for B(t) =
∏t

t′=1 b(t
′), and

b(t′) = 1− η
(
µ− L2η

)(
1−

(
1− 2I

D

)t
)
, (B.9)

where (a) and (b) are obtained from the argument in (A.21)
for η < µ

L2 implying η
(
µ− L2η

)
< 1.

REFERENCES

[1] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp. 2204–2239,
Nov. 2019.

[2] A. Elgabli, J. Park, C. B. Issaid, and M. Bennis, “Harnessing wireless
channels for scalable and privacy-preserving federated learning,” IEEE
Transactions on Communications, vol. 69, no. 8, pp. 5194-5208, Aug.
2021.

[3] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. on AISTATS, Fort Lauderdale, Florida, Apr.
2017.

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3186538

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Oulu University. Downloaded on August 08,2022 at 12:41:26 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

[4] J. Konecny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” in Proc. NIPS Workshop on Private Multi-Party Mach.
Learn., Barcelona, Spain, 2016.

[5] H. B. McMahan and D. Ramage, “Federated learning: Collaborative
machine learning without centralized training data,” [online]. Available.
https://ai.googleblog.com/2017/04/federated-learningcollaborative.html,
Apr. 2017.

[6] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” in Advances in Neural Information Processing Systems
(NIPS), 2017.

[7] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization for heterogeneous networks,” arXiv:1812.06127
[cs.LG], Dec. 2018.

[8] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust
and communication-efficient federated learning from non-iid data,”
arXiv:1903.02891 [cs.LG], Mar. 2019.

[9] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FEDAVG on non-IID data,” arXiv:1907.02189 [stat.ML], Jul. 2019.
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[49] M. M. Amiri, D. Gündüz, S. R. Kulkarni, and H. Vincent Poor,
“Convergence of update aware device scheduling for federated learning
at the wireless edge,” IEEE Tr. Wireless Communication, Jan. 2021.

[50] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms,”
arXiv:1708.07747, 2017.

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3186538

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Oulu University. Downloaded on August 08,2022 at 12:41:26 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

BIOGRAPHY SECTION

Jin-Hyun Ahn received his B.S. and M.S. de-
gree in mathematics in 2013 and 2016, and Ph.D.
degree in electrical engineering in 2020, all from
Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea. He is currently working
as a research associate in the MGH/BWH Center for
Advanced Medical Computing and Analysis, depart-
ment of radiology, Massachusetts General Hospital
and Harvard Medical School. His research interests
lie in the field of probability theory, communication
theory, and machine learning, with a specific focus

on federated learning. From January to September 2019, he was a visiting
researcher at King’s Communications, Learning and Information Processing
lab, King’s College London, United Kingdom. He worked as a research
associate in KAIST from September 2019 to September 2020. He has served
as a reviewer for many journals, including the IEEE Journal on Selected Areas
in Communications and the IEEE Transactions on Wireless Communications.

Mehdi Bennis is a full (tenured) Professor at the
Centre for Wireless Communications, University of
Oulu, Finland and head of the intelligent connectiv-
ity and networks/systems group (ICON). His main
research interests are in radio resource management,
game theory and distributed AI in 5G/6G networks.
He has published more than 200 research papers in
international conferences, journals and book chap-
ters. He has been the recipient of several presti-
gious awards including the 2015 Fred W. Ellersick
Prize from the IEEE Communications Society, the

2016 Best Tutorial Prize from the IEEE Communications Society, the 2017
EURASIP Best paper Award for the Journal of Wireless Communications
and Networks, the all-University of Oulu award for research, the 2019 IEEE
ComSoc Radio Communications Committee Early Achievement Award and
the 2020 Clarviate Highly Cited Researcher by the Web of Science. Dr Bennis
is an editor of IEEE TCOM and Specialty Chief Editor for Data Science for
Communications in the Frontiers in Communications and Networks journal.
Dr Bennis is an IEEE Fellow.

Joonhyuk Kang received the B.S.E. and M.S.E. de-
grees from Seoul National University, Seoul, South
Korea, in 1991 and 1993, respectively, and the Ph.D.
degree in electrical and computer engineering from
The University of Texas at Austin, Austin, in 2002.
From 1993 to 1998, he was a Research Staff Member
at Sam- sung Electronics, Suwon, South Korea,
where he was involved in the development of DSP-
based real-time control systems. In 2000, he was
with Cwill Telecommunications, Austin, TX, USA,
where he participated in the project for multicarrier

CDMA systems with antenna array. He was a Visiting Scholar with the
School of Engineering and Applied Sciences, Harvard University, Cambridge,
MA, USA, from 2008 to 2009. He is currently serving as Head of the
School of Electrical Engineering (EE), KAIST, Daejeon, South Korea. His
research interests include signal processing and machine learning for wireless
communication systems. He is a life-member of the Korea Information and
Communication Society and the Tau Beta Pi (the Engineering Honor Society).
He is a recipient of Qualcomm Innovation Award in 2013 and IEEE VTS
Jack Neubauer Memorial Award in 2021 for his paper titled “Mobile Edge
Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and
Path Planning.”

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3186538

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Oulu University. Downloaded on August 08,2022 at 12:41:26 UTC from IEEE Xplore.  Restrictions apply. 


