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Abstract—An Intelligent IoT Environment (iIoTe) is comprised
of heterogeneous devices that can collaboratively execute semi-
autonomous IoT applications, examples of which include highly
automated manufacturing cells or autonomously interacting
harvesting machines. Energy efficiency is key in such edge envi-
ronments, since they are often based on an infrastructure that
consists of wireless and battery-run devices, e.g., e-tractors,
drones, Automated Guided Vehicle (AGV)s and robots. The total
energy consumption draws contributions from multiple iIoTe
technologies that enable edge computing and communication,
distributed learning, as well as distributed ledgers and smart con-
tracts. This paper provides a state-of-the-art overview of these
technologies and illustrates their functionality and performance,
with special attention to the tradeoff among resources, latency,
privacy and energy consumption. Finally, the paper provides
a vision for integrating these enabling technologies in energy-
efficient iIoTe and a roadmap to address the open research
challenges.

Index Terms—Edge IoT, wireless AI, distributed learning,
distributed ledger technology, autonomous IoT, trustworthiness.

I. INTRODUCTION

A. Towards the Edge

DURING the last decade, the need for connecting billions
of Internet of Things (IoT) devices has driven a signif-

icant part of the design of computing and communication
networks. The number of use cases is countless, ranging
from smart home to smart city, industrial automation or smart
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farming. Many of the applications involve huge amounts of
data, and the need for fast, trustworthy and reliable process-
ing of this data is oftentimes infeasible with a cloud-centric
paradigm [1], [2]. Moreover, typical hierarchical setups of IoT
cloud platforms hinder use cases with dynamically changing
context due to lacking self-awareness of the individual sub-
systems and the overall system they usher. Alternatively, the
architectures are evolving towards edge solutions that place
compute, networking, and storage in close proximity to the
devices. At the same time, the introduction of machine-driven
intelligence has led to the term edge intelligence, referring to
the design of distributed IoT systems with latency-sensitive
learning capabilities [3].

Although the edge-centric approach solves the fundamental
limitations in terms of latency and dynamism, it also induces
new challenges to the edge system: 1) the system has to deal
with complex IoT applications which include functions for
sensing, acting, reasoning and control, to be collaboratively
run in heterogeneous devices, such as edge computers and
resource-constrained devices, and generating data from a huge
number of data sources; 2) trustworthiness is a big concern
for edge and IoT systems where devices communicate with
other devices belonging to potentially many different parties,
without any pre-established trust relationship among them;
and 3) all those functionalities are increasingly based on a
resource-limited wireless infrastructure that introduces latency
and packet losses in dynamically changing channels.

Another huge concern for the exponential growth of IoT is
its scalability and contribution to the carbon footprint. On the
one hand, IoT is key in deploying a huge amount of appli-
cations that will reduce the emissions of numerous sectors
and industries (e.g., smart farming or energy) [4]. On the
other hand, although many of these devices are low-power,
the total energy consumption of the infrastructure that support
such systems does have a contribution to the digital carbon
footprint and cannot be overlooked [5], [6].

B. Intelligent IoT Environments

We coin the term Intelligent IoT Environment (iIoTe) to
refer to autonomous IoT applications endowed with intel-
ligence based on an efficient and reliable IoT/edge- (com-
putation) and network- (communication) infrastructure that
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Fig. 1. iIoTe in a manufacturing plant.

dynamically adapts to changes in the environment and with
built-in and assured trust. Besides the wireless (and wired)
networking to interconnect all IoT devices and infrastructure,
there are other three key (and power-hungry) technologies that
enable iIoTe. The first one is Machine Learning (ML) and
Artificial Intelligence (AI), and therefore we talk about intel-
ligent IoT environments, comprising heterogeneous devices
that can collaboratively execute autonomous IoT applications.
Given the distributed nature of the system, distributed ML/AI
solutions are better suited for multi-node (multi-agent) learn-
ing. Edge computing is another defining technology that pro-
vides the computation side of the infrastructure and allocates
computing resources for complex IoT applications that need
to be distributed over multiple, connected IoT devices (e.g.,
machines and Automated Guided Vehicle (AGV)s). The third
pillar is the Distributed Ledger Technology (DLT): rather than
traditional security mechanisms, DLT has been identified as
the most flexible solution for trustworthiness in a fully decen-
tralized and heterogeneous scenario. Combined with smart
contracts, it is possible for the system to autonomously con-
trol the transactions from parties without the need for human
intervention. All these ingredients are necessary for a fully
functional iIoTe, but they have inevitably a significant contri-
bution to the total energy footprint. Our goal is to understand
the role of each technology in the performance and energy
consumption of an iIoTe.

C. Example: A Manufacturing Plant

A representative use case for iIoTe is a manufacturing plant
like shown in Fig. 1, with autonomous collaboration between
industrial robot arms, machinery and AGVs. This relies on
real-time data analysis and adaptability and intelligence in
the manufacturing process, which is only feasible with the
edge paradigm. The wireless infrastructure interconnects all
the machines and robots to the edge network and enables
reliable and safe operation. In the figure, the following scene
is depicted: a customer (the end-user) of a shared manufac-
turing plant orders a product by specifying a manufacturing
goal (step 1). In step (2), the needed machine orchestration
and associated process plan is determined to manufacture the

desired product taking into account the available computa-
tion and communication resources. The event-based process
planner at the edge node is responsible for observing the man-
ufacturing process and reacting when the health state of a
concerned machine changes. For example, by re-scheduling
a given task in a non-responding machine. In step (3), the
manufacturing process data is sent to the involved machines,
which can include, e.g., mobile robots or an AGV to transport
the work-pieces between production points, robotic arms, laser
engravers, assembly stations, etc. Let us assume that the task
requires a robot to pick up a work-piece and place it in dif-
ferent machines for its processing. As these machines may be
operated by the plant owner or a third-party operator, contrac-
tual arrangements need to be set up, for which a distributed
ledger is used. The ledger registers the details of each task
for future accountability. In step (4), the local AI on board of
the different end devices comes into play. For example, in the
case of the robot as an end device, its AI decides how to pick
up a work-piece and place it in the next machine. In case the
local AI of the robot cannot complete its task (e.g., because
it has not been trained for a similar situation yet), a human
takes over remote control (this can be, e.g., a plant operator).
After the human intervention, the local AI can be re-trained
based on the data captured from the human input. This scene
captures the role and interaction of the three technologies
mentioned above: edge computing, ML/AI and DLTs/smart
contracts. Similar examples can be defined in other domains,
such as agriculture (e.g., autonomously interacting harvest-
ing machines), healthcare (e.g., remote patient monitoring and
interventions) and energy (e.g., wind plant monitoring and
maintenance).

D. Contributions and Outline

In this paper, we analyze the key technologies for the
next generation of IoT systems, and the tradeoffs between
performance and energy consumption. We notice that char-
acterizing the energy efficiency of these complex systems is a
daunting task. The conventional approach has been to charac-
terize every single device or link. Nevertheless, the energy
expenditure of an IoT device will strongly depend on the
context in which it is put, in terms of, e.g., goal of the
communication or traffic behavior. Therefore, we go beyond
the conventional single-device approach and use the iIoTe as
the basic building block in the energy budget. Contrary to the
single device, the iIoTe is able to capture the complex inter-
actions among devices for each of the technologies. The total
energy footprint is not just a simple sum of an average per-
link or per-transaction consumption of an isolated device, and
scaling the number of iIoTe to a large number of instances
will give a more accurate picture of the overall energy
consumption.

The rest of the paper is organized as follows. In Section II
we provide the state-of-the-art of the enabling technologies.
Section III analyzes the performance and energy consump-
tion of each enabling technology, and Section IV provides
the vision for integrating the enabling technologies in energy-
efficient iIoTe. Concluding remarks and a roadmap to address
the open research challenges are given in Section V.



SORET et al.: LEARNING, COMPUTING, AND TRUSTWORTHINESS IN iIoTe: PERFORMANCE-ENERGY TRADEOFFS 631

II. BACKGROUND AND RELATED WORK

A. Edge Wireless Communications

Edge computing enables the processing of the received data
closer to the sensor that generated them. This means a full
re-design of the communication infrastructure that must imple-
ment additional functionality at the cellular base stations or
other edge nodes. The design and performance of communi-
cation networks for edge computing has been widely studied
in the last years, and an overview can be found in [7] and [8].
One example is the term Mobile Edge Computing (MEC),
adopted in 5G to refer to the deployment of cloud servers
in the base stations to enable low latency, proximity, high
bandwidth, real time radio network information and loca-
tion awareness. Specifically, the concept was defined in late
2014 by the European Telecommunications Standards Institute
(ETSI): As a complement of the C-RAN architecture, MEC
aims to unite the telecommunication and IT cloud services to
provide the cloud-computing capabilities within radio access
networks in the close vicinity of mobile users [9]. One of
the areas of more research has been the network virtualiza-
tion and slicing with the MEC paradigm [10]. In the Radio
Access Network, several authors have looked at the poten-
tial of edge computing to support Ultra-Reliable Low-Latency
Communication (URLLC) [11]–[13]. Another research area is
the use of machine learning, particularly deep learning tech-
niques, to unleash the full potential of IoT edge computing
and enable a wider range of application scenarios [14], [15].
However, most previous works address the communications
separately. Even though several papers address the joint com-
munication and computation resource management [16], they
represent only the first step towards a holistic design of iIoTe
and its defining technologies, as well as the integration with
the communication infrastructure.

To optimize the energy efficiency of iIoTe, it is interesting
to choose a communication technology that ensures low power
consumption and massive connections of devices. In this
regard, 3GPP introduced narrowband Internet of Things (NB-
IoT), a cellular technology to utilize limited licensed spectrum
of existing mobile networks to handle a limited amount of
bi-directional IoT traffic. Although it uses LTE bands or guard-
bands, it is usually classified as a 5G technology. It can achieve
up to 250 kbps peak data rate over 180 kHz bandwidth on a
LTE band or guard-band [17], [18].

Compared to other low-power technologies, NB-IoT is
interesting for IoT applications with more frequent com-
munications. This is the case for the ones considered in
iIoTe, where the intelligent end devices share the updated
models frequently and must record new transactions in the
ledger. At the same time, NB-IoT keeps the advantages of
Low-Power Wide Area (LPWA) technologies: low power con-
sumption and simplicity. Throughout the rest of the paper,
we use NB-IoT as a representative wireless technology for
our analyses of iIoTe. Other wireless technologies will follow
similar access procedures and energy-performance trade-offs.

For an analysis of the energy consumption and battery life-
time of NB-IoT under different configurations we refer the
reader to [19]. A key point for this analysis is the study

Fig. 2. Random Access procedure in NB-IoT.

of the communication exchange during the access proce-
dure: The devices that attempt to communicate through a
base station must first complete a Random Access (RA) pro-
cedure to transit from Radio Resource Control (RRC) idle
mode to RRC connected mode. Only in RRC connected
mode data can be transmitted in the uplink through the
Physical Uplink Shared Channel (PUSCH) or in the downlink
through the Physical Downlink Shared Channel (PDSCH).
The standard 3GPP RA procedure consists of four message
exchanges: preamble (Msg1), uplink grant (Msg2), connection
request (Msg3), and contention resolution (Msg4) (see Figure 2
where the example of recording some data, e.g., a DLT trans-
action is depicted). Out of these, Msg3 and Msg4 are scheduled
transmissions where no contention takes place.

The NB-IoT preamble are orthogonal resources trans-
mitted in the Narrowband Physical Random Access
Channel (PRACH) (NPRACH) and used to perform the
RA request (Msg1). A preamble is defined by a unique
single-tone and pseudo-random hopping sequence. The
NPRACH is scheduled to occur periodically in specific
subframes; these are reserved for the RA requests and are
commonly known as Random Access Opportunitys (RAOs).
To initiate the RA procedure, the devices select the initial sub-
carrier randomly, generate the hopping sequence, and transmit
it at the next available RAO. The orthogonality of preambles
implies that multiple devices can access the base station in
the same RAO if they select different preambles. Next, the
grants are transmitted to the devices through the Narrowband
Physical Downlink Control Channel (PDCCH) (NPDCCH)
within a predefined period known as the RA response window.
However, the number of preambles is finite and collisions
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can happen. In case of collision, each collided device may
retransmit a preamble after a randomly selected backoff time.

The specification provides sufficient flexibility in the config-
uration of the RA process, which makes it feasible to adjust the
protocol and find the right balance between reliability, latency,
and energy consumption for a given application. Specifically,
the network configures the preamble format and the maximum
number of preamble transmission depending on the cell size,
and this has an impact on the preamble and the total dura-
tion [20]. Increasing the number of preamble transmissions
reduces the erasure probability, but at the cost of higher energy
consumption and larger latency. The same energy-reliability-
latency tradeoff applies to other messages, including the RA
response. Moreover, scheduling the NPRACH and NPDCCH
consumes resources that would otherwise be used for data
transmission. Therefore, each implementation must find an
adequate balance between the amount of resources dedicated
to NPRACH, NPDCCH, PUSCH, and PDSCH.1

B. Distributed Learning Over Wireless Networks

Implementing intelligent IoT systems with distributed
ML/AI over wireless networks (e.g., NB-IoT) needs to con-
sider the impact of the communication network (latency and
reliability under communication overhead and channel dynam-
ics) and on-device constraints (access to data, energy, memory,
compute, and privacy, etc.). Obtaining high-quality trained
models without sharing raw data is of utmost importance, and
redounds to the trustworthiness of the system. In this view,
Federated Learning (FL) has received a groundswell interest
in both academia and industry, whose underlying principle is
to train a ML model by exchanging model parameters (e.g.,
Neural Network (NN) weights and/or gradients) among edge
devices under the orchestration of a federation server and
without revealing raw data [21]. Therein, devices periodically
upload their model parameters after their local training to a
parameter server, which in return does model averaging and
broadcasting the resultant global model to all devices. FL has
been proposed by Google for its predictive keyboards [22]
and later on adopted in different use cases in the areas of
intelligent transportation, healthcare and industrial automa-
tion, and many others [23], [24]. While FL is designed for
training over homogeneous agents with a common objective,
recent studies have extended the focus towards personaliza-
tion (i.e., multi-task learning) [25], training over dynamic
topologies [26] and robustness guarantees [27], [28]. In terms
of improving data privacy against malicious attackers, vari-
ous privacy-preserving methods including injecting fine-tuned
noise into model parameters via a differential privacy mech-
anism [29]–[32] and mixing model parameters over the air
via analog transmissions [33], [34] have been recently inves-
tigated. Despite of the advancements in FL design, one main
drawback in the design of FL is that its communication over-
head is proportional to the number of model parameters calling

1It is worth mentioning that 5G has not defined a RA procedure yet but it
is expected that, when this happens, it will be heavily based on the described
procedure for LTE and the energy consumption/latency tradeoff will follow
similar principles.

for the design of communication-efficient FL. In an edge setup
with limited resources in communication and computation,
this introduces training stragglers degrading the overall train-
ing performance. In this view, client scheduling [35]–[37] and
computation offloading [12], [38], [39] with the focus on guar-
anteeing target training/inference accuracy have been identified
as a promising research direction.

With client scheduling, the number of communication links
are reduced (known as link sparcification) and thus, the
communication bandwidth and energy consumption of dis-
tributed learning can be significantly decreased. Additional
temporal link sparsity can be introduced by enforcing
model sharing policies that account model changes and/or
importance within consecutive training iterations such as
the Lazy Aggregated Gradient Descent (LAG) method [40].
Sparsity can be further exploited by adopting sparse network
topologies, which rely on communications within a limited
neighborhood in the absence of a central coordinator/helper.
While such sparsification improves energy and communica-
tion efficiencies, it could yield higher learning convergence
speed as well as lower training and inference accuracy, in
which sparsity needs to be optimized in terms of the trade-
off between communication cost and convergence speed. In
this view, several sparse-topology-based distributed learning
methods including decentralized Gradient Descent (GD), dual
averaging [41], learning over graphs [42], [43] and GADMM
algorithms [44], [45] have been investigated.

C. Optimizing IoT Application Deployments in IoT
Environments

IoT applications typically consist of multiple components.
For instance, an IoT application could comprise components
for secure data acquisition (e.g., based on Blockchain), data
pre-processing, feeding the data into a neural network (or even
through multiple ones) before it acts upon the outcome of
the ML inference, etc. In many cases, such composed IoT
applications need to be distributed over multiple, connected
intelligent IoT devices. An important aspect is then to optimize
this allocation of application components to devices. The result
of the allocation is an assignment of components to devices,
that fulfills the constraints, and optimizes the performance of
the system in some metric. This metric could, for example,
maximize the responsiveness of the application or minimize
the overall energy consumption, where the latter is reason-
able in battery-run wireless systems. An overview of existing
allocation approaches is given in [46].

Previous work [47] used Constraint Programming to
describe an approach for the efficient distribution of actors
to IoT devices. The approach resembles the Quadratic
Assignment Problem (QAP) and is NP-hard, resulting in long
computation times when scaling up. Samie et al. [48] present
another Constraint Programming-based approach that takes
into account the bandwidth limitations and minimizing energy
consumption of IoT nodes. The system optimizes computation
offloading from an IoT node to a gateway, however, it does
not consider composed computations that can be distributed
to multiple devices.
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A Game Theory-based approach is presented in [49] that
aims at the joint optimization of radio and computational
resources of mobile devices. However, the system local opti-
mum for multiple users only aims at deciding whether to fully
offload a computation or to fully process it on device.

Based on Non-linear Integer Programming, Sahni et al. [50]
present their Edge Mesh algorithm for task allocation that
optimizes overall energy consumption and considers data dis-
tribution, task dependency, embedded device constraints, and
device heterogeneity. However, only basic evaluation and
experimentation are done, without performance comparison.
Based on Integer Linear Programming (ILP), Mohan and
Kangasharju [51] propose a task assignment solver that first
minimizes the processing cost and secondly optimizes the
network cost, which stems from the assumption that Edge
resources may not be highly processing-capable. An inter-
mediary step reduces the sub-problem space by combining
tasks and jobs with the same associated costs. This reduces
the overall processing costs.

Cardellini et al. [52] describe a comprehensive ILP-
based framework for optimally placing operators of dis-
tributed stream processing applications, while being flexible
enough to be adjusted to other application contexts. Different
optimization goals are considered, e.g., application response
time and availability. They propose their solution as a uni-
fied general formulation of the optimal placement problem
and provide an appropriate theoretical foundation. The frame-
work is flexible so that it can be extended by adding further
constraints or shifted to other optimization targets. Finally,
our previous work [53] has leveraged Cardellini’s framework
and has extended it by incorporating further constraints for
the optimization goal, namely the overall energy usage of the
application.

D. Distributed Ledger Technologies Over Wireless Networks

In recent years, DLT has been the focus of large research
efforts spanning several application domains. Starting with the
adoption of Bitcoin and Blockchain, DLT has received a lot
of attention in the realm of IoT, as the technology promises
to help address some of the IoT security and scalability chal-
lenges [54]. For instance, in IoT deployments, the recorded
data are either centralized or spread out across different het-
erogeneous parties. These data can be both public or private,
which makes it difficult to validate their origin and consistency.
In addition, querying and performing operations on the data
becomes a challenge due to the incompatibility between differ-
ent Application Programming Interfaces (APIs). For instance,
Non-Governmental Organizations (NGOs), Public and Private
sectors, and industrial companies may use different data types
and databases, which leads to difficulties when sharing the
data [55]. A DLT system offers a tamper-proof ledger that is
distributed on a collection of communicating nodes, all sharing
the same initial block of information, the genesis block [56].
In order to publish data to the ledger, a node includes data
formatted in transactions in a block with a pointer to its
previous block, which creates a chain of blocks, the so called
Blockchain.

A smart contract [57] is a distributed app that lives in the
Blockchain. This app is, in essence, a programming language
class with fields and methods, and they are executed in a trans-
parent manner on all nodes participating in a Blockchain [58].
Smart contracts are the main blockchain-powered mechanism
that is likely to gain a wide acceptance in IoT, where they
can encode transaction logic and policies, which includes the
requirements and obligations of parties requesting access, the
IoT resource/service provider, as well as data trading over
wireless IoT networks [59]. With the aforementioned char-
acteristics, the advantages of the integration of DLTs into
wireless IoT networks consist of: 1) guarantee of immutabil-
ity and transparency for recorded IoT data; 2) removal of the
need for third parties; and 3) development of a transparent
system for heterogeneous IoT networks to prevent tampering
and injection of fake data from the stakeholders.

DLTs have been applied in various IoT areas such as health-
care [60], [61], supply chain [62], smart manufacturing [63],
and vehicular networks [64]. In the smart manufacturing area,
the work described in [63] investigates DLT-based security
and trust mechanisms and elaborates a particular application
of DLTs for quality assurance, which is one of the strate-
gic priorities of smart manufacturing. Data generated in a
smart manufacturing process can be leveraged to retrieve mate-
rial provenance, facilitate equipment management, increase
transaction efficiency, and create a flexible pricing mechanism.

One of the challenges of implementing DLT in IoT and
edge computing is the limited computation and communication
capabilities of some of the nodes. In this regard, the authors
in [59], [65] worked on the communication aspects of integrat-
ing DLTs with IoT systems. The authors studied the trade-off
between the wireless communication and the trustworthiness
with two wireless technologies, LoRa and NB-IoT.

III. ENABLING TECHNOLOGIES FOR IIOTE

This section elaborates on the three enabling technologies
for iIoTe: 1) distributed learning; 2) distributed computing;
and 3) distributed ledgers.

A. Energy-Efficient Distributed Learning Over Wireless
Networks

As shown in Figure 1, each end device in the iIoTe has local
AI and the whole system relies on FL. We present learning
frameworks that are suitable for iIoTe leveraging two tech-
niques: 1) spatial and temporal sparsity and 2) quantization.

1) Dynamic GADMM: Standard FL requires a central
entity, which plays the role of a parameter server (PS). At
every iteration, all nodes need to communicate with the PS,
which may not be an energy-efficient solution especially for a
large distributed network of agents/workers, as in the man-
ufacturing use case. Furthermore, a PS-based approach is
vulnerable to a single point of attack or failure. To overcome
this problem and ensure a more energy-efficient solution, we
propose a variant of the standard Alternative Direction Method
of Multipliers (ADMM) [66] method that decomposes the
problem into a set of subproblems that are solved in paral-
lel, referred to as Group ADMM (GADMM) [44]. GADMM
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extends the standard ADMM to decentralized topology and
enables communication and energy-efficient distributed learn-
ing by leveraging spatial sparsity, i.e., enforcing each worker
to communicate with at most two neighboring workers. In
GADMM, the standard learning problem (P1) is re-formulated
as the following learning problem (P2):

(P1) min
{θn}Nn=1

N∑

n=1

fn (θn ) (1)

(P2) min
{θn}Nn=1

N∑

n=1

fn (θn )

s.t. θn = θn+1, for n = 1, . . . ,N − 1. (2)

To this end, GADMM divides the set of workers into two
groups head and tail. Thanks to the equality constraint of (P2),
each worker from the head/tail group exchanges model with
only two workers from the tail/head group forming a chain
topology. At iteration k + 1, giving the models of the tail work-
ers and the dual variables at iteration k, all head workers update
their models in parallel since they have no joint constraints.
Once the head workers update their models, they transmit their
updated model to their neighbors from the tail group. Then,
following the same way, every tail worker updates its model.
Finally, the dual variables are updated locally at each worker.
Following this alternation, GADMM allows at most N/2 work-
ers to compete over the available bandwidth compared to N
workers for the PS-based approach. With that, GADMM can
significantly increase the bandwidth available to each worker,
which reduces the energy wasted in competition for communi-
cation resources. The energy expenditure for communication
is further reduced by including only two neighboring workers.
The detailed algorithm is described in [44].

One drawback of GADMM is attributed to its slow con-
vergence compared to standard ADMM. In other words,
due to the sparsification of the graph, workers require more
iterations for the convergence. To alleviate this issue and
combine the fast convergence of standard ADMM with the
communication-efficiency of GADMM, we have proposed
Dynamic GADMM (D-GADMM) [44]. Not only D-GADMM
improves the convergence speed of GADMM, but it also copes
with dynamic (time-variant) networks, in which the workers
are moving (e.g., the AGVs in the manufacturing plant or the
tractors in the agriculture use case), while inheriting the the-
oretical convergence guarantees of GADMM. In a nutshell,
every couple of iterations in D-GADMM, i.e., system coher-
ence time, two things are changing: i) workers assignment to
head/tail group, which follows a predefined assignment mech-
anism and ii) neighbors of each worker from the other group.
The idea at high level as is follows: the workers are given
fixed IDs, and they share a pseudo-random code that is used
every τ seconds, where τ is the system coherence time to
generate a set of random integers with cardinality N/2 − 2.
If n belongs to the set, then worker n is a head worker for
this period. The assumption is that workers 1 and N do not
change their assignment. i.e., worker 1 is always a head and
worker N is always a tail. Head workers broadcast their IDs

Fig. 3. D-GADMM: loss as a function of (a) number of iterations and
(b) total energy consumption.

alongside a pilot signal, then tail workers compute their com-
munication cost to all head workers, and share the cost vector
with the neighboring heads. If a tail does not receive a sig-
nal from a certain head, the cost to that head is ∞, the same
applies to heads. Subsequently, every head locally computes
the communication-efficient chain using a predefined heuristic
and share it with its neighboring tails. This approach requires
two communication rounds and guarantees that every head
will compute the same chain. Once the chain information is
calculated, each worker will share its right dual variable with
its right neighbor to be used by both workers and GADMM
continues for τ seconds. It is worth mentioning that we could,
e.g., start with a chain 1 − 2 − 3 − · · · − N and move to
1 − 5 − 7 − 4 − · · · − N , so only nodes 1 and N preserve
their assignments. For further details, the reader is referred
to [44] where a comprehensive explanation of the steps of
D-GADMM can be found.

In Fig. 3, we plot the objective error in terms of the num-
ber of iterations (left) and in terms of sum energy (right)
for D-GADMM as well as GADMM and standard ADMM.
As we can see from Fig. 3, D-GADMM greatly increases
the convergence speed of GADMM and thus decreases the
overall communication cost for fixed topology. As a conse-
quence, D-GADMM achieves convergence speed comparable
to the PS-based ADMM while maintaining GADMM’s low
communication cost per iteration.

2) Censored Quantized Generalized GADMM: As pointed
out earlier, each worker, in the GADMM framework,
exchanges its model with up to two neighboring workers only,
which slows down convergence. To reduce the communication
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Fig. 4. CQ-GGADMM: loss as a function of (a) number of iterations and
(b) total energy consumption.

overhead while generalizing to more generic network topolo-
gies, we propose the Generalized GADMM (GGADMM) [45].
Under this generalized framework, the workers are still divided
into two groups: 1) head and 2) tail, with possibly differ-
ent sizes. In other words, the topology is generalized from
a chain topology to any bipartite graph where the num-
ber of neighbors, that each worker can communicate with
can be any arbitrary number and not necessarily limited to
two. By leveraging the censoring idea, i.e., temporal spar-
sity, we introduce the Censored GGADMM (C-GGADMM)
where each worker exchanges its model only if the difference
between its current and previous models is greater than a cer-
tain threshold. To make the algorithm more communication-
efficient, censoring is applied on the quantized version of
the worker’s model instead of the model itself to get the
Censored Quantized GGADMM (CQ-GGADMM) [45], [67].
CQ-GGADMM can significantly reduce the communication
overhead, particularly for large model size d, since its pay-
load size is (bd + 32) bits compared to the payload size
of 32d bits for the full precision GGADMM. Since accord-
ing to the Shannon’s capacity theorem, more bits consume
more transmission energy for the same bandwidth, transmis-
sion duration, and noise spectral density, the communication
energy of CQ-GGADMM, compared to the original GADMM,
is significantly reduced. Theoretically, CQ-GGADMM inherits
the same performance and convergence guarantees of vanilla
GGADMM, provided that the censoring threshold sequence is
non-increasing and non-negative.

Fig. 4 compares CQ-GGADMM with Censored
ADMM (C-ADMM), GGADMM, as well as C-GGADMM

in terms of the loss versus the number of iterations (left)
and versus the total sum energy (right) for a system of
18 workers on a linear regression task using the Body Fat
dataset [68]. We can observe, from Fig. 4, that CQ-GGADMM
exhibits the lowest total communication energy, followed
by C-GGADMM, then GGADMM and finally C-ADMM,
while having similar convergence speed to GGADMM. This
observation validates the benefits of censoring the quantized
version of the models before sharing, which makes the
proposed algorithm (CQ-GGADMM) more communication
and energy efficient.

Finally, it is worth mentioning that motivated by the fact
that, in FL, the parameter server is interested in the aggre-
gated output of all workers rather than the individual output
of each worker, analog over the air aggregation schemes such
as [34], [69]–[71] were proposed. Such schemes were shown
to achieve high scalability and significant savings in energy
consumption owing to their ability to allow non-orthogonal
access to the bandwidth.

B. Optimizing Energy Consumption of Wireless IoT
Environments

The next pillar in iIoTe is edge computing. Specifically,
we consider the problem of allocating the application compo-
nents to the available end devices. As first presented in [53],
we extend the Integer Linear Programming (ILP) based frame-
work defined by Cardellini et al. [52] (Section II-C). In [53]
the goal was to minimize the overall energy consumption
needed for executing an IoT application. The formulated ILP
model is described below. The optimality can be determined
with this by feeding it into a solver, such as IBM CPLEX.2

We define optimality of the allocation by total energy use
over one execution of an IoT application. Energy during the
application’s execution is consumed in two phases: 1) device
energy, consumed by a device when executing a component
and 2) edge network energy, consumed by the device when
sending the result of the calculation over the network. Note
that “optimal” in this case only describes optimality in the
integer model. Given the constraints and the model, we find the
optimal assignment, i.e., the one with minimal energy usage.

The optimal network configuration is the assignment of
application components to devices that result in the lowest
total consumption of energy and satisfies the constraints. The
constraints concern the requirements that an assignment must
satisfy: Each component should only be allocated once and
resource requirements for assigned components should not
exceed the resources of the node. This problem is a form of
the quadratic assignment problem, and thus is NP-hard.

1) System Model: The application consists of a set of
components and edges that interconnect them, modeled as
a weighted undirected graph Gapp = (Vapp,Eapp). Graph
Gapp is multi-partite, with vertex set Vapp containing the
application components, |Vapp| = N , and edge set Eapp ⊂
{t1t2 : ti ∈ Vapp, i = 1, 2} representing the logical
connections between components ti .

2https://www.ibm.com/analytics/cplex-optimizer
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TABLE I
PARAMETERS OF ENERGY-AWARE ALLOCATION ALGORITHM

Analogously, the network infrastructure where the compo-
nents can be evaluated is modeled with the multi-partite graph
Gnet = (Vnet,Enet) with vertex setVnet containing the com-
municating nodes, with cardinality |Vnet| = M , and edge set
Enet ⊂ {t1t2 : ti ∈ Vnet,n = 1, 2} representing the wireless
and wired links among nodes ni . The result of the allocation
is a matrix X = Vapp ×Vnet where X[t, n] = 1 if and only
if component t is allocated to node n. We also define Ed to
be the device energy and En the network energy. Et is then
the total energy, and we put the constraint Ed + En ≤ Et .
Components, nodes and links have properties that are relevant
for the energy consumption of the application once allocated.
These parameters are described in Table I. St , Pn , Rn and
Cn are defined as multiples of some reference node. The
resources of a node are expressed as a single scalar, but addi-
tional resource requirements can easily be introduced into the
model.

2) Problem Formulation: For calculating the network
energy, we need to know whether a link between two com-
ponents is assigned to a link between two nodes. For this,
we introduce a matrix Y = Vapp ×Vapp ×Vnet ×Vnet,
where Y [t1, t2,n1,n2] = 1 if and only if the communication
between component t1 and component t2 is allocated on the
network link between nodes n1 and n2. This corresponds to
X [t1,n1] = 1 ∧ X [t2,n2]. Unfortunately, this is not a linear
constraint, and thus we need to linearize the formulation. For
this, we follow the formulation presented in [52] and define
an ILP model as:

∀t1, t2 ∈Vapp : ∀n1,n2 ∈Vnet : Y [t1, t2,n1,n2] ≤ X [t1,n1]

(3)

∀t1, t2 ∈Vapp : ∀n1,n2 ∈Vnet : Y [t1, t2,n1,n2] ≤ X [t2,n2]

(4)

∀t1, t2 ∈Vapp : ∀n1,n2 ∈Vnet : Y [t1, t2,n1,n2]

≥ X [t1,n1] + X [t2,n2]− 1 (5)

∀t ∈Vapp :
∑

n∈Vnet

X [t ,n] = 1 (6)

∀n ∈Vnet :
∑

t∈Vapp

X [t ,n] · Rt ≤ Rn (7)

∑

t∈Vapp

∑

n∈Vnet

Cn · (St/Pn ) · X [t ,n] ≤ Ed (8)

∑

(t1,t2)∈Eapp

∑

n1,n2∈Vnet

On1 · Pn1,n2 · Y [t1, t2,n1,n2] ≤ En

(9)

En + Ed ≤ Et (10)

where equations (3) to (5) describe the linearization of the
network matrix Y. Equations (6) and (7) are for ensuring that
components are allocated only once and that resources are not
exceeded, respectively. Equations (8) and (9) calculate network
and device energy as described above. Finally, we calculate the
total energy use of the assignment by adding both energies
in (10). The objective of the optimization is the minimization
of the total used energy.

3) A Linear Heuristic for Energy-Optimized Allocation:
The presented QAP is NP-hard and thus compute intensive.
The culprit for this is the network cost calculation and the
linearization of Y resulting in a large number of constraints.
By removing the Y matrix and the associated constraints,
we create a linear problem that can be evaluated effectively
by the simplex method [72]. The approach approximates
the energy required for sending a packet of data by taking
the average of a node’s links. We introduce the parame-
ter T̂n = 1

|outgoing(n)|
∑

e∈outgoing(n) Te that describes the
average transmission cost of a node’s links.

∑

t∈Vapp

∑

n∈Vnet

Cn · (St/Pn ) · X [t ,n] +Ot · T̂n · X [t ,n] ≤ Et

(11)

The complete model reuses constraints in equations (6)
and (7) with the constraint (11). By transforming the QAP
into a linear problem, we greatly increase the speed of find-
ing a solution, and make the optimization feasible for on-line
usage. The drawback is that by approximating the network
energy the solution is no longer optimal, as it will be shown
in the results.

4) Evaluation of Allocation Algorithm: We implemented
the model using the PuLP3 linear programming library. The
evaluation was done by generating a random network and a
random application, and letting the solver find the optimal
allocation.

3https://pythonhosted.org/PuLP/
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Fig. 5. “Long” (left) and “wide” (right) composed IoT applications.

The network configuration is generated with a variety of
node configurations and capabilities, reflecting a heteroge-
neous computation and communication infrastructure that one
could find in an industrial manufacturing plant (e.g., using
Siemens range of industrial computers [73]). In the eval-
uated configuration, 60% of the nodes were generated as
wired nodes, and the remaining 40% are wireless nodes.
Nodes are connected to each other with a certain probabil-
ity. That probability is 0.8 for wired-wired connections, 0.5
for wireless-wireless connections and 0.4 for wireless-wired
connections. Wired connections use 0.2 units of energy, while
wireless connections use 0.8 units of energy, which is sim-
ilar to the power consumption of an Ethernet module [74]
as compared to a WiFi module [75]. Nodes have a varying
amount of memory resources uniformly distributed between
a lower bound of 1 and an upper bound of 8 resource units.
Nodes also have a varying processing speed between 1 and
3 speedup, roughly comparing to the Intel processor family
i3, i5, and i7. Finally, nodes can use from 0.5 to 1.5 units of
energy for a single unit of computation.

For the application, two classes with a certain number of
components are generated, a “wide” and a “long” applica-
tion. In a “wide” application, two components are designated
the “start” and “end” components, and every other component
needs input from the start node and sends output to the end
node. In a long application, components are linked serially.
Figure 5 shows two example applications. This method for
generating recips is similar to [52]. Each application compo-
nent has resource requirements randomly distributed between
1 and 8, an output factor randomly distributed between 0.5
and 1.5, and a computation size of 1 or 2.

As expected, the optimal allocation algorithm scales very
badly (non-polynomially). Figure 6 shows the runtime of the
algorithm for varying problem sizes. The shaded area shows
the variance with the non-shown parameter (different applica-
tion sizes for the network node graph, differing network sizes
for the application node graph). The time needed for finding
the optimal allocation grows unwieldy very quickly.

In comparison, the heuristic presented in equation (11)
finds a solution much more quickly. Figure 7 shows the run-
time of the heuristic for different network and application
sizes. For the slowest case for the full allocation, the heuris-
tic takes 8 seconds of CPU time, while the solver consumes
864104 seconds (about 10 days) of CPU time for finding
the optimal allocation. The allocation evaluation was executed
on an Amazon EC2 m4.10xlarge machine with 40 virtual
cores and 160 GiB of memory. Peak memory use was 51 GiB.
However, the heuristic loses about 30% of energy efficiency
over the optimal algorithm. Specifically, 50% of the solutions

Fig. 6. Runtime for optimal allocation.

achieve between 60% and 80% of the energy efficiency of the
optimal case.

C. Energy-Efficient Blockchain Over Wireless Networks

The last enabling technology is DLT, which provides a
tamper-proof ledger distributed for the nodes of the iIoTe. The
energy and latency cost of implementing DLT over wireless
links and with constrained IoT devices is oftentimes over-
looked. In general, the latency and energy budgets are highly
impacted by the wireless access protocol.

1) System Model: As introduced in [65], there are two
architectural choices for IoT DLT. The conventional one is
to have IoT devices that receive complete blocks from the
Blockchain to which they are connected, and locally verify
the validity of the Proof-of-Work (PoW) solution and the con-
tained transactions. This configuration provides the maximum
possible level of security. However, this requires high storage,
energy and computation resources, since the node needs to
store the complete Blockhain and to check all transactions.
This makes it infeasible for many IoT applications. Instead,
we consider the second option where the IoT device is a
light node that receives only the headers from the Blockchain
nodes. These headers contain sufficient information for the
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Fig. 7. Heuristic runtime.

Proof-of-Inclusion (PoI), i.e., to prove the inclusion of a trans-
action in the block without the need to download the entire
block body. Furthermore, the device defines a list of (few)
events of interest, such as modifications to the state of a smart
contract or transactions from/to a particular address.

The communication model for this lightweight version is
as follows. The IoT devices transmit data to the Blockchain
using the edge infrastructure. Specifically, a NB-IoT cell with
the base station located in its center is considered, with N
devices uniformly distributed within the area. The base sta-
tion, which is designated as a full DLT node connected to
the Blockchain, is the DLT-anchor for the IoT devices. For
the radio resource management, we adapt the queueing model
of [19] to our scenario, where the uplink and downlink radio
resources are modeled as two servers that visit and serve their
respective inter-dependent traffic queues.

2) End-2-End (E2E) Latency: NB-IoT provides three cov-
erage classes namely normal, extreme, and robust class for
serving limited-resource devices and suffering various pathloss
levels[76]. Minimum latency and throughput requirements
need to be maintained in the extreme coverage class, whereas
enhanced performance is ensured in the extended or normal
coverage class. Without loss of generality, we consider only
normal and extreme coverage class, i.e., the number of classes

C = 2. A class is assigned to a device based on the estimated
path loss, with the base station informing the assigned device
of the dedicated path between them. Class j and ∀j are sup-
ported by the replicas number cj , which are transmitted based
on data and the control packet [19]. Particularly, the reserved
NPRACH period of class j is denoted by cj τ . The unit length
τ of the NPRACH for the class of coverage is denoted by
cj = 1. tj is the average time interval between two consec-
utive scheduling of NPRACH of class j, whereas the average
time duration between two consecutive NPDCCH occurrences
is denoted by d.

The total E2E latency includes two parts: 1) the latency
LUeD of transmissions of uplink and downlink between IoT
devices and the base station (the wireless communication
latency) and 2) and the latency LDLT due to the DLT
verification process. i.e., L = LUeD + LDLT .

The wireless communication latency of NB-IoT uplink and
downlink can be formulated as:

LUeD = Lu + Ld = Lu
sync + Lu

rr + Lu
tx + Ld

sync

+ Ld
rr + Ld

rx , (12)

where Lu
sync , Lu

rr , Lu
tx , Ld

synch , Ld
rr , and Ld

rx are energy con-
sumption of synchronization, resource reservation, and data
transmission of uplink and downlink, respectively. Lu

sync has
been defined in [77] with the values of 0.33s. Lrr is given as:

Lrr =

Nrmax∑

l=1

(1− Prr )
l−1Prr l(Lra + Lrar ), (13)

in which, Nrmax is the maximum number of attempts, Prr is
the probability of successful resource reservation in an attempt,
Lra = 0.5t + τ , is the expected latency in sending an RA
control message, τ is the unit length and equal to the NPRACH
period for the coverage class 1 which is varied from 40 ms to
2.56 s [77], and Lrar = 0.5d + 0.5Qfu + u , is the expected
latency in receiving the RAR message, where Q are requests
waiting to be served.

In the following, we provide a simple technique based
on drift approximation [78] to calculate Prr recursively.
Therefore, we treat the mean of the random variables involved
in the process as constants. Besides, we assume that sufficient
resources are available in the NPDCCH so that failures only
occur due to collisions in the NPRACH or to link outages.

Let λa = λu +λd be the arrival rate of access requests per
NPRACH period and λa(l) be the mean number of devices
participating in the contention with their l-th attempt. Note that
in the steady state λa(l) remains constant for all NPRACH
periods. Next, let λatot =

∑Nrmax
l=1 λa(l). The collision prob-

ability in the NPRACH can be calculated using the drift
approximation for a given value of λatot and for a given number
of available preambles K as:

Pcollision(λ
a
tot ) = 1−

(
1− 1

K

)λa
tot−1

≈ 1− e−
λatot
K . (14)

From there, we approximate the probability of resource reser-

vation as a function of λatot as Prr (λ
a
tot ) ≈ pd e−

λatot
K . This
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allows us to define λatot as:

λatot = λa + (1− Prr (λ
a
tot ))

Nrmax∑

l=2

λa(l), (15)

since λa(l) = (1−Prr (λ
a
tot ))λ

a (l−1) for l ≥ 2 and λa(1) =
λa . Finally, from the initial conditions λa(l) = 0 for l ≥ 2,
the values of λa(l) and λatot can be calculated recursively by:
1) applying (15); 2) calculating Prr (λ

a
tot ) for the new value

of λatot ; and 3) updating the values of λa(l). This process is
repeated until the values of the variables converge to a constant
value. The final value of Prr (λ

a
tot ) is simply denoted as Prr

and used throughout the rest of the paper.
Assuming that the transmission time for the uplink trans-

actions follows a general distribution with the first two
moments l1, l2, the first two moments of the distribution of
the packet transmission time are s1 = (f1l1)/(Rw), and
s2 = (f1l2)/(R2w2). Applying the results from [79], con-
sidering Ltx as a function of scheduling of NPUSCH, we
have:

Ltx =
f λus1s2

2s1(1− fGs1)
+

f λus21
2(1− f λus1)

+
l1
Ruw , (16)

where Ru is the average uplink transmission rate, λu = λs +
λb , and f (λs + λb)s1 is the mean batch-size. The latency of
data reception is defined as:

Lrx =
0.5Fh1t

−1

h1(1− Fht−1)
+

Fh1
1− Fht−1

+
m2

Rdy , (17)

in which, h1 = fm1(Rdy)−1, h2 = fm2((Rd )2y2)−1 are
two moments of distribution of the packet transmission time,
assuming that the packet length follows a general distribu-
tion with moments m1, m2, F = f λd t , Rd is downlink data
transmission rate.

Next, we calculate the second latency component, corre-
sponding to the DLT verification process. Consider a DLT
network that includes M miners. These miners start their
Proof-of-Work (PoW) computation at the same time and keep
executing the PoW process until one of the miners completes
the computational task by finding the desired hash value [56].
When a miner executes the computational task for the POW of
current block, the time period required to complete this PoW
can be formulated as an exponential random variable W whose
distribution is fW (w) = λce

−λcw , in which λc = λ0Pc

represents the computing speed of a miner, Pc is power con-
sumption for computation of a miner, and λ0 is a constant
scaling factor. Once a miner completes its PoW, it will broad-
cast messages to other miners, so that other miners can stop
their PoW and synchronize the new block.

LtM = LnewB + LgetB + LtransB (18)

In (18), LnewB , LgetB , and LtransB , are latencies of send-
ing hash of new mined block, requesting new block from
neighboring nodes, and new block transmission, respectively.
LnewB and LtransB are computed using uplink transmission,
while LgetB is computed based on downlink transmission as
described in previous section.

For the PoW computation, a miner i∗, first finds out the
desired PoW hash value, i∗ = mini∈M wi . The fastest PoW
computation among miners is Wi∗, the complementary cumu-
lative probability distribution of Wi∗ could be computed as
Pr(Wi∗ > x ) = Pr(mini∈M (Wi ) > x ) =

∏H
i=1 Pr(Wi >

x ) = (1−Pr(W < x ))M . Hence, the average computational
latency of miner i∗ is described as:

LWi∗ =

∫ ∞

0
(1− Pr(W ≤ x ))MDDx

=

∫ ∞

0
e−λcMxDDx =

1

λcM
(19)

The total latency required from DLT verification process is
LDLT = Ltm + LWi∗ .

3) Energy Consumption: Analogously to the latency, the
energy consumption is divided in the wireless communication
(uplink/downlink) and the DLT verification.

The total energy consumption in the wireless communica-
tion is written as follows:

EUD = Eu + Ed

= Eu
sync + Eu

rr + Eu
tx + Eu

s + Ed
sync + Ed

rr

+ Ed
rx + Ed

s , (20)

in which, Eu
sync , Eu

rr , Eu
rr , Ed

sync , Ed
rr , and Ed

rx are energy
consumption of synchronization, resource reservation, and data
transmission of uplink and downlink, respectively. Each of
them are formally defined as follows:

Esync = Pl · Lsync (21)

Erar = Pl · Lrar (22)

Err =

Nmax∑

l=1

(1− Prr )
l−1 · Prr · (Era + Erar ) (23)

Era = (Lra − τ) · PI + τ · (Pc + PePt ) (24)

Etx =

(
Ltx − la

Ruw
)
· PI + (Pc + PePt )

la
Ruw (25)

Erx =

(
Lrx − m1

Rdy
)
· PI + Pl

m1

Rdy (26)

where Pe , PI , Pc , Pl , and Pt are the power amplifier effi-
ciency, idle power consumption, circuit power consumption
of transmission, listening power consumption, and transmit
power consumption, respectively.

Following the PoW described above, the average energy
consumption of DLT to finish a single PoW round is:

EDLT = PcLWi∗ + PtLtm . (27)

4) Results: The performance of DLT-based NB-IoT system
is shown in Fig. 8. The experiments demonstrate the total
latency Fig. 8(a) and energy efficient Fig. 8(b) of a DLT-based
NB-IoT system, respectively. In Fig. 8(a), the E2E latency is
defined as the time elapsed from the generation of a transac-
tion at the NB-IoT device until its verification. This includes
the latency at the NB-IoT radio link and at the DLT, which
comprises the execution time of the smart contract and trans-
action verification. We observe that increasing t and d values
at the first increases lifetime and decrease latency due to more
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Fig. 8. Latency and Energy Consumption.

resources for NPUSCH and NPDSCH, but after certain point
increasing t and d decreases the lifetime by increasing the
expected time for resource reservation. In comparison with the
standard NB-IoT system in [55], [76], the DLT-based system
introduces a slight latency because of addition time of consen-
sus process and transaction verification. This is a latency and
security trade-off between standard NB-IoT and DLT-based
systems.

IV. TOWARDS ENERGY-EFFICIENT INTELLIGENT

IOT ENVIRONMENTS

Having the energy-performance characterization for each
of the enabling technologies (Section III), we describe next
how they interact with each other in iIoTe. For this, we
consider the scenario in Figure 9, where a given learning
application is considered. We split the task into sub-tasks
such as data processing, data training and model aggrega-
tion and distribute them in a decentralized way. Each of these
sub-tasks (Section III-A) constitute the application compo-
nents (C1,C2, . . . ,) that can be run at the available edge
nodes. The optimal allocation of sub-tasks to edge nodes
is determined using the ILP-based algorithms presented in
Section III-B. The required trustworthiness (i.e., assuring secu-
rity, privacy, immutability and transparency) between sub-tasks
is provided through DLT (Section III-C). The heterogeneity of

devices, capabilities and tasks is exploited accordingly: The
edge servers with high computation capability are selected to
operate the DLT activities, e.g., block mining, and aggregate
the ML models (the head workers if the learning paradigms
in Section III-A are applied), while more constrained edge
devices or mobile devices are setup as DLT light clients that
can participate in local training (the tail workers) and consen-
sus. The involved network components can communicate via
wireless long-range communication NB-IoT channels.

In detail, the communication workflow of the proposed
scheme can be summarized as follows:

• Step 1: The data processing can be completed in dif-
ferent edge devices with limited resources. The selected
data from the data provider is pre-processed and struc-
tured. This process includes both a data engineering and
feature engineering sub-process, in which data engineer-
ing converts the raw data into prepared data and feature
engineering tunes the prepared data to create features
expected by ML models.

• Step 2: Then, the edge nodes or IoT devices, which are
responsible for training, compute the local model based
on its own private data and then publish the local model to
its associated edge server via, e.g., NB-IoT by registering
with active smart contracts to upload their result securely
until the results are incorporated in the final aggregation
and generation of DLT transactions.

• Step 3: Next, the edge servers with ML aggregation
responsibility gather transactions and arrange them in
blocks following the Merkle tree. The structure of a DLT
involves the hash of the previous block, a timestamp,
‘nonce’ and the structure of hash tree. These edge servers
with high computational capacity join in the DLT mining
process to verify the created blocks and operate consen-
sus in the edge network. After completing the mining
process, the verified blocks are added to the ledger, and
synchronized among the nodes. The local models are pub-
lished in the distributed ledger. Hence, the powerful edge
servers can compute the global model directly based on
the aggregation rules defined in smart contracts.

The advantages of this integration are two-folds. First, by
distributing the tasks to different edge nodes with different
computing capacities, the IoT devices or edge nodes with lim-
ited resources can save significant amount of energy required
for training or mining and they can achieve lower latency.
Second, by leveraging the DLT, the updates of ML models are
securely formed in encrypted transactions and hashed blocks,
which significantly enhances the security and privacy of dis-
tributed learning in the edge networks. The DLT provides trust,
transparency and immutability baseline for distributed learning
to guarantee the security and privacy of data and ML models,
and naturally addresses the single-point of failure problem of
the current standard FL approach that relies on a centralized
server to aggregate the models. Although the integration of
enabling technologies introduces advantages, it also has some
drawbacks, for example, the time required of DLT mining will
increase the total latency of the system. This is a trade-off
between trust and communication latency which we discussed
in [55], [65].
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Fig. 9. Integration of enabling technologies.

V. CONCLUSION AND FUTURE WORK

In this paper, we address the evolution of next-generation
of IoT networks towards the edge, driven by the introduced
intelligent IoT environments. We use the iIoTe as the basic
building block to characterize the tradeoff energy-performance
of the three key enabling technologies, learning, edge com-
puting and distributed ledger. Edge intelligence must rely on
distributed paradigms such as FL, and we have shown how
exploiting spatial and temporal sparsity and quantization can
significantly improve the performance and reduce the energy
consumption. Moreover, we have discussed the distribution of
the FL model aggregator and the rest of sub-tasks to make
the framework more robust against failures. For edge comput-
ing, the optimal allocation of the application components to
network resources is important to efficiently use the available
infrastructure and optimize its energy consumption. DLT is
a flexible solution for trustworthiness in these environments,
but the energy and latency cost of implementing DLT over
wireless and constrained devices is oftentimes overlooked. We
have analyzed these parameters using NB-IoT as the baseline
wireless technology.

In the integration of these technologies in iIoTe, we have
shown the interactions among them, which provides the basis
towards an energy model and evaluation that encompasses the
contribution of each element. For instance, the learning and
computation models can be easily broaden to consider the allo-
cation of the different sub-tasks of the learning application in a
representative topology, with each learning action and resource
allocation playing the role of an action to be recorded in the
DLT. Future work also includes extending the proposed solu-
tions to dynamic environments where agents move and edge

nodes are not always available. This is already supported by
the presented dynamic head/tail learning paradigms but the
integration of a dynamic resource allocation and DLT frame-
work is pending. Another necessary direction is to investigate
the joint optimization of the computing and communication
resources from the energy perspective.
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