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Abstract—Integrating the multitude of emerging internet of
things (IoT) applications with diverse requirements in beyond
fifth generation (B5G) networks necessitates the coexistence of
enhanced mobile broadband (eMBB) and ultra-reliable low-
latency communication (URLLC) services. However, bandwidth
limited and congested sub-6GHz bands are incapable of fulfilling
this coexistence. In this paper, we consider a reconfigurable
intelligent surface (RIS)-aided wideband terahertz (THz) com-
munication system to this end. In specific, we formulate a
resource management problem, aiming at jointly optimizing the
reflection coefficient of the RIS elements and the transmit power
of the base station, as well as the wideband THz resource block
allocation. To solve this problem, we adopt a supervised learning
approach relying on optimization, deep learning and ensemble
learning methods. Simulation results show that for an RIS of
size 11×11, up to 49% spectral efficiency gain is achieved for
the eMBB service compared to the counterparts, while ensuring
the reliability and latency requirements of the URLLC service.
Further, the ensemble learning model can perform real-time
resource management at the expense of up to 1% performance
loss, compared to the optimization approach.

Index Terms—Internet of things (IoT), enhanced mobile
broadband (eMBB), ultra-reliable low latency communication
(URLLC), reconfigurable intelligent surface (RIS), Terahertz
(THz) communication, supervised learning approach.

I. INTRODUCTION

Towards supporting a variety of internet of things (IoT)
applications with diverse performance requirements ranging
from ultra-reliable and extremely low end-to-end (E2E) delay
to a high data rate transmission, service-based radio resource
management is becoming more and more critical [1]. In this re-
gard, coexisting the enhanced mobile broadband (eMBB) and
ultra-reliable low-latency communication (URLLC) services,
turns out to be indispensable in next generation of wireless
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networks. However, supporting high data rates for the eMBB
service as well as ultra reliability and latency requirements for
the URLLC service brings about a fundamental challenge for
the conventional in-use sub-6GHz bands.

Recently, [2]–[8] have investigated this coexistence problem
and presented resource allocation frameworks to simultane-
ously support eMBB and URLLC services using the con-
ventional sub-6GHz, i.e., radio-frequency (RF) bands, with a
fixed frame structure, where the duration of each time slot is
0.5 ms [9]. This frame structure cannot meet an IoT-driven
URLLC service with an E2E delay of 1 ms [9]. Further,
the optimization-driven approaches adopted in [2]–[8] for this
coexistence is computationally expensive and results in sig-
nificant delay, which in turn negatively impact the E2E delay
requirement of the URLLC service. In this paper, we overcome
the aforementioned issues by considering wideband Terahertz
(THz) transmissions as well as a supervised learning-based
resource management framework.

The THz spectrum enjoys large vacant bandwidths and is
a potential substitute for bandwidth-limited and interference-
prone RF bands to support the IoT-driven URLLC and eMBB
services. Unlike the conventional RF bands employed in
[2]–[8], the THz channels are characterized by a dynamic
frame structure [10], which results in a shorter transmission
time [11]. Due to significant signal attenuation however, the
THz communication is capable of providing a short coverage
only. In recent years, large reconfigurable intelligent surfaces
(RISs) have been investigated to overcome this limitation [12].

From the complexity perspective further, the computational
burden imposed by conventional optimization-driven resource
allocation frameworks in [2]–[8] makes them ill-suited for co-
existing the services. Alternatively, learning-aided techniques
can offer low-complexity solutions. In this regard, the authors
of [13]–[15] have recently adopted a deep reinforcement
learning (DRL) approach as a real-time strategy to this end.
Despite being a computationally efficient solution, the DRL
strategy is however highly prone to the scalability challenge
and encounters a non-trivial performance loss owing to lack
of generalization in large-scale environments.

The existing works on coexistence of eMBB and URLLC
services, i.e., [2]–[8] and [13]–[15] therefore are limited to
conventional sub-6GHz bands and are incapable of satisfying
the URLLC and eMBB service requirements. Additionally, the
aforementioned works use either high-complexity optimization
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methods [2]–[8], or non-generalizable DRL methods [13]–
[15] to this end. Hence, we propose a comprehensive resource
allocation framework in this paper based on a RIS-aided THz
communication as well as a supervised learning approach in
order to efficiently support this coexistence.

The main contributions of this paper are as follows:
• We propose an RIS-aided THz communication system to

support the coexistence of URLLC and eMBB services.
To do so, a puncturing approach is adopted in favour of
the URLLC service, whereas the wideband THz resource
blocks (RBs) for the eMBB service are allocated based
on a non-orthogonal multiple access (NOMA) manner.

• We formulate a resource management problem for jointly
optimizing the key system parameters including the RIS
reflection coefficients, the base station (BS) transmit
power and the wideband THz RBs, while ensuring
the reliability and the transmission/queuing latency for
URLLC users, as well as the quality of service (QoS) for
eMBB users. Since the resource management optimiza-
tion problem is non-convex and extremely complicated to
solve, a supervised learning approach is devised relying
on optimization, deep learning, and ensemble learning.
Specifically, different from [4], where the authors propose
an optimization-driven method for coexisting the eMBB
and URLLC services in sbu-6GHz band, we investigate
the problem for wideband THz band by using a super-
vised learning mechanism.

• We use an alternative decomposition technique to de-
compose the joint problem and optimize the key system
parameters. By invoking a quadratic transformation, we
reformulate the power control and RIS reflection de-
sign sub-problems into convex problems of minimizing
the mean square error (MMSE). Later, by leveraging
the relaxation technique and incorporating binary-forcing
constraints, we efficiently solve the RB allocation sub-
problem. We prove that the proposed alternative decom-
position policy converges to a sub-optimal solution for
the joint optimization problem.

• After optimizing the system parameters via the alternative
decomposition technique, we train a long short term
memory (LSTM) [16] through a Levenberg-Marquardt
policy [17] for tracing and predicting the key system
parameters in future. Based on an interpolation between
the Gauss-Newton and gradient descent method for mini-
mizing the squared errors, the Levenberg-Marquardt pol-
icy precisely determines the weights and biases in the
LSTM. Meanwhile, we fine-tune the training procedure
by optimizing the LSTM learning rate hyperparameter
using a Bayesian optimizer [20]. As a result, fast con-
vergence and limited prediction errors are observed. By
sequentially accommodating multiple LSTMs, we finally
form an ensemble model, called bootstrap aggregation
[21], that improves the precision of a single LSTM.

• Simulations reveal that the proposed alternative decom-
position solution achieves up to 49% eMBB spectral
efficiency (SE) gain over the DRL-based counterpart
[15] for coexisting eMBB and URLLC services. Besides,

the fine-tuned LSTM performs a real-time prediction of
the key system parameters in future, converges within
limited training epochs, exhibits negligible prediction
error, and achieves up to 34% eMBB SE gain over the
DRL-based scheme [15]. Further, the proposed ensemble
model not only exhibits the same complexity order of
training a single LSTM, but also improves the achievable
spectral efficiency for eMBB services over the DRL-
based strategy [15] by as much as 48%.

The remainder of this paper is organized as follows: Sec-
tion II describes the system setup, the problem statement
and the solution methodology. We investigate the alternative
decomposition policy in Section III. In Section IV, the details
related to training the LSTM, its fine-tuning procedure and
the ensemble learning technique are elaborated. Section V
provides a comprehensive complexity analysis of the proposed
solution approach. The simulation results and conclusions are
presented in Sections VI and VII, respectively.

II. SYSTEM MODEL, ASSUMPTIONS, AND PROBLEM
FORMULATION

A. Network Structure
Consider a BS equipped with Nt antennas to serve a set
K of K = {1, ..., |K|} eMBB users, as well as a set U of
U = {1, ..., |U|} URLLC users (called teleoperators from now
on) in a downlink wideband THz communication over a set
S of S = {1, 2, ...|S|} RBs. Due to the short-range coverage
of THz transmissions, the communicating network is assisted
by an RIS with M passive elements and a controller module
to reconfigure the reflection coefficients of its elements. The
channel state information (CSI) is assumed to be available
at both the BS and the RIS [16]. We also assume that the
RIS controller acquires all the CSI information during the
channel estimation phase. If the CSI is partially available, our
results will serve as theoretical performance upper-bound for
the considered system. For more practical scenarios, refer to
[18], [19] on effective channel estimation of both direct and re-
flecting channels in a RIS-aided communication environment.
We consider Ts LTE time slots denoted by Ts = {1, 2, ..., Ts}
to support the services, each with a length ∆ (divided into F
mini-slots each with a duration of δ).

B. Channel Model
We denote the channel matrix from the BS to the RIS

over the RB s by G[s] ∈ CM×Nt . For a clustered ray-based
wideband THz channel with Rician fading1, according to the
well-known Saleh-Valenzuela geometric model [22], G[s] is
given by

G[s] =

Dsamp−1∑
d=0

N
{1}
cl∑
l=1

N{1}ray∑
q=1

αl,qδ(dTsamp − τl,q) (1)

aRIS

(
φl,qRIS[s]

)
aHBS

(
φl,qBS[s]

)
e−j2πd

s
S ,

1Note that this distribution considers both line-of-sight (LoS) and non-
line-of-sight (NLoS) links, where the NLoS components conventionally use
Rayleigh distribution, while the LoS components are spawned by uniform lin-
ear array (ULA). Since the NLoS links are not dominant in the high frequency
bands such as the THz bands, we only consider the LoS components.
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with N{1}cl clusters, N{1}ray rays and the complex path gain α.
Besides, in (1), j denotes the imaginary unit, δ is the band-
limited pulse-shaping filter, Tsamp is the cycle prefix length
and Dsamp is the sampling time. Moreover, for a typical user,
aBS (φ) ∈ CN×1 and aRIS (φ) ∈ CM×1 are the antenna array
response vectors for ULA at the BS and the RIS, respectively,
as given by

aBS(φBS) =
1√
N

[
1, e−j2πφ

l,q[s], ..., e−j2π(N−1)φl,q [s]

]
, (2)

and

aRIS(φRIS) =
1√
M

[
1, e−j2πφ

l,q [s], ..., e−j2π(M−1)φl,q [s]

]
, (3)

wherein φBS and φRIS are the spatial angle-of-departure (AoD)
directions for the BS and the RIS, defined as φBS = φRIS =
b
λ[s] , with the antenna/element spacing b and the wavelength
of the RB s, denoted by λ[s].

We also denote by hd,k[s] ∈ CNt×1 and hr,k[s] ∈ CM×1

the direct channel from the BS to the eMBB user k and the
reflecting channel from the RIS to this user, both over the RB
s, respectively, as given by

hd,k[s] = (4)

Dsamp−1∑
d=0

N
{2}
cl∑
l=1

N
{2}
ray∑
u=1

αl,uδ(dTsamp − τl,u)aBS

(
φ̄l,uBS,k[s]

)
e−j2πd

s
S ,

and

hr,k[s] = (5)

Dsamp−1∑
d=0

N
{3}
cl∑
l=1

N
{3}
ray∑
u=1

αl,uδ(dTsamp − τl,u)aRIS

(
φ̄l,uRIS,k[s]

)
e−j2πd

s
S ,

where N{2}cl (N{2}ray ) indicates the number of clusters (rays in
each cluster) for hd,k, while N{3}cl (N{3}ray ) is the number of
clusters (rays in each cluster) for hr,k. Note that φ̄l,uBS,k[s] and
φ̄l,uRIS,k[s] in (4) and (5), respectively, denote the spatial AoD
of the BS and the RIS towards user k. Similarly, for URLLC
service, the direct channel from the BS to the uth teleoperator
and the reflecting channel from the RIS to this user, over RB
s within the f th mini-slot are denoted by h̃

f

d,u[s] and h̃
f

r,u[s],
respectively. Considering that LoS propagation is dominant in
the THz band, for the BS-to-RIS, RIS-to-user, and BS-to-user
links, channel fading distribution only for LoS propagation is
considered.

C. RIS Configuration

For designing optimal reflection coefficient for an RIS with
M elements, coherent combining at the user yields a high array
gain proportional to M2, which is a major motivation for RIS-
assisted communications [23]. Let Θ =diag(θ1, θ2, ..., θM ) be
the diagonal RIS reflection coefficient matrix, where θm =
βme

jϕm , with βm ∈ [0, 1] and ϕm ∈ [0, 2π] representing
the amplitude and the phase of the m-th RIS reflecting
element, respectively, and j is the imaginary unit. For a more
realistic and practical modelling of the RIS, the amplitude

coefficient is a function of the phase shift and the reflection
coefficient can be stated as [26]: θm = βm(ϕm)ejϕm , where

βm(ϕm) = (1 − βmin)

(
sin(ϕm − φ) + 1

2

)k
+ βmin). Mean-

while, βmin ≥ 0 is the minimum amplitude, φ ≥ 0 is the
horizontal distance between −π

2
and βmin, and k ≥ 0 controls

the steepness of the function curve. Here, βmin, φ and k are
constants related to the specific circuit implementation. The
feasible set for reflection coefficient of the RIS is given as
Q =∆ {θm, |θm| ≤ 1} ∀m ∈M , which satisfies [25]

C1: |θm| ≤ 1,∀m. (6)

Note that more realistic models for the RIS architecture such
as [26], [27] can also be used in our system model and may
further enhance the results of this study.

D. URLLC Service

Let us define the binary variable ρ̃fu[s], which is 1 if RB
s is allocated to the uth teleoperator within the f th mini-slot
and zero, otherwise. To guarantee the feasibility of URLLC
service, each user must be allocated at least one RB; therefore,

C2:
∑
s∈S

∑
f∈F

ρ̃fu[s] ≥ 1,∀u ∈ U . (7)

We adopt a puncturing method to multiplex the services
on a shared RB. By doing so, one can guarantee that the
URLLC transmission will not interfere with the eMBB trans-
missions [4]. The received signal at uth URLLC user within
the f th mini-slot of RB s is thus represented by

ỹfu[s] =
(
h̃
f

d,u[s] + G[s]Θh̃
f

r,u[s]
)

x̃fu[s] + ñfu[s], (8)

where x̃fu[s] = w̃f
u[s]

√
p̃fu[s]c̃fu[s] is the transmitted signal at

the BS with c̃fu[s] being the transmit data symbol, w̃f
u[s] ∈

CM×1 being the corresponding transmit beamforming vector
(‖ w̃f

u[s] ‖2= 1) and ñfu[s] being the unit variance complex
additive white Gaussian noise (AWGN), all for the uth tele-
operator within the f th mini-slot of RB s. Accordingly, the
received signal-to-noise-ratio (SNR) at URLLC user u within
the f th mini-slot of RB s can be expressed as

γ̃fu [s] =
∣∣∣ (h̃fd,u[s] + G[s]Θh̃

f

r,u[s]
)
w̃f
u[s]
∣∣∣2p̃fu[s]σ̃−2. (9)

With respect to the short blocklength regime of the URLLC
transmissions, the achievable rate for the uth URLLC user is
calculated as R̃u =

∑
s∈S

∑
f∈F

ρ̃fu[s]R̃fu[s] [4], in which

R̃fu[s] =
δ

ln 2

(
B0 log2(1 + γ̃fu [s])−

√
Γfu[s]

Ωfu[s]
Q−1(εfu[s])

)
.

(10)
In (10), δ indicates the duration of a mini-slot, εfu[s] is the
decoding error probability, Ωfu[s] denotes the blocklength of
the channel code as Ωfu[s] = B0δ, Q−1(.) is the inverse
of the Gaussian Q-function and Γfu[s] represents the channel
dispersion, defined as Γfu[s] = 1− (1 + γ̃fu [s])−2.
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By simple manipulations, one can reformulate (10) in the
following steps:

˜
Rfu[s] ln 2

δ
=

(
B0 log2(1 + γ̃fu [s])−

√
Γfu[s]

Ωfu[s]
Q−1(εfu[s])

)
,

(11)√
Γfu[s]

Ωfu[s]
Q−1(εfu[s]) =

(
B0 log2(1 + γ̃fu [s])−

˜
Rfu[s] ln 2

δ

)
,

(12)

Q−1(εfu[s]) =

√
Ωfu[s]

Γfu[s]

(
B0 log2(1 + γ̃fu [s])−

˜
Rfu[s] ln 2

δ

)
,

(13)
which therefore yields

εfu[s] = Q

[√
Ωfu[s]

Γfu[s]

(
B0 log2(1 + γ̃fu [s])− R̃fu[s] ln 2

δ

)]
.

(14)

For a typical URLLC user, the QoS constraint needs to be
satisfied as follows [4]:

C3: εfu[s]=Q

[√
Ωfu[s]

Γfu[s]

(
B0 log2(1 + γ̃fu [s])− R̃fu[s] ln 2

δ

)]
≤ ε̃max

u .

(15)

Besides, the reliability of the URLLC users can be assured
as follows:

C4: Pr
(∑
u∈U

ρ̃fu[s] ≤ U
)
≤ ε̃max

u ,∀f ∈ F , s ∈ S. (16)

The uth URLLC user experiences a downlink transmission
delay, denoted by DT

u, as well as a queuing delay, denoted
by DQ

u . The maximum tolerable one-way delay for the uth
URLLC user, denoted by Dmax

u is required to be considered
as follows:

C5: DT
u +DQ

u ≤ Dmax
u ,∀u ∈ U . (17)

wherein DT
u and DQ

u are constrained on their own. The
downlink transmission delay DT

u is constrained to

C6: DT
u ≤

Cu

R̃u
,∀u ∈ U , (18)

where Cu denotes the total transmitted bits per packet for
the uth user. The aggregation of arrival bit rate for the
teleoperators can be modeled as a Poisson process [28] and
thus the effective capacity of the uth user is obtained as:

ECu = Λ̃u
(eθ̃u − 1)

θ̃u
,∀u ∈ U , (19)

with θ̃u denoting the statistical QoS exponent related to user
u. A larger θ̃u obviously represents a more stringent QoS
requirement, whereas a smaller θ̃u implies a looser QoS
requirement. Moreover, Λ̃u in (19) is the number of bits arrived
in time unit at the BS queue for the uth user and defined as
Λ̃u = R̃u, ∀u ∈ U . The queuing delay violation probability
for the URLLC service must be ultra low and given by

ε̃Qu = Pr{DQ
u > DQ,max

u } = η̃e−θ̃uECuD
Q
u ,∀u ∈ U , (20)

where DQ,max
u is the maximum queuing delay, η̃ is the non-

empty buffer probability in the downlink and δ̃ is the violation
probability. By substituting (19), the violation probability in
(20) can be simplified as

e−θ̃uECuD
Q
u = e

−θ̃uΛu
(eθ̃u−1)

θ̃u
DQ
u = e−Λ̃u(eθ̃u−1)DQ

u ≤ δ̃,
(21)

which implies

R̃u ≥
ln(1/δ̃)

(eθ̃u − 1)DQ
u

,∀u ∈ U . (22)

Accordingly, the queuing delay is constrained to

C7: DQ
u ≤

ln(1/δ̃)

(eθ̃u − 1)R̃u
,∀u ∈ U . (23)

E. eMBB Service
By adopting the puncturing approach for multiplexing

URLLC and eMBB services, the inter-service interference
would be eliminated. Thus, the RBs are often occupied in
favour of the eMBB requests owing to the bursty nature of
the URLLC requests. Inspired by this fact, we adopt a non-
orthogonal RB allocation approach within the eMBB service
for a higher achievable data rate [30]. However, superposition
of multiple eMBB users over a specific RB, induces a non-
trivial complexity for the signal decoding process. Therefore,
in order to reduce the decoding complexity, the number of
multiplexed eMBB users over a specific RB is constrained as
follows:

C8:
∑
k∈K

ρk[s] ≤ Nmax,∀s ∈ S. (24)

Also, each eMBB user needs to get at least one RB as follows:

C9:
∑
s∈S

ρk[s] ≥ 1,∀k ∈ K. (25)

Furthermore, the eMBB users should be appropriately ordered
in superposition to take the advantage of the NOMA. Assume
that Υ(k) indicates the decoding order for the eMBB user k.
This user would be corresponded to the k′th decoded signal,
provided that Υ(k) = k′. In this sense, the received signal at
the eMBB user k over the RB s is represented by

yk[s] = (hd,k[s] + G[s]Θhr,k[s]) xk[s]+ (26)∑
i∈K,i6=k,

Υ(k)<Υ(i)

(
[hd,k[s]]H + G[s]Θhr,k[s]

)
xi[s] + nk[s],

where xk[s] = wk[s]
√
pk[s]ck[s] is the transmitted signal at

the BS, in which ck[s] denotes the transmitted data symbol,
wk[s] ∈ CM×1 is the corresponding transmit beamforming
vector with ||wk[s]||2 = 1 and nk[s] represents the complex
unit variance AWGN, all for the kth eMBB user over the RB
s. The received signal-to-interference-plus-noise ratio (SINR)
at the eMBB user k over the RB s, would be accordingly
expressed as

γk[s]=

∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]
∣∣∣2pk[s]∑

i∈K,i 6=k,
Υ(k)<Υ(i)

∣∣∣([hd,k[s]]H+G[s]Θhr,k[s])wk[s]
∣∣∣2ρi[s]pi[s]+1

.

(27)
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Fig. 1: The schematic of the proposed resource management
framework with optimization, followed by deep learning and
ensemble learning.

Therefore, the achievable SE for the eMBB user k, ac-
cording to the Shannon-Hartely theorem, is given by
Rk

(
P ,ρ, ρ̃,Θ

)
=

∑
s∈S ρk[s] log2(1 + γk[s])∀k ∈

K. Under the assumption of puncturing approach nev-
ertheless, the total achievable SE for the eMBB users
is partially lost due to coexistence of URLLC re-
quests. For the typical eMBB user k, the lost rate
is given by RLost

k

(
P ,ρ, ρ̃,Θ

)
=

∑
s∈S ρk[s] log2(1 +

γk[s])
∑
u∈U

∑
f∈F I(ρk[s] = ρ̃fu[s]),∀k ∈ K, wherein I(.)

is the indicator function [4]. Therefore, the actual achievable
SE of the eMBB user k is obtained as RAct

k

(
P ,ρ, ρ̃,Θ

)
=

Rk

(
P ,ρ, ρ̃,Θ

)
−RLost

k

(
P ,ρ, ρ̃,Θ

)
, which needs to satisfy

a minimum threshold as

C10: RAct
k

(
P ,ρ, ρ̃,Θ

)
≥ Rmin

k ,∀k ∈ K. (28)

Last but not least, the BS respects a power budget limitation
constraint as follows:

C11:
∑
s∈S

∑
f∈F

∑
k∈K

∑
u∈U

(
ρk[s]wk[s]pk[s]+ρ̃fu[s]w̃f

u[s]p̃fu[s]
)
≤Pmax.

(29)

F. Problem Statement

The binary constraints related to the RB allocation variables
for the eMBB and URLLC users can be stated as follows:

C12: ρk[s] ∈ {0, 1},∀k ∈ K, s ∈ S, and (30)

C13: ρ̃fu[s] ∈ {0, 1},∀u ∈ U , s ∈ S, f ∈ F . (31)

We aim at maximizing the actual achievable SE of the
eMBB users via optimizing the reflection coefficients in RIS
elements Θ, the RB allocation ρ̄ = {ρ, ρ̃} and the BS transmit

power2 P = {p} as the decision variables by respecting the
constraints C1−C13. Formally, this problem can be stated as
(32) at the top of the next page.

In this problem, the objective function is non-convex with
respect to Θ, ρ̄ and P . The constraints C1 and C2 are linear
with respect to Θ and ρ̄, respectively. However, C3 and C4 are
non-linear and non-deterministic, respectively. Moreover, C5,
C6 and C7 are a linear function of ρ̃ and ρ̄, but a non-linear
function of Θ, and are non-convex constraints. With respect
to ρ̄, the constraints C8 and C9 are linear, whereas C10 is a
non-convex constraint with respect to Θ, ρ̄ and P . Finally,
the constraint C11 is linear with respect to ρ̄ and P , while
C12 and C13 induce non-convexity due to their integer form.
All in all, the optimization problem (32) is non-convex due
to its objective function and the constraints C3, C4, C5, C6,
C7, C10, C12, and C13. In particular, the joint optimization
problem (32) is in mixed integer and non-linear programming
(MINLP) form and belongs to the NP-hard class.

G. Proposed Solution Methodology

We propose a supervised learning solution policy as de-
picted in Fig. 1 for the optimization problem (32) by leverag-
ing optimization, deep learning, and ensemble learning. The
computations for optimization and deep learning are carried
out at the BS. First, an optimization policy is proposed
on the basis of alternative decomposition method, so as to
address the joint problem (32) in an iterative fashion3. Next,
leveraging the optimized key system parameters, we train a
LSTM by the Levenberg-Marquardt policy and fine-tune its
learning rate hyperparameter via the Bayesian optimizer. In
this way, the trained LSTM will be able to predict the key
system parameters in future in real-time behaviour4. Finally,
we integrate multiple LSTMs in an ensembling model that
leads to a better accuracy of prediction.

III. OPTIMIZATION POLICY

In this section, the joint optimization problem (32) is sub-
optimally solved via an alternative decomposition framework.
By consecutively solving the sub-problems iteratively, the joint
optimization problem (32) converges to a sub-optimal solution.

2The transmit power of the BS to the URLLC users, i.e., p̃, is set to its
maximum value, denoted by p̃max, where p̃max ≤ Pmax following [4].
Note that owing to adopting the puncturing approach for multiplexing, there
is no inter-service interference and hence, the maximum value of p̃ does
not detrimentally contribute to the objective function in (32). Additionally,
according to (10), the URLLC users will be better served, with more power
budget p̃ and no URLLC intra-service interference. This in turn facilitates to
meet the constraint C3.

3The time-series data is captured by recording the variations of the wireless
key system parameters for prior channel realization of the wireless system.
The results of the optimization phase are not valid and reliable, before the
convergence is reached. Therefore, the time-series data for training the LSTM
is obtained from the values at the convergence point of the optimization phase.

4Note that the neural network (i.e., the LSTM) is trained only one time
in an offline manner. When the wireless network dynamics change, the well-
trained LSTM is capable of predicting the key wireless system parameters
(P , ρ̄, θ) in an online manner, without retraining.
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max
{Θ,ρ̄,P }

K∑
k=1

RAct
k

(
P ,ρ, ρ̃,Θ

)
(32a)

s.t. C1: 0 ≤ |θm| ≤ 1,∀m, (32b)

C2:
∑
s∈S

∑
f∈F

ρ̃fu[s] ≥ 1,∀u ∈ U , (32c)

C3: Q
[√

Ωfu[s]

Γfu[s]

(
B0 log2(1 + γ̃fu [s])− R̃fu[s] ln 2

δ

)]
≤ ε̃max

u , (32d)

C4: Pr
(∑
u∈U

ρfu[s] ≤ U
)
≤ ε̃max

u ,∀f ∈ F , s ∈ S, (32e)

C5: DT
u +DQ

u ≤ Dmax
u ,∀u ∈ U , (32f)

C6: DT
u ≤

Cu

R̃u
, u ∈ U , (32g)

C7: DQ
u ≤

ln(1/δ̃)

(eθ̃u − 1)R̃u
,∀u ∈ U , (32h)

C8:
∑
k∈K

ρk[s] ≤ Nmax,∀s ∈ S, (32i)

C9:
∑
s∈S

ρk[s] ≥ 1,∀k ∈ K, (32j)

C10: RAct
k

(
P ,ρ, ρ̃,Θ

)
≥ Rmin

k ,∀k ∈ K, (32k)

C11:
∑
s∈S

∑
f∈F

∑
k∈K

∑
u∈U

(
ρk[s]wk[s]pk[s]+ρ̃fu[s]w̃f

u[s]p̃fu[s]
)
≤Pmax, (32l)

C12: ρk[s] ∈ {0, 1},∀k ∈ K, s ∈ S, (32m)

C13: ρ̃fu[s] ∈ {0, 1},∀k ∈ K, s ∈ S, f ∈ F . (32n)

A. Power Control Sub-problem

Given the decision variables Θ(t−1), ρ(t−1) and ρ̃(t−1) in
(32) at (t−1)th iteration, we now optimize the transmit power
of the BS at tth iteration, i.e., P (t). The BS transmit power
control sub-problem for the eMBB users can thus be given as
follows:

max
{P (t)}

K∑
k=1

RAct
k

(
P (t),ρ(t−1), ρ̃(t−1),Θ(t−1)

)
(33a)

s.t. C10: RAct
k

(
P (t),ρ(t−1), ρ̃(t−1),Θ(t−1)

)
≥ Rmin

k , ∀k ∈ K,
(33b)

C11:
∑
s∈S

∑
f∈F

∑
k∈K

∑
u∈U

(
ρk[s]wk[s]pk[s]+ρ̃fu[s]w̃f

u[s]p̃fu[s]
)
≤Pmax,

(33c)

which is still non-convex due to the objective function and the
constraint C10. To solve this sub-problem, let us put (27) in
C10, which results in

(1− Φk)
∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]

∣∣∣2ρk[s]pk[s] (34)

− η
∑

i∈K,i6=k,
Υ(k)<Υ(i)

∣∣∣([hd,k[s]]H+G[s]Θhr,k[s]
)
wk[s]

∣∣∣2ρi[s]pi[s]≥ω,

with η = 2R
min
k /$ − 1, $ = 1 −

∑
f∈F I(ρk[s] = ρ̃fu[s]),

ω = σ2η and Φk is the portion of the lost rate for the eMBB
user k, discussed in the Lemma 1 later. In this sense, the non-
linear constraint C10 can be converted into a linear form and
the sub-problem (33) can be reformulated as

max
{P (t)}

K∑
k=1

RAct
k

(
P (t),ρ(t−1), ρ̃(t−1),Θ(t−1)

)
(35a)

s.t. C10: (1− Φk)
∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]

∣∣∣2ρk[s]pk[s]

− η
∑

i∈K,i 6=k,
Υ(k)<Υ(i)

∣∣∣([hd,k[s]]H+G[s]Θhr,k[s]
)
wk[s]

∣∣∣2ρi[s]pi[s]
≥ ω,∀k ∈ K, s ∈ S, (35b)

C11:
∑
s∈S

∑
f∈F

∑
k∈K

∑
u∈U

(
ρk[s]wk[s]pk[s]+ρ̃fu[s]w̃f

u[s]p̃fu[s]
)
≤Pmax,

(35c)

which is non-convex due to its objective function. By using the
extension of Sherman-Morrison-Woodbury formula [29] given
as

(A+BCD)
−1

= A−1 −A−1B(I + CDA−1B)−1CDA−1,
(36)
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we have

(1 + γk[s])−1 =1−
∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]

∣∣∣2pk[s](∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]
∣∣∣2pk[s] + ξk[s]

)−1

, (37)

where

ξk[s] =
∑

i∈K,i 6=k,
Υ(k)<Υ(i)

∣∣∣([hd,k[s]]H+G[s]Θhr,k[s]
)
wk[s]

∣∣∣2ρi[s]pi[s] + σ.2

(38)

Since (37) is in a MMSE form, we can formulate it as an
MMSE detection problem to find xk[s] from yk[s] as follows:

cok[s] = arg min
ck[s]

ek[s], (39)

where ek[s] is the mean square error (MSE) and cok[s] is the
optimal value of ck[s] while minimizing the MSE. Besides, the
MSE can be stated as ek[s] = E{|xk[s]− ck[s]yk[s]|2}, where
ck[s] is the channel equalization coefficient. Obviously, based
on MSE, the optimal value of ck[s] (i.e., cok[s]) is obtained
such that the detected signal is as close as possible to the
transmitted signal.

Lemma 1. Let us represent by 0 ≤ Φk < 1, the portion of
lost rate for the kth eMBB user5. The actual achievable rate
for the eMBB user k can be approximated as

RActk = max
ck[s],ak[s]>0

(1− Φk)

(
−ak[s]ek[s]

ln 2
+ log2 ak[s] +

1

ln 2

)
.

(40)

Proof. See Appendix.

Using Lemma 1, the objective function in (35) turns into a
quadratic programming function. Thus, (35) is rewritten as

max
P (t)

S∑
s=1

K∑
k=1

max
ck[s],ak[s]>0

(1− Φk)

(
−ak[s]ek[s]

ln 2
+log2 ak[s]+

1

ln 2

)
s.t. C10,C11. (41a)

Now, by optimizing {ck[s]}, {ak[s]} and {pk[s]}, the problem
in (41) can be addressed in an iterative fashion. In particular,
given the optimal power control solution {p(t−1)

k [s]} at (t −
1)th iteration, the optimal solution of {c(t)k [s]} (according to
Appendix A), at the tth iteration, can be obtained as:

c
(t)
k [s] =

(
(hd,k[s] + G[s]Θhr,k[s])wk[s]ρk[s]

√
p

(t−1)
k [s]

)∗
(∣∣∣(hd,k[s]+G[s]Θhr,k[s])wk[s]

∣∣∣2ρk[s]p
(t−1)
k [s]+ξ

(t−1)
k [s]

)−1

,

where

ξ
(t−1)
k [s] =∑
i∈K,i 6=k,

Υ(k)<Υ(i)

∣∣∣([hd,k[s]]H + G[s]Θhr,k[s]
)
wk[s]

∣∣∣2ρi[s]p(t−1)
i [s] + σ2.

5Note that Φk=1 implies that the actual rate of the eMBB user k is
sacrificed for serving the URLLC services, which makes the system infeasible
according to C10.

The corresponding MMSE, defined in Appendix A, at the tth
iteration, is given by

e
o(t)
k [s]=

1−ρk[s]p
(t−1)
k [s]

∣∣∣(hd,k[s]+G[s]Θhr,k[s])wk[s]
∣∣∣2(∣∣∣(hd,k[s]+G[s]Θhr,k[s])wk[s]

∣∣∣2ρk[s]p
(t−1)
k [s]+ξ

(t−1)
k [s]

) .
(42)

Accordingly,
{
a

(t)
k [s]

}
at the tth iteration is optimized as

a
(t)
k [s] = 1

e
o(t)
k [s]

. Once we have optimized
{
c
(t)
k [s]

}
and{

a
(t)
k [s]

}
at the tth iteration, the sub-problem (41) is refor-

mulated as follows:

min
{P (t)}

S∑
s=1

K∑
k=1

(1− Φk)ak[s]ek[s] (43a)

s.t. C10,C11, (43b)

where

e
(t)
k [s] =

∣∣∣∣1− ck[s] (hd,k[s] + G[s]Θhr,k[s])wk[s]ρk[s]

√
p

(t)
k [s]

∣∣∣∣2
+ |ck[s]|2 ||(hd,k[s] + G[s]Θhr,k[s])wk[s]||22∑
i∈K,i 6=k,

Υ(k)<Υ(i)

ρi[s]p
(t)
i [s] +

∣∣∣c(t)k [s]
∣∣∣2 σ2. (44)

Lemma 2. The sub-problem (43) is convex, the Karush-Kuhn-
Tucker (KKT) conditions hold and the optimal BS transmit
power can be acquired as

p
(t)
k [s]=

a(t)
k,s<

(
c
(t)
k [s] (hd,k[s]+G[s]Θhr,k[s])wk[s]

)
τ

 , (45)

where

τ =
∑

i∈K,i 6=k,
Υ(k)>Υ(i)

a
(t)
k [s]

∣∣∣c(t)k [s]
∣∣∣ ∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]

∣∣∣2

+ λ− µ(t)
k [s]

∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]
∣∣∣2

+
∑

i∈K,i 6=k,
Υ(k)>Υ(i)

µu,nη
∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]

∣∣∣2. (46)

Proof. See Appendix.

B. RB Allocation Sub-problem

So far, the transmit power of the BS at time step t, i.e., P (t)

has been optimized. Given Θ(t−1) from the (t−1)th time step,
we now aim at optimizing ρ̄(t) at time step t. Hence, the RB
allocation sub-problem is written as

max
{ρ̄(t)}

K∑
k=1

RAct
k

(
P (t),ρ(t), ρ̃(t),Θ(t−1)

)
(47a)

s.t. C2− C13, (47b)

which is non-convex due to C3, the probabilistic constraint
C4, as well as the discrete-domain decision variables. In
C3, εfu[s] can be approximately represented as [3] in which

ϕfu[s] = 2R̃
f
u[s]/B0 − 1, κfu[s] =

[
2π
√

22R̃fu[s]/B0 − 1

]−1

,
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εfu[s] = Q

[
log2(1 + γ̃fu [s]) + R̃fu[s]/B0√

Γfu[s](log2 e)
2/Ωfu[s]

]
=


1, γ̃fu [s] ≤ χfu[s]

1
2 − κ

f
u[s]

√
Ωfu[s](γ̃fu [s]− ϕfu[s]), χfu[s] ≤ γ̃fu [s] ≤ξfu [s]

0, ξfu [s] ≤ γ̃fu [s]

, (48)

χfu[s] = ϕfu[s] −
[
2κfu[s]

√
Ωfu[s]

]−1

and ξfu [s] = ϕfu[s] +[
2κfu[s]

√
Ωfu[s]

]−1

. The non-deterministic constraint C4 can

be efficiently transformed into the convex form [4] as∑
u∈U ρ̃

f
u[s]−F−1

U (1−ε̃max
u ) ≥ 0,∀f ∈ F , s ∈ S, where FU is

the cumulative distribution function (CDF) of the random vari-
able U ∼ N (µ̄, σ̄2). By leveraging a time sharing (relaxation)
method, the discrete-domain decision variables in ρ̄ can be
transformed into the continuous-domain form for the ease of
solution, expressed as C12 : ρk[s] ∈ [0, 1],∀k ∈ K, s ∈ S, and
C13 : ρ̃fu[s] ∈ [0, 1],∀u ∈ U , f ∈ F , s ∈ S. However, since
the RB allocation is inherently a binary problem, we apply
the binary-forcing constraints [31] to the sub-problem (47)
to guarantee that the optimized continuous-domain variables
are either 0 or 1, as

∑K
k=1

∑S
s=1

[(
ρk[s]

)
−
(
ρk[s]

)2] ≤ 0,

and
∑U
u=1

∑S
s=1

∑F
f=1

[(
ρ̃fu[s]

)
−
(
ρ̃fu[s]

)2] ≤ 0, which
incorporate a feasible region over the corner critical points,
i.e., {0,1} [32]. Due to coexistence of two decision variables,
i.e., ρk[s] and ρ̃fu[s], the sub-problem (47) is indeed a coupled
(joint) problem. Hence, a decomposition process will be used
to decouple (47) into two distinct sub-problems over ρk[s]
and ρ̃fu[s]. Finally, by applying the penalty successive upper
bound minimization (PSUM) [4], both the sub-problems can
be effectively transformed into the convex form, which is
straightforward to solve through the existing convex optimiza-
tion packages such as CVX [33].

C. Sub-problem for RIS Reflection Coefficient Design

Finally, given the optimized ρ̄(t) and P (t) at the tth itera-
tion, the RIS reflection coefficient design sub-problem can be
formulated as follows:

max
{Θ(t)}

K∑
k=1

RAct
k

(
P (t),ρ(t), ρ̃(t),Θ(t)

)
(49a)

s.t. C1,C3,C6,C7,C10. (49b)

Due to the non-convex objective function and constraints, this
sub-problem is non-convex. We follow the same procedure
applied to the power control sub-problem henceforth. Once
we have addressed the distinct (decoupled) sub-problems (33),
(47), and (49) iteratively, the joint (coupled) optimization prob-
lem (32) is in fact sub-optimally solved. The convergence of
the proposed iterative solution approach is proved in Lemma
3.

Lemma 3. The proposed alternative decomposition-based
procedure converges to a sub-optimal solution of the joint
optimization problem in (32).

Proof. See Appendix.

To reduce the time complexity of the proposed solution,
in what follows, we propose a low-complexity data-driven
deep-learning technique that traces the optimized key system
parameters thus far and anticipates them in future.

IV. DEEP LEARNING AND ENSEMBLE LEARNING POLICY

In this section, we consider T discrete time steps for
capturing the variations in wireless network. In each time step,
we form a historical time-series sequence of the optimized key
system parameters P , ρ̄ and Θ, obtained from the previous
section to be predicted at upcoming time steps.

A. Time-series Forecasting

Advantageous of temporal dynamic behavior and time-
varying nature, artificial neural networks (ANNs) can accu-
rately process the time-series data (i.e., sequences of data at
subsequent time steps). Relaying on this capability, the time-
series ANNs are widely employed for tracking the historical
information and anticipating their future trend. Due to the
dynamic variations in system parameters such as the BS
transmit power, they can be modeled in time-series form and
efficiently predicted at upcoming time-steps in a real-time
manner [32]. Toward this goal, as a powerful time-series ANN,
LSTM is considered in this paper.

B. LSTM

A LSTM network includes multiple LSTM units, each
of which includes an input gate, a forget gate, a memory
cell, a hidden gate, and an output gate. The input gate
at state t6 on one hand, is fed through the historical se-
quences Ξ(1),Ξ(2), ...,Ξ(t − 1), with Ξ = {P , ρ̄,Θ},
whereas the output gate on the other hand anticipates
Ξ̂(t) = {P̂ (t), ̂̄ρ(t), Θ̂(t)}. Let us denote by (Inp,WΞ

Inp

, bInp), (For,WΞ
For, bFor), (Cell,WΞ

Cell, bCell), (Hidd,WHidd
% )

and (Out,WΞ
Out, bOut), the input gate, the forget gate, the

memory cell gate, the hidden gate and the output gate ac-
companied by their corresponding weights and biases, re-
spectively, with % representing the set of LSTM gates, i.e.,
% = {Inp,For, Cell,Out}. The mathematical representation
of the LSTM structure by using the target system parameters
Ξ(t), is expressed as:

Inp(t) = f act
sig

(
WΞ

Inp Ξ(t)+ WHidd
Inp Hidd(t− 1)

+WCell
Inp Cell(t− 1) + bInp

)
,

(50)

6In order to avoid index conflict, it is emphasized that each state of the
deep learning phase corresponds to the convergence point of the optimization
phase.
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For(t) = f act
sig

(
WΞ

For Ξ(t)+ WHidd
For Hidd(t− 1)

+ WCell
For Cell(t− 1)+ bFor

)
,

(51)

Cell(t) = For(t)� Cell(t− 1) + Inp(t)� f act
hyp

(
WΞ

Cell Ξ(t)

+ WHidd
Cell Hidd(t− 1) + bCell

)
,

(52)

Out(t) = f act
sig

(
WΞ

Out Ξ(t)+ WHidd
Out Hidd(t− 1)

+ WCell
Out Cell(t) + bOut

)
, (53)

and

Hidd(t) = Out(t)� f act
peep

(
Cell(t)

)
, (54)

where � denotes the element-wise multiplication and
f act

sig , f
act
hyp, f

act
peep are the Sigmoid, hyperbolic tangent, and

peephole activation functions, respectively. Besides, in (54),
Hidd(t) indicates the hidden vector at time step t and updated
as Hidd(t) = ζ(Hidd(t − 1),Ξ(t), ϑ), wherein ϑ is the
set of LSTM parameters (i.e., weights and biases), while
ζ is a combination of Eqs. (50)-(54). Therefore, the loss
function7 for training the LSTM can be formulated by fLoss =√∑M

i=1 ||Ξi(t)− Ξ̂i(t)||22, with Ξ̂(t) and Ξ(t), representing
the LSTM-forecasted key system parameters and the target key
system parameters, both at time step t, respectively. Among
the key system parameters, P ,Θ are continuous, whereas
ρ̄ and ρ̃ are discrete. Hence, the LSTM output gate for
anticipating P̂ (t) and Θ̂(t) employs a regression layer, while
a classification layer such as a Softmax is employed for
anticipating ̂̄ρ(t)8. In the following subsection, we explain how
the LSTM is trained by optimizing its weights and biases.

C. Levenberg-Marquardt Policy

By invoking Levenrage-Marquardt policy, we optimize the
LSTM parameters (i.e., weights and biases), indicated by
ιLSTM = {(WΞ

Inp, bInp), (WΞ
For, bFor), (WΞ

Cell, bCell), (WΞ
Out

, bOut), (WHidd
% )}. Due to interpolation between the Gauss-

Newton and the gradient descent method, this policy mini-
mizes the squared errors in non-linear problems by means
of a generic curve-fitting. By properly initializing in a trust
region, the policy is able to approach the LSTM parameters’
local minima. The training process aims at optimizing the
LSTM parameters indicated by ιLSTM

∗ and obtaining a curve
℘
(

Ξ̂(t), ιLSTM

)
, so as to minimize the total deviation from

7Consider the root mean square error (RMSE) for instance as the loss
function.

8In fact, due to the existence of four variables with different dimensions
and domains (i.e., continuous and integer) in Ξ, we train four LSTMs
independently, each on a separate variable in Ξ.

the target system parameters Ξ(t). In other words, the optimal
LSTM parameters are obtained as:

ι∗LSTM = arg min
ιLSTM

Dev (ιLSTM) (55)

= arg min
ιLSTM

‖Ξ‖∑
i=1

[
Ξi(t)− ℘

(
Ξ̂i(t), ιLSTM

)]2
.

Since it is complicated to achieve ι∗LSTM according to (55), an
approximation to the curve can be taken into consideration for
the sake of simplicity as follows:

℘
(

Ξ̂i(t), ιLSTM + æ
)

=℘
(

Ξ̂i(t), ιLSTM

)
+æ

∂℘
(

Ξ̂i(t), ιLSTM+æ
)

∂ιLSTM
,

(56)

with shifting element æ. Regarding this approximation, the
sum of squared deviations in (55) is given by

Dev (ιLSTM) = (57)

‖Ξ‖∑
i=1

Ξi(t)− ℘
(

Ξ̂i(t), ιLSTM

)
−æ

∂℘
(

Ξ̂i(t), ιLSTM+æ
)

∂ιLSTM

2

.

Leveraging the Gauss-Newton method, the shifting element
can be optimized by letting æ∗ = ∂Dev(ιLSTM)

∂æ = 0, calculated
as follows:[∂℘(Ξ̂i(t), ιLSTM+æ

)
∂ιLSTM

]T [∂℘(Ξ̂i(t), ιLSTM+æ
)

∂ιLSTM

]
æ∗ = (58)

[∂℘(Ξ̂i(t), ιLSTM+æ
)

∂ιLSTM

]T ‖Ξ‖∑
i=1

[
Ξi(t)− ℘

(
Ξ̂i(t), ιLSTM

)]2
.

By introducing a damped version of (58), the Levenberg-
Marquardt policy [17] iteratively achieves the optimal shifting
element as follows:([∂℘(Ξ̂i(t), ιLSTM+æ

)
∂ιLSTM

]T [∂℘(Ξ̂i(t), ιLSTM+æ
)

∂ιLSTM

]
+ ÆI

)
æ∗

(59)

=

[∂℘(Ξ̂i(t), ιLSTM+æ
)

∂ιLSTM

]T ‖Ξ‖∑
i=1

[
Ξi(t)− ℘

(
Ξ̂i(t), ιLSTM

)]2
,

where Æ indicates the damping factor. Since the objective
in training process as mentioned earlier, is to minimize the
total deviation from the target system parameters Ξ(t), the
Levenberg-Marquardt policy for smaller Æ approaches the
Gauss-Newton method, while this policy tends to the gradient
descent method for larger values of Æs. Eventually, for a lim-
ited squared deviation within a given error range, this policy
returns ι∗LSTM. However, the performance of training process
can be improved by a proper initialization of the LSTM
parameters. This is elaborated in the following subsection.

D. Bayesian Optimizer

In order to further optimize the training behavior of the
LSTM, we propose to initialize its hyperparameters before the
training process starts [20]. One of the most important hyper-
parameters in training the LSTM with respect to its memory-
based structure, is the learning rate that can be efficiently
optimized by minimizing its total degree of error per training

9
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sample. Let us denote by œi
l , the degree of error associated

with the ith sample and the lth neuron in the final layer of the
LSTM. Therefore, the total degree of error for the ith sample
can be given by œi = 1

2

∑
l∈LNLay

[
Ξi(t)− Ξ̂i(t)

]
l
, where

LNLay is the neuron index set in the last layer of the LSTM.
During the LSTM training process, the LSTM parameters (i.e.,
its weights and biases) related to the lth neuron and the ith
sample are updated as follows:

∆λ̈LSTMi
l

= λ̈LSTMi
l
(t)− λ̈LSTMi

l
(t− 1)

= −ηLSTM
∂œi

∂ζLSTMil

[
Ξi(t)

]
l
, (60)

where ηLSTM is the LSTM learning rate and ζLSTMil
repre-

sents the induced local field corresponding to the ith sam-
ple and lth neuron in the LSTM final layer. In Bayesian
optimizer, the previous states of the hyperparameter play an
important role in updating to its current state. This opti-
mizer requires considerably fewer number of iterations for
seeking the optimal initial value of the hyperparameter in
comparison with the grid search counterpart. Therefore, by
using the Bayesian optimizer, it is anticipated for the LSTM
learning process to converge quickly. This optimizer assumes
a probability distribution for ηLSTM and evaluates its prior
states through an assessment function. This function mini-
mizes the training error of the LSTM, which is a regression
operation. We introduce the assessment function at state t
as: fLoss (ηLSTM(t− 1), ηLSTM(t− 2), ..., ηLSTM(1)) = η̃LSTM,
that can be considered as a temporal benchmarking, while
analyzing the next state of ηLSTM. Thus, we can obtain the
optimal initial ηLSTM, through minimizing the loss function at
state t as follows:

ηLSTM(t) = arg min
ηLSTM

fLoss (ηLSTM(t− 1), ..., ηLSTM(1)) , (61)

meaning that the previous states should be analyzed one
by one towards minimizing the loss function. For real-time
prediction, the duration of states should be short. Within a
large space of previous states for the hyperparameter ηLSTM,
this assessment can incur a significantly high computational
cost. To facilitate the computations, a surrogate approximator
for fLoss is commonly used regarding the prior states of ηLSTM.
Using the Bayes theorem [20], the surrogate approximator
function as a probability distribution at instant t is expressed
as:

Pr (η̃LSTM|ηLSTM(t)) =
Pr (ηLSTM(t)|η̃LSTM) Pr (η̃LSTM)

Pr (ηLSTM(t))
,

(62)
which is achieved through the tree parzen estimator (TPE)
[34]. In fact, TPE is a probabilistic evaluator on fLoss to get
η̃LSTM from ηLSTM(t) in a computationally efficient way. This
is commonly done by expected improvement (EI) measure on
the basis of “exploration and exploitation” trade-off rule [35].
After all, by optimizing the LSTM learning rate ηLSTM(t), at
instant t, the LSTM parameters can be efficiently updated in
(60).

E. Ensemble Learning Policy

Ensemble learning is an efficient technique to develop a
strong learner by using multiple weak learners9. The strong
learner predicts the future of the key system parameters as
a combination of the predictions made by its incorporating
weak learners. As an efficient method for realizing ensemble
learning, bootstrap aggregation is popular for various appli-
cations [21]. According to Fig. 2, the training samples are
categorized and bootstrapped in replicas (subsets), where each
of the weak learners adopts a distinct subset for training. The
weak learners are trained in an independent and simultaneous
manner. The predictions from weak learners are integrated in
a combination phase, over which a regression/classification
is applied, forming the prediction of the strong learner. The
predicted key system parameters in Ξ̂(t) made by each LSTM
as a weak learner are categorized either into discrete-domain
(i.e., ̂̄ρ(t)) or continuous-domain (i.e., P̂ (t) and Θ̂(t)). De-
pending on which domain the key system parameters belong to
(i.e., continuous or discrete), the final prediction made by the
strong learner is calculated according to either of the following
principles:
• Regression: For continuous parameters P̂ (t) and Θ̂(t),

the bootstrap aggregation (or so-called bagging algo-
rithm) involves a regression problem. Suppose that we
have M1 trained weak learners (i.e., LSTM regressors) by
M1 randomly subsets, obtained from the alternative de-
composition technique. As observable from Fig. 2, any of
the trained LSTMs as a regressor is capable of forecasting
the next time step for the key system parameters indepen-
dent of others. A strong learner afterwards is responsible
for aggregating the LSTM predictions, upon which a
universal regression is performed to obtain the strong
learner prediction. For this, the bagging mechanism [21]
exerts a weighted averaging policy over the predictions,
whereby the LSTM regressors with a higher prediction
accuracy10 contribute more to the final prediction made
by the strong learner.

• Classification: The future prediction of the discrete pa-
rameters ̂̄ρ(t), induces a classification problem for the
bagging mechanism. As before, as a weak learner, each
of the M1 LSTM classifiers is trained beforehand on
a distinct subset of the optimized system parameters.
The trained LSTM classifiers (in Fig. 2) are responsible
for predicting ̂̄ρ(t) simultaneously and independently.
A strong learner accordingly aggregates the predictions
made by the LSTM classifiers so as to make a universal
classification as the final prediction. With respect to the
binary nature of the RB allocation, the predicted ̂̄ρ(t) by
each LSTM in fact belongs to either of the two binary
classes {0, 1}. In this regard, the well-known maximum
voting approach is applied over the predictions, whereby
a voting counter specifies the total vote for each class
(i.e., the total number of LSTM classifiers, adopted that

9Note that the “weak learner” in this paper is a general predictor (e.g.,
LSTM).

10The accuracy of weak learners is assessed beforehand through validation
and testing over the existing samples.
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Fig. 2: Ensemble learning schematic.

Algorithm 1 Alternative Decomposition Policy
Initialization: Initialize all the parameters, such that the
system feasibility holds (i.e., the constraints C1 − C13 are
initially satisfied).

1: repeat
2: Solve the power control sub-problem (33) as follows.
3: repeat
4: t=1.
5: Obtain the optimal a(t)

k [s].
6: Obtain the optimal c(t)k [s].
7: Obtain the optimal p(t)

k [s].
8: t=t+1.
9: until t ≤ Tmax

10: Solve the RIS reflection coefficient design sub-
problem (49) accordingly.

11: Solve the RB allocation sub-problem (47) according
to [4].

12: Calculate
∑K
k=1R

Act
k

(t).

13: if
∣∣∣∣∑K

k=1R
Act
k

(t) −
∑K
k=1R

Act
k

(t−1)
∣∣∣∣ < ε̃ then

14: final convergence = true.
15: else
16: T = T + 1.
17: end if
18: until final convergence

class as their prediction). Eventually, the class with more
voting counter is selected as the prediction of the strong
learner.

V. COMPLEXITY ANALYSIS

The computational complexity of the power control and sub-
problem depends on λ and µ, which is linear to the number of
eMBB users, i.e., O(K). Note that, the KKT dual variables λ
and µ can be obtained via a bisection method. This makes the
total complexity of the power control sub-problem of order
OPC(TmaxK

2log2(ψPC)), where Tmax and ψPC are the number
of iterations required to converge and the required accuracy
of the convergence in power control, respectively. Since the
RIS reflection coefficient design sub-problem follows a similar
solution procedure, it has the computational complexity of

ORPSD(TmaxK
2log2(ψRPSD)), with ψRPSD being the required

accuracy of the convergence. The RB allocation sub-problem,
however, is solved according to the PSUM method presented
in [4]. This method follows a penalty-based approach, wherein
the constraints as penalty terms are incorporated into the
objective function and the problem is solved by determining a
sequence of approximation of the objective functions. To this
end, the CVX is applied with the computational complexity
of

OPC

(
log2(NCons)/q0ψacc

log2(ψstep)

)
, (63)

where NCons represents the total number of constraints, 0 ≤
ψacc ≤ 1 denotes the desired accuracy level of the interior point
method for convergence with the initial point q0, and ψstep
denots the gradient step size. The computational complexity
of training a LSTM is [16]:

OLSTM

((
(Nmax

node )2+O(f act
sig/hyp/peep)

)
N hor

LSTMN
ver
LSTM

)
, (64)

where Nmax
node denotes the maximum number of neurons within

the LSTM layers, O(f act
sig/hyp/peep) is the highest computational

complexity among the activation functions and N hor
LSTM(N ver

LSTM)
indicates the number of LSTM units in horizontal (vertical)
rows. Finally, the computational complexity of the ensembling
network is given by

OEns

(
OLSTM1

+OLSTM2
+ ...+OLSTMM1

)
= max{OLSTMj}, ∀j ∈ {1, 2, ...,M1}. (65)

VI. SIMULATION RESULTS

A. Simulation Parameters

We consider a THz BS equipped with Nt =256 antennas
with a coverage radius of 200 m. We consider the same number
of eMBB and URLLC users (i.e., K = U = 5 users) and
the users are randomly distributed within the cell coverage
area. The BS’s power budget is Pmax=15 dBm. The maximum
number of multiplexed eMBB users over a specific RB is
constrained to Nmax = 3. The duration of a time slot is set
to 1 ms and each time slot is further divided into 7 equi-
spaced mini-slots. A zero-forcing (ZF) beamforming is also
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Fig. 3: Key system parameter optimization.
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Fig. 4: Analyzing the LSTM performance in terms of training, validation, and test accuracy.

adopted at the BS. The RIS is equipped with M =10×10
elements. The conventional modeling of the RIS is used in
simulations, where the amplitude of the RIS elements is not a
function of their phase shift, unless otherwise stated. However,
we will also present some results based on a more practical
RIS model [26]. The URLLC service traffic model follows
a Poisson process, where the packet size is assumed to be
50 bytes with an arrival rate of 5 packets per mini-slot [14].

The frequency of the sth RB in THz spectrum satisfies
fs = fc + B

S (s − 1 − S−1
2 ), with a central frequency of

fc =100 GHz. The transmission bandwidth of each RB is
B =10 GHz and we consider S =128 RBs [39]. The numbers
of clusters accounting for the quasi-optical characteristic in
THz signals, are assumed to be N1

cl = N2
cl = N3

cl = 2,
with N1

ray = N2
ray = N3

ray = 2 rays in each cluster. The

delays of clusters and the delay offsets for the rays follow
a uniform distribution within [0, 20](ns) and [−0.1, 0.1](ns),
respectively [39].

To evaluate the training performance of the LSTM, we use

the RMSE metric, i.e., RMSE =

√∑M
i=1 ||Ξi − Ξ̂i||22. We

observe 100 time slots of tracking with 0.15 sec interval in
a LSTM with 7 hidden layers. The training, validation and
test phases of the LSTM use 70%, 15%, and 15% of the total
samples, respectively. Finally, to enable the ensemble learning,
we consider M1=15 LSTMs as the weak regressors/classifiers.

B. Simulation Baselines

In Figs. 3, we evaluate the achievable eMBB SE for the
following schemes:
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Fig. 5: Analyzing the performance of the proposed ensemble model for coexisting URLLC and eMBB services.

• Optimization: The SE is plotted using the optimized
key system parameters Ξ(t) via the proposed alternative
decomposition approach.

• LSTM: The SE is plotted using the predicted key system
parameters Ξ̂(t) via the trained LSTM.

• Ensemble LSTM: The SE is plotted using the predicted
key system parameters Ξ̂ens(t) in the ensemble model.

• Orthogonal RBs: The SE employs the alternative de-
composition optimization procedure only (i.e., neither
the LSTM nor the ensemble model), where each RB is
orthogonally allocated only to one eMBB user.

• DRL: The resource management is performed according
to the DRL procedure using the configurations in [14].

• Without Direct Link: All direct links between the BS and
the users are blocked, which enables RIS-only transmis-
sion.

• Random reflection: The reflection coefficients of the RIS
elements are randomly adopted from the feasible set Q.

• Without RIS: The conventional cellular network without
RIS, wherein the communications completely rely on
direct links between the BS and the users.

For the DRL model to address the problem in (32), the state,
action and the reward of the agent can be defined as follows:
• State Space: At instant t, the state of the agent is defined

as the channel gains at instant t− 1 i.e., H(t− 1).
• Action Space: The action adopted by the agent at instant
t indicates the decision variables of (32) i.e., a(t) =[
Θ(t), ρ̄(t),P (t)

]
.

• Reward: The value returned by the reward function of
the agent at instant t is categorized in manifold cases as

follows:
1) C1-C13 hold and Λ(t) ≥ Λ∗; therefore, R(t) = Λ(t)
and Λ∗ = Λ(t).
2) C1-C13 hold, Λ(t) ≤ Λ∗ and Λ(t) ≥ Λ(t − 1);
therefore, R(t) = Λ(t)− |Λ(t)|.
3) C1-C13 hold, Λ(t) ≤ Λ∗, Λ(t) ≤ Λ(t− 1); therefore,
R(t) = Λ(t)− 2|Λ(t)|.
4) C1-C13 do not hold; therefore. R(t) = Λ(t)−3|Λ(t)|.

In all the cases, Λ(t) =
∑K
k=1R

Act
k

(
P (t),ρ(t), ρ̃(t),Θ(t)

)
,

and Λ∗ stands for the highest Λ achieved by the agent thus
far. By doing so, the decision variables {P ,ρ, ρ̃,Θ} are
optimized, such that the most gain on Λ is achieved, while
the constraints C1-C13 are satisfied.

Moreover, in Fig. 5, we consider the brute-force method
and the alternating direction method of multipliers (ADMM)
method [32], respectively as globally optimal and sub-optimal
baseline schemes, for the RB allocation, to be compared with
our proposed method. In Fig. 5, as well, the performance of our
proposed resource allocation framework is already investigated
relying on both the ideal RIS architecture, as well as the
practical RIS architecture proposed in [26].

C. Optimization Results

In this subsection, we show the convergence behaviour and
achievable SE for eMBB service of the proposed alternative
decomposition method.

1) Convergence of the Optimization Algorithm: Fig. 3(a)
demonstrates the convergence of the proposed optimization
algorithm, wherein five optimization-driven baselines, i.e.,
“Optimization”, “Orthogonal bands”, “Without direct link”,
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“Random reflection” and “Without RIS” are included for
comparison11. It is clearly observed that within the first 30
iterations, all schemes converge to their corresponding sub-
optimal values. However, the baselines take more iterations
to converge due to addressing the four aforementioned sub-
problems in section III. In comparison, it takes only 15 iter-
ations for “Random reflection” and “Without RIS” baselines
since there is no RIS reflection coefficient optimization therein.

Another observation from Fig. 3(a) is that the “Optimiza-
tion” baseline is superior compared to the “Orthogonal bands”
baseline, because a non-orthogonal RB allocation achieves
better SE than its orthogonal counterpart [30]. Since the base-
line “Without direct link” merely benefits from the RIS-only
transmissions, it achieves lower eMBB SE due to neglecting
the direct links between the BS and the users. Eventually,
“Random reflection” and “Without RIS” baselines exhibit the
lowest achieved eMBB SE due to the absence of optimized
RIS-aided transmissions.

2) BS transmit power threshold: Fig. 3(b) analyzes the
achievable eMBB SE of the baselines as a function of the BS
transmit power budget. The SE of all the baselines increase
with the increasing BS transmit power budget. The leading
“Optimization” baseline is followed by the “Ensemble” base-
line accompanied by a negligible performance loss (lower than
≤ 1% more precisely). This achievement is brought by the
precise regression/classification power of the ensemble model.
Next, the LSTM baseline experiences some performance loss
(at most 7% in comparison with the “Optimization” baseline)
yet superior than others.

Also, Fig. 3(b) demonstrates the significance of RIS when
the BS transmit power budget is within a moderate range [36].
For small BS transmit power budget (e.g., 0 dBm), the direct
links between the BS and users are inactive and the signals
reflected by the RIS are weak to overcome the severe atten-
uation in THz band. Consequently, all baselines experience
limited achievable eMBB SE in this case. In contrast, with
high transmit power budget (e.g., 30dBm), the direct links
become more dominant and that is why the “Without direct
link” baseline has a limited contribution to the eMBB SE
improvement when Pmax > 20 dBm.

3) Number of RIS elements: According to Fig. 3(c), the SE
of all baselines except “Without RIS” increases with increasing
number of RIS elements. Evidently, the “Random reflection”
has the mildest improvement due to non-optimized reflection
coefficients. More importantly, owing to the large scale state-
action space of “DRL” [15], the SE performance deteriorates
with increasing number of RIS elements. For instance, in
comparison with this baseline for an RIS of 11×11, up to 49%,
48%, and 34% higher SE is achieved by the “optimization”,
“ensemble model”, and the “LSTM” baselines, respectively.
For a small RIS, the baseline “Without direct link” offers no
significant improvement since the communicating signals in
this baseline benefit neither from direct links, nor from RIS-
aided transmission links. For a large RIS, this baseline however
improves due to efficient RIS-aided transmissions. We also

11Note that other baselines named in Subsection VII-B are excluded from
this figure since they do not include any optimization operation.

note that, when the number of RIS elements in Fig. 3(c)
grows, the gap between the “Optimization”, “Ensemble”,
and “LSTM” baselines becomes more evident. For instance,
given the 8×8 RIS, additional 17% SE is achieved for the
“Ensemble” scheme compared to “LSTM” scheme, whereas
for 11×11 RIS, the difference increases up to 21%.

D. LSTM Results

The training/prediction performance of the LSTM is ana-
lyzed in Fig. 4. Specifically in Fig. 4(a), the LSTM precisely
tracks the RIS reflecting elements in first 100 time steps and
predicts the RIS reflection coefficients, for the next 20 time
steps. In Fig. 4(b) and Fig. 4(c), respectively, the LSTM
meticulously tracks the average transmit power of the BS,
as well as the wideband THz RB allocation within the first
100 time steps to predict them in the upcoming 50 time
steps. Fig. 4(d) depicts that the LSTM converges quickly
within limited number of epochs with negligible RMSE values.
Note that the number of epochs is derived from optimizing
the learning rate in LSTM via the Bayesian optimizer, as
mentioned in Subsection IV.D. Evidently, the convergence
rate of our proposed LSTM in Fig. 4(d) outperforms the one
in [37] (shown in Fig. 7 of [37]). In addition, training the
LSTM through the Levenberg-Marquardt policy leads to lower
prediction variance, thanks to the optimized parameters.

Fig. 4(e) portrays the deviation error for training, validation
and test phases when different number of training samples
are taken within a batch. Note that the deviation error is the
difference between the predicted values of the LSTM and the
desired target values. The x-axis indicates

[
Ξ(t)− Ξ̂(t)

]
and

there can be negative values related to the deviation errors.
Since training the neural networks with a single batch of
training data leads to inefficiencies, the training process is
done in several episodes, each episode with a batch of the
training data. Clearly, the more the number of training samples
within a batch, the smaller is the error. Another observation
from Fig. 4(e) is that the errors in validation and test phases
are only limited to a small range, adjacent to zero error line
and thus negligible. This indicates that the larger errors occur
only during the training stage. The absence of large errors
during validation and testing reveals that the future trend is
well-predicted by the fine-tuned LSTM.

E. Results for the Ensemble Model

In this subsection, we specifically analyze the results derived
from the ensemble model as the final state in the proposed
supervised learning resource management framework. In par-
ticular, we evaluate the actual achievable SE for eMBB against
varying URLLC traffic, the number of eMBB users, and the
number of RBs in Figs. 5(a)-(c), respectively.

Fig. 5(a) shows that the actual achievable SE degrades by
increasing the URLLC traffic load, owing to the priorities
associated with the URLLC service over the eMBB service.
It is also observed that the higher the SE target requirement
Rmink ∀k for eMBB users, the lower is the number of users
that can be served. Fig. 5(b) shows the actual achievable SE
as a function of increasing number of eMBB users. Clearly,
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SE degrades due to increasing NOMA interference in (27).
Another observation is the detrimental impact of URLLC
service latency threshold Dmax

u ∀u on the actual achievable
eMBB SE. Fig. 5(c) shows that a higher SE is achieved
with increasing number of RBs. Also, the URLLC reliability
threshold (according to C4 in (32)) is a limiting factor for
the actual achievable SE, since it exerts more restrictions on
the solution boundary of (32). In Fig. 5(d), the proposed
framework is evaluated for a small number of users and
RBs using a brute-force search (optimal), and also using the
ADMM method [32]. While former provides a globally opti-
mal RB allocation strategy along with the ensemble method
for reflection coefficient design and BS power allocation, the
ADMM baseline scheme provides a locally optimal solution
for the joint problem (32), where all the sub-problems are
addressed by the ADMM method [32]. According to Fig. 5(d),
for example, with 30 RBs, the proposed ensemble method
achieves up to 17% performance gain, compared to the sub-
optimal ADMM baseline, at the expense of a trivial perfor-
mance loss (less than 1%), in comparison with the brute-force
method. Fig. 5(e) reveals that the proposed resource allocation
framework can be also applied on a practical RIS architecture
such as the one proposed in [26]. For βmin = 0.2, k = 1.6 and
φ = 0.43π [26], more than 80% performance loss is observed
in comparison with the ideal model, for a deployed RIS with
10×10 elements.

VII. CONCLUSION

We have investigated the problem of coexistence of eMBB
and URLLC services over RIS-aided THz communications.
We have proposed a supervised learning-based resource man-
agement framework for optimizing the transmit power of
the BS, the reflection coefficients for reflections by the RIS
elements, as well as RB allocation. The proposed approach
leverages an optimization policy, a deep learning method, and
an ensemble learning method together to fulfill the eMBB
and URLLC services requirements. We have shown that, in
presence of an RIS of size 11×11, the proposed optimization,
deep learning and ensemble learning techniques, respectively,
achieve up to 49%, 34%, and 48% eMBB SE gain over the
DRL scheme [15].

APPENDIX

A. Proof of Lemma 1

By substituting (27), the MMSE detection problem (39)
can be represented as (66) whereby the optimal equalization

coefficient cok[s] in (39) is obtained as:

∂ek[s]

∂ck[s]
|cok[s] = 0, (67)

=⇒ − (hd,k[s] + G[s]Θhr,k[s])wk[s]ρk[s]
√
pk[s]+(cok[s])

∗(∣∣∣(hd,k[s]+G[s]Θhr,k[s])wk[s]
∣∣∣2ρk[s]pk[s]+ξk[s]

)
=0,

(68)

=⇒ cok[s] =
(

(hd,k[s] + G[s]Θhr,k[s])wk[s]ρk[s]
√
pk[s]

)∗
(∣∣∣(hd,k[s]+G[s]Θhr,k[s])wk[s]

∣∣∣2ρk[s]pk[s]+ξk[s]

)
−1.

(69)

Besides, by replacing (67) into (66), the objective of the
MMSE problem can be rewritten as (70), which implies

(1 + γk[s])
−1

= min
ck[s]

ek[s]. (71)

The actual achievable data rate for the eMBB user k over the
RB s therefore, can be given by [29]

RAct
k =

∑
s∈S

[
ρk[s] log (1 + γk[s])− (72)

ρk[s]log (1+γk[s])
∑
u∈U

∑
f∈F

I(ρk[s]= ρ̃fu[s])

]
=
∑
s∈S

(1−Φk)

ρk[s]log (1 + γk[s]) = (max
ck[s]

(1− Φk) (− log ek[s])∀k ∈ K.

Note that in (72), the logarithmic function raises a challenge,
for which the following theorem is invoked.

Theorem 1. Suppose that f(a) = − ab
ln 2 + log2 a + 1

ln 2 ,
where a is a positive real number, it can be concluded that
max f(a) = − log2 b, where the optimal value of a is ao = 1

b .

Proof. Due to the logarithmic function, f(a) is concave and
its maximum value can be obtained as ∂f(a)

∂a |a=ao = 0, where
substituting a = ao = 1

b , results − log2 b to be the maximum
value of f(a). Relying on Theorem 1, (72) can be given as
(40) and the proof is complete.

B. Proof of Lemma 2
With respect to the linear objective function and the con-

straints, the reformulated sub-problem (43) is convex. The
Lagrange function to this sub-problem is formulated as

L(p, λ, µ) =

S∑
s=1

K∑
k=1

(1− Φk)a
(t)
k [s]e

(t)
k [s]

+ λ

(
S∑
s=1

K∑
k=1

p
(t)
k [s]− P

)
+

S∑
s=1

K∑
k=1

µk[s]θk[s],

(73)

and

θk[s] =η
∑

i∈K,i 6=k,
Υ(k)<Υ(i)

∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wi[s]
∣∣∣2ρi[s]p(t)

i [s]+

∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]
∣∣∣2ρk[s]p

(t)
k [s] + ω, (74)

in which λ ≥ 0 and µk[s] ≥ 0,∀k ∈ {1, 2, ...,K},∀s ∈
{1, 2, ..., S}. The KKT conditions of (43) as well, hold as
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ek[s] = 1−2<
(
ck[s](hd,k[s]+G[s]Θhr,k[s])wk[s]ρk[s]

√
pk[s]

)
+|ck[s]|2

(∣∣∣ (hd,k[s]+G[s]Θhr,k[s])wk[s]
∣∣∣2ρk[s]pk[s] + ξk[s]

)
=
∣∣∣1−ck[s](hd,k[s]+G[s]Θhr,k[s])wk[s]ρk[s]

√
pk[s]

∣∣∣2+|ck[s]|2 ||(hd,k[s]+G[s]Θhr,k[s])wk[s]||22
∑

i∈K,i 6=k,
Υ(k)<Υ(i)

ρi[s]pi[s]+|ck[s]|2 σ2. (66)

eok[s] = 1− 2<
(
cok[s] (hd,k[s] + G[s]Θhr,k[s])wk[s]ρk[s]

√
pk[s]

)
+ |cok[s]|2

(∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]
∣∣∣2ρk[s]pk[s] + ξk[s]

)
= 1− 2<

((
(hd,k[s] + G[s]Θhr,k[s])wk[s]ρk[s]

√
pk[s]

)(∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]
∣∣∣2ρk[s]pk[s] + ξk[s]

)−1

(
(hd,k[s] + G[s]Θhr,k[s])wk[s]ρk[s]

√
pk[s]

)
+

∣∣∣∣∣
(

(hd,k[s] + G[s]Θhr,k[s])wk[s]ρk[s]
√
pk[s]

)
(∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]

∣∣∣2ρk[s]pk[s] + ξk[s]

)−1
∣∣∣∣∣
2(∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]

∣∣∣2ρk[s]pk[s] + ξk[s]

)
= 1− ρk[s]pk[s]

∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]
∣∣∣2(∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]

∣∣∣2ρk[s]pk[s] + ξk[s]

)−1

, (70)

∂L

∂pk[s]
=a

(t)
k [s]

(∣∣∣c(t)k [s]
∣∣∣∣∣∣ (hd,k[s]+G[s]Θhr,k[s])wk[s]

∣∣∣2 −<(c(t)k [s](hd,k[s]+G[s]Θhr,k[s])wk[s]
)(
p

(t)
k [s]

)
−1/2

)
+a

(t)
k [s]|ck[s]|2

∣∣∣(hd,k[s]+G[s]Θhr,k[s])wk[s]
∣∣∣2 ∑
i∈K,i6=k,Υ(k)>Υ(i)

ρi[s] + λ− µk[s]
∣∣∣ (hd,k[s] + G[s]Θhr,k[s])wk[s]

∣∣∣2
+ µk[s]η

∣∣∣(hd,k[s]+G[s]Θhr,k[s])wk[s]
∣∣∣2 ∑
i∈K,i6=k,

Υ(k)>Υ(i)

ρi[s]=0, (75)

λ

(
K∑
k=1

S∑
s=1

p
(t)
k [s]− P

)
= 0, (76)

and
µ

(t)
k [s]θ

(t)
k [s] = 0. (77)

In accordance with (75), the optimal transmit power of the BS
at iteration t can be obtained as (45).

C. Proof of Lemma 3

The primary joint optimization problem (32) has been
decoupled into the sub-problems (33), (47) and (49) up to
now and addressed in a joint iterative procedure on the basis
of the alternative decomposition approach. The overall iterative
procedure is outlined as follows:

[P (0), ρ(0), ρ̃(0),Θ(0)]→[P (1),ρ(1), ρ̃(1),Θ(0)]→ ...→
[P (t),ρ(t), ρ̃(t),Θ(t)]→ ...→ [P (opt),ρ(opt), ρ̃(opt),Θ(opt)].

(78)

Until the convergence is achieved, the objective function
increases or remains unchanged [30]. For instance, at the

iteration t, first the power control sub-problem is addressed,
where the objective function is accordingly updated as:

U
(
P (t−1),ρ(t−1), ρ̃(t−1),Θ(t−1)

)
≤ U

(
P (t),ρ(t−1), ρ̃(t−1),Θ(t−1)

)
, (79)

where

U (P ,ρ, ρ̃,Θ) =

K∑
k=1

RAct
k (P ,ρ, ρ̃,Θ) . (80)

The RB allocation sub-problem for the eMBB service is then
solved, where the objective function is accordingly updated
as:

U
(
P (t),ρ(t−1), ρ̃(t−1),Θ(t−1)

)
≤U

(
P (t),ρ(t), ρ̃(t−1),Θ(t−1)

)
.

(81)

Relying on the results obtained formerly, the RB allocation
sub-problem for the URLLC service is addressed, where the
objective function is updated as:

U
(
P (t),ρ(t), ρ̃(t−1),Θ(t−1)

)
≤ U

(
P (t),ρ(t), ρ̃(t),Θ(t−1)

)
.

(82)
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We then solve the phase shift design sub-problem by updating
the objective function as:

U
(
P (t),ρ(t), ρ̃(t),Θ(t−1)

)
≤ U

(
P (t),ρ(t), ρ̃(t),Θ(t)

)
.

(83)

The convergence is eventually achieved, subject to meeting the
following condition:∣∣∣∣U (P (t),ρ(t), ρ̃(t),Θ(t)

)
− U

(
P (t−1),ρ(t−1), ρ̃(t−1),Θ(t−1)

) ∣∣∣∣ ≤ ν. (84)

Therefore, the alternative decomposition approach is conver-
gent into the sub-optimal solution for the joint optimization
problem (32) and the proof is complete.
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