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Abstract—Classical and centralized Artificial Intelligence (AI)
methods require moving data from producers (sensors, machines)
to energy hungry data centers, raising environmental concerns
due to computational and communication resource demands,
while violating privacy. Emerging alternatives to mitigate such
high energy costs propose to efficiently distribute, or federate,
the learning tasks across devices, which are typically low-power.
This paper proposes a novel framework for the analysis of energy
and carbon footprints in distributed and federated learning (FL).
The proposed framework quantifies both the energy footprints
and the carbon equivalent emissions for vanilla FL methods
and consensus-based fully decentralized approaches. We discuss
optimal bounds and operational points that support green FL
designs and underpin their sustainability assessment. Two case
studies from emerging 5G industry verticals are analyzed: these
quantify the environmental footprints of continual and reinforce-
ment learning setups, where the training process is repeated
periodically for continuous improvements. For all cases, sustain-
ability of distributed learning relies on the fulfillment of specific
requirements on communication efficiency and learner popula-
tion size. Energy and test accuracy should be also traded off
considering the model and the data footprints for the targeted
industrial applications.

Index Terms—Federated learning, consensus, energy consump-
tion, carbon footprint, green machine learning, 5G and beyond,
distributed learning, Internet of Things.

I. INTRODUCTION

TRAINING deep Machine Learning (ML) models at the
network edge has reached notable gains in terms of accu-

racy across many tasks, applications and scenarios. However,
such improvements have been acquired at the cost of large
computational and communication resources, as well as signif-
icant energy footprints which are currently overlooked. Vanilla
ML requires all training procedures to be conducted inside
data centers [1] that collect data from producers, such as
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sensors, machines and personal devices. Centralized based
learning requires high energy costs for networking and data
maintenance, while introduces privacy issues as well. In addi-
tion, many mission critical ML tasks require data centers to
learn continuously [2] to track changes in dataset distributions.
Data centers are thus becoming more and more energy-
hungry and responsible of significant CO2 (carbon) emissions.
These amount to about 15% of the equivalent global Green
House Gas (GHG) emissions of the entire Information and
Communication Technology (ICT) ecosystem [3], estimated
as 0.5÷1 GtCO2e (gigatonnes of CO2 equivalent emissions)
in 2020. Electricity consumed by global data centers is also
estimated to be between 1.1% and 1.5% of the total worldwide
electricity use.

Emerging alternatives to centralized big-data analytics
enable decisions to be made at much more granular lev-
els [4]. The Federated Learning (FL) approach [5] is a
recently proposed distributed AI paradigm [6] in line with this
trend. Under FL, the ML model parameters, e.g., the weights
and biases W of Deep Neural Networks (DNN), are collec-
tively optimized across several resource-constrained edge/fog
devices, that act as both data producers and local learners. FL
distributes the computing tasks across many devices character-
ized by low-power consumption profiles, compared with data
centers, and each device has access to small datasets [2] only.
With a judicious system design taking into account both accu-
racy and energy, FL is expected to bring significant reduction
in terms of energy footprints, obviating the need for a large
centralized infrastructure for cooling or power delivery.

A. Federated and Centralized Learning: Related Works

As shown in Fig. 1, vanilla FL algorithms, such as Federated
Averaging (FA) [4], allow devices to learn a local model under
the orchestration of a Parameter Server (PS). Devices might
be either co-located in the same geographic area or distributed
in different zones. Typically, the PS aggregates the received
local models to obtain a global model that is fed back to the
devices. The PS functions are substantially less energy-hungry
compared to centralized learning (CL) and can be imple-
mented at the network edge. Different FL implementations
have emerged in the past few years [7] targeting several sce-
narios [2], [8]. The optimization of the population of learners is
critical in FL and is typically explored when power and band-
width of devices are limited [9]. Delay and energy tradeoffs
between learning and communication are considered in [10],
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while the problem of transmission scheduling in small-scale
fading is analyzed in [11]. Quantization and compression of
model parameters, or gradients, is useful to minimize band-
width usage and to avoid straggler effects [12], [13], [14]. For
a comprehensive survey on FL please refer to [4].

The above mentioned designs leverage on a server-client
architecture [7] where the PS represents a single-point of
failure and penalizes scalability. In analogy with distributed
ledger, consensus-driven learning replaces the PS functions
as it lets the local model parameters be consensually shared
and synchronized across multiple devices via device-to-device
(D2D) or sidelink communications [2]. Such fully decen-
tralized solution relies solely on in-network processing and
a consensus-based federation model, i.e., often based on
distributed weighted averaging [15]–[18].

Regardless of whether the network architecture is server-
client or decentralized via consensus methods, distributed
learning requires many communication rounds for convergence
that often consist of UpLink (UL) and DownLink (DL) com-
munications through a Wireless Wide Area access and core
Network (WWAN). Large energy bills might be therefore
observed for communication [10]. The choice between dis-
tributed and centralized learning targeting sustainable, energy-
aware designs is thus expected to be driven by communication
vs computing cost balancing.

B. Contributions

The paper develops a novel framework for the analysis of
energy and carbon footprints in distributed ML, including, for
the first time, comparisons and tradeoff considerations about
vanilla, consensus-driven FL and centralized learning on the
data center. Despite initial attempts to assess FL resource
efficiency [8], optimize delay/energy [10], [11] and carbon
footprints [3], [20], quantifying the optimal operating points
towards green or sustainable setups is yet unexplored. To
fill this void, the paper dives into the implementations of
selected distributed learning tools, and discusses optimized
designs and operational conditions with respect to energy-
efficiency and low carbon emissions. A general framework
is first developed for energy and carbon footprint assessment:
differently from [3], [10], it considers all the system param-
eters and components of the learning process, including the
PS, required in vanilla FL, as well as the distributed model
averaging, required in decentralized setups. Next, sustainable
regions in the parameter space are identified to steer the choice
between centralized and distributed training in practical setups:
the regions highlight bounds, or necessary conditions on com-
munication, computing efficiencies, data and model size that
make FL more promising than CL with respect to its car-
bon footprint. Unlike classical FL platforms [4], [10] defined
on top of edge devices with large computing power [8], the
paper focuses on learning tasks suitable for low-power embed-
ded wireless devices (e.g., robots, vehicles, drones) typically
adopted in Industrial Internet of Things (IIoT) applications [7].
These setups are characterized by devices/learners retaining
small training datasets, while running medium/small-sized ML
models due to their constrained internal memory. Devices are

Fig. 1. From top to bottom: Centralized Learning (CL), Federated Learning
(FL) coordinated by the Parameter Server (PS), namely Federated Averaging
(FA), and Consensus-driven Federated Learning, enabling fully decentralized
implementations (i.e., without PS).

also equipped with low-power radio interfaces supporting deep
sleep modes, cellular (e.g., 5G and NB-IoT), as well as direct
mode, or sidelink, communication interfaces.

The proposed co-design of learning and communication
is validated using real world data and a test-bed platform
characterized by low-power devices implementing real-time
distributed model training on top of the Message Queuing
Telemetry Transport (MQTT) protocol. The real-time test-bed
is used to measure the training time for different learning poli-
cies, while a what-if analysis quantifies the estimated energy
and carbon footprints considering the impact of various com-
munication settings, as well as the influence of the learner
population size.

C. Paper Structure and Organization

The paper is organized as follows. Section II describes
the framework for energy consumption evaluation of dif-
ferent distributed learning strategies. Energy modelling is
carried out separately for centralized learning (Section II-A),
vanilla FA (Section II-B), including the novel policy FA-D
that keeps inactive learners in deep-sleep, and decentral-
ized consensus-driven FA (Section II-C). Necessary adap-
tations of the proposed energy models to continual and
Reinforcement Learning (RL) paradigms [21] are also dis-
cussed in Section II-D.

Section III considers the carbon footprints (Section III-A)
and the sustainable regions (Section III-B) that provide neces-
sary requirements to steer the choice between centralized and
distributed learning paradigms. Requirements are verified first
in Section IV using the MNIST [22] and the CIFAR10 [23]
datasets (Section IV-A) separately and through comparative
analysis (Section IV-B). Next, practical design problems are
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explored in Section V targeting two industry relevant use
cases. In particular, the FL network implementation is based
on the MQTT protocol (Section V-A) while 4 communication
efficiency profiles are considered (Section V-B). Both contin-
ual (Section V-C) and RL (Section V-D) scenarios are analyzed
where the training process must be periodically repeated using
new input data that change frequently to follow either a time-
varying industrial process or the same model under training.
These tools are critical in 5G industry verticals, i.e., Industry
4.0 (I4.0) applications, and could raise significant energy con-
cerns unless specific actions are taken. Finally, conclusion are
summarized in Section VI.

II. ENERGY FOOTPRINT MODELING FRAMEWORK

The proposed framework provides insights into how the
different components of the CL (i.e., the datacenter) and FL
architectures (i.e., the local learners, the core network and the
PS), contribute to the energy bill and to the carbon emissions
in terms of system accuracy and number of rounds. The learn-
ing system consists of K devices and one data center (k = 0).
Each device k > 0 has a dataset Ek of examples (xh , yh )
that are typically collected independently. In supervised learn-
ing, examples xh are labelled as yh for training. Unsupervised
setups, i.e., RL, are discussed in Section II-D. For all cases,
the objective of the learning system is to train a DNN model
ŷ(W; x) that transforms the input data x into the desired C
outputs ŷ ∈ {yc}Cc=1, i.e., the output classes. Model param-
eters are here specified by the matrix W [4]. The training
system uses the examples in E =

⋃K
k=1 Ek to minimize a loss

function L of the form

L(E|W) =
K∑

k=1

Lk (Ek |W). (1)

In what follows, unless stated otherwise, we use the
cross-entropy loss function [4], namely Lk = −∑

h yh
log [ŷ(W; xh )]. Minimization of (1) is typically iterative and
gradient-based [5]: it runs over a pre-defined number (n) of
learning rounds that depend on a specified target loss thresh-
old, namely L(E|W) ≤ ξ, i.e., corresponding to a required
accuracy. For example, using Stochastic Gradient Descent
(SGD)

Wt+1 ←Wt − μs ×∇Lk (Ek |Wt ), (2)

examples Ek are drawn randomly from the full training set E ,
while μs is the step-size and∇Lk (Ek |Wt ) = ∇Wt

[L(Ek |Wt )]
is the gradient of the loss function (1) over the assigned
batches of data Ek given the model Wt .

The energy footprint of device k, namely the total amount of
energy consumed by the learning process, is broken down into
computing and communication components. Considering one
learning round, all the energy costs are modelled as a function
of the computing energy E

(C)
k required by the optimizer (2)

and the energy E
(T)
k ,h per correctly received/transmitted bit over

the wireless link (k, h). The training data or the DNN model
parameters are quantized before transmission into b(Ek ) and
b(W) bits, respectively. The quantization scheme assigns a

fixed number of bits (here 32 bits) to each parameter of the
DNN model. Compression techniques such as model prun-
ing, sparsification [24], parameter selection and/or differential
transmission schemes [12], [25] are extremely helpful to scale
down the footprint b(W) in large DNNs. However, due to the
great variety of compression techniques, we have considered
here only a simple quantization scheme. The modifications to
include a particular technique can be trivially detailed using
the specific data b(Ek ) and model size b(W) as the result of
the compression processes.

We define the energy cost for UL communication with the
data center (or the PS), co-located with the Base Station (BS),
as E

(T)
k ,0 . Similarly, E

(T)
0,k refers to DL communication, i.e.,

from the PS, or the BS, to the k-th device. Communication
costs incorporate both transmission and decoding opera-
tions [26]. In contrast to digital implementations, analog FL
designs [9], [17] get over the restrictions of time scheduled
access: rather than spending energy E

(T)
k ,h for sending bits

over orthogonal links, they exploit the superposition prop-
erty of wireless transmissions for analog aggregation [27],
scaling down the number of channel uses, and the communi-
cation cost. Although not considered in this paper, comparing
analog and digital FL in the light of energy footprints is an
open problem of wide interest. The energy E

(C)
k for comput-

ing includes the cost of the learning round, namely the local
gradient-based optimizer and the data storage costs. All costs
are quantified on average: notice that routing through the radio
access and the core network can vary but might be assumed
as stationary apart from failures or replacements.

A. Centralized Learning

Under CL, the model training is carried out inside the data
center k = 0, assumed co-located with the BS, and exploits
the processing power provided by racks of CPU (Central
Processing Units), GPU (Graphic Processing Units) and other
specialized AI accelerators such as NPU (Neural Processing
Units) and TPU (Tensor Processing Units). Therefore, the
energy cost per round E

(C)
0 = P0 · T0 · B depends on the

power consumption P0 [20] of the aforementioned hardware
units, the time span T0 required for processing an individual
batch of data, i.e., minimizing the loss L(·|W), and the number
B of batches per round [10]. Data are collected independently
by the devices while we neglect here the cost of initial dataset
loading since it is a one-step process only. For n rounds, cho-
sen to satisfy a target loss ξ, the total energy ECL in Joule [J]
consists of computing E

(L)
CL and communication E

(C)
CL costs:

ECL(n) = γ · n · E (C)
0︸ ︷︷ ︸

E
(L)
CL

+ α ·
K∑

k=1

b(Ek ) · E (T)
k ,0

︸ ︷︷ ︸

.

E
(C)
CL

(3)

The energy cost for computing inside the data center scales
as E

(L)
CL (n) = γ · n ·E (C)

0 with γ > 1 being the Power Usage
Effectiveness (PUE) of the data center [31], [32]. The PUE
accounts for the additional power consumed for data stor-
age, power delivery and cooling: γ values are in the range
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Fig. 2. Distributed learning algorithms: a) Federated Averaging (FA, FA-D),
b) CFA with sidelink communications.

1.1÷1.8 [32], [44]. The energy consumed for communication
of raw data is E (C)

CL = α
∑K

k=1 b(Ek ) ·E (T)
k ,0 and quantifies the

energy for moving b(Ek ) bits of the k-th local training dataset
Ek for α times and for all the K devices. Parameter α counts
the number of times a new training dataset is uploaded by the
devices while learning is in progress. For example, in one-
time learning processes, the full training dataset is available
by devices before the training starts: therefore, it is α = 1.
On the other hand, in continual learning applications, devices
produce new training data continuously [2], [21]: data thus
needs to be moved while learning is in progress, therefore it
is 1 < α ≤ n .

B. Federated Learning With Server (FA) and Deep-Sleep
(FA-D)

Unlike CL, FL distributes the learning process across a
selected, typically time-varying [4], subset Nt of Ka < K
active devices as shown in Fig. 1(a). At each round t, the
local dataset Ek is used to train the local model Wk ,t using
a gradient-based Local Optimizer (LO) and a global model
instance (Wt ), obtained from the server (PS). The goal is to
minimize the local loss Lk as

Wk ,t = argmin
W

Lk (·|W) + υ‖W −Wt‖2, (4)

where υ‖W−Wt‖2 is the proximal term [11], [28] often used
when data is non-identically distributed (non-IID). The local
model Wk ,t is then forwarded to the PS [4] over the UL. The
PS is co-located with the BS and is in charge of updating the
global model Wt+1 for the following round t + 1 through the

aggregation of the Ka received models [5]:

Wt+1 ←
∑

k∈Nt

σk ·Wk ,t , (5)

with σk = Qk
Q being the ratio between the number of local

examples Qk and global Q =
∑

k∈Nt
Qk ones, respectively.

Notice that for IID data distributions, it is σk = 1
Ka

[6]. The
new model Wt+1 is finally sent back to the devices over the
DL.

Federated Averaging (FA): In vanilla FL methods, such
as FA, the PS chooses Ka < K active devices on each round
to communicate their local model. During this process, the
remaining K −Ka devices are powered on [5], [6] as they run
the LO (4) and decode the updated global model Wt obtained
from the PS. For n rounds, the total end-to-end energy can be
written as

EFA(n) = E
(L)
FA (n) + E

(C)
FA (n), (6)

namely, the superposition of the computing E
(L)
FA (n) and the

communication E
(C)
FA (n) costs, considering both the devices

and the PS consumption. In particular:

E
(L)
FA (n) = γ · n · β · E (C)

0 + n ·
K∑

k=1

E
(C)
k ,

E
(C)
FA (n) = b(W)

⎡

⎣n ·
K∑

k=1

γ · E (T)
0,k +

n∑

t=1

∑

k∈Nt

E
(T)
k ,0

⎤

⎦. (7)

The energy cost for computing E
(L)
FA (n) in (7) is due to the PS

energy γ ·n ·β ·E (C)
0 needed for model averaging and the LO,

n ·∑K
k=1 E

(C)
k that is implemented by all the K devices [10].

The energy for model averaging β · E (C)
0 is considerably

smaller than the gradient-based optimization term E
(C)
0 on the

data center, therefore it is β � 1. In IoT setups, the devices
are also usually equipped with embedded low-consumption
CPUs, SoCs (System on Chips) or μCU (microcontrollers):
thus, it is reasonable to assume E

(C)
k < E

(C)
0 . The commu-

nication energy E
(C)
FA (n) in (7) models the cost of the global

model transmission over the DL, i.e., n ·b(W)
∑K

k=1 γ ·E (T)
0,k ,

and the UL communication from selected Ka active devices,
i.e., b(W)

∑n
t=1

∑
k∈Nt

E
(T)
k ,0 in the set Nt : as depicted in

Fig. 2(a), it is assumed that the PS is co-located with the
BS. The model size b(W) quantifies the size in bits of model
parameters to be exchanged.1 As analyzed in Section III, both
model b(W) and local data size b(Ek ) are critical for sustain-
able designs. Notice that, as opposed to data, b(W) is roughly
the same for each device, although small changes might
be observed when using lossy compression, sparsification or
parameter selection methods [12], [24], [25].

Federated Averaging With Deep-Sleep (FA-D): An alter-
native to FA, referred to as FA-D, lets the inactive K − Ka

1More precisely, b(W) quantifies the size of the subset of the (train-
able) model layers, or parameters, exchanged on each FL round: however,
to simplify the reasoning, it is herein referred to as “model size”.
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devices to turn off their computing hardware and communi-
cation interface, and set into a deep-sleep mode, when not
needed by the PS. Deep sleep mode should be paired with
efficient hardware able to power up and down in fractions
of milliseconds: this is also a key component of 5G [26]
and supported by popular interfaces, such as NB-IoT [47].
In contrast to vanilla FA, FA-D limits the consumption to the
Ka active devices, while these might change from round to
round on a duty-cycle basis. As verified in the following, FA-
D brings significant per-round energy benefits, in exchange for
larger number of rounds nFA−D > nFA, for the same target
accuracy ξ. Considering the duty cycling process, the energy
footprint of FA-D becomes

EFA−D(n) = E
(L)
FA−D(n) + E

(C)
FA−D(n), (8)

now with

E
(L)
FA−D(n) = γ · n · β · E (C)

0

+
n∑

t=1

⎡

⎣
∑

k∈Nt

E
(C)
k +

∑

k /∈Nt

E
(C)
k ,sleep

⎤

⎦,

E
(C)
FA−D(n) = b(W) ·

n∑

t=1

∑

k∈Nt

[
γ · E (T)

0,k + E
(T)
k ,0

]
. (9)

Notice that the LO cost is now constrained to the active
devices,

∑n
t=1

∑
k∈Nt

E
(C)
k as with global model commu-

nication, b(W) · ∑n
t=1

∑
k∈Nt

γ · E (T)
0,k . Finally, E

(C)
k ,sleep

accounts for the energy consumption of inactive devices in
deep-sleep mode (if not negligible w.r.t. E (C)

k ).

C. Consensus-Driven Federated Averaging (CFA)

Decentralized FL techniques [16], [17], [18] let the devices
mutually exchange their local models, possibly over peer-
to-peer networks. Unlike with FA, the PS is not needed as
it is replaced by a consensus mechanism. In particular, we
propose a consensus-driven FA approach (CFA) where the
federated nodes exchange the local ML model parameters
and update them sequentially by distributed averaging. As
shown in Fig. 2(b), devices mutually exchange their local
model parameters Wk ,t with an assigned number N of neigh-
bors [12], [13], [17]. Distributed weighted averaging [16], [18]
is used to combine the received models.

Let Nk ,t be the set that contains the N chosen neighbors of
node k at round t: on every new round (t > 0), the device
updates the local model Wk ,t using the parameters Wh,t
obtained from the neighbor device(s) as

Wk ,t+1 ←Wk ,t +
∑

h∈Nk,t

σh,k ·
(
Wh,t −Wk ,t

)
, (10)

where the weights σh,k are chosen to guarantee a stable
solution as

σh,k =
Qh∑

h∈Nk,t
Qh

, (11)

and for IID data, it is σh,k = 1
N , ∀h, k . Distributed weighted

averaging (10) is followed by LO (4) on Ek that can also

include proximal regularization [28]. For Ka < K active
devices in the set Nt and n rounds, the energy footprint is
again broken down into learning and communication costs as

ECFA(n) = E
(L)
CFA(n) + E

(C)
CFA(n), (12)

with

E
(L)
CFA(n) =

n∑

t=1

⎡

⎣
∑

k∈Nt

E
(C)
k +

∑

k /∈Nt

E
(C)
k ,sleep

⎤

⎦,

E
(C)
CFA(n) =

n∑

t=1

∑

k∈Nt

∑

h∈Nk,t

b
(
Wk ,t

) · E (T)
k ,h . (13)

The sum
∑

h∈Nk,t
b(Wk ,t )·E (T)

k ,h now models the total energy
spent by the device k to diffuse the local model parameters to
selected neighbors h in the set Nt at round t. Since the PS is
not used, CFA is particularly promising in reducing the energy
footprint.

CFA requires sending data over peer-to-peer links (k, h): in
WWAN, each link is implemented by UL transmission from
the source k to the core network access point (i.e., router or
BS), followed by a DL communication from the router(s) to
the destination device h, therefore

E
(T)
k ,h = E

(T)
k ,0 + γ · E (T)

0,h , (14)

where γ is the PUE of the BS or router hardware (if any).
Alternatively, CFA can leverage direct, or sidelink, transmis-
sions [29]. Sidelink (SL) features were introduced by 3GPP
(PC5 interface) in release 12 and 13, namely the proximity
service (ProSe). They support direct (D2D) communications
with minor involvement of the BS, or eNB [19], [41]. Since the
signal relay through the BS is not needed, excluding an initial
link setup for resource allocation, sidelink communications are
expected to make a significant step towards green and sustain-
able networks, serving as enabling technology for an efficient
implementation of CFA. Both communication architectures
will be addressed next.

D. Continual and Reinforcement Learning Paradigms

The energy framework previously discussed is suitable for
modelling the environmental footprints of conventional super-
vised, or one-time, ML problems. On the other hand, novel
learning paradigms are emerging in industrial IoT setups. In
the following sections, we highlight some necessary adapta-
tions with a particular focus on continual and RL paradigms.
Both scenarios are further discussed in the case studies of
Section V-C.

Continual Learning: In continual learning paradigms the
training process must be periodically repeated to follow a
time-varying industrial process and using new input data or
observations that change frequently. When the input data
changes, a new training process starts using either the most
recent global model instance as an initialization or meta-
learning tools [33] that quickly adapt to model changes or
new tasks [35]. Continual learning methods consist of an initial
training stage (t0), where the model parameters are optimized
over n0 rounds using local training data Ek (t0), followed by
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TABLE I
COMMUNICATION AND COMPUTING CARBON FOOTPRINTS

periodic tuning/re-training stages at subsequent time instants
t1, . . . , ti . Model retraining uses a smaller amount of (few
shot) data [34] as b[Ek (ti )] < b[Ek (t0)], and a reduced num-
ber of rounds, namely ni � n0, ∀i ≥ 1. Each stage has a
cost of E (ti )(ni ), typically with E (ti )(ni )� E (t0)(n0) since
fewer rounds are needed.

Reinforcement Learning (RL): RL [21] is used to train
policies, typically deep ML models, that map observations of
an environment to a set of actions, while trying to maximize
a long-term reward. Similarly as for continual learning, the
training process must be periodically repeated, i.e., at time
instants t0, . . . , ti using new input observations Ek (ti ), or
states, that change frequently as they are influenced by the
same model under training. In this paper, we resort to the
popular Deep Q-Learning (DQL) method [30]. The goal is to
train a state-action value function W, namely the Q-function,
that uses the input states to predict the expected future rewards
for each output action, i.e., ŷ ∈ {yc}Cc=1. The Q-function is
typically a deep ML model while training is obtained using
gradient-based optimization. Considering K learning devices,
the training process on each round consists of new actions that
generate new states/observations of the environment: actions
could be obtained by maximizing the local Q-function Wk ,t
under training (exploitation) or they can be randomly and inde-
pendently chosen by devices (exploration). The training data
are therefore determined by the learned Q-function and change
at every round [30]. For CL, the training data is moved to a
data center on each round, therefore α = n in (3). On the other
hand, FA, FA-D and CFA algorithms let the devices exchange
the parameters of their local Q-functions, rather than the obser-
vations. All the algorithms proposed in Sections II-B and II-C
can be thus applied without significant modifications. Finally,
it is worth noticing that since observations are collected on
each new round, the energy footprint must also include the
cost of training data collection. A specific example is given in
Section V-D.

III. DESIGN PRINCIPLES FOR LOW-CARBON EMISSIONS

The section discusses the main factors that are expected
to steer the choice between centralized and federated learn-
ing paradigms towards sustainable designs. Sustainability is
here measured in terms of equivalent GHG emissions, referred
to as carbon footprints. The goal is to identify the operat-
ing conditions that are necessary for FL policies (FA, FA-D
and CFA) to emit lower carbon than CL. Advantages of FL

compared with CL are related to communication and com-
puting costs, as well as model b(W) and data b(Ek ) size.
Considering the energy models detailed in Section II, the
carbon footprints (Section III-A) are obtained for all the FL
policies (CFA,CFA−D and CCFA) as well as for CL (CCL).
Sustainable regions (Section III-B) highlight necessary condi-
tions on communication and computing energy costs (energy
and computing efficiencies) as well as on model v. data
footprint ratio b(W)

b(Ek ) .

A. Carbon Footprints and Model Simplifications

The carbon footprints CFA,CFA−D,CCFA and CCL are
summarized in Tab. I for all the proposed FL algorithms
as well as for CL. Based on the energy models (3)–(13),
the estimated emissions are evaluated by multiplying each
individual energy contribution, namely E

(C)
k and E

(T)
k ,h , by

the corresponding carbon intensity (CIk ) of the electric-
ity generation [46]. The CIk terms depend on the specific
geographical regions where the devices k = 0, . . . ,K are
installed, and are measured in kg CO2-equivalent emissions
per kWh (kgCO2-eq/kWh): they quantify how much carbon
emissions are produced per kilowatt hour of locally generated
electricity.

Targeting general rules for sustainability assessment, the
following simplifications are applied to carbon footprints in
Tab. I. First, communication costs are quantified on average,
in terms of the corresponding energy efficiencies (EE), stan-
dardized by ETSI (European Telecommunications Standards
Institute [38]). These are defined as the ratio between the data
volume originated in DL (EED = [E

(T)
0,k ]−1), UL (EEU =

[E
(T)
k ,0 ]−1) or sidelink transmissions (EES = [E

(T)
k ,h ]−1) and

the network energy consumption observed during the period
required to deliver the same data. Efficiency terms are mea-
sured here in bit/Joule [bit/J] [39], [40] and we consider
different choices of EED, EEU and EES depending on
the specific network implementation. In particular, when the
sidelink interface is not available, but WWAN is used,2 it is
[EES]

−1 
 [EED]
−1 + [EEU]

−1.
Considering now the computing costs, we define the com-

puting efficiency of the data center (or PS) as EEC =

[E
(C)
0 ]−1. It quantifies how much energy per learning round

2It is worth mentioning that it would be [EES]
−1 = [EED]−1 +

[EEU]−1 if the PUE γ of the Base Station or the router hardware were
γ = 1 as mentioned in Section. II-B.
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TABLE II
REGION DEFINITIONS AND REQUIREMENTS

is consumed and it is measured in terms of number of rounds
per Joule [round/J]. Finally, the computing efficiency of the
devices k > 0 are modeled here as [E

(C)
k ]−1 = EEC

ϕk
with

ϕk =
E
(C)
k

E
(C)
0

=
Pk

P0
· Tk

T0
. (15)

Low-power devices typically experience a much larger local
batch time Tk > T0 compared with data center T0. On the
other hand, they use substantially lower power (Pk � P0).

B. Carbon-Aware Sustainable Regions and Requirements

Sustainability of FL depends on the specific operating
conditions about communication (EED, EEU, EES) and com-
puting (EES) efficiency, as well as model b(W) and data
b(Ek ) footprints. In what follows, we dive into such opera-
tional points to highlight practical or necessary requirements
for green designs. To simplify the reasoning, we consider here
CIk ≈ CI, ∀k , while the general results with arbitrary car-
bon intensity values CIk are shown in the Appendix. All the
requirements analyzed below are summarized in Table II.

UL and DL Efficiencies in Cellular Communications:
FL policies make extensive use of UL/DL communications
either for local model parameters upload or global model
download. Quantifying necessary requirements on communi-
cation efficiencies (EED,EEU) is thus particularly critical and
constitutes a key indicator for the optimal choice between cen-
tralized and distributed learning. The first problem we tackle
is to identify the region of the parameter space

RDU �
{
EED,EEU : C

(C)
FA < C

(C)
CL

}
(16)

such that when {EED,EEU} ∈ RDU the FA policy emits
lower carbon than CL with respect to communication costs.
Defining b(E) = ∑K

k=1 b(Ek ) as the size of the training data

across the deployed devices, condition C
(C)
FA < C

(C)
CL in (16)

can be written as
EED

EEU

(
α

n ·Ka
· b(E)
b(W)

− 1

)

> γ · K
Ka

, (17)

with C
(C)
FA and C

(C)
CL in Tab. I (further details are in the

Appendix). Since training costs C(L) are overlooked, the
bound (17) gives a necessary (but not sufficient) condition
towards sustainability assessment. As verified experimen-
tally, the bound (17) is revealed tight enough to serve as
a practical operating condition when communication emits
much more carbon than training, often verified in prac-
tice [3], [20]. Considering FA-D, the parameter region (16)
becomes RDU := {EED,EEU : C

(C)
FA−D < C

(C)
CL } while

C
(C)
FA−D < C

(C)
CL can be written as EED

EEU
( α
n·Ka

· b(E)
b(W)

−1) > γ.
Compared with (17), it gives a less stringent requirement when
Ka < K , namely the active device population Ka is smaller
than the full population K.

Direct Mode Communications (Sidelink Efficiency): CFA
does not need the PS and exploits direct mode communica-
tions, replacing UL/DL communications with sidelinks (SL).
Considering again Tab. I, in analogy to (16), we now quantify
necessary requirements on SL efficiency EES. The parameter
region

RSU �
{
EES,EEU : C

(C)
CFA < C

(C)
CL

}
(18)

collects the operational points {EES,EEU} ∈ RSU that make
the CFA policy more efficient than CL in terms of communi-
cation costs. Condition C

(C)
CFA < C

(C)
CL in (18) can be written

as
EES

EEU
· α

n ·Ka
> N · b(W)

b(E) . (19)

Similarly as (17), the bound (19) gives a necessary condition
on SL efficiency. On the other hand, as verified in Section IV,
it can be effectively used for practical assessment when SL
communication is the major source of carbon emissions.
As discussed in the Appendix, the condition EES

EEU
+ γ K

Ka
·

EES
EED

> N guarantees that, for each FL round, the CFA policy
leaves a smaller carbon footprint than FA, or FA-D (where K
is replaced with Ka ).

Data and Model Size: In analogy to regionsRDU andRSU
that set the operational points for UL/DL and SL efficiency,
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the parameter region

Rb(W) �
{
b(W), b(Ek ) : max

[
C
(C)
CFA,C

(C)
FA ,C

(C)
FA−D

]
< C

(C)
CL

}
.

(20)

identify the necessary requirements on model b(W)
and data b(Ek ) size, now considering all the proposed
FL policies. Using (17) and (19), the condition
max [C

(C)
CFA,C

(C)
FA ,C

(C)
FA−D] < C

(C)
CL in Rb(W) can be

written and simplified as

b(W)

b(Ek )
<

α

n
· K

Γ ·Ka
. (21)

by assuming EES
EEU

, EED
EEU

� 1 [46] and ∀k , b(Ek ) = b(E)/K
as clarified in the Appendix. In particular, taking into consid-
eration FA and FA-D policies only, it is Γ = 1, while Γ = N
when including CFA. Notice that, for an assigned model b(W)
and dataset b(Ek ) size, a critical requirement for (21) to hold is
minimizing the active population size (Ka < K ) and keeping
the number of learning rounds (n) to a minimum, while satis-
fying a target accuracy. Furthermore, frequent data updates, as
often observed in continual learning (α > 1), might favor FL.

Computing Efficiency: Considering now the training costs,
the parameter region

RCI �
{

CIk , ∀k :
C
(L)
FA

nFA
<

C
(L)
CL

nCL

}

(22)

sets the requirements on carbon intensities such that, for
CIk ∈ RCI, the FA policy emits lower carbon than CL with
respect to the per-round computing costs. After straightfor-
ward manipulation of C

(L)
FA and C

(L)
CL from Tab. I, the bound

C
(L)
FA

nFA
<

C
(L)
CL

nCL
in (22) can be written as

K∑

k=1

ϕk

1− β
CIk < γCI0. (23)

Extending requirement (23) to other FL policies, namely

FA-D,
C

(L)
FA−D
nCFA

<
C

(L)
CL

nCL
, and CFA,

C
(L)
CFA

nCFA
<

C
(L)
CL

nCL
, is straightfor-

ward. The corresponding requirements are detailed in Table II.

IV. CARBON FOOTPRINTS: EXAMPLES IN CELLULAR

NETWORKS

In this section we verify the sustainability condi-
tions (17)-(23) and the regions in Table II for typical super-
vised image classification problems (α = 1), using the popular
MNIST [22] and CIFAR10 [23] datasets. In line with 4G/5G
NB-IoT cellular network implementations [26], model param-
eters and data exchange are here implemented over a WWAN
characterized by UL EEU = 10 kbit/J and DL efficiency
EED = 50 kbit/J. Other setups are considered in Section V.
Three populations of devices are analyzed, ranging from
K = 100, of which Ka = 50 are active learners, K = 60
(with Ka = 40) and K = 30 (Ka = 20). For these initial
tests, distributed learning has been simulated on a framework
that allows to deploy virtual devices implemented as inde-
pendent threads running on the same machine. Each thread

acts as learner and process a fraction of an assigned data
set while communicating with the other threads through a
resource sharing system [16]. The simulations allow to com-
pute the number of rounds n that are necessary to achieve
a target accuracy or loss ξ: energy and carbon footprints are
then obtained for each setup by evaluating communication and
computing costs in Table I. For CL consumption, the data cen-
ter machine is equipped with a RTX 3090 GPU hardware (with
Thermal Design Power equal to 350W) having PUE γ = 1.67.
We consider the carbon intensity CIk figures reported in EU
back in 2019 [37]: in particular, CIk = 0.9 kgCO2-eq/kWh,
according to [43] (mlco2.github.io/impact/).

The following analysis follows a what-if approach to quan-
tify the estimated carbon emissions under different parameter
choices. Actual emissions may be larger than the estimated
ones depending on the specific use case and network imple-
mentation: relative comparisons are however meaningful for
green design assessment. Code examples are available online.3

A. Impact of Conditions (17)-(23) on MNIST and CIFAR

Handwritten image recognition from the MNIST dataset
uses the LeNet-1 model proposed in [22]. Each device obtains
1000 MNIST training gray scale images with average (per
device) data footprint b(Ek ) = 6.2 Mbit, ∀k . Model size with
no compression is b(W) = 180 kbit, so that b(W)

b(Ek ) 
 0.03.
Considering the CIFAR set, devices obtain 1000 CIFAR10
color images, b(Ek ) = 24.5 Mbit, and use a VGG-1 model
with b(W) = 2 Mbit, so that b(W)

b(Ek ) 
 0.08. In the following
tests, both IID and non-IID data distributions are considered:
in particular for non-IID data, batches now contain examples
for 6 of the 10 target classes (MNIST or CIFAR), randomly
chosen.

MNIST Carbon Footprints: Table III (left column) quanti-
fies the minimum and maximum number of rounds (n) required
for FA, FA-D and CFA, as targeting different validation loss
values ξ. Communication, computing energy costs, and carbon
footprints are instead reported in Table IV. The carbon foot-
print is quantified by decrease (negative terms) or increase
(positive terms) with respect to the emissions observed for
CL, used here as reference. The carbon emissions of CL are
found as 17.6 gCO2-eq for K = 100 devices, 14.1 gCO2-eq
for K = 60, and 5.6 gCO2-eq for K = 30. The parame-
ter region Rb(W) and the upper bound (21) can be used to
quantify the maximum number of rounds below which dis-
tributed learning tools could be considered as sustainable: for
b(W)
b(Ek ) 
 0.03, and after straightforward manipulation, it is
n < 50 for K = 30 and K = 60, and n < 66 for K = 100.
FA and FA-D methods both satisfy the previous condition as
they require n = 13 ∼ 29 rounds for ξ = 0.1 and fewer
rounds n = 11 ∼ 26 for ξ = 0.2. The region RDU and condi-
tion (17) for n = 29 rounds, K = 30, and Ka = 20 indicates
EED
EEU

> 2.8 for FA and EED
EEU

> 1.9 for FA-D that are both

satisfied as EED
EEU

= 5. CFA leaves a smaller carbon footprint

3Federated Learning code repository: https://github.com/labRadioVision/federated.
Accessed: March 2022.
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TABLE III
FL ROUNDS FOR VARYING TARGET LOSSES ξ, AND IID VS NON-IID DATA DISTRIBUTIONS WITH EEU = 10 kbit/J, EED = 50 kbit/J. EXAMPLES

WITH THE MNIST AND THE CIFAR10 DATASETS ARE SHOWN AS WELL

TABLE IV
COMMUNICATION/COMPUTING ENERGY COSTS AND CORRESPONDING CARBON FOOTPRINTS INCREASE/DECREASE

W.R.T. CL FOR THE MNIST DATASET

than CL for IID data distributions. However, when data is non-
IID, it requires up to n = 70 rounds with K = 100 devices
that exceeds the bound (21) and thus cause a larger footprint.
Notice that, for CFA, the observed rounds might differ sub-
stantially over varying simulation runs, as the result of the
propagation of model parameters through the network.

CIFAR Carbon Footprints: Table III (right column) and
Table V collect the required rounds, the energy and car-
bon footprints for the CIFAR set, respectively. Classification
with CIFAR requires much more rounds for convergence than
MNIST and a larger model footprint b(W): according to
the region Rb(W) and the bound (21), FL is less attractive
with respect to centralized designs. For CL, the number of
rounds to achieve ξ = 0.6 (accuracy of 77%) is in the range
nCL = 30 ∼ 40, while the carbon footprint is found to be
267.4 gCO2-eq for K = 100 devices, 161.5 gCO2-eq for
K = 60, and 81.4 gCO2-eq for K = 30, respectively. Table V
shows that all FL paradigms leave larger footprints than CL
since the required number of rounds exceeds the bound (21),
that prescribes a maximum of 25 rounds. A sustainable solu-
tion could be achieved only in exchange for a larger loss: in
other words, increasing the target loss to ξ = 1.2 reduces
the required number of FL rounds, but penalizes the accuracy
that scales down to 67%. This last setup might give concrete
chances to CFA, when data is IID distributed, considering the
lower communication cost per round as shown in the require-
ment (19) or region RSU. Finally, for CIk = 0.9, ϕk = 0.14

and β = 0.05, condition (23) on training costs is not satis-
fied: therefore, FL emits much more carbon than CL on each
learning round as CIk /∈ RCI.

B. MNIST and CIFAR: Comparative Analysis

By comparing the MNIST and the CIFAR sets, some com-
mon properties emerge: these are conveniently summarized
in Fig. 3, focusing on FA-D and CFA methods. Each point
in the scatter plot corresponds to a simulation run that uses
FA-D or CFA over the MNIST or the CIFAR sets. For each
combination, represented by different markers, we run sev-
eral simulations by varying the data distribution, from IID
to non-IID,4 and we report the required number of rounds,
for accuracy ξ, as well as the corresponding model/data
footprint ratio b(W)

b(Ek ) . The bounds (21) and (17) are super-
imposed by black and blue dashed lines, respectively: the
area above each line represents unsustainable designs, namely
{b(W), b(Ek )} /∈ Rb(W) and {EED,EEU} /∈ RDU, for
which CL is the preferred choice, with respect to carbon emis-
sions. In most cases, the simulations confirm the predicted
trends: green markers correspond to sustainable solutions for
which FA-D, or CFA, leave a lower carbon footprint than CL,
red markers refer to the opposite case. Small model footprints

4Non-IID data footprint b(Ek ) might vary in each simulation run, depend-
ing on the training sample distribution.
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TABLE V
COMMUNICATION/COMPUTING ENERGY COSTS AND CORRESPONDING CARBON FOOTPRINTS INCREASE/DECREASE W.R.T. CL

FOR THE CIFAR10 DATASET

Fig. 3. Validation of the bounds (21) in black, and of (17) in blue, with the
CIFAR and the MNIST datasets for the CFA and FA-D methods. Markers in
the scatter plot report FA-D or CFA simulation runs for the MNIST or CIFAR
datasets (IID or non-IID), and give the required rounds for the target loss ξ

and the corresponding model/data size b(W)
b(Ek ) . Green markers are sustainable

solutions, namely CFA−D < CCL or CCFA < CCL, while red markers
refers to the opposite cases.

b(W) compared with data b(Ek ) constitute a critical prereq-
uisite for FL sustainability, while learning rounds (n) must
be minimized as much as possible. Notice that the required
rounds increase when the data is non-IID. CFA is generally
more sensitive to non-IID distributions than FA-D; on the
other hand, in many cases, CFA gives better footprints in IID
situations. Regions RDU, Rb(W) and corresponding require-
ments (17)-(21) give more effective indicators of sustainability
than region RCI and bound (23) on training costs. This is due
to the fact that, in these examples, communication emits much
more carbon than computing.

V. CASE STUDIES IN INDUSTRIAL IOT

In what follows, we highlight two critical 5G verticals5

for Industry 4.0 scenarios, further described in Fig. 4. The
interested reader might refer to [48] for sustainability require-
ments in industry processes and transition towards the new
Green Deal [49].

The first use case, shown in Fig. 4(a), quantifies the carbon
footprint of a continual supervised learning process targeting
passive localization of human operators in a shared work-
place (human-robot co-presence monitoring). Localization is
particularly critical to support various human-robot interac-
tions processes [50] in advanced manufacturing, where robotic
manipulators continuously share the same space with humans.
A deep ML model is adopted for localization and it is trained
continuously to track the variations of data dynamics caused
by changes of the workflow processes (typically, on a daily
base). In the second setup, described in Fig. 4(b), K = 5
crawling robots interact with the workplace to learn an optimal
sequence of movements and implement a desired trajectory.
Robots train a ML model, now via DQL tools [30] as intro-
duced in Section II-D. Both case studies focus on industrial
setups where AI-based machines/robots are co-located in the
same workplace, so that direct communication is possible.

For all case studies, it is assumed that devices have suffi-
cient computing power to implement FL and LO, but they run
medium/small-sized deep learning models to allow for real-
time operations, i.e., localization or motion control. Hardware
and ML systems are described in Fig. 4. The devices, the
PS (when used), and the data centers are located in the west
EU regions previously defined. In particular, the data cen-
ter, and the PS are located outside the workplace so that
communication is possible only through WWAN connectiv-
ity. They are equipped with the same high performance GPU
already shown in Section IV and have the same PUE namely
γ = 1.67. However, a realistic pool of FL learners is con-
sidered: manipulator devices are equipped with dedicated
hardware modules (Nvidia Jetson Nano) equipped with a low-
power GPU (128-core Maxwell architecture) and an ARM
Cortex-A57 System-on-Chip (SoC). Crawling robots mount a

5These case studies have been taken from 5G Alliance for Connected
Industries and Automation: https://5g-acia.org/
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Fig. 4. Description of case studies. From left to right: scenario descriptions, hardware specifications for each industrial setup and corresponding ML systems.

low-power ARM Cortex-A72 SoC and thus experience larger
batch time Tk but lower power Pk when implementing DQL.

As described in the following, the proposed real-time
FL platform adopts MQTT methods for model parameter
exchange and several communication profiles. The carbon
footprints for both case studies are analyzed separately, while
sustainable setups are identified based on the requirements in
Table II.

A. Networking and MQTT Transport

The networking platform used for validation is character-
ized by K physical IoT devices and implements distributed
model training in real-time on top of the MQTT protocol,
chosen for low-latency and low-overhead characteristics. For
all FL implementations, the exchange of model parameters
is performed through MQTT-compliant publish and subscribe
operations that are implemented with QoS level 1 [53].
The information included in the MQTT payload are: i) the
local model parameters binary encoded with associated meta-
information (i.e., the DNN layer type); ii) the FL round;
iii) the local loss function used as model quality indica-
tor. The MQTT platform is used to collect measurements
of the required training time: the expected carbon footprints
are then quantified for varying communication energy effi-
ciencies (EED,EEU,EES). The code structure is available
in [51]. CL is similarly implemented on top of the same
MQTT architecture: in this case, the K devices publish their
data to the MQTT broker that is co-located with the data
center. Considering FA and FA-D methods, the PS serves as
MQTT broker until the end of the training process: on each FL

round, the PS thus accepts subscriptions from the Ka active
devices that publish their model parameters. For FA method,
all the K devices subscribe to the PS broker service, i.e.,
to download the updated global model. On the other hand,
for FA-D, inactive devices need to start a new subscription
process every time they wake up from deep-sleep. The Ka

learners are chosen by a round robin scheduling table [11]
that is distributed by the PS at training start, via a dedicated
MQTT topic. The broker service might cause an increase of
the consumption per round, or a decrease of the comput-
ing efficiency EEC. Similarly, subscriptions and publishing
operations reduce the communication efficiency, EED, EEU
depending on the payload-to-overhead ratio of the MQTT mes-
saging [53]. To implement CFA, the MQTT broker is now used
to orchestrate the consensus operations, while the PS func-
tions are disabled. Every round, one device is turned on and
publishes the local model parameters to a subset of Ka−1 sub-
scriber devices. Publisher and subscribers are again assigned
by round robin scheduling. Notice that the MQTT broker
consumption is not considered in this study.

B. Communication Efficiencies

The estimated carbon emissions are quantified by consid-
ering 4 communication efficiency profiles [26] described in
the following. The first profile conforms to a LTE design for
macro-cell delivery: we set EEU = 15 kbit/J and EED =
25 kbit/J as also verified in [40] for a throughput of 28 Mbps
and a BS consumption of 1.35 kW. Notice that larger efficiency
values of 6 J/Mbit and 10 J/Mbit for UL and DL, respec-
tively, could be observed with small bulk size of 10 kB [46].
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TABLE VI
SUMMARY OF MAIN FL PARAMETERS FOR USE CASES

The second profile corresponds to a NB-IoT implementation.
In this case, we set a larger DL EED = 50 kbit/J and UL
efficiency of EEU = 25 kbit/J.6 NB-IoT devices also con-
sume about 10 µW (i.e., E (C)

k ,sleep 
 36 mWh) in deep-sleep
mode [47]. The third profile complies with IETF 6TiSCH mesh
standard based on IEEE 802.15.4e [52] with a SL efficiency
of EES = 20 kbit/J. For the last profile, we adopt a WiFi
IEEE 802.11ac implementation, namely the Intel AC 8265
device supporting sidelink connectivity based on Neighbor
Awareness Network [54]. Typical communication efficiencies
are 2100 mW/Mbps for receiving and 2500 mW/Mbps for
transmitting [29]; however, they do not include equipment
consumption, nor WiFi and MQTT overheads: the assumed
SL efficiency is thus EES = 100 kbit/J. Notice that sidelink
efficiency is expected to scale up to at least 10 times in 6G
implementations [26].

C. Human-Robot Interaction: Continual Learning

The goal of the training task is to learn a ML model
for the detection (i.e., classification) of the position of the
human operators sharing the workspace, namely the human-
robot distance d and the direction of arrival (DOA) θ. In
particular, we address the detection of a human subject in
C = 10 Region Of Interest (ROI), including the one referring
to the subject outside the monitored area: ROIs are detailed in
Fig. 4(a). The proposed training scenario resorts to a network
of K = 9 physical devices where each one is equipped with
a Time-Division Multiple-Input-Multiple Output (TD-MIMO)
Frequency Modulated Continuous Wave (FMCW) radar work-
ing in the 77−81 GHz band. For details about the robotic
manipulators, the industrial environment and the radars, the
interested reader may also refer to [50]. Radars use a trained
deep learning model to obtain position (d, θ) information and
the corresponding ROI. In addition, the subject position can be
sent to a programmable logic controller for robot safety con-
trol, for emergency stop or replanning tasks. The ML model
adopted for the classification of the operator location is the
LeNet-4 scheme, proposed in [22] with input adaptations, that
consists of 4 trainable layers and 28K parameters. Model foot-
print is b(W) = 1.08 MB, the other parameters are detailed
in Table VI.

6In [47], it is shown that sending 20 byte using 0.9 Joule is possible:
efficiency reduces with larger packet sizes.

The FL system implements a continual learning task
(Section II-D): at time t0, each device collects a large dataset
xh of raw range-azimuth data manually labelled, with size
b[Ek (t0)] = 31 MB. This set is used for initial training of the
ML model. Re-training stages, ti , i > 0, are based on new
data, b[Ek (ti )] = 19 MB, collected on a daily basis. Datasets
for initial model training and 2 subsequent example re-training
stages, t1, t2, are available online in [51]. To simplify the anal-
ysis, in what follows, we compared the results of the proposed
FA-D and CFA implementations, while FA is not considered.
For FA-D, the number of active devices ranges from Ka = 1
to Ka = 9; for CFA, we have assumed Ka = 3 (1 pub-
lisher, 2 subscribers per round) up to Ka = 9 (1 publisher, 8
subscribers per round).

Selection of the Device Population (Ka ). The example in
Fig. 5 uses the requirements in Table II as a guideline for the
selection of the smallest population size Ka , so that FL emits
lower carbon than CL during initial (i = 0) and re-training
(i > 0) stages. The figure highlights the carbon footprints and
the number of rounds for both stages. In particular, Fig. 5(a)
highlights the carbon footprints C(t0) and the number of learn-
ing rounds n0 that are measured during the initial training
phase (t0) for varying number of active learners Ka . Fig. 5(b)
shows the same results, namely C(ti ) and ni , averaged over
the subsequent re-training stages, i = 1, 2. The target loss is
here ξ = 0.1 for all cases.

Considering the initial training first, FA-D and CFA imple-
mented over small population sets, i.e., Ka ≤ 3, need a large
number of rounds (n > 150) and training time. Bound (21) for
region Rb(W) gives some practical guidelines for optimizing

Ka population. For b(W)
b(Ek ) 
 0.035, since b[Ek (t0)] = 31 MB,

and the other parameters in Tab. VI, the requirement (21)
becomes Ka < 257

n . Considering CFA, the minimum popula-
tion size that satisfies (21) is Ka = 6 since nCFA = 40 rounds.
Larger populations, i.e., Ka ≥ 8, increase the cost per round,
with no significant savings in terms of training time. Ka = 4
can be chosen for FA-D as nFA−D = 40 rounds. Using (17)
for Ka = 4, the required DL efficiency should comply with
EED
EEU

> 6.2: on the other hand, since condition on comput-
ing cost (23) is satisfied for CIk = 0.97 and ϕk = 0.36, as
Ka · 0.360.95 < 1.67, a lower DL efficiency can be tolerated.

Focusing now on model re-training stage, FA-D and CFA
leave a smaller footprint than CL for all choices of Ka as
they need few rounds (< 20) for model update. With b(W)

b(Ek ) 




260 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 1, MARCH 2023

Fig. 5. Continual learning case study. From left to right: (a) carbon footprints C(t0)(n0) and corresponding number of FL rounds (n0) during initial training
stage t0, for varying population of active learners Ka = 1 ∼ 9 and K = 9 radars; (b) carbon footprints C(ti )(ni ) and corresponding rounds (ni ) averaged
over 2 subsequent re-training stages (i = 1, 2). For all cases, footprints are evaluated for CL (dashed line), CFA (cross markers), and FA-D (diamond markers)
as well as 4 communication efficiency profiles that comply with LTE, NB-IoT, IEEE 802.15.4e and WiFi IEEE 802.11.ac implementations. Rounds (ni ) and
learners (Ka ) are compared with bound (21) obtained using the parameters of Tab. VI.

0.057, since now b[Ek (ti )] = 19 MB, the requirement (21)
for FA-D becomes Ka < 158

n and it is satisfied for Ka = 1
as nFA−D < 12. For CFA, it is Ka = 3 since nCFA < 20.
For example, FA-D with only Ka = 1 learner per round emits
1.1 gCO2-eq per re-training stage (over LTE networks), which
corresponds to a carbon emission of 0.4 kgCO2-eq per year,
assuming 1 re-training/day. For the same setup, CL would cost
5.4 gCO2-eq, corresponding to roughly to 2 kgCO2-eq per
year.

To sum up, the results suggest that both FA-D and CFA are
sustainable choices for re-training, as they avoid unnecessary
data uploads. On the other hand, for initial training, CL and FL
are both competitive and should be considered carefully based
on the available communication interface and sustainability
conditions (17)-(23). Notice that the availability of low-power
sidelink communications makes CFA the preferred choice.

D. Reinforcement Learning for Robot Motion Planning

According to the scenario of Fig. 4(b) and the parameters
of Tab. VI, the considered RL setting features K = 5 net-
worked robots that collaboratively learn an optimized sequence
of motions, to follow an assigned trajectory, highlighted in
green. Since the goal is to quantify the carbon footprint of
the distributed learning processes against CL in a realistic
setup, the motion control problem is simplified by letting the
robots move on a 2D regular grid space consisting of 40 land-
mark points, while the action space consists of 4 motions:
Forward (F), Backward (B), Left (L), and Right (R). Each
robot explores a different site area collecting new training
data in real-time: data are obtained from two cameras, namely
a standard RGB camera and a short-range Time Of Flight
(TOF) one [55]. Exploration of the environment and training
data collection is responsible for additional energy consump-
tion (quantified here as 6.6 Wh) that depends on robot/servos
hardware.

Fig. 6. Reinforcement Learning for robot navigation: estimated CO2 emis-
sions for each policy optimization vs the running reward. Each reward value
corresponds to an average trajectory error compared with the desired one,
measured by root mean squared error (RMSE). Specific parameters are in
Tab. VI. CL is in black, FA in red, CFA in green and ego learning in blue.
Each point of the scatter plot represents one simulation episode.

RL and DeepMind model [21] are used to train a pol-
icy that maps observations of the workplace to a set of
actions, namely robot motions, while trying to maximize a
long-term reward.7 Exploration and model exploitation follow
the ε-greedy method while, in this example, exploration takes
20 robot motions for each learning round. DeepMind model

7Devices get a larger reward whenever they approach the desired trajectory:
code, data and position-reward lookup table are described in the repository:
https://github.com/labRadioVision/Federated-DQL. Accessed: Mar. 2022.
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consists of 5 trainable layers and 1.3M parameters: model
footprint from MQTT payload is b(W) = 5.6 MB. Notice
that for CL the training data is moved on every round, there-
fore α = n . CFA and FA are considered here with the setup
highlighted in Section II-D, with Ka = K . Data footprint is
b(Ek ) = 24.6 MB, therefore b(W)

b(Ek ) 
 0.23: with such setup,
condition (21) for RL is satisfied and requirement for region
Rb(W) becomes b(W)

b(Ek ) < K
Ka

.
Impact of Target Reward/Accuracy Fig. 6 shows the esti-

mated carbon emissions versus the obtained reward consider-
ing CL (black), FA (red), CFA (green) and ego learning (blue)
policies. For the opportunistic/ego learning approach [2], the
robots disable the radio interface and train their local models
using the training data from on-board sensors only. Each point
in the scatter plot of Fig. 6 corresponds to the carbon footprint
measured in one simulation episode. On each new episode, the
observed footprint might vary due to the random exploration
phase. In ego learning, the robots explore the environment for
a longer time, thus training takes around 25 h correspond-
ing to 4500∼5000 rounds since servos need 1 s per motion.
For comparison, CL takes 90 minutes on average (250∼300
rounds), while FA needs 180 minutes (500∼550 rounds) and
CFA 150 minutes (400÷450 rounds).

RL generally requires more rounds than continual learning
to converge, and cause large emissions when considering the
whole training process. Ego learning gives the lowest foot-
print as consumption is only due to the robot and the LO.
However, it experiences lower rewards, from −10 to 30 as
the learned trajectory is far from the desired one, with corre-
sponding Root Mean Squared Errors8 (RMSE) between 1.5 m
and 2 m. CL converges faster at the cost of a large footprint,
about 2 times larger than FA/CFA and 6 times larger than ego
learning. However, rewards are close to 70, that corresponds to
learned trajectories with RMSE 0.5 m. Compared with CL, FA
and CFA performance are now close since all robots are active;
energy savings are obtained at the cost of rewards penalties,
scaling down to 40 ∼ 60, with RMSE between 0.5 m and
1 m. Considering ego and CL as extreme cases, where the for-
mer gives low-accuracy and small footprint, while the latter
high-accuracy and large footprint, FL is a promising trade-
off solution, as trading accuracy (reward) with environmental
footprint.

VI. CONCLUSION

The article proposed a novel framework for the analysis
of energy and carbon footprints in distributed and federated
learning. A tradeoff analysis was characterized for vanilla
FL and decentralized, consensus-driven learning, compared
with centralized training. The analyzed algorithms are suitable
for low-power embedded wireless devices with constrained
memory, typically adopted in industrial IoT processes requir-
ing low latency. The paper also explored operational conditions
applicable to both conventional FL methods and general-
ized distributed learning policies targeting carbon-efficiency.

8Positions far from the desired trajectory have small rewards: the smaller
the reward the larger the RMSE.

Minimal requirements for FL are obtained analytically and
have been applied in different scenarios to steer the choice
towards sustainable designs.

Carbon equivalent emissions have been analyzed for two
industry relevant 5G verticals, using real datasets and a
test-bed characterized by physical IoT devices implement-
ing real-time model training on top of the MQTT transport,
tailored to support various learning processes. For each con-
sidered case, centralized versus distributed training impact is
discussed for continual and reinforcement learning problems.
Sustainability of the FL depends in many cases on model vs
data footprints, as well as the population of active devices,
that must be selected to balance energy budget and training
data quality. Downlink vs uplink (or sidelink) communica-
tion efficiency and the amount of available green energy are
additional key factors. The proposed CFA and FA with deep
sleep mode (FA-D) methods have been shown to be effec-
tive as they minimize the number of active learners at each
learning round. The selection of the learner population size
according to the proposed design patterns provides signifi-
cant savings per round (20% ∼ 30% and higher) compared
with baselines. CFA has an advantage over FA-D provided
that an efficient sidelink communication interface is avail-
able: the co-design of learning and communication is thus of
high importance. Finally, the energy footprints of reinforce-
ment learning need much more careful considerations than
conventional supervised learning, due to the considerable car-
bon emissions. Results indicate that FL is a promising solution
as it trades off energy and accuracy compared with the extreme
cases of ego (low rewards/footprint) and centralized training
(high rewards/footprint).

APPENDIX

Communication Costs (FA and FA-D Design Constraints):
Using the carbon footprints shown in Table I, the con-
straint C

(C)
FA < C

(C)
CL in region RDU (16) implies that, after

straightforward manipulation, the following condition has to
be met

EED

EEU
·
[

H
(
b(W)

b(E)
)

− 1

Ka

Ka∑

k=1

CIk

]

> γ · K
Ka

CI0 (24)

with

H
(
b(W)

b(E)
)

=
α

n ·Ka

b(E)
b(W)

K∑

k=1

σkCIk (25)

where σk , defined in (5) with
∑K

k=1 σk = 1, counts the
number of the local (k) examples out of the number of the
global ones, respectively. Eq. (17) is then obtained by setting
CIk = CI, ∀k . Considering FA-D, the equation (24) becomes
EED
EEU

· H( b(W)
b(E) ) > γCI0.

For EED
EEU

large enough as assumed for derivation of region

Rb(W) in problem (20), the condition max [C
(C)
FA ,C

(C)
FA−D] <
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C
(C)
CL is guaranteed as long as

H
(
b(W)

b(E)
)

>
1

Ka

Ka∑

k=1

CIk , (26)

that corresponds to

b(W)

b(E) ·K <
α

n
·
∑K

k=1 σkCIk
∑Ka

k=1 CIk
. (27)

Constraint (27) can be further simplified by letting, ∀k , σk 

1/K , namely b(Ek ) 
 b(E)

K , and CIk = CI, to obtain (21)
with Γ = 1.

Communication Costs (CFA Design Constraints): Using
Tab. I and (25), the constraint C(C)

CFA < C
(C)
CL for region (18)

results in

EES

EEU
· H

(
b(W)

b(E)
)

>
N

Ka

Ka∑

k=1

CIk (28)

that simplifies to (19) when, ∀k , it is b(Ek ) 
 b(E)
K , and

CIk = CI. Furthermore,

EES

EEU
+ γ ·K · CI0

∑Ka
k=1 CIk

· EES

EED
> N (29)

guarantees lower carbon footprint per round than FA, namely
C

(C)
CFA

nCFA
<

C
(C)
FA

nFA
. The comparison of CFA vs FA-D gives the

same result shown in (29) but a more stringent condition
as K must be replaced with Ka . As expected, considering
an individual round, CFA footprint is closer to FA-D as
both strategies target the minimization of the active device
population.

In WWAN, or cellular settings, D2D connectivity is
replaced by UL and DL communications, namely [EES]

−1 =
[EED]

−1+[EEU]
−1. In this case the constraint (28) becomes

EED

EEU
·
[

H
(
b(W)

b(E)
)

− N

Ka

Ka∑

k=1

CIk

]

>
N

Ka

Ka∑

k=1

CIk , (30)

while for EED
EEU

large enough, sustainability is guaranteed as
long as

H
(
b(W)

b(E)
)

>
N

Ka

Ka∑

k=1

CIk . (31)

Comparing (26) with (31), the condition max [C
(C)
CFA,

C
(C)
FA ,C

(C)
FA−D] < C

(C)
CL for the derivation of region Rb(W)

in (20), can be rewritten as in (31). Finally, replacing ∀k
CIk = CI, we obtain (21) now with Γ = N .
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