
Utilizing Uncertainty of Time Series Prediction in

Spectrum Sharing with Radar Systems

Su Pyae Sone∗

sone.supyae@oulu.fi

Janne Lehtomäki∗

janne.lehtomaki@oulu.fi

Zaheer Khan∗

zaheer.khan@oulu.fi

Kenta Umebayashi†

ume_k@cc.tuat.ac.jp

Zunera Javed∗

zunera.javed@oulu.fi

∗Centre for Wireless Communications (CWC), University of Oulu, Finland.

†Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology (TUAT), Japan.

Abstract—Interference prediction with neural networks (NNs)
can help in proactive resource management for spectrum sharing
in 5.6 GHz radar bands. This can achieve high data rates for
secondary users (SUs) of the shared spectrum and enhance the
protection of the incumbent radar systems. The recently intro-
duced efficient sharing and radar protection (ESRP) system with
interference prediction used NN-based long short-term memory
(LSTM) and Monte Carlo (MC) dropout to utilize the uncertain-
ties in the interference from the access point (APs). Due to the
random nature of radio propagation, the permissible probability
of harmful interference at the radar (εp) for the ESRP system
varies depending on the MC dropout and prediction intervals
(PIs) which represents the amount of uncertainty captured in the
system. In this work, we use a gated recurrent unit (GRU) which
is simpler and faster than LSTM for interference prediction. We
also investigate how the different MC dropout values can vary
the parameter εp and improve the radar protection performance
of the ESRP system. The results show that radar protection
performance can increase by using GRU and the values of MC
dropout play an important role in the ESRP system ensuring
better radar protection with a small trade-off for throughput of
the SUs which are the APs.

Keywords—Dropout, Forecasting, GRU, LSTM, Neural Net-
works, Radars, Real Network Data, Time Series, WLAN.

I. INTRODUCTION

Spectrum sharing between wireless communications and
other wireless technologies is one solution to satisfy the
demand for spectrum in both mobile cellular networks and en-
terprise wireless networks (WLANs). Among several spectrum
sharing techniques, spectrum sharing in radar C-band, such as
weather radars which can be found near urban areas, becomes
popular for the enterprise WLAN networks operating in the
5.6 GHz band [1]. Although spectrum sharing with weather
radar can benefit the communication of secondary enterprise
WLAN users, protecting the incumbent radar system from any
potential interference caused by the secondary users (SUs) is
the priority for the spectrum sharing mechanism. Previously,
the standardized dynamic frequency selection (DFS) and tem-
poral DFS (DFS-T) are widely used for radar protection in
the spectrum sharing with weather radar bands. The study
[2] recommended using a cloud-assist Radio Environment
Map (REM) repository radar protection system. Nevertheless,
they all have the drawbacks of being inefficient due to their
long spectrum sensing time [3], and delays in processing or
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reporting. Moreover, most of the weather radar rotations are
quasi-periodic which are difficult to track in real-time [2] so
that comprehensive radar protection is not guaranteed.

To address these limitations, the efficient sharing and
radar protection (ESRP) system with aggregated interference
prediction [4] is recently proposed. In the ESRP system, the
NN-based LSTM prediction model is used to predict the degree
of uncertainty in the aggregated interference at the radar caused
by the SUs via the use of prediction intervals (PIs) generated
with MC dropout. The predicted interference is compared
with a tolerable threshold and the decision to remove certain
SUs is executed in an advanced cloud-assist REM repository.
The challenge of spectrum sharing with radar bands is that
most radars, such as military radars and meteorological radars,
have their critical functions and rules to follow. One main
factor to consider for comprehensive primary radar protection
is a parameter called the permissible probability of harmful
interference at the radar (εp) which varies over a wide range
depending on the application of a primary radar [5]. Our recent
work [4] presented the relation between εp and the different
percentages of PI set in the ESRP system with LSTM, and the
minimum value of εp that can be used is 0.0006 with 99.9%
PI. For some sensitive radars, the maximum allowable εp can
be less than 0.0006 [5].

The spectrum sharing and radar protection mechanism
for extremely sensitive radars in which the throughput of
the SUs is better than the conventional protection system is
required. One possible solution to improve the radar protection
performance (reduce the εp value at which the ESRP system
can be applied) is utilizing the uncertainty of the interference
at the radar captured by the different MC dropout values of
the NN-based training model in the ESRP system. Moreover,
there is an abundance of literature using various NN-based
interference predictions without considering the computational
complexity of the models such as [6]. The previous work [7]
stated that LSTM and GRU outperformed the other traditional
recurrent NNs for sequence modeling, and GRU is similar
to LSTM but with fewer operating gates. The computational
complexity of the aggregated interference prediction in the
ESRP system can also be reduced by using the GRU model.
Therefore, the main contributions of this paper compared to
our earlier work [4], include:

• We improve the radar protection performance of the
ESRP system while the throughput of SUs is better
than the conventional radar protection by using differ-
ent MC dropout values.

• We use and evaluate the performances of the ESRP
system with GRU and LSTM to show that GRU can
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Fig. 1. Efficient sharing and radar protection (ESRP) system diagram

improve the radar protection performance for sensitive
radars with less computational complexity.

II. THE MODELS OF SPECTRUM SHARING WITH A

WEATHER RADAR

A. Interference at the Radar

The collected real dataset, which comprises both network
and physical layer data of APs deployed at the Linnanmaa
campus of the University of Oulu, Finland, is used. As physical
layer data, the total transmission power (TP) data of 7 APs
each operating with a 5.6 GHz channel are collected. The TP
data for all APs operating on 5.6 GHz are generated with the
same multinomial model by using the number of connected
users data explained in [4] and are used to calculate the ag-
gregated interference at the radar. The aggregated interference
at the radar caused by the secondary APs is modeled with
the link budget calculation method. The simulation system
is based on a ground-based meteorological radar operating
at 5610 MHz and the Linnanmaa campus as shown in Fig
1. We consider downlink transmission of the APs with an
additive white Gaussian noise (AWGN) channel and the other
losses including building entry loss are considered in the link
budget calculation. The ESRP system is mainly designed for
the secondary APs to be able to share the radar channel even
when the radar main beam is illustrated on them. Moreover,
the interference at the radar is not only from the main lobe of
radar but also from the side lobes.

The simulation model is designed by randomly generating
the locations of K APs within the campus area since the exact
locations of the APs do not significantly affect the aggregated
interference on the radar. Moreover, the M active WLAN
devices outside of the campus within zone 2 are modeled
by using uniform distribution as in [3]. If the received and
transmitted signal power from an ith AP are defined as Pri and

Pti, the path loss between an ith AP and the radar is LPL,i =
Pti
Pri

and calculated as in [4]. We set the common building entry
loss of an AP located in the campus as LEL = 11.5 dB [8], the

maximum radar gain as G(max) = 44 dBi, the ith AP gain as
Gti = 6 dBi, the bandwidths of radar channel and AP channel
as Bradar = 10 MHz and BAP = 20 MHz, respectively. Then,
the interference power at the radar caused by the secondary
APs under the radar main lobe at time t is [9]:

Ωmain =
K

∑
i=1

Pti ·Gti ·Gradar(max) ·Bradar ·Φt

BAP ·LPL,i ·LEL

. (1)

The TP of active WLAN devices outside of the campus
at time t, Φt(side), is also generated uniformly with maximum
power utilization of each device k = 30%. Hence, the interfer-
ence power at the radar caused by the side lobes is [3]:

Ωside =
M

∑
j=1

Pt j ·Gt j ·Gradar(min) ·Bradar ·Φt(side)

B j ·LPL, j · LEL

, (2)

where the minimum radar gain is defined as G(max) = 44 dBi

and the bandwidth of jth active WLAN devices as B j = 20
MHz. The aggregated interference from the main and the side
lobes at the radar at time t is Ωt = Ωmain+Ωside which is used
for prediction in the ESRP system. The maximum tolerable
interference threshold of -104 dB is calculated as T hreshold =
INR + N, where, N = −144(dBm) + 10log10(Bradar)MHz +
η(dB), η = 10 dB is noise figure [9], and INR = -10 dB
is interference to noise ratio [10].

B. Interference Forecasting Model

An LSTM network is used to predict the aggregated
interference at the radar in our previous work [4] and a GRU
network is used in this work for the benefit of faster prediction
time. Both LSTM and GRU are the variance of recurrent NNs
and are powerful tools for forecasting time series [7]. The
closed-form expressions and algorithms for the LSTM and
GRU layers can be found in [11]. If we denote all weights
and bias (w,b) of the GRU layer as wGRU ,bGRU , and the dense
layer as wdense,bdense, the cost function of GRU (JGRU ) is the
same as of LSTM (JLST M) described in [4] which is defined
with mean absolute error (MAE) as

(ŵGRU , ŵdense, b̂GRU , b̂dense) = argmin
w,b

1

N

N

∑
t=1

|Yt − Ŷt |, (3)

where N is the number of samples in a predicted period and
ŵGRU , ŵdense, b̂GRU , b̂dense are the updated weights and bias of
GRU and dense layers, respectively.

The generated data is for only weekdays between January
22 to February 22, 2020, with each data point at 10-minute
intervals. The dataset is divided into 75% (15 days) training
and 25% (5 days) testing datasets. The features-like grid
training data structure is also used as in [4]. The optimized
GRU model consists of 2 layers, each layer with 32 nodes.
Each GRU layer is followed by the MC dropout layer with the
probability ranging from [0.4 to 0.9] to prevent overfitting and
to be able to compute the PIs of interference at the radar. Then,
one dense layer is added as the output layer to directly output
the predictions at the end. The Adam optimizer is also used
in GRU training for its benefit of fast convergence compare to
other optimizers [12]. In addition, the averaged accuracy values
of 200 iterations are presented by considering the stochastic
nature of the NNs.

Authorized licensed use limited to: Oulu University. Downloaded on March 22,2023 at 23:41:01 UTC from IEEE Xplore.  Restrictions apply. 



60 65 70 75 80 85 90 95 100

PI Percentages

20

30

40

50

60

70

80

90

100
P

e
rc

e
n
ta

g
e
s
 o

f 
P

re
d
ic

te
d
 D

a
ta

 w
it
h
in

 P
I

Interference Prediction with GRU

Dropout=0.9

Dropout=0.8

Dropout=0.7

Dropout=0.6

Dropout=0.5

Dropout=0.4

Fig. 2. True Data within forecasted prediction interval vs different dropout
values of GRU for 1-hr FH

In the ESRP system, the computational time complexities
(TCs) of LSTM and GRU can be compared in terms of
theoretical big-O expressions and empirical measurements for
a complete running time of a model [11]. For jth layer, if we
defined the number of input samples as Ni j, the number of
hidden units as H j, the number of output samples as No j, the
number of time steps to train all training samples as Ttr and
the number of layers as L, the theoretical TC expressions for
training GRU and LSTM [11] are

GRU : O((
L

∑
j=1

3Ni jH j +3H2
j +2H j +No jH j)Ttr),

LST M : O((
L

∑
j=1

4Ni jH j +4H2
j +3H j +No jH j)Ttr).

(4)

Moreover, the empirical TC of the models are also estimated
on the same hardware with the specifications: AMD Ryzen
7Pro 4750U CPU @1.7 GHz, 32 GHz RAM, x64 based
processor in the same load condition. The statistical properties
of the outputs, such as upper and lower limits of the predictions
can be computed by using the MC dropout [13] as shown in
Fig. 2. The range between actual upper and lower limits of the
expected estimate with a probability with which the true value
will be within that interval is called a prediction interval (PI).

III. EFFICIENT SHARING AND RADAR PROTECTION

SYSTEM

The efficient sharing and radar protection (ESRP) system is
introduced in [4] to address the drawbacks of previous systems.
The main goal of the ESRP system is to enable spectrum
sharing with the radar channel regardless of the radar main
beam’s direction in zone 2 while ensuring comprehensive radar
protection. The ESRP system maximizes T hroughput j, the
averaged throughput of each connected user j at time t over
total secondary APs and total periods, as well as minimizes Pot ,
the aggregated interference points over the tolerable threshold
of a radar, which are defined as follows:

T hroughput j = BAP · log2(1+SINR) ·φ j, (5)

where SINR is the signal to interference and noise ratio at user
j, and φ j is the percentages of TP from the user j. Then, Pot

is denoted with the indicator function, Ip(t), at time t as:

Pot =
T

∑
t=0

Ip(t) where, Ip(t) =

{

1, if ΩR
t ≥ T hreshold,

0, if ΩR
t < T hreshold,

(6)

which is limited by the permissible probability of harmful
interference at the radar, εp =

Pot
T

, as Pr[ΩR
t ≥ T hreshold]≤ εp

to consider the random nature of radio propagation [3]. The
total number of time instances is denoted as T .

The ESRP system consists of two algorithms as shown
in Fig 1. The simulation is done by assuming all connected
APs are assigned to one main channel and a subordinate
radar channel. Algorithm 1 at the APs’ side is to stop the
transmissions of the AP on the radar channel for the next
period only when the notification from the REM is received.
After the paused period, the APs can transmit on the radar
channel again if no notification for the next period is re-
ceived. The channel bonding method from [14] is used to
bond the main and the radar channel for better throughput
of the connected users of an AP. The cloud-based REM
collects the information from the radar and the connected
APs to predict the aggregated interference at the radar in the
REM. Algorithm 2 at the cloud-based REM side calculates
the amount of exceeded interference over the threshold as
RI = Ipre−T hreshold, where Ipre is the predicted interference.
If RI is a non-zero positive value and the list of interference
caused by each APi sorted in the descending order is defined
as [IAP1

, IAP2
, ..., IAPK

], algorithm 2 finds the r number of APs
such as RI ≤ IAP1

+ IAP2
+ ...+ IAPr < RI + IAPr+1

. Then,
the notifications are sent to r APs to stop sharing the radar
channel. In this way, the radar channel is allocated efficiently
between secondary APs not to exceed the tolerable threshold
by utilizing the predicted interference. Previously, the different
amounts of captured uncertainty are not considered in the
interference perdition of the ESRP system. The main idea
of this work is to utilize the highest prediction uncertainty
(higher Ipre values) to ensure comprehensive radar protection
by increasing RI values.

IV. PERFORMANCE COMPARISONS

The rotation time of the main beam of considered radar to
illustrate on the same area is 60 seconds (rotating with 6◦ per
sec). Hence, none of the APs located within zone 2 will be able
to use the radar channel with the DFS system having the 60-sec
channel availability check (CAC) period. In a real-time system,
the measured interference at the radar at t − 1 is fed back to
cloud-based REM at every t. Hence, there are at least two
time-step delays to stop the necessary APs from using the radar
channel. Instead of waiting for the real-time feedback, we used
time series of predicted interference at the radar in the ESRP
system. The performances of different radar protection systems
are compared based on two metrics: (a) T hroughout j, and (b)
εp. The DFS system has the lowest averaged throughput per
user and highest radar protection performance with εp = 0
since the secondary APs use only one main channel excluding
the radar channel. The radar with εp less than 0.038 cannot
use real-time radar protection due to its unavoidable delays
in the system. The performances of the ESRP system with
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Fig. 3. Averaged throughput per user connected to each AP for different
radar protection systems with GRU vs εp

LSTM and GRU are evaluated in two scenarios for different
MC dropout values: 1) with various percentages of PI for
upper limit prediction, and 2) with averaged prediction values
in which the prediction uncertainty is not considered.

There is a trade-off between radar protection performance
(εp) and the spectrum sharing performance (T hroughout j) in
the ESRP system with an upper limit prediction. For both
LSTM and GRU, the highest uncertainty captured in the upper
limits of interference prediction (higher Ipre values) as in Fig.
2 makes sure to stop enough numbers of APs from sharing
the radar channel resulting in higher RI values not exceeding
the interference threshold. The results showed that the ESRP
system can also achieve εp = 0 as in the DFS system but
with higher averaged throughput per user if both LSTM and
GRU use MC dropout 0.9 with 99.95% PI for aggregated
interference prediction as shown in Fig. 3. Hence, the simple
method, adjusting MC dropout values and percentages of PI
for the upper limit prediction to capture the highest uncertainty,
is proposed in this work to improve the radar protection
performance regardless of whether LSTM or GRU is used
while the averaged throughput per user is better than the
conventional radar protection system. Moreover, the recorded
empirical TC of 1-hr FH for GRU is 1063.28 seconds while
TC for LSTM is 1232.86 seconds. Therefore, using the GRU
with MC dropout 0.9 for upper limit prediction of 99.95% PI in
the ESRP system is the optimal setting for the sensitive radars
in terms of computational TC, radar protection, and spectrum
sharing performances. However, the random nature of radio
propagation and sudden changes in the transmission traffic of
the SUs become the main challenges to maintaining constant
radar protection performance while sharing the radar channel
spectrum.

V. CONCLUSION

Spectrum sharing between radars in the 5.6 GHz band
and wireless enterprise networks can help in providing higher
capacity. A machine learning-driven technique, the efficient
sharing and radar protection (ESRP) system, has been intro-
duced recently. One main challenge of sharing a spectrum

with radar is that most of the radar systems have a different
permissible probability of harmful interference at the radar
(εp) values to follow. We have proposed the simple method,
adjusting the MC dropout value in the LSTM and GRU models
to consider the highest prediction uncertainty, to improve the
radar protection performance of the ESRP system for sensitive
radars. The performances of different radar protection systems
such as DFS, real-time, ESRP with averaged prediction, and
ESRP with upper limit prediction systems are also compared
in both spectrum sharing and radar protection aspects. We also
showed that the ESRP system with the upper limit prediction
of GRU is optimal for sensitive radars which have a very
small allowable εp value in terms of computational TC, radar
protection, and spectrum sharing performances.
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