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Atrial Fibrillation Detection from Face Videos by
Fusing Subtle Variations
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Abstract—Atrial fibrillation (AF) is one of the most common
cardiac arrhythmias, which particularly occurs in the elderly
individuals with heart disease. Though AF is often asymp-
tomatic during normal activities, it has huge potential risks for
stroke and other severe diseases. Thus, early detection of AF
has great importance in the field of public health. Currently,
electrocardiography (ECG) is the commonly used measure for
the diagnosis of AF, which presents the irregular rhythm of
waveform for AF patients. However, the measurement of the ECG
signal requires special medical acquisition devices, which are not
comfortable for practical monitoring in daily life. In this paper,
we explore a very promising algorithm to detect AF from remote
face videos by analyzing the color variations of face skin. The
main challenge is that the current remote photoplethysmography
(rPPG) technique is rather immature, which causes difficulty
in extracting accurate pulse signals for describing the cardiac
rhythm. To solve this problem, we first utilize various rPPG
algorithms to capture pulse rhythms from different regions on
the face video. We then investigate biomedical statistical methods
to extract suitable features from each pulse signal. Due to the
imprecision of video-extracted pulse signals, some traditional
physiological features may lose their utility since they were
originally proposed for ECG signals. Furthermore, some of them
are very susceptible to the influence of noise. Thus, we propose
a feature fusion algorithm to select and combine reasonable
information from multiple physiological features, which aims to
preserve the discriminability of detecting AF in the presence of
the noise and outlier disturbances. The experimental results on a
real-world database demonstrate the effectiveness of the proposed
method in providing useful information for AF detection.

Index Terms—Atrial fibrillation, heart rate variability (HRV),
cardiac disease diagnosis, feature fusion, classification.

I. INTRODUCTION

TRIAL fibrillation (AF) is the most common type of ar-
rhythmia, and has been reported to significantly increase
the risk for heart failure, stroke and mortality. Although AF
treatment strategies [1]-[4] have achieved great development
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Fig. 1. An illustration for the proposed remote AF detection method. The
traditional AF detection approach is presented in the left part of the picture,
which requires to put specific sensors on the body and utilize biomedical
devices for capturing the ECG signal. As shown in the right part of the picture,
the proposed remote AF detection model aims to detect AF from face videos
in a contactless manner, which is very convenient to monitor the AF risk in
daily life since it only needs a common RGB camera.

over the last decade, early detection of AF is very important for
preventing the occurrence of serious cardiac disease. Unfortu-
nately, AF is often asymptomatic in the early phase, which
induces the difficulty in diagnosing AF in time. Currently,
ECG signals [5]-[8] have been successfully utilized in AF
diagnosis for clinical applications. However, the acquisition of
ECG signals requires specific biomedical equipment, which
limits the application of monitoring AF risk in daily life.
Recently, many researchers [9]-[11] have tried to capture the
cardiac pulse signal with the wearable device and smart phone
for predicting AF. Nevertheless, the measurement needs to be
conducted in a skin-contact manner that is inconvenience and
uncomfortable for the examinee. In this paper, we will discuss
the possibility of detecting AF from short clips of face videos
in a contactless manner as illustrated in Fig. 1. In such case,
AF can be simply examined by a common camera or webcam,
which is very promising for the early intervention of potential
AF patients.

The diagnosis of AF from ECG signals can be roughly
categorized into two classes [7], e.g., (1) P-wave detection
and (2) R-R interval (RRI) variability. The methods based
on P-wave detection aim to monitor the absence of the P-
wave in the ECG signal of AF patients, which would be
replaced by rapid oscillations in actual conditions. However,
the P-wave is very sensitive to motion and noisy artifacts
in the measurement, which causes challenges in acquiring
accurate P-wave information. In contrast, the R-peak is the
most prominent characteristic feature of ECG signals and is
robust to different kinds of noise. Generally, the RRI-based
algorithms diagnose patients with AF by spotting irregularities
in the extracted RRI variability series, which means that the
precise detection of the R-peak is very important to the final
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Fig. 2. ECG signals for a healthy individual (top) and an AF patient (bottom)
respectively. The irregularity of beat-to-beat variability occurs in the ECG
signal of AF patient.

AF diagnosis. In Fig. 2, we illustrate the distinction of ECG
signals for healthy and AF cases.

Recently, some interesting studies [12]-[18] have focused
on the contactless monitoring of cardiac activity by detecting
the pulse-induced subtle color variations on the human face
with a common RGB camera, which inspired us to further
explore cardiac disease detection from remote videos. More
comprehensive studies are presented in [19] [20] to monitor
human heart activity by the PPG sensor, wearable device and
smartphone. These algorithms have the ability to extract the
pulse signals from the face or skin, which can approximate
the real heart rate variability (HRV) of humans. Thus, we can
detect the local maximum peaks from the extracted signals
and measure the specific changes between successive pulses
for estimating the RRI variability. As shown in Fig. 3 and
Fig. 4, we respectively extract the pulse rhythms from the
face videos of one healthy individual and one AF patient via
three different algorithms, while the real ECG signals are also
provided for comparison. Though the video-extracted pulse
rhythms lose the typical morphology of ECG signals, the
R-peaks are successfully captured in the waveforms, which
can be utilized to detect AF. However, the pulse extraction
techniques have not been fully developed so far, which can
cause artificial effects in the video-extracted pulse signals.
Thus, the approximation of RRI series from video-extracted
pulse rhythms induces a certain bias in the application of AF
detection. To better illustrate the above problem, we present
an example in Fig. 5. Due to the influence of noises in the real
scene, all the video-extracted pulse rhythms are contaminated
by artifacts at different levels, which introduces difficulties in
R-peak analysis for AF detection. Couderc et al. [21] conduct-
ed a preliminary study for detecting AF using contactless video
monitoring. However, they achieved a relatively high error rate
due to the imprecision of video-extracted pulse rhythms.

In this paper, we discuss the possibility of detecting AF
risk from short clips of face videos by exploiting the special
characteristics of face images. In the entire human face,
some regions contain abundant vascular tissues, which are
more suitable for monitoring the variations of skin color
and extracting the pulse rhythms. Meanwhile, other regions
are more vulnerable to the influence of nonrigid movements
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Fig. 3. The pulse rhythms extracted from the face video of one healthy
individual by three various algorithms on ROI 1 (refer to Table I for details).
The peak points in the waveforms are exactly the same as the R-wave peaks
in ECG signal. (a) Method [12]. (b) Method [13]. (c) Method [14]. (d) ECG
signal.
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Fig. 4. The pulse rhythms extracted from the face video of one AF patient by
three various algorithms on ROI 1 (refer to Table I for details). The irregularity
of heart variability can be seen from the rhythms. (a) Method [12]. (b) Method
[13]. (c) Method [14]. (d) ECG signal.
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Fig. 5. Another example on one healthy individual. Apparently, the pulse
rhythms suffer from artificial effects, which induce difficulties to obtain
accurate R-wave peak points as ECG signal. The waveforms are extracted by
three different approaches on ROI 1 (refer to Table I for details). (a) Method
[12]. (b) Method [13]. (c) Method [14]. (d) ECG signal.

such as expression variations, which tend to produce noisy
pulse rhythms. Due to the diversity of human individuals,
it is truly difficult to determine a universal face region of
interest (ROI) that produces the most robust video-extracted
pulse rhythm. Thus, it is better to extract pulse rhythms on
multiple plausible ROIs and fuse these signals for superior
results. Meanwhile, in order to enhance the robustness of
video-extracted pulse rhythms, we propose to utilize various
pulse extraction methods for acquiring multiple pulse signals
on each ROI. Thus, the problem turns into mining the potential
HRV information in multiple pulse rhythms extracted from
multiple ROIs, which enables us to utilize the knowledge of
multiple tasks to facilitate final classification.

An intuitive method is to extract HRV features from each
video-extracted pulse rhythm and concatenate all the features
together for AF detection. However, as discussed in the above
section, some ROIs on the face image may be affected by
voluntary movements or other disturbances, while current
video-based pulse extraction methods also produce rhythms
with artifacts and noises. In this case, some selected HRV
features may lose effectiveness for handling video-extracted
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rhythms since they are not robust to the influence of artificial
effects on the pulse signals. The above fact means that the
contributions of various HRV features are rather different in
the AF detection problem, while some of the HRV features
may suffer from noisy artifacts. Thus, it would not be a good
choice to utilize all the features together because some of them
may play a negative role in classification. Recently, dimension
reduction techniques [22]-[30] have attracted great attention
for further refining the extracted features. These methods aim
to learn low-dimensional representations from the original
high-dimensional data samples by removing the redundancy
in the raw features and enhancing the discriminability of
data according to the label information. Considering the local
manifold structure of HRV features, we seek a linear projection
matrix to learn a low-dimensional embedding space, which
enhances the compactness of neighboring samples according
to label information. For the binary classification problem of
AF detection, this approach maintains the intrinsic geometric
structure of features from the same category, while simul-
taneously preserving the discriminative information across
healthy/AF categories.

One major challenge of the remote AF detection task is
the problem of outliers, i.e., noisy samples in the training
set and redundant dimensions in each training sample. As
shown in the sample case in Fig. 5, the extracted pulse signals
of one healthy individual are contaminated by noises and
thus show the irregular beat rhythm, which may incorrectly
imply potential AF contrary to the fact. Thus, the defects
of current pulse extraction methods cause the contradiction
between the training sample and label information, which
induces outlier samples in the whole training set. To improve
the robustness of the proposed method, we utilize £3 ; norm
metric to measure the scatter of data samples. The ¢5;
norm metric is less sensitive than the traditional Euclidean
distance and reduces the disturbance of noisy training samples
(outliers). To construct the discriminative embedding space by
local manifold structure, we utilize the strategy of adaptively
adjusting the neighborhood connectivity between data sam-
ples. The above strategy further optimizes the relationship of
neighboring samples in the embedding space, which avoids the
influence of noises in the original HRV features. To alleviate
the inappropriate characteristics in the extracted HRV features,
we also consider the 5 ; norm regularization of the projection
matrix for conducting the feature selection procedure, which
aims to exclude the redundant dimensions and enhance the dis-
criminability. Note that the target of the proposed algorithm is
not to eliminate the noises and artifacts in the video-extracted
signals, but to achieve superior AF detection performance
based on the fact that noises and artifacts exist in the pulse
signals.

Finally, the unified feature fusion framework can be op-
timized by an iterative procedure to obtain the projection
matrix. The embedding HRV features of the testing samples
can be conveniently extracted by linear projection, which also
avoids the out-of-sample problem. The final AF detection
result can be simply predicted using the SVM in the learned
embedding space. In [12], we collected the OBF database for
AF detection and evaluated the performance as a baseline. In

this paper, we further improve the performance of AF detection
in two aspects: (1) Since video-extracted pulse rhythms are
susceptible to the influence of noise, we extract multiple
pulse rhythms from multiple ROIs and fuse the HRV features
together to enhance the robustness. (2) We propose a novel
learning-based method to obtain more discriminative feature
for facilitating the task of AF detection. The experimental
results on the OBF database [12] present the capability of
the proposed method, which efficiently improves the accuracy
from 77.89% to 92.56%. The main contributions of this paper
are summarized as follows:

e To the best of our knowledge, this is the first study to
improve the capability of AF detection using a learning-based
method by analyzing the specific characteristics in human face
videos.

e Current methods for measuring heart beat signals from
face videos are all not robust enough to achieve accurate
pulse rhythms. Given this fact, the proposed method partitions
the whole face into several ROIs and extracts multiple pulse
signals from each ROI by various methods. We fuse the HRV
features in multiple pulse rhythms extracted from multiple
ROIs to facilitate AF detection.

e By analyzing the property of AF detection, we propose
a robust feature fusion method for extracting suitable HRV
features, which simultaneously improves the problem of out-
liers and enhances the discriminability between healthy/AF
individuals.

e The extracted HRV features for the testing samples can be
conveniently obtained by the learned projection matrix. The
experimental results demonstrate the possibility of detecting
AF risk from remote face videos in a contactless manner.

II. METHODOLOGY

In this section, we describe the proposed approach for de-
tecting AF risk from remote face videos. The whole procedure
can be roughly divided into three steps, which are presented
in the following subsections.

A. ROI detection and pulse signal extraction

As we previously discussed, it is essential to capture multi-
ple pulse signals from various ROIs to further compensate
the disadvantages of current pulse extraction methods. To
partition the entire face image into several ROIs, we first utilize
OpenFace [31] to localize and track 68 facial landmarks. To
avoid the effect of nonrigid motions, we only use 14 landmarks
located on the contour of a face image to construct ROIs,
which have relatively stable coordinates during the movement
and expression variation. An illustration of the 14 landmarks
is presented in Fig. 6. The potential ROIs are obtained by the
connection of specific landmarks. As shown in Table I, we
utilize a set of facial keypoints to define ROIs on the face
image, where the selected landmarks serve as the polygon
vertices of each ROI. Thus, we select 21 ROIs in total for
the proposed approach.

For each ROI, we record the mean RGB values of pixels
inside it and further eliminate the noises by a moving-average
filter on the nearest 15 points. Then, we employ three various



Fig. 6. The selected 14 facial landmarks on the contour of a face image for
defining the ROIs. The above picture is cited from [32].

TABLE I
THE SELECTED POLYGON VERTICES FOR TOTAL 21 ROIs
Index | Landmarks | Index | Landmarks | Index | Landmarks
1 (1,7,11,17) 8 (2,5,13,16) 15 (5,7,11,13)
2 (1,6,12,17) 9 (3,6,12,15) 16 (1,2,16,17)
3 2,7,11,16) 10 4,7,11,14) 17 (2,3,15,16)
4 (1,5,13,17) 11 (1,3,15,17) 18 (3,4,14,15)
5 (2,6,12,16) 12 (2,4,14,16) 19 (4,5,13,14)
6 3,7,11,15) 13 (3,5,13,15) 20 (5,6,12,13)
7 (1,4,14,17) 14 4,6,12,14) 21 6,7,11,12)

pulse extraction methods [12]-[14] to acquire the video-
extracted pulse rhythms. An ideal example of the final pulse
rhythm signals can be seen in Fig. 3. Subsequently, we develop
a customized peak detection function for detecting pulse peaks
from the video-extracted signals and compute the RR interval
(RRI). As shown in Fig. 2, the intervals between adjacent heart
beats are mostly stable for the healthy individual, while the
intervals can have dramatic changes for the AF patient. We
extract the following HRV standard features [33] from RRI to
distinguish healthy/AF individuals:

e Time-domain: mean RRI, standard deviation of RRI, root
mean square of successive differences (RMSSD), square root
of the sum of the squares of differences of individual values
compared to the mean value, divided by the number of RRI in
a period (RMSM) and percentage of samples with more than
50 ms difference from the consecutive beat (pNNS50).

e Geometrical-domain: Poincare plot standard deviations
(SD1, SD2).

e Spectral-domain: LF, HF and their ratio in normalized
units.

B. Feature fusion and selection

Suppose that we have in total N face video clips as
the training set. As shown in the above subsection, we
extract the HRV features from 21 ROIs by three different
algorithms. Thus, the HRV descriptors of each face video

clip can be represented by 63 views. We define the vector

x; as the feature of the vth view for the nth sample and
X, = [a:ll),ac%,,a:fj\'] as the feature of the vth view

for all the training samples. Now, the problem transforms
into utilizing the features of all the 63 views for enhancing
the discriminability across healthy/AF samples. The simplest
way to employ multiview data is to concatenate all the
features together for AF classification. For example, let ™ =

T
[(ac?)T, (..., (m&)T} € R? represent the feature for

T
the nth sample and X = {(Xl)T,(Xg)T,...,(XGS)T} €
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R¥N describe the set for the whole training samples. We
can directly use some classification algorithms (e.g., SVM)
to train the related model for AF detection. However, due to
the voluntary movement or disturbance on the face image,
the video-extracted pulse rhythms often suffer from artificial
effects and noise. Some HRV features may not be robust to
the effects of artifacts on the pulse signals and therefore can
hardly describe the characteristics of AF. In this case, the
corresponding features lose discriminative ability and become
less important in the AF detection. Thus, it is better to combine
these HRV features according to their importance rather than
employ simple concatenation. To further refine the features
from multiple views, we aim to construct the discriminative
features by the linear projection of the original features:

Y =PTX (1)

where Y = [y!, 9%, ...,y"] € R™N(m < d) represents
the low-dimensional embedding for the HRV features, and
P € R?™™ is the linear transformation matrix. The problem
converts to training a suitable projection matrix P to preserve
the discriminability of embedding features Y.

The AF detection problem is a typical binary classification
problem. The label of each data sample belongs to the category
of healthy or AF. Given the training samples in X, we aim to
optimize the data graph {Y, W} with the embedding features
Y and the similarity matrix W, which further enhances
the compactness of samples from the same category. For
each training sample ™, we define the affiliated data group
X" = [z, ™, x>, ... x™] € R™F+D) (o further investi-
gate the local relationship, where ™', x™2,...a"* represent
the k nearest neighboring samples from the same category of
x". Thus, we can obtain the corresponding low-dimensional
embedding results Y” = [y”, y™t, y"2, ... y"] € R™*(*+1)
by the linear projection matrix P. To preserve the intraclass
compactness in the low-dimensional subspace, we minimize
the distances between each training sample and the affiliated
neighbors in the data group, which encourages enhancing the
discriminability of features in the classification. According
to spectral analysis theory, the objective function can be
formulated as:

k
arg Hgnz HPT:ci — PPyl H; Wi iy stPTP =1 2)
g=1

where the weight w; ;, is employed to measure the similarity
between each sample and its neighbors in the data graph and
the constraint preserves the orthogonality of the projection
matrix. Commonly, the weight w;;, can be simply defined
as 1/k, while the number of neighboring samples is set to 5
in this paper. By considering all the samples in the training
set, we can further represent the optimization function as:

N N
; T i T, 5|12 T
argm}}nz Z HP ' —P 2’ szim stPP=1 (3)
i=1j=1
where the corresponding weight for the sample 2’ and =/ can
be represented as:

; 1 ik
%j:{ 1ék jeN; ={it,...,i*} @

otherwise
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As discussed in the introduction, AF detection mainly en-
counters two problems due to the effect of outliers. The first
problem is the existence of noisy samples in the training set.
For the example in Fig. 5, though these samples are actually
captured from a healthy individual, the defects of current pulse
extraction methods induce artificial effects on the pulse rhythm
signals. The artifacts cause irregular RRI series between adja-
cent pulse peaks, which could imply HRV characteristics that
are similar to the AF case. Such samples can be considered as
outliers in the training set since the representative features lose
their consistency with the corresponding label information.
Actually, the feature extraction method in Eq. (3) is prone to
suffering from outliers due to the exaggeration of the error by
the Euclidean norm metric. In contrast, the /> ; norm metric
is less sensitive to the effect of outliers, which may improve
the robustness of the AF detection problem. Thus, we rewrite
the optimization problem (3) as follows:

N N
arg mpinz Z |P"2’ — PTal|| jw;j, st PTP =1 (5)

i=1 j=1

Since the low-dimensional embedding feature 4° has supe-
rior discriminability than the original data point x?, we can
adaptively optimize the data graph in the embedding space
rather than simply predefine it by experience, as in Eq. (4).
As we know, each data point y’ belongs to one of the two
categories (i.e., healthy or AF), and it can be connected by
all the neighboring data points of the same category with the
probability w; ;. The probability on the graph measures the
similarity between two neighboring samples. Thus, it is natural
to give a larger probability w; ; for the neighbors with a small
distance ||y" — y||,. By modifying the formulation of (5), we
can assign the probabilities of neighboring samples for graph
construction by the following optimization problem:

arg min
P,W /

k3

N N T, % T, .7 2
> [P " — P ! | wi; +allwil;
=1 |j=1

stPTP =1 w1 =1,
0<wi; <1(j € Ni)ywi; =00 & N;)

(6)

where W is the similarity matrix with each element as w; j,
the vector w; describes the similarity connections for the ith
sample with the jth element as w;;, and N; indicates the
neighborhood of the ith sample. The constraints ensure that
the whole data graph is partitioned into two clusters, i.e.,
healthy and AF. The regularization term is utilized to smooth
the elements in the matrix W. It avoids the trivial solution
in which the probability of the nearest neighbor is set to 1,
while all the other similarity probabilities are set to zero.
By optimizing Eq. (6), we can obtain the data connection
graph automatically, which alleviates the effect of noises in
the training samples.

Another problem is the influence of redundant dimensions
in each training sample x*. The corresponding features in these
dimensions are affected by inappropriate HRV characteristics
or noises, which induce disadvantages to the discriminablity
of samples. To further eliminate the redundant dimensions in
the HRV feature, it is reasonable to enforce the row sparsity
for the projection matrix P, which means that some rows of P

are filled with elements of all zeros. Such a projection matrix
ignores the corresponding redundant dimensions and conducts
feature selection in the embedding procedure. The row sparsity
property can be achieved by the minimization of the /5 ; norm
regularization term [34]. It can be defined as:

d

d
IPloy = llpill, = >
=1

i=1

)

where p, represents the ith row of matrix P.

Considering feature fusion and feature selection in a unified
framework, we can finally obtain the following objective
function:

N N X .
— (z [P PP s o |wz~|§> L 8P,
W=t \j=1
stPTP =1, wll1=1,
0 <wi; <1(j € Ni),wi; =0(j ¢ Ni)
3

where [ is the regularization parameter. The optimization of
Eq. (8) will be shown in Section III.

C. AF detection

Once we obtain the optimal projection matrix P, the dis-
criminative feature for each sample can be extracted in the
embedding space by linear projection according to Eq. (1). We
utilize the radial basis function (RBF) kernel support vector
machine (SVM) [35] to train the classifier, which considers
the AF detection as a typical binary classification problem.

III. OPTIMIZATION

In this section, we discuss the optimization of Eq. (8) to
obtain the projection matrix P. The objective function in (8)
is a non-convex optimization problem, which means that it is
difficult to acquire the optimal solution. To solve the tough
problem, we can expect to get a local optimal solution by
an iterative procedure. Specifically, we alternatively optimize
over matrices P and W, while keep the other one fixed. To
find a reasonable solution, we also give a warm start to the
variables. The details are presented in the follows.

A. Initialization

Rather than randomly initialize the variables P and W, we
give them a more reasonable start in order to obtain superior
results after convergence. For convenience, we initialize the
data similarity matrix by Eq. (4), which also defines the
elements in WO, The projection matrix PV is then initialized
by Eq. (3). The objective function can be rewritten as:

arg ngntr(PTXLXTP), stPTP =1 )

where L = D — (W + W7T)/2 is the graph Laplacian
matrix and the diagonal degree matrix D is defined as
D;i = > (W;;+W;;)/2. According to Ky-Fan theorem

J
[36], the initial projection matrix P° can be produced by the

eigenvectors corresponding to the m smallest eigenvalues of
XLXT,



B. The iterative procedure

With the initialization of variables W° and P°, we can
apply the alternative optimization method to solve Eq. (8).
When the value of W is fixed, the optimal P can be obtained
by minimizing the following function:

J( ) ZZUZ HPT Z_PT:EJHQ(“)ZJ +ﬁ”PH21 (10)
stPTP =1
The objective function in Eq. (10) can be deduced as:
N N oo .
J®) =X 21 [P7 (2" — )| wi; + BIPI,,,
N
EZHWTm—wwum+mmml (in
HVVXTPH + BIIPl,,,
where the matrix X = [(z! —x2),..., (z' —2V),..., (&N —
x'),..., (@™ — xV"1)] and the corresponding coefficient
matrix W = diag(wl)g, ey WI Ny WNT 7WN,N71)~
Eq. (11) can be further rewritten as:
J(P) = tr(PTXWTM,WXTP) + tr(PTM,P) (12)

where the affiliated matrices My and M, are diagonal matri-

ces with the ith element on the diagonal to be — b
' £ 2[[(WXTP) T,

and m, respectively. In practice, we add a very small
constant ¢ on the denominator, which avoids the value to
be zero. Thus, Eq. (10) can be represented as the following
optimization problem:

arg min tr(PT(XWIM,WXT + M, )P), 5.t PTP =1
13)
The projection matrix P can be obtained by solving:

(XWIMWXT + fM,)p = \p (14)
where )\ is the eigenvalue and p is the corresponding eigenvec-
tor. The optimal solution of Eq. (14) is the eigenvectors asso-
ciated with the first m smallest eigenvalues. The optimal pro-
jection matrix is then represented by: P = [py,ps, ..., P,
Note that the affiliated matrices M4 and M, are dependent to
P and thus Eq. (14) contains unknown variables. To deal with
this problem, we alternatively update the affiliated matrices
{Mg, M.} by Eq. (12) and calculate the solution P according
to Eq. (14). The convergence of such an iterative algorithm
will be proved in the next section.

When the value of P is fixed, the optimization of matrix
W reduces to minimize:

J(W) =

i=1

N N

Plx! — P 2| w; i + allw; 2
£ (% s +alloil?) s,
stwlil=10<w,; <1(j € Ni),wi; =0(j ¢ Ni)

Note that the above problem is independent between each
index ¢. Thus, it can be solved respectively according to
various %:

z

J(wi) = 3 |[PTa = P || i + o ol (16)

J
S. thl =1 O S Wi, j S 1(] S Ni),wi’j = O(] ¢ NZ)
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We define the vector @; € RF that contains all the weights of
w;j (4 € INV;) and set the values of other elements w; ; in w;
to be zero. The problem is converted to the optimization of
w;, while the objective function can be rewritten as:
k . .
J(@:) = 2 ([P"2" =Pl | ,d; + adl;)
j=1

st.@I1=1,0<@;; <1
Denote d;; = x' — PTx/||, in Eq. (17) and vector d; €
R* with the jth element as d;;. It can be further represented
by the following optimization problem:
2

A7)

1
argmin ||@; + —d;|| ,st.o]1=1,0<@;; <1 (18)
@ 2 2
The Lagrangian function of Eq. (18) can be given as:
1 1P
L(@i,m, p) = 3 Hi’z + 5, - n(@;1-1) - p'a; (19)

where 77 and p are the Lagrangian multipliers. We calculate
the derivative of (19) with respect to &;, and set to be 0:

D S L —d
(9(:)1' @it 2c
From (20), we can represent the jth element @;; in the vector
w; as:

i—ml—p=0 (20

. 1
(JJij + %d” —
According to the Karush-Kuhn-Tucker condition [36], we

have:

n—p; =0 (21)

@ijpy =0 (22)

Combining (21) and (22) together, we can deduce the solution

of w;; as:
- 1 d
J n 90 .

Utilizing the constraint cbiTl =1, we can get the following

(23)

equation:
~ 1
Zwij - Z (77 - Mdij)+ =1 (24)
J J
Define the following function:
1
= ——di; | —1 25
f () Z(n o g>+ (25)

J
The optimal solution of Lagrangian multiplier 7 is the root of
f (n) = 0. Thus, the above problem can be solved by Newton-
Raphson method iteratively:

S fn'h)

frnt=1)

Substituting the solution of 7 into (23), we can get the optimal

solution of weight @;;. The matrix W can be further obtained

by constituting all the similarity weights. Notice that the value

of « steers the adaptive selection of neighboring samples and
assigns the corresponding weights automatically.

With the initial value of the two variables, we can optimize

the projection matrix P by minimizing (10). Once this is done,

the similarity matrix W can be optimized by solving (15). We

(26)
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repeat the iterative procedure to update the above variables
until the optimization problem (8) converges to the local
minimum. The details of the complete optimization procedure
are summarized in Algorithm 1.

Algorithm 1 The complete optimization procedure.

Input: The training data samples X € RV,

1: Initialization: Set t=0. Estimate the initial similarity matrix
W by (4) and projection matrix P(©) by (9).

2: repeat

3:  Update t=t+1.

4 /* fix matrix WD update matrix Pt 3/

5.

6

repeat
Calculate the affiliated matrices Mg) and Mg) in
(12).
Update the projection matrix P®) by solving (13).
until convergence
. /* fix matrix P, update matrix W) s/
10 fori=1to N do
11: Update the ith row of similarity matrix W®) by
solving (18).
12 end for
13:  Constitute the similarity weight W (),
14: until convergence
Output: The final projection matrix P*.

® 3

IV. CONVERGENCE

In this section, we analyze the convergence of the proposed
approach, which demonstrates that the algorithm finally con-
verges to a local optimal solution. In advance, we give the

following lemma, which has been proved in [34].
Lemma I: For any nonzero vectors w and v, the following
inequality holds:

2
vl
2||v]l,

2”'"”2 N 2

ull, — (27)
Theorem I: The iterative strategy for solving (10) monotoni-
cally decreases the value of J(P) during optimization.

Proof: According to Eq. (12), the optimization of matrix
(10) can be represented as the following formulation in the
lth iteration:

PY =arg min tr(PTXV.VTMg*UVVf(TP)
PTP=I

(28)
+ ptr(PTMYVP)

Thus, we have:

tr(PO)TXWTM{ VWX PO) + pr(PD)TMI~VPD)
< tr(PD)TXWTM{ YV WXTPI-Y)
+ ﬂtr((P(lfl))TMglfl)P(lfl))
(29
Considering the specific format of affiliated matrices M(l 2
and M(l b , the above inequality can be rewritten as:

[ov

+,BZ e,

o

2H(WXTP)“ ”H

<Z

(30)

p-1|?

QH(WXTP)” l)H

According to Lemma 1, we have:

[owxTe) 0

T Tp\»
H(WX P); ‘2 2”(W)~(TP)§,Z_1>H
. |wgreenp OV
< H(WXTP)(.FU — S
: L~ s
1 o
ol o <o, Lo
e P
2 2

Considering all the row vectors in the corresponding matrices,
we can further deduce:

T (l> H
> (WxTP)"|| -~ > Jwre .
R Sl
(WX'P); Z 2[owxre [
_ [ H
P2 e,
I (B34
~B% Tl “u
By summing inequalities (30), (33) and (34), we get:
> ‘(WXTP
i 35
(W XTP)” 1) +ﬂZ ‘sz—l) (35)
It can be rewritten as:
[wx < [wxrpe], o]
1 2,1 2,1
According to (11), we can get the conclusion:
JPY) < @) 37)

Thus, the convergence of the iterative strategy has been
proved.

Theorem 2: Denote the objective function in (8) as
J(P, W). Algorithm 1 monotonically decreases the value of
J(P, W) in each iteration.

Proof: When we fix matrix W and update P, we have the
conclusion J(P® W=Dy < j(PU=D W-1) according
to Theorem I. When we fix matrix P and update W, the
optimal solution can be deduced from the convex problem
(15). Apparently, we have J(PH W®) < J(PO W-1),
Thus, we can get the conclusion J(P(l),W(l)) <
J(PU=D W{=1)) which indicates that the objective function
will monotonically decrease to the local minimum by conduct-
ing Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments to explore the
possibility of detecting AF cases from short clips of face
videos. The experiments are performed on the Oulu Bio-Face
(OBF) database [12], which was captured at the University of
Oulu for healthy participants and Oulu University Hospital for
clinical patients'. The OBF database contains approximately
five-minute video recordings of participants in various status-
es, including resting-state/post-exercise sessions for healthy

Uhttps://sites.google.com/site/jshiwebpage/af



individuals and prior-treatment/after-treatment sessions for AF
patients. In the experiments, we utilize the resting-state record-
ings of healthy individuals and prior-treatment recordings of
patients in the database, which indicate the healthy and AF
samples, respectively. For each video sample, we divide it into
nonoverlapped short clips of 30 seconds in length. Since the
duration of a few videos is slightly less than 5 min, we only
employ the first 9 clips of each video to avoid bias. To perform
the experiments, we randomly select the video clips from 20
healthy subjects and 20 AF patients to constitute the training
set, while collect the clips from other 10 healthy subjects and
10 AF patients as the testing set. The training and testing
sets are independently divided by subject. Thus, there is no
overlapping subject in the training and testing sets. In total, we
have 180 video clips in the testing set and employ 360 video
clips as the training set. The experiments are independently
repeated 10 times, while the average results are reported as
the output.

A. Parameter settings

Several parameters are required to be fixed in the proposed
method. We first randomly select one independent validation
set from the database to adjust the parameters. To acquire the
best performance, we choose the dimension of the embedding
feature space as m = 490. The regularization parameters «
and S in (8) are set to 0.1 and 80, respectively. We will
further analyze the influence of these parameters in Section
V-I. Actually, the performance is also rather stable when
the above parameters vary within a certain range around the
optimal values.

B. The pipeline for AF detection

To better illustrate the problem of AF detection, we further
present a flowchart in Fig. 7 that explains the whole procedure.
For an input video clip, we first detect the 21 ROIs by the
connection of specific landmarks. We then utilize three pulse
extraction methods to generate the heart beat rhythm from each
ROI. Thus, we have 63 pulse rhythm signals in total extracted
from various regions by multiple methods. The peak detection
procedure is conducted on each pulse signal to produce the
RRI signal, which describes the intervals between adjacent
heart beats. We extract the basic HRV features from each RRI
signal and normalize them as a feature vector. Furthermore, we
concatenate all of the 63 HRV feature vectors to represent the
characteristic of AF for the input video clip. The trained linear
projection matrix (i.e., matrix P) is utilized to conduct the
feature fusion and selection procedure, which transforms the
extracted HRV features into an embedding space to enhance
the discriminability. Based on the discriminative feature, we
can finally obtain the binary classification results for the
problem of AF detection.

We further provide the running time of each component
on an Intel Core i5 3.2 GHz CPU to analyze the efficiency
of the proposed method. The procedure of ROIs detection is
conducted by the landmark detection algorithm [31]. In the
proposed approach, the processing speed is approximately 10
fps. Notice that the speed is highly related to the attributes
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of the video (e.g., resolution). Additionally, it can be further
improved by using more efficient landmark detection methods
[32]. The following three procedures are rather efficient. For a
30-second video clip, it takes approximately 3.66 s to extract
the HRV feature, 0.6 ms to complete feature fusion and
selection from the trained projection matrix (i.e., matrix P),
and 2 ms to obtain the final AF detection result from the
SVM.

C. Experiments on the OBF database

In this subsection, we evaluate the performance of the pro-
posed approach on the OBF database to illustrate the advan-
tages of the proposed method. To demonstrate the effectiveness
for AF detection, we compare the proposed discriminative
features with seven other HRV features, which are presented
in detail as follows:

e Single ROI feature I (SRF1) [12]: It first extracts the pulse
rhythm by [12] from ROI 1 in Table I (ROI 1 contains the
whole cheek). Then, it generates the RRI signal and produces
the HRV feature. This is also the baseline method presented
in [12].

e Single ROI feature II (SRF2): It conducts the same
procedure as SRF1 except that it utilizes [13] to extract the
pulse rhythm.

e Single ROI feature III (SRF3): It conducts the same
procedure as SRF1 except that it utilizes [14] to extract the
pulse rhythm.

e All ROIs feature I (ARF1): Different from SRF1 which
only extracts pulse rhythm from ROI 1, it extracts signals from
all of the 21 ROIs and concatenates all the corresponding HRV
feature vectors as the final output.

e All ROIs feature I (ARF2): It conducts the same proce-
dure as ARF1 except that it utilizes [13] to extract the pulse
rhythm.

e All ROIs feature III (ARF3): It conducts the same
procedure as ARF1 except that it utilizes [14] to extract the
pulse rhythm.

e Multi-feature: It concatenates the features of ARF1, ARF2
and ARF3 together.

To better present the advantage of the proposed framework,
we also conduct the above feature fusion algorithm to refine
ARF1, ARF2 and ARF3. We adjust the optimal parameters
to adapt these features while defining the refined results as
Fused-ARF1, Fused-ARF2 and Fused-ARF3 for comparison.
Finally, we compare the AF detection ability of these fea-
tures by employing the SVM classifier with RBF kernel.
The parameters of the RBF-SVM classifier are tuned in the
range of {276,275, ... ,2% 26} To evaluate the experimental
results, we calculate the number of True Positives (TP), True
Negatives (TN), False Positives (TP) and False Negatives
(FN). Then, we utilize the sensitivity (TPZ%), specificity
(%) and accuracy (%) as the validation
metrics. Table II further shows the quantitative indexes of all
the compared methods, together with the results from one
preliminary approach [21]. The advantage of the proposed
method is remarkable. As shown in Table II, the sensitivity,
specificity and accuracy results of the proposed approach are
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Fig. 7. The flowchart for explaining the problem of AF detection, which presents the whole procedure from the input video clip to the final classification

result.

TABLE I
THE COMPARISON OF VARIOUS ALGORITHMS FOR AF DETECTION.

Sensitivity(%)  Specificity(%)  Accuracy(%)
Couderc et al. [21] 83.22 77.89 80.56
SRF1 [12] 83.56 72.22 77.89
SRF2 87.11 83.56 85.34
SRF3 89.78 81.11 85.45
ARF1 83.22 89.78 86.50
ARF2 89.44 89.22 89.33
ARF3 85.67 92.11 88.89
Multi-feature 87.78 92.78 90.28
Fused-ARF1 88.00 93.22 90.61
Fused-ARF2 89.56 93.22 91.39
Fused-ARF3 89.44 92.67 91.06
Proposed 91.00 94.11 92.56

91.00%, 94.11% and 92.56%, respectively. Compared with the
baseline method (SRF1) [12], the proposed method achieves
more promising results with an improvement of 14.67% in
terms of accuracy value. It also outperforms 2.28% in AF de-
tection accuracy when compared with the second best method
(Multi-feature). According to the results in Table II, we can
obtain the following conclusions:

e The pulse signals extracted by [13] [14] are more suitable
to be utilized in AF detection than the signal obtained by [12].

e The combination of HRV features in multiple ROIs
achieves better performance than utilizing the feature from
single ROI for AF detection.

e The employment of multiple pulse extraction algorithms
improves the results of AF detection since they can comple-
ment each other’s defects caused by the artificial effects.

e The proposed method conducts a training phase to learn
more discriminative features, which achieves the best perfor-
mance in the compared approaches.

In Fig. 8, we present one failure case for a healthy individual
and another failure case for an AF patient. For the case of
the healthy individual, the main reason is that the pulse ex-
traction approaches are disturbed by the nonrigid movements
or expression variations during recording. Thus, the pulse
signals suffer from noises and artificial effects (e.g., the signals
extracted by [12] and [14] in Fig. 8), which resemble the
characteristics of an AF patient. The failure case of the AF
patient occurs when the symptom is not very serious. In this
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Fig. 8. The extracted pulse rhythms from ROI 1 in some failure cases. From
top to bottom: Rhythms extracted by [12], [13] and [14], respectively. (a) One
healthy sample, but was incorrectly classified as an AF patient. (b) One AF
sample, but was incorrectly classified as a healthy individual.

situation, the irregularity of the beat-to-beat variability does
not occur or rarely occurs in the 30-second recording, which
causes the misclassification of this sample.

D. Influence of gender, age and race

In this subsection, we further conduct experiments to discuss
the influence of individual factors (e.g., gender, age and race)
on the performance of the proposed algorithm. To analyze
the effect of gender, we randomly select the video clips from
five male healthy individuals and five male AF patients as the
testing samples while utilizing two different training sets (i.e.,
a specific training set and a general training set) to compare
the classification results. Both training sets contain 20 healthy
subjects and 20 AF patients. The difference is that the specific
training set is only selected from the remaining male samples,
while the general training set includes both male and female
samples. Thus, the composition of the specific training set
excludes the factor of gender that could influence the final
results. The above experiments are independently conducted
10 times, which ensures the diversity of the testing sets.
Fig. 9(a) presents the average accuracy for samples in each
testing set on the specific and general training sets. Although
the results obtained in the two training sets are somewhat
different, the changes remain within a reasonable range for
most cases. Similarly, we also conduct the same strategy to



investigate the influence of race and age. We utilize the same
amount of healthy and AF samples in both testing and training
sets, but select different kinds of samples according to the
factor we want to analyze. To study the effect of race, we
only utilize Caucasian individuals to constitute the testing set
and specific training set, while the general training set contains
volunteers of both Caucasian and other races. For the factor of
age, we randomly select the individuals from 35 to 70 years
old to construct the testing set and specific training set. The
samples in the general training set are chosen from volunteers
of all ages. Fig. 9(b) and Fig. 9(c) show the experimental
results for the factors of race and age, respectively. According
to the average accuracy of each testing set, the variation of
the two training sets does not induce considerable change in
the final results. Thus, we can conclude that the impact of the
above factors is not apparent in the experiments.

E. Influence of various recording conditions

To evaluate the robustness of the proposed approach, we
capture additional face videos for 10 healthy individuals and
10 AF patients with a 10-min duration of each video. The 10-
min recording is divided into two periods. In both periods, we
utilize one Blackmagic camera (Cam 1) and one GoPro camera
(Cam 2) to simultaneously capture videos. In the first 5-min
recording, the cameras are placed in front of volunteers at a
distance of approximately one meter. The videos are recorded
under a cold lighting condition. In the second 5-min recording,
Cam 1 is still set at a one-meter distance, but Cam 2 is
arranged at the distance of approximately two meters. We also
adjust the illumination to warm lighting condition. Briefly, we
can divide the above captured videos into four testing sets and
utilize them to evaluate the proposed algorithm under different
recording conditions:

Set 1: Cam 1, cold light, and one meter distance.

Set 2: Cam 2, cold light, and one meter distance.

Set 3: Cam 1, warm light, and one meter distance.

Set 4: Cam 2, warm light, and two meter distance.

We also employ the protocol described previously, which
divides the videos into short clips of 30-second lengths. The
videos of Set 1 are captured under the same environment
as the training set, while the videos from the other three
sets are recorded with alternative cameras, various lighting
conditions and different distances. In Table III, we present
the quantitative indicators for the performance on the four
testing sets. The results of Set 1 and Set 2 compare the
performance of the proposed method when the videos are
captured by different cameras. Different cameras have various
imaging characteristics, so the accuracy drops slightly for the
AF detection task. A similar situation also exists for the videos
captured under different lighting conditions, which can be
concluded from the results of Set 1 and Set 3. However, the
decline in performance is not considerable under the variations
of the camera and lighting, which illustrates that the proposed
approach has the capability to obtain stable results. The videos
of Set 4 are recorded from a longer distance. The performance
decreases when compared with the results of the other three
sets. Thus, it is essential to maintain a valid recording distance
for remote AF detection.
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THE QUANTITATIVE INDICATORS FOR THE TESTING SETS CAPTURED

TABLE III

UNDER VARIOUS ENVIRONMENTS

Sensitivity(%) | Specificity(%) | Accuracy(%)
Set 1 94.44 100.00 97.22
Set 2 92.22 94.44 93.33
Set 3 90.00 100.00 95.00
Set 4 92.22 71.11 81.67

E Influence of facial ROIs

In this subsection, we discuss the impact of local facial ROI
feature detectors on the final AF detection results. To achieve
this objective, we respectively remove a couple of landmarks
in Fig. 6 (ie., {1,17}, {2,16},{3,15}.,{4,14},{5,13}.,{6,12}
and {7,11}) and further evaluate the AF detection accuracy.
According to Table I, there are 15 remaining ROIs after the
abovementioned landmarks have been discarded. The pulse
signals are then extracted on the 15 ROIs and utilized to pre-
dict AF by the proposed algorithm. Table IV presents the AF
detection results when the experiments are conducted without
the corresponding landmarks. The accuracy will be slightly
decreased after some landmarks are removed. However, the
difference is not so obvious when compared with the original
results in Table II, which illustrates that the proposed method
is robust to the ROI detector.

We further investigate another situation in which only
one ROI is available on the face image. Fig. 10 shows the
corresponding accuracy when the experiment is performed
on various ROIs (i.e., from ROI 1 to ROI 21). It achieves
relatively high accuracy on the ROI 1, ROI 2, ROI 4, ROI
5, ROI 7, ROI 11 and ROI 12 while obtaining the lowest
accuracy on ROI 21. According to the experimental results,
we can arrive at the following two conclusions. First, it is
more suitable to extract the pulse signals from the region
of the cheek, while the region of the chin is susceptible to
additional disturbance. Second, a relatively large ROI is more
robust in achieving a better AF detection result. It alleviates
the negative impact of facial landmark misalignment on the
tracking procedure through the whole video.

A reduction in the overall performance undoubtedly occurs
in the case of degrading facial ROI feature detectors (such
as recording the video in a very dark environment). In this
case, the facial landmarks cannot be precisely located, which
causes the misalignment of the ROI on each frame of the
video. Accordingly, the variation in color on the facial skin
cannot truly describe the pulse of heart activity. Given that
this paper is only a primary study on the possibility of AF
detection from face videos, we capture the frontal face video
under a specific lighting condition to explore the AF detection
problem without a medical acquisition device. Moreover, it
is also interesting to consider conducting further studies on
applications in the natural environment.

G. Comparison with deep learning-based method

We further conduct an additional experiment to compare
the proposed approach with the deep learning-based method.
The extracted pulse signals can be considered as time-based
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TABLE IV
THE AF DETECTION RESULTS WHEN SOME FACIAL LANDMARKS ARE
REMOVED
w/o landmarks [ {1,17} [{2,16} [ {3,15} [ {4,14} [ {5.13} [ {6,12} [ {7,11}
Sensitivity(%) | 90.67 | 90.44 | 90.89 | 91.00 | 90.56 | 90.56 | 90.44
Specificity(%) | 92.00 | 92.22 | 93.67 | 93.11 | 92.44 | 92.44 | 93.33
Accuracy(%) | 91.33 | 91.33 | 92.27 | 92.05 | 91.50 | 91.50 | 91.89

Accuracy
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Fig. 10. The average AF detection accuracy on each ROIL

sequences. We can feed the sequences into an LSTM-based
deep network to predict the final results. The deep architecture
is presented in Fig. 11. It packages up three LSTM layers
with 256 hidden neurons to form a stacked LSTM, which is
followed by one fully-connected layer with an ReLU activation
and one fully-connected layer with the sigmoid. The binary
cross entropy is utilized as the loss function. As discussed,
the pulse rhythms are extracted by three different methods on
21 ROIs. Therefore, we can obtain a 63-dimensional feature
from one frame to describe the pulse status and consider it as a
time-based sequence for the entire video. We feed the sequence
into the LSTM and predict the category of a healthy individual
or an AF patient. We utilize the same training/testing protocols
as the experiments in Section V-C. We employ PyTorch for
implementation and use Adam as the optimizer. The batch size
is set to 64. The learning rate starts from 0.001 and is divided
by 10 after 20 epochs until the loss is steady. The average
sensitivity, specificity and accuracy results of the LSTM-based
method are 71.12%, 71.55% and 71.34%, respectively. The
performance is inferior to the quantitative indicators of the

compared approaches in Table II. One reason might be that
noisy samples exist in the training set, which induces bias since
the deep network has a superior capability to fit the training
data. The small scale of the dataset also limits the learning
capacity of the deep network.
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Fig. 11. The architecture of the compared deep network.

H. Performance on the live streaming videos

Previously, we considered each 30-second video clip as the
testing sample while obtaining the experimental results with
the proposed method. In this subsection, we further evaluate
the AF detection performance on live streaming videos. To
achieve this objective, we maintain the same training protocol
to learn the projection matrix P, but consistently evaluate
the testing video every 5 s during playing. The experimental
results are presented in Fig. 12. As shown in the figure,
the AF detection results become more stable along with the
increase in the video length. The performance of the average
accuracy tends to be improved from 56.28% to 92.56% during
the playing of the whole video clip. The experiment also
demonstrates that it is important to employ face videos with
enough length to achieve the AF detection task.

1. Parameter Sensitivity Analysis

In this subsection, we study the robustness of important
parameters in the proposed method, i.e., the dimension m of
the embedding space, the regularization parameters « and f.
We evaluate the sensitivity of parameters by analyzing the
average accuracy on the 10-fold experiments. As shown in
Section V-A, the optimal values for parameters are set to m =
490, « = 0.1 and B = 80, respectively.

Fig. 13 presents the results on the OBF database with the
variation of parameter m. As shown in Fig. 13(a), the label
of the x-axis represents the dimension of the low-dimensional
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space, and the y-axis denotes the accuracy with respect to dif-
ferent dimensions. We can observe that the proposed method
obtains the best performance when the parameter m is around
490. When the dimension is too high, the discriminative
feature contains considerable redundancy and noise, which
can cause the decrease of accuracy for AF detection. When
the dimension is too low, we cannot obtain enough discrim-
inative features to describe the characteristics of AF. Thus,
the performance of AF detection will drop dramatically. The
proposed algorithm achieves stable results when parameter m
varies within a certain range. The experimental results show
that the proposed algorithm is insensitive to parameter m.

Next, we present the result of AF detection accuracy with
the variation of parameter «. As discussed in Section III-B,
parameter « automatically controls the number of adaptive
neighbors in the construction of the local similarity graph.
For each training sample, a small value of a enforces it to
be connected by less neighbors in the graph, while a large
value of o assigns more neighbors with nonzero weights. The
experimental results are shown in Fig. 13(b). The proposed
method obtains the highest accuracy when parameter « is set
to 0.1. However, we can also obtain reasonable performance
with other selections of «, which shows that the result is
not sensitive to the parameter. To further demonstrate the
efficiency for the strategy of adaptively adjusting the local
similarity graph, we revise the proposed method with a fixed

TABLE V
THE COMPARISON OF AF DETECTION RESULTS FOR UTILIZING THE FIXED
SIMILARITY GRAPH AND THE ADAPTIVE STRATEGY.

Graph Sensitivity(%)  Specificity(%)  Accuracy(%)
Fixed 90.78 92.89 91.83
Adaptive 91.00 94.11 92.56

similarity graph as the initialization in Eq. (4) for comparison.
The experimental results are shown in Table V. The proposed
method achieves an improvement of 0.73% in accuracy, which
illustrates the advantage in the usage of the adaptive similarity
graph.

We further investigate the effect of parameter 5 on the
AF detection accuracy. The results are shown in Fig. 13(c).
The regularization parameter 5 determines the row sparsity
property for the projection matrix P. A large value of [
induces more rows in matrix P to be filled with elements
of all zeros, which means that more HRV features will be
considered as redundant dimensions and eliminated in the
feature embedding procedure. Combining the requirement of
discarding redundant features and reserving discriminative
features, we should determine the value of 3 as a moderate
value for practical applications. According to the experimental
results, the proposed method obtains superior performance
when the value of parameter § is around 80. We also observe
that the experimental results remain stable during the variation
in parameter J within a large range. It indicates that the feature
selection term is efficient in improving the performance of the
proposed AF detection approach.

J. Discussion

To further present the advantage of the proposed approach,
we compare the accuracy of AF detection with or without the
proposed feature fusion and selection procedure. The results
for all the 10 trials are shown in Fig. 14, which indicate
that the feature fusion and selection procedure consistently
helps to improve the performance of the AF detection task.
Once the projection matrix P is obtained, we can observe
that some rows of matrix P are filled with elements of all
zeros. It means that the corresponding redundant features will
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Fig. 14. Comparison for the advantage of feature fusion and selection.
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Fig. 15. Discussion about the importance of the following attributes in the
AF detection. (a) ROIs. (b) Pulse extraction methods.

be ignored in the feature fusion and selection procedure. In
the proposed method, we capture HRV pulse signals from 21
ROIs by three different pulse extraction methods. Thus, we
want to further investigate the importance of these attributes
(i.e., various ROIs and pulse extraction algorithms) in the AF
detection task. We utilize the property of projection matrix
P to further illustrate this problem. For each attribute, we
count the number of selected features according to P and
calculate the corresponding ratio to represent the importance.
The average results of all the experiments are shown in
Fig. 15. For example, each ROI completely corresponds to 30-
dimensional HRV features that are extracted from three pulse
signals. The result in Fig. 15(a) shows that 89.33% of features
from ROI 1 are selected to construct the discriminative feature,
which is much higher than the ratio of 63.33% from ROI 21.
According to Fig. 15, we can obtain the following conclusions:

e The ROIs with a larger area are more suitable for
extracting pulse signals in AF detection since such ROIs are
less sensitive to the influence of misalignment and noise.

e The pulse extraction algorithms [13] [14] exhibit superior
ability compared with the method [12]. Similar experimental
results are also demonstrated in Table II.

In the above sections, we have shown many experimental
results and discussions to analyze the performance of the
proposed algorithm. Since this paper presents a preliminary
study to achieve AF detection using a learning-based method
by fusing multiple subtle changes, there are still some open
issues that could be improved to promote the study. We list
three points to facilitate future work as follows:

e We conduct the experiments on the OBF dataset to
evaluate the performance of AF detection. We also change
the recording conditions (e.g., different cameras, lighting
conditions and recording distances) to verify the robustness.
It is expected that more challenging datasets under various
environments will be collected to promote the development of
AF detection.

e In the work, we mainly aim to extract and refine discrim-
inative features from multiple subtle signals for AF detection.
It is also expected that a more sophisticated classifier will be
designed to further improve the performance.

e It is also desirable to analyze subtle facial changes for
performing micro-expression recognition and lie detection in
the future.

VI. CONCLUSION

In this paper, we aim to perform an innovative study that
exploits the capability of AF detection by fusing specific char-
acteristics in human face videos. Recently, the development
of the video-extracted pulse extraction approach is ongoing
in a preliminary stage, which cannot measure cardiac activity
as accurately as ECG signals do. To improve this problem,
the proposed method divides the whole face into multiple
ROIs and extracts pulse rhythms by various methods from
each ROI. We further combine the HRV features in multiple
pulse rhythms by conducting a robust feature fusion method
that simultaneously eliminates the influence of outliers and
enhances the discriminability between healthy/AF samples.
The experimental results illustrate that the proposed method
produces superior results in comparison with other baselines.
Overall, we demonstrate the possibility of detecting AF risk
from remote face videos, which is a promising research topic
in real-world applications. In the future, it is also anticipated
that other diseases associated with arrhythmia can be similarly
diagnosed.
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