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AoI Minimization in Status Update Control With
Energy Harvesting Sensors
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Abstract— Information freshness is crucial for time-critical
IoT applications, e.g., monitoring and control. We consider an
IoT status update system with users, energy harvesting sensors,
and a cache-enabled edge node. The users receive time-sensitive
information about physical quantities, each measured by a sensor.
Users demand for the information from the edge node whose
cache stores the most recently received measurements from each
sensor. To serve a request, the edge node either commands the
sensor to send an update or retrieves the aged measurement
from the cache. We aim at finding the best actions of the edge
node to minimize the average AoI of the served measurements
at the users, termed on-demand AoI. We model this problem
as a Markov decision process and develop reinforcement learn-
ing (RL) algorithms: model-based value iteration and model-free
Q-learning. We also propose a Q-learning method for the realistic
case where the edge node is informed about the sensors’ battery
levels only via the status updates. The case under transmission
limitations is also addressed. Furthermore, properties of an
optimal policy are characterized. Simulation results show that an
optimal policy is a threshold-based policy and that the proposed
RL methods significantly reduce the average cost compared to
several baselines.

Index Terms— Internet of Things (IoT), age of information
(AoI), energy harvesting, reinforcement learning (RL), value
iteration algorithm (VIA), dynamic programming, Q-learning.

I. INTRODUCTION

INTERNET of Things (IoT) is an emerging technology to
connect different devices to enable emergent applications

with minimal human intervention. IoT enables the users to
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effectively interact with the physical surrounding environment
and empower context-aware applications like smart cities [1].
A typical IoT network consists of multiple wireless sensors
which measure physical phenomena and communicate the
obtained measurements to a destination for further process-
ing, e.g., to perform distributed target detection [2]. Two
inherent features of such networks are: 1) stringent energy
limitations of battery-powered sensors which, however, may
be counteracted by harvesting energy1 from environmental
sources such as sun, heat, and RF ambient [5], [6], and
2) transient nature of data, i.e., the sensors’ measurements
become outdated after a while. This calls for the design of
IoT sensing techniques where the sensors sample and send
a minimal number of measurements to conserve the energy
while providing the end users highly fresh data, as required
by time-sensitive applications. The freshness of information
can be quantified by the recently emerged metric, the age of
information (AoI) [7]–[11]. Formally, AoI is defined as the
time elapsed since the latest successfully received status update
packet at the destination was generated at a source node. We
introduce on-demand AoI that represents the AoI at the users
restricted to the users’ request instants. The works that address
AoI in IoT networks can be divided into two main classes:
1) the works that focus on analyzing the AoI in a specific
scenario under their proposed status update control/scheduling
policies [12]–[16], and 2) the works that focus on finding an
optimal control/scheduling policy for a specific system. For the
latter class, there are two main approaches. The first approach
involves finding an optimal policy by applying different tools
from optimization theory [17]–[23]. Such approaches need
exact information about the models and statistics of the
environment, e.g., the EH probabilities of sensors. The second
category includes designs relying on dynamic programming
and learning methods [24]–[32]. In this paper, we focus on
this category and find an optimal policy that minimizes the
AoI about the sensors’ measurements received by the users in
an EH IoT network.

A particular interest has arisen in designing AoI-aware IoT
networks [12], [13]. In [12], a threshold-based age-dependent
random access algorithm was proposed for massive IoT net-
works, in which an IoT device sends an update when its age
exceeds a predefined threshold. In [13], the authors presented
a stochastic geometry analysis for the average AoI in a cellular
IoT network.

1An alternative approach for ultra-low-power IoT sensors is ambient back-
scatter communications; see e.g., [3], [4].
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AoI has also been investigated in cache updating
systems [17], [18]. In [17], the authors introduced a
popularity-weighted AoI metric for updating dynamic con-
tent in a local cache, where the content is subjected to
version updates. The authors in [18] considered a cache
updating system with a source, a cache, and a user, and
found an analytical expression for the average freshness
of the files at the user under the proposed threshold
policy.

The works [14]–[16] focused on analyzing the AoI in
EH IoT networks. The authors in [14] considered a known
EH model and proposed a threshold adaptation algorithm to
maximize the hit rate in an IoT sensing network. In [15],
the authors analyzed the average AoI in a cache enabled status
updating system with an EH sensor. In [16], the author derived
a closed-form expression for the average AoI in a wireless
powered sensor network.

Age-optimal policies for status update packet transmissions
in EH networks have been derived in [19]–[23] by using dif-
ferent methods from optimization theory. In [19], the authors
derived an optimal policy for an EH source that sends updates
to a network interface queue for delivery to a monitoring
system. In [20], the authors derived age-optimal online policies
for an EH sensor having a unit-sized or infinite battery using
renewal theory. In [21], the authors explored the benefits of
erasure status feedback for online timely updating for an EH
sensor with a unit-sized battery. Age-optimal transmission
policies for EH two-hop networks were investigated in [22].
In [23], the authors derived age-optimal policies for an EH
sensor with a finite-sized battery.

Several works have developed an AoI-optimal status update
systems by using dynamic programming and learning based
methods [24]–[32]. A commonality in these works is to model
the problem as a Markov decision process (MDP), and find an
optimal policy using model-based reinforcement learning (RL)
methods based on dynamic programming, e.g., value itera-
tion algorithm (VIA), and/or model-free RL methods, e.g.,
Q-learning. A comprehensive survey of RL based methods for
autonomous IoT networks was presented in [33]. The authors
in [24] used deep RL to solve a cache replacement problem
with a limited cache size and transient data in an IoT network.
Minimizing AoI in a wireless ad hoc network via deep RL
was investigated in [25]. The authors of [26] derived optimal
sampling and updating policies that minimize the average AoI
in an IoT monitoring system. In [27], deep RL was used to
minimize AoI in a multi-node monitoring system, in which
the sensors are powered through wireless energy transfer
by the destination. The authors of [28] derived age-optimal
sampling instants for an EH sensor with known EH statistics.
In [29], the authors investigated age-optimal policies where an
EH sensor takes advantage of multiple available transmission
modes. In [30], the authors studied AoI minimization in cog-
nitive radio EH communications. In [31], the authors studied
age-optimal policies for an EH device that monitors a stochas-
tic process, which can be in either a normal or an alarm state of
operation. In [32], the authors studied age-optimal policies for
cases where the channel and EH statistics are either known or
unknown.

Majority of the existing works, including all the above ones,
investigate the AoI minimization in cases where the updates
are relevant to the monitoring entity at all time moments. Only
a few works studied a concept similar to the on-demand AoI
herein. In [34], the authors introduced the idea of effective
AoI (EAoI) under a generic request-response model where a
server serves the users with time-sensitive information. They
elaborated on the fact that minimizing the time-average EAoI
is in general different from minimizing the time-average AoI.
In [35], the authors studied an information-update system
where a user pulls information from servers. However, in con-
trast to our paper, the works [34], [35] do not consider energy
limitation at the source nodes.

A. Contributions

We consider an IoT status update network that consists of
EH IoT sensors, a cache-enabled edge node, and the users.
The users receive time-sensitive information about physical
quantities, each of which is measured by a sensor. The users
demand for the information from the edge node (a gateway)
whose cache stores the most recently received measurements
of each physical quantity. To serve a user’s request, the edge
node can either command the corresponding sensor to send a
fresh measurement in the form of status update packet over
an unreliable channel, or use the aged data in the cache.
The former enables serving a user with fresh measurement,
yet consuming energy from the sensor’s battery. The latter
prevents the activation of the sensors for every request so that
the sensors can utilize the sleep mode to save a considerable
amount of energy [14], but the data received by the users
becomes stale. This results in an inherent trade-off between
the AoI at the users and conservation of the sensors’ energy
in the finite batteries.

We aim to find the best action of the edge node at each
time slot, called an optimal policy, to minimize the average
AoI about the physical quantities at the users restricted to
the users’ request moments, i.e., average on-demand AoI. The
on-demand AoI minimization is different from the conven-
tional AoI optimization in that the freshness of information is
only important when user(s) need the information. To tackle
this status update control problem, we derive an MDP model
and propose RL based algorithms to obtain optimal policies
under different circumstances in the learning environment. To
summarize, our main contributions are:

• First, we derive an MDP model for the on-demand
AoI minimization problem, calculate the state transition
probabilities, and propose a model-based VIA to find an
optimal policy.

• Then, for the case where the state transition probabilities
are unknown, we propose a model-free online Q-learning
method to search for an optimal policy. As a practical
consideration, we also propose an online method for the
realistic scenario where the edge node is informed about
the sensors’ battery levels only via the status updates.

• We next derive structural properties of the optimal policy
– obtained by VIA – and show that the optimal policy
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has a threshold-based structure with respect to the AoI in
a specific scenario.

• In addition, we investigate a massive IoT scenario where
the edge node can command only a limited number of
sensors. In particular, we find an optimal policy and
propose a low-complexity sub-optimal algorithm.

• Extensive numerical experiments are conducted to show
that an optimal policy is a threshold-based policy and
that the proposed RL algorithms significantly reduce the
average on-demand AoI as compared to several baseline
policies.

Our paper has certain relations to [20]–[32], [34], yet
with the following differences. The works [20]–[23] focus
on a continuous-time single EH sensor and use optimization
methods different to the MDP based learning methods herein.
The works [24]–[26], [34], do not consider energy limitations
at the source nodes, whereas we consider EH sensors with
finite batteries. In [27], each time slot is allocated either to
one sensor to send an update or to the destination to broadcast
RF energy signals to charge the sensors; in our system model,
all the users’ requests in the network are handled by the edge
node at each time slot, and the sensors harvest energy from
the environment. In [28]–[32], the authors studied AoI-optimal
policies for a single EH sensor that sends updates to a
destination in cases where the updates are relevant to the
monitoring entity at all time moments, whereas we investigate
on-demand AoI minimization in IoT networks where EH
sensors send updates to the users via a cache-enabled edge
node. Different from all the above works, we propose a
learning based approach for the case where the edge node
is informed about the sensors’ battery levels only via the
status update packets, i.e., partial battery knowledge at the
edge node. To the best of our knowledge, this is the first work
that investigates on-demand AoI in an EH IoT network and
proposes MDP based learning approaches for age-aware status
update control with EH sensors. A comparative summary of
contributions is presented in Table I. Preliminary results of
this paper appear in [36].

B. Organization

The paper is organized as follows. Section II presents the
system model and problem definition. A Markov decision
process and definition of optimal policies are presented in
Section III. Our proposed RL-based status update control algo-
rithms are developed in Section IV. Structural properties of
an optimal policy are analytically characterized in Section V.
The scenario under the transmission limitation is addressed in
Section VI. Simulation results are presented in Section VII.
Concluding remarks are drawn in Section VIII.

C. Notations

Vectors and sets are written in boldface lower (a) and
calligraphy (S) letters, respectively. The expectation operation
is denoted as E[·]. The cardinality of a set S is denoted as |S|.
The indicator function 1{.} is equal to 1 (only) whenever the
condition {.} is true.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider an IoT sensing network consisting of mul-
tiple users (data consumers), a wireless edge node, and a
set K = {1, . . . , K} of K energy harvesting (EH) sensors
(data producers), as depicted in Fig. 1. Users are interested
in time-sensitive information about physical quantities (e.g.,
temperature or humidity) which are independently measured
by the K sensors; formally, sensor k ∈ K measures a physical
quantity fk. We assume that there is no direct link between
the users and the sensors, and the edge node acts as a gateway
between them. Thus, the users’ requests for the values of fk,
k ∈ K, are served (only) via the edge node.

The system operates in a slotted time fashion, i.e., time is
divided into slots labeled with discrete indices t ∈ N. At the
beginning of slot t, users request for the values of physical
quantities fk from the edge node. Formally, let rk(t) ∈ {0, 1},
t = 1, 2, . . ., denote the random process of requesting the value
of fk at the beginning of slot t; rk(t) = 1 if the value of fk

is requested and rk(t) = 0 otherwise. Note that at each time
slot, there can be multiple requests arriving at the edge node.

The edge node is equipped with a cache storage that stores
the most recently received measurement of each physical
quantity fk. Upon receiving a request for the value of fk at slot
t (i.e., rk(t) = 1), the edge node can either command sensor
k to perform a new measurement and send a status update2 or
use the previous measurement from the local cache, to serve
the request. Let ak(t) ∈ {0, 1} denote the command action of
the edge node at slot t; ak(t) = 1 if the edge node commands
sensor k to send a status update and ak(t) = 0 otherwise.

We assume that all the requests that arrive at the beginning
of slot t are handled during the same slot t. Note that while
the communications between the edge node and the users are
assumed to be error-free,3 the transmissions from the sensors
to the edge node are prone to errors as detailed in Section II-C.

B. Energy Harvesting Sensors

We assume that the sensors rely on the energy harvested
from the environment. Sensor k stores the harvested energy
into a battery of finite size Bk (units of energy). Formally, let
bk(t) denote the battery level of sensor k at the beginning of
slot t. Thus, bk(t) ∈ {0, . . . , Bk}.

We consider a common assumption (see e.g., [20], [22],
[23], [28], [37]) that transmitting a status update from each
sensor to the edge node consumes one unit of energy. Once
sensor k is commanded by the edge node (i.e., ak(t) = 1),
sensor k sends a status update if it has at least one unit of
energy in its battery (i.e., bk(t) ≥ 1). Let random variable
dk(t) ∈ {0, 1} denote the action of sensor k at slot t;
dk(t) = 1 if sensor k sends a status update to the edge node

2In general, a status update packet contains the measured value of a
monitored process and a time stamp representing the time when the sample
was generated.

3This assumption is invoked by the fact that the edge node accesses to
sufficient power (e.g., a base station connected to a fixed power grid), whereas
the sensors rely only on the energy harvested from the environment. However,
it would be straightforward to extend our proposed approaches to the case
where these links are also error-prone.
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TABLE I

A COMPARATIVE SUMMARY OF CONTRIBUTIONS OF THE EXISTING WORKS IN CONTRAST TO OUR PAPER

Fig. 1. An IoT sensing network consisting of multiple users (data con-
sumers), one edge node (i.e., the gateway), and a set of K energy harvesting
wireless IoT sensors (data producers). The procedure of serving a request by
using fresh data is shown by green lines, whereas the blue lines show the
procedure of serving a request by using the previous measurements already
existing in the cache.

and dk(t) = 0 otherwise. Accordingly, the relation between
the action of sensor k (i.e., dk(t)) and the command action of
the edge node (i.e., ak(t)) can be expressed as

dk(t) = ak(t)1{bk(t)≥1}, (1)

Note that quantity dk(t) in (1) characterizes also the energy
consumption of sensor k at slot t.

We model the energy arrivals at the sensors as independent
Bernoulli processes with intensities λk, k ∈ K. This charac-
terizes the discrete nature of the energy arrivals in a slotted-
time system, i.e., at each time slot, a sensor either harvests
one unit of energy or not (see e.g., [31]). Let ek(t) ∈ {0, 1},
t = 1, 2, . . ., denote the energy arrival process of sensor k.
Thus, the probability that sensor k harvests one unit of energy
during one time slot is λk , i.e., Pr{ek(t) = 1} = λk, k ∈ K,
t = 1, 2, . . ..

Finally, using the defined quantities bk(t), dk(t), and ek(t),
the evolution of the battery level of sensor k is expressed as

bk(t + 1) = min {bk(t) + ek(t)− dk(t), Bk} . (2)

C. Communication Between the Edge Node and the Sensors

We consider an error-free binary/single-bit command link
from the edge node to each sensor [21], [32], and an error-

prone wireless communication link from each sensor to the
edge node, as illustrated in Fig. 2. If a sensor sends a status
update packet to the edge node, the transmission through the
wireless link can be either successful or failed. Let hk(t) = 1
denote the event that a status update from sensor k has been
successfully received by the edge node at slot t. Otherwise,
hk(t) = 0 which accounts for both the cases that either
1) sensor k sends a status update but the transmission is failed,
or 2) the sensor does not send a status update. Let ξk be the
conditional probability that given that sensor k transmits a
status update, it is successfully received by the edge node,
i.e., Pr{hk(t) = 1 | dk(t) = 1} = ξk, k ∈ K, t = 1, 2, . . ..
Thus, ξk represents the transmit success probability of the
link from sensor k to the edge node.

D. Age of Information

Age of information (AoI) is a destination-centric metric that
quantifies the freshness of information of a remotely observed
random process [7]–[9]. Formally, let Δk(t) be the AoI about
the physical quantity fk at the edge node at the beginning of
slot t, i.e., the number of time slots elapsed since the gener-
ation of the most recently received status update packet from
sensor k. Let uk(t) denote the most recent time slot in which
the edge node received a status update packet from sensor
k, i.e., uk(t) = max{t′|t′ < t, hk(t′) = 1}; thus, the AoI
about fk can be written as the random process Δk(t) =
t − uk(t). We make a common assumption (see e.g., [26],
[27], [30]) that Δk(t) is upper-bounded by a finite value
Δk,max, i.e., Δk(t) ∈ {1, 2, . . . , Δk,max}. This is reasonable,
because once Δk(t) reaches a high value Δk,max, the available
measurement about physical process fk becomes excessively
stale/expired, so further counting would be irrelevant.

At each time slot, the AoI either drops to one if the edge
node receives a status update from the corresponding sensor,
or increases by one otherwise. Accordingly, the evolution of
Δk(t) can be written as

Δk(t + 1) =

{
1, if hk(t) = 1,

min{Δk(t) + 1, Δk,max}, if hk(t) = 0,
(3)

which can be expressed compactly as Δk(t+1) = min
{(

1−
hk(t)

)
Δk(t) + 1, Δk,max

}
.
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Fig. 2. The link between each sensor and the edge node consists of an
error-free binary command link from the edge node to each sensor and an
error-prone wireless communication link from each sensor to the edge node.

E. Cost Function and Problem Formulation

We consider a cost function that penalizes the staleness of
the requested measurements received by the users. We define
the per-sensor immediate cost at slot t as the on-demand AoI
as

ck(t) = rk(t)βkΔk(t + 1), (4)

where βk ≥ 0 is a pre-defined weight parameter accounting
for the importance of the freshness of physical quantity fk, and
Δk(t+1) is the AoI defined in (3). Note that when the value of
fk is not requested at slot t, i.e., rk(t) = 0, the immediate cost
becomes ck(t) = 0, as desired. Moreover, since the requests
come at the beginning of slot t and the edge node sends values
to the users at the end of the same slot, Δk(t + 1) is the
effective AoI about fk seen by the users.

We aim to find the best action of the edge node at each time
slot, i.e., ak(t), t = 1, 2, . . ., k ∈ K, called an optimal policy,
that minimizes the long-term average cost, defined as

C̄ = lim
T→∞

1
T

T∑
t=1

K∑
k=1

ck(t). (5)

In order to shed light on the search for such an optimal
policy, we next present several points regarding the problem
structure. First, recall from Section II-A that in order to serve
the requests for the value of fk at slot t (i.e., rk(t) = 1),
the edge node can either command sensor k to send a status
update, i.e., ak(t) = 1, or use the available data in the
cache, i.e., ak(t) = 0. The former action (i.e., ak(t) = 1),
depending on the battery of sensor k and the situation of
the communication link between sensor k and the edge, may
lead to having a fresh measurement (i.e., the AoI drops to
one Δk(t + 1) = 1, minimizing the immediate cost ck(t) in
(4)), yet at the cost of consuming one unit of energy from
the battery of sensor k. On the other hand, the latter action
(i.e., ak(t) = 0) provides energy saving at the cost of serving
the requests by stale data. This introduces an inherent trade-
off between (myopically) minimizing the immediate cost or
saving energy for the possible future requests to minimize the
cost in a long run.

It is easy to verify that if there are no requests for the
value of fk at slot t (i.e., rk(t) = 0), the optimal action ak(t)
that minimizes the long-term average cost (5) is ak(t) = 0.

In this case, the immediate cost (4) becomes ck(t) = 0, and
furthermore, the command action ak(t) = 0 implies dk(t) = 0
as per (1), leading to energy saving for sensor k. Therefore,
the search for an optimal policy boils down to finding the
optimal actions ak(t) for the cases with rk(t) = 1.

Remark 1: For the sake of presentation, we first consider
the case where the sensors have independent communication
links to the edge node. Accordingly, the edge node can
command any number of sensors at each slot t, and these
command actions ak(t), k ∈ K, are independent across k.
Thus, the problem of finding the optimal actions ak(t), k ∈ K,
that minimize (5) is separable across sensors k ∈ K. Then,
in Section VI, we address the case where the edge node can
command only a limited number of sensors, which builds on
the decoupled case.

Based on Remark 1, we express the cost in (5) equivalently
as C̄ =

∑K
k=1 C̄k, where C̄k is the average cost associated

with sensor k, i.e., the per-sensor long-term average cost,
defined as

C̄k = lim
T→∞

1
T

T∑
t=1

ck(t), k = 1, . . . , K. (6)

Thus, minimizing the system-wise cost in (5) reduces to
minimizing the K per-sensor long-term average costs in
(6). This will be a key factor in developing our reinforce-
ment learning (RL) algorithms in Section IV. Prior to this,
in Section III, we model the considered problem as a Markov
decision process (MDP) and give definitions of optimal poli-
cies, which are needed in our algorithm development.

III. MARKOV DECISION PROCESS AND OPTIMAL POLICIES

Based on Remark 1, the problem of finding an optimal
policy that minimizes the long-term cost in (5) is separable
across the sensors. Thus, we present the derivation of such
an optimal policy for a particular sensor k but, clearly,
the derivations are valid for any sensor k ∈ K; the edge node
runs in parallel one policy for each sensor in the network. First,
we model the problem as an MDP. Then, we give a formal
definition of an optimal policy, followed by introducing the key
quantities needed to evaluate and search for such an optimal
policy. All these serve as preliminaries for the development of
our RL-based algorithms in Section IV and Section VI.

A. MDP Modeling

The MDP model associated with
sensor k is defined by the tuple{Sk,Ak,Pk

(
sk(t + 1)

∣∣sk(t), ak(t)
)
, ck

(
sk(t), ak(t)

)
, γ

}
,

where
• Sk is the state set. Let sk(t) ∈ Sk denote the state at

slot t, which is defined as sk(t) = {bk(t), Δk(t)}, where
1) bk(t) is the battery level of sensor k given by (2),
i.e., bk(t) ∈ {1, 2, . . . , Bk}, and 2) Δk(t) is the AoI about
the physical quantity fk in the local cache, i.e., Δk(t) ∈
{1, 2, . . . , Δk,max}.

• Ak = {0, 1} is the action set. The action selected by
the edge node at slot t is denoted by ak(t) ∈ Ak (see
Section II-A).



8340 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 12, DECEMBER 2021

• Pk

(
sk(t+1)

∣∣sk(t), ak(t)
)

is the state transition probabil-
ity that maps a state-action pair at slot t onto a distribution
of states at slot t + 1.

• ck(sk(t), ak(t)) is the immediate cost function, i.e., the
cost of taking action ak(t) in state sk(t), which is also
denoted simply by ck(t), and is calculated using (4).

• γ ∈ [0, 1] is a discount factor used to weight the
immediate cost relative to the future costs.

B. Optimal Policy

In an MDP environment, the immediate and long-term costs
that the agent – the edge node – expects to receive depends
on what actions the edge node takes at each time slot, which
are selected based on a policy. Generally, policies can be
stochastic or deterministic [38, Sect. 1.3]. A stochastic policy
πk = πk(a|s) : Sk × Ak → [0, 1] is defined as a mapping
from state s ∈ Sk to a probability of choosing each possible
action a ∈ Ak. A deterministic policy is a special case of the
stochastic policy where in each state s ∈ Sk, πk(a|s) = 1 for
some a ∈ Ak. Herein, we use the same notation πk for both
stochastic and deterministic policies.

The discounted long-term accumulated cost is defined as

Ck(t) =
∞∑

τ=0

γτck(t + τ), (7)

where ck(·) is the immediate cost calculated using (4). Our
goal is to find an optimal policy π∗

k that minimizes the
expected long-term cost in (7), defined as

π∗
k = arg min

πk

Eπk
[Ck(t) | πk] , (8)

where Eπk
[·] denotes the expected value of Ck(t) given that

the edge node follows policy πk.
Having defined an optimal policy, we now present essential

definitions as a means to search for such an optimal policy.

C. State-Value and Action-Value Functions

In order to evaluate policies and search for an optimal policy
π∗

k, we define the state-value and action-value functions. The
state-value function specifies how beneficial it is for the edge
node to be in a particular state under a policy πk. Formally,
the state-value function of state s ∈ Sk under a policy πk can
be written as

vπk
(s) .= Eπk

[Ck(t)|sk(t) = s] , ∀s ∈ Sk. (9)

The action-value function specifies how beneficial it is for
the edge node to perform a particular action in a state under a
policy πk. Formally, the action-value function can be written
as

qπk
(s, a) .=Eπk

[Ck(t)|sk(t)=s, ak(t)=a], ∀s∈Sk, a∈Ak.

(10)

Value functions define a partial ordering over policies. More
precisely, a policy πk is defined to be better than or equal to
a policy π′

k (i.e., πk ≥ π′
k) if and only if vπk

(s) ≤ vπ′
k
(s)

for all s ∈ Sk [38, Sect. 3.6]. Therefore, an optimal policy

π∗
k (not necessarily unique), which is better than or equal to

all other policies, minimizes the state-value function for all
states. Optimal policies achieve the same state-value function
(i.e., the optimal state-value function) that is defined as

v∗k (s) .= min
πk

vπk
(s), ∀s ∈ Sk. (11)

The optimal policies also share the same action-value func-
tion (i.e., the optimal action-value function) that is defined
as

q∗k (s, a) .= min
πk

qπk
(s, a) , ∀s ∈ Sk, a ∈ Ak. (12)

Accordingly, an optimal deterministic policy π∗
k can be

obtained by choosing the action a that minimizes q∗k (s, a)
in each state s, which can expressed as

π∗
k(a|s)=

⎧⎨
⎩

1, if a = argmin
a∈Ak

q∗k(s, a)

0, otherwise
, ∀s ∈ Sk. (13)

According to (13), the knowledge of the optimal
action-value function q∗k(s, a) suffices to find an optimal policy
π∗

k. Also, an optimal policy π∗
k can be found via the optimal

state-value function v∗k(s), provided that the state transition
probabilities are known. In this case, we first find optimal
action-value function q∗k(s, a), given that v∗k(s) is available for
all the states, and then find an optimal policy using (13). More
precisely, under an optimal policy π∗

k, for any state s ∈ Sk

and its possible successor states s′ ∈ Sk, the relationship
between the optimal state-value and action-value functions can
be derived as

q∗k (s, a) =
∑

s′∈Sk

Pk (s′|s, a)
[
ck(s, a) + γv∗k(s′)

]
,

∀s ∈ Sk, ∀a ∈ Ak. (14)

In summary, one can find an optimal policy if either 1) the
optimal action-value function q∗k(s, a) is available, or 2) the
optimal state-value function v∗k(s) and state transition proba-
bilities Pk

(
s′|s, a)

are available. We next discuss how to find
v∗k(s) and q∗k(s, a).

Under π∗
k , the recursive relationship between the opti-

mal state-value function of state s, v∗k(s), and the optimal
state-value function of its possible successor state s′, v∗k(s′),
is given by

v∗k (s) = min
a∈Ak

q∗k (s, a)

= min
a∈Ak

∑
s′∈Sk

Pk(s′|s, a) [ck(s, a)+γv∗k(s′)] , ∀s∈Sk.

(15)

The recursive equation in (15) is called the Bellman opti-
mality equation for v∗k(s).

Assuming the availability of the state transition probabil-
ities Pk(s′|s, a), (15) can be used to estimate the optimal
state-value function recursively; this is the basis for our
proposed VIA in Section IV-A. Similar to (15), the Bellman
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optimality equation for q∗k(s, a) is expressed as

q∗k(s, a)=
∑

s′∈Sk

Pk(s′|s, a)
[
ck(s, a)+γ min

a′∈Ak

q∗k(s′, a′)
]

,

∀s∈Sk, a∈Ak. (16)

The Bellman optimality equation in (16) is the basis for our
proposed Q-learning algorithms devised in Section IV-B and
Section IV-C.

IV. REINFORCEMENT LEARNING BASED STATUS UPDATE

CONTROL ALGORITHMS

In this section, we develop three RL-based status update
control algorithms for the considered IoT network. The algo-
rithms fall into two main categories: model-based RL and
model-free RL. For the MDP model described in Section III-
A, we first develop a model-based VIA relying on dynamic
programming in Section IV-A, followed by proposing a model-
free Q-learning algorithm in Section IV-B. As a practical
consideration in Section IV-C, we redefine the state definition
of the MDP to propose a Q-learning method for the scenario
where the edge node is informed of the sensors’ battery
levels only via the status update packets. As a key advantage,
the proposed algorithms are simple with low complexity of
implementation, which is important in practice.

A. Value Iteration Algorithm (VIA)

Value Iteration is a model-based RL method that finds the
optimal state-value function v∗k(s), and consequently, an opti-
mal policy π∗

k by turning the Bellman optimality equation (15)
into an iterative update procedure [38, Section 4.4].

1) Derivation of the State Transition Probabilities: In order
to apply (15), the VIA requires the knowledge of the state
transition probabilities of the MDP (see Section III-A). These
are derived in the following. In the considered system model,
for a given action ak(t), the state transition probabilities are
functions of both EH rate λk and transmit success probability
ξk, which were defined in Section II-B and II-C, respectively.
The probability of transition from state sk(t) to state sk(t+1)
under action ak(t) is given by (17) which is shown at the
bottom of the next page.

In brief, the first three expressions (17a)–(17c), as shown
at the bottom of the next page, correspond to cases where
sensor k does not send a status update, which leads the AoI
about fk in the local cache to increase by one, whereas in
(17d) sensor k sends a status update. In (17d), as shown at
the bottom of the next page, four possible events can occur,
depending on the success of the transmission attempt and the
energy arrivals, characterized by ξk and λk, respectively. These
cases are detailed in the following. noitemsep,nolistsep

• Case (17a): The edge node does not command sensor k
(i.e., ak(t) = 0), and thus, the sensor does not send a
status update.

• Case (17b): Similar to case (17a), but the battery of sensor
k is full, and thus, there is no room left for possible
harvested energy units.

• Case (17c): Sensor k is commanded, but since its battery
is empty (i.e., bk(t) = 0), no update takes place.

Algorithm 1 Value Iteration Algorithm (VIA)

1: Initialize v∗k(s) = 0, k ∈ K, ∀s ∈ Sk, and determine a
small threshold θ > 0.

2: for k = 1, . . . , K do
3: repeat {Update v∗k(s)}
4: δ = 0 {For stopping criterion}
5: for s ∈ Sk do
6: ν = v∗k(s)
7: v∗k(s) = min

a∈Ak

∑
s′∈Sk

Pk(s′|s, a) [ck(s, a) + γv∗k(s′)]

8: π∗
k(a|s) = 1{a=arg min

a∈Ak

�

s′∈Sk

Pk(s′|s,a)[ck(s,a)+γv∗
k(s′)]}

9: δ = max {δ, |ν − v∗k(s)|} {Maximum deviation
between the iterations}

10: end for
11: until δ < θ
12: end for
13: Output: Optimal deterministic per-sensor policies π∗

k(a|s),
∀k ∈ K.

• Case (17d): The edge node commands sensor k whose
battery is non-empty (i.e., bk(t) ≥ 1); sensor k sends the
status update, consuming one unit of energy.

2) Algorithm Summary: Having defined the state transition
probabilities above, we now employ the Bellman optimal-
ity equation (15) and set up an iterative update procedure,
the VIA, to find an optimal policy π∗

k. The proposed VIA
is presented in Algorithm 1, which consists of four main
stages: 1) an arbitrary initialization for the optimal state-value
function, e.g., v∗k(s) = 0, ∀s ∈ Sk, 2) in each iteration,
update the estimated value for v∗k(s), ∀s ∈ Sk, 3) stop when
the maximum difference in v∗k(s) between two consecutive
iterations is below a pre-defined threshold θ, and 4) determine
an optimal deterministic policy π∗

k(a|s) by using (14) and (13).
In the VIA, it is assumed that the state transition proba-

bilities are known in advance. According to (17), in order to
calculate the state transition probabilities Pk(s′|s, a), the prob-
abilistic model of the environment, i.e., EH probability λk

and the transmit success probability ξk need to be known,
which are not always available in practice. The scenarios under
unknown state transition probabilities are addressed in the next
subsections.

B. Q-Learning Algorithm

Q-learning is an online model-free RL algorithm that esti-
mates/learns the optimal action-value functions by experience
and finds an optimal policy iteratively. The main difference to
the VIA in Section IV-A is that Q-learning does not require
the knowledge of the state transition probabilities Pk(s′|s, a).

In the Q-learning method, the estimated action-value func-
tion for sensor k, denoted as Qk(s, a), s ∈ Sk, a ∈
Ak, directly approximates the optimal action-value function
q∗k(s, a) in (12) [38, Sect. 6.5]. The convergence Qk → q∗k
requires that all state-action pairs continue to be updated.
To satisfy this condition, a typical approach is to use the
“exploration-exploitation” technique in the action selection.
The ε-greedy algorithm is one such method that trade-offs
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exploration and exploitation [38, Sect. 6.5]. Intuitively, explo-
ration is finding more information about the environment,
while exploitation is exploiting known information to mini-
mize the long-term cost.

Our proposed Q-learning algorithm is presented in Algo-
rithm 2. To allow exploration-exploitation, the edge node
takes either a random or greedy action at slot t; the prob-
ability of taking a random action is denoted by ε(t), and
thus, the probability of exploiting the greedy action ak(t) =
arg mina∈Ak

Qk(sk(t), a) is 1− ε(t). Generally, during initial
iterations, it is better to set ε(t) high in order to learn the
underlying dynamics, i.e., to allow more exploration. On the
other hand, in stationary settings and once enough observations
are made, small values of ε(t) become preferable to increase
tendency to exploitation.

As it is shown on line 18 in Algorithm 2, at each
slot/iteration, the value for the Q-function of the current state
is updated based on the action taken and the resulting next
state, where α(t) represents the learning rate at slot t.

C. Q-Learning Algorithm With Partial Battery Knowledge

In Section III-A, we modeled the state of the MDP as
sk(t) = {bk(t), Δk(t)}. Consequently, both the proposed VIA
in Section IV-A and the Q-learning algorithm in Section IV-
B rely on the assumption that the edge node knows the
exact battery levels of the sensors at each time slot. This
requires continual coordination between the edge node and
the sensors, which may not always be feasible. In this section,
we consider a realistic environment where the edge node is
informed about the battery levels of the sensors only via the
status update packets. Consequently, the edge node has only
partial knowledge about the battery levels at each time slot.

To account for the fact that the edge node is informed
about the sensors’ battery levels only via the status update
packets, we next modify the state definition of the MDP.
A status update packet generated at the beginning of slot t
consists of the value of physical quantity fk, the battery level
of sensor k (i.e., bk(t)), and the timestamp t when the sample

Pk

(
sk(t + 1)

∣∣sk(t) = {bk(t) < Bk, Δk(t)}, ak(t) = 0
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λk, sk(t + 1) =

{
bk(t + 1) = bk(t) + 1,

Δk(t + 1) = min{Δk(t) + 1, Δk,max}

}
;

1− λk, sk(t + 1) =

{
bk(t + 1) = bk(t),
Δk(t + 1) = min{Δk(t) + 1, Δk,max}

}
;

0, otherwise.

(17a)

Pk

(
sk(t + 1)

∣∣sk(t) = {bk(t) = Bk, Δk(t)}, ak(t) = 0
)

=

⎧⎪⎪⎨
⎪⎪⎩

1, sk(t + 1) =

{
bk(t + 1) = Bk,

Δk(t + 1) = min{Δk(t) + 1, Δk,max}

}
;

0, otherwise.

(17b)

Pk

(
sk(t + 1)

∣∣sk(t) = {bk(t) = 0, Δk(t)}, ak(t) = 1
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λk, sk(t + 1) =

{
bk(t + 1) = 1,

Δk(t + 1) = min{Δk(t) + 1, Δk,max}

}
;

1− λk, sk(t + 1) =

{
bk(t + 1) = 0,

Δk(t + 1) = min{Δk(t) + 1, Δk,max}

}
;

0, otherwise.

(17c)

Pk

(
sk(t + 1)

∣∣sk(t) = {bk(t) > 0, Δk(t)}, ak(t) = 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λkξk, sk(t + 1) =

{
bk(t + 1) = bk(t),
Δk(t + 1) = 1

}
;

λk(1 − ξk), sk(t + 1) =

{
bk(t + 1) = bk(t),
Δk(t + 1) = min{Δk(t) + 1, Δk,max}

}
;

(1− λk)ξk, sk(t + 1) =

{
bk(t + 1) = bk(t)− 1,

Δk(t + 1) = 1

}
;

(1− λk)(1− ξk), sk(t + 1) =

{
bk(t + 1) = bk(t)− 1
Δk(t + 1) = min{Δk(t) + 1, Δk,max}

}
;

0 otherwise.

(17d)
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Algorithm 2 Online Status Update Control Algorithm via
Q-Learning

1: Initialize Qk(s, a) = 0, ∀s ∈ Sk, a ∈ Ak, k ∈ K
2: for each slot t = 1, 2, 3, . . . do
3: for k = 1, . . . , K do
4: if rk(t) = 0 then
5: ak(t) = 0
6: else
7: ak(t) is chosen according to the following probability

ak(t)=
{
argmina∈Ak

Q(sk(t), a), w.p. 1− ε(t)
a random action a ∈ Ak, w.p. ε(t)

8: if ak(t) = 1 then
9: Command sensor k to send a status update packet

10: if bk(t) > 0 then dk(t) = 1
11: else dk(t) = 0
12: else dk(t) = 0
13: end if
14: end if
15: Update AoI according to (3) and calculate ck(t)
16: end for
17: Wait for the next requests and compute sk(t+1), ∀k ∈ K
18: for k = 1, . . . , K do {Update the Q-tables}

Qk(sk(t), ak(t)) ← (1 − α(t))Qk(sk(t), ak(t)) +
α(t)

(
ck(t) + γ mina∈Ak

Qk(sk(t + 1), a)
)

19: end for
20: end for

was generated. Let b̃k(t) denote the knowledge about the
battery level of sensor k at the edge node at slot t. Formally,
b̃k(t) = bk(uk(t)), where uk(t) represents the most recent
time slot in which the edge node received a status update
packet from sensor k, i.e., uk(t) = max{t′|t′ < t, hk(t′) = 1}
(see Section II-D). Namely, at time slot t, b̃k(t) describes what
the battery level of sensor k was at the beginning of the most
recent time slot at which the edge node received a status update
from sensor k. To stress, the edge node does not know the
exact battery level of the sensors at each time slot, but it only
has the partial/outdated knowledge based on each sensor’s last
update.

Based on the discussions above, we modify the state def-
inition of the MDP defined in Section III-A as sk(t) =
{b̃k(t), Δk(t)}, thus, the state contains b̃k(t) instead of bk(t).
However, this state definition makes it impossible to calculate
the state transition probabilities and use the VIA. In par-
ticular, the underlying decision process is non-Markovian
(i.e., not an MDP), caused by the uncertainty that exists in
the wireless channel. For better clarification, consider state
sk(t) = {b̃k(t), Δk(t)} and action ak(t) = 0; the next
state is sk(t + 1) =

{
b̃k(t), min{Δk(t) + 1, Δk,max}

}
with

probability one. However, given sk(t) and ak(t) = 1, it is
impossible to calculate the state transition probabilities without
knowing the actions taken by the edge node during the last
Δk(t)− 1 slots (i.e., ak(t−Δk(t)), . . . , ak(t− 1)), implying
the non-Markovity in respect to the current state definition.
This is because the energy consumed by the sensor is unknown
during these Δk(t)−1 slots (in which, by definition, no update

has been received); at each such slot, three indistinguishable
cases might have happened: 1) the edge node commanded the
sensor, but the transmission was failed, or 2) the edge node
commanded the sensor and it could not send a status update
because its battery was empty, or 3) the edge node did not
command the sensor. While the first case consumes one unit
of energy from the battery of the sensor, the second and third
cases do not. This means that in order to model the underlying
decision process as an MDP and be able to calculate the state
transition probabilities, the exact actions taken by the edge
node during the last Δk(t) − 1 slots must be included in the
state definition. More precisely, at slot t, the state would be
defined as sk(t) =

{
b̃k(t), Δk(t), ak(t − Δk(t)), . . . , ak(t −

1)
}

. This, however, makes the state space grow exponentially
in terms of Δk(t).

Despite the aforementioned non-Markovity property of the
decision process, we apply the Q-learning presented in Algo-
rithm 2 for the partial battery knowledge case with state
sk(t) = {b̃k(t), Δk(t)}. Recall that the Q-learning algorithm
does not need any prior knowledge about the state transi-
tion probabilities. We will assess the performance of this
Q-learning method via simulations in Section VII and show
that it indeed is capable of learning the underlying environment
to some extent, thereby significantly outperforming several
baseline methods.

V. STRUCTURAL PROPERTIES OF AN OPTIMAL POLICY

In this section, we analyze the properties of an opti-
mal policy defined in (8). We first prove that the opti-
mal state-value function has monotonic properties. Then,
we exploit this monotonicity to prove that an optimal policy
has a threshold-based structure with respect to the AoI for the
case where the link from sensor k to the edge node is error-
free, i.e., ξk = 1. For general cases, threshold-based structures
are also numerically illustrated in Section VII-B.

Next, we present two propositions that are used to prove
properties of an optimal policy expressed in Theorem 1.

Proposition 1: The optimal state-value function v∗k(s) is
(i) non-decreasing with respect to the AoI, and (ii) non-
increasing with respect to the battery level.
The proof is presented in Appendix A.

Proposition 2: For the case where the link from sensor k to
the edge node is perfect, i.e., ξk = 1, the difference between
the optimal action-value functions for the different actions,
denoted by δq∗k(s) = q∗k(s, 1) − q∗k(s, 0), is non-increasing
with respect to the AoI.
The proof is presented in Appendix B.

Theorem 1: For the case where the link from sensor k to
the edge node is perfect, i.e., ξk = 1, an optimal policy has a
threshold-based structure with respect to the AoI.

Proof: Proving that an optimal policy has a
threshold-based structure with respect to the AoI is equivalent
to showing that if the optimal action in state s = {b, Δ}
is a∗

k(s) = 1, then for all the states s = {b, Δ}, in which
Δ ≥ Δ, the optimal action is a∗

k(s) = 1 as well. According to
Proposition 2, q∗k(s, 1) − q∗k(s, 0) ≤ q∗k(s, 1) − q∗k(s, 0).
The optimal action in state s is a∗

k(s) = 1, thus
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q∗k(s, 1)− q∗k(s, 0) ≤ 0. Accordingly, q∗k(s, 1)− q∗k(s, 0) ≤ 0,
which shows that the optimal action for state s is a∗

k(s) = 1.
�

Besides the fact that analyzing the structures give insight to
optimal policies, the inherent threshold-based structure of an
optimal policy can be exploited to reduce the computational
complexity of the VIA (see e.g., [39]).

VI. STATUS UPDATE CONTROL UNDER TRANSMISSION

LIMITATION

So far, we assumed that the edge node can command
multiple sensors without any constraints at each time slot,
which implies the actions ak(t), k ∈ K, to be independent
across k. In this section, we address the case where the edge
node can command only a limited number of sensors. Suppose
that, due to limited radio resources (e.g., bandwidth), the edge
node can command no more than M < K sensors at each
time slot. Thus, we have the per-slot transmission limitation

K∑
k=1

ak(t) ≤M, ∀t. (18)

The constraint (18) couples the actions ak(t), k ∈ K,
and thus, finding an optimal policy under the transmission
constraint is not separable across the sensors.

We next model the problem of finding an optimal policy
under the transmission constraint (18) as an MDP. By defining
the state similarly as in the per-sensor MDP of Section III-A
while incorporating the coupling constraint into the action
set allows us to use the developed RL methods of Section IV.
Due to the coupling constraint, the complexity of the solution
grows exponentially by increasing the number of sensors
K . Thus, as a practical consideration, we also propose a
sub-optimal algorithm for which the complexity increases only
linearly in K . The performance of the proposed sub-optimal
solution is numerically demonstrated to be close to the optimal
solution in Section VII-D.

A. MDP Modeling

The problem of finding an optimal policy under the trans-
mission constraint is modeled as an MDP, defined by the tuple
{S,A,P(s(t + 1)|s(t),a(t)), c(s(t),a(t))}, where

• The state set S is defined as S = S1 × · · · × SK ;
the state space dimension is |S| = ∏K

k=1(Bk + 1)Δk,max.
The state of the system at slot t is defined as
s(t) =

(
s1(t), . . . , sK(t)

) .=
(
sk(t)

)K

k=1
, where sk(t) is

defined in Section III-A.
• The action set A is defined as A =

{
(a1, . . . , aK) |

ak ∈ Ak = {0, 1}, ∑K
k=1 ak ≤ M

}
; the action space

dimension is |A| = ∑M
m=0

(
K
m

)
. The action selected by

the edge node at slot t is denoted by a(t) =
(
ak(t)

)K

k=1
,

where ak(t) is defined in Section III-A.
• The state transition probability P(s(t + 1)|s(t), a(t)) is

calculated as

P(
s(t+1)

∣∣s(t),a(t)
)
=

K∏
k=1

Pk

(
sk(t+1)

∣∣sk(t), ak(t)
)
,

(19)

where Pk

(
sk(t+1)

∣∣sk(t), ak(t)
)

is calculated according
to (17a)–(17d).

• The immediate cost function c(s(t), a(t)), denoted simply
by c(t), is calculated as c(t) =

∑K
k=1 ck(t), where ck(.)

is defined in Section III-A.

B. Optimal and Sub-Optimal Algorithms

1) Optimal Policy: An optimal policy under the
transmission constraint can be found by following the steps in
Section IV and using the developed learning methods, i.e., VIA
or Q-learning. Because the state and action spaces grow
exponentially with respect to the number of sensors, finding an
optimal policy is tractable only for a small number of sensors.
More precisely, finding an optimal policy is PSPACE-hard
which is similar to NP-hard except that the space (i.e., the size
of computer memory) is the main limiting factor [40] [41,
Chap. 6]. The structural properties of the optimal policy –
obtained by VIA – can be obtained by following the same steps
as in Section V, but due to the space limitation, we omit it.

2) Sub-Optimal Policy: In order to reduce the exponential
complexity due to the coupling constraint (18) and deal with
practical massive IoT scenarios, we propose the following
sub-optimal policy. First, we ignore the constraint (18), and
find the optimal per-sensor policies π�

k, k ∈ K, as discussed
in Section IV, either by using VIA or Q-learning. Then,
we truncate the scheduling policy to satisfy the constraint (18)
as follows. At slot t, let X (t) = {k | ak(t) = 1, k ∈ K} ⊆ K
denote the set of sensors that are commanded under the
optimal per-sensor policies π�

k, k ∈ K. The truncation step
separates into two cases: 1) if |X (t)| ≤ M , the edge node
simply commands all of the sensors in X (t), and 2) otherwise,
the edge node commands only the M sensors from X (t)
that have the largest AoI. In this regard, the truncation policy
conforms to a myopic strategy in that it prioritizes updating
the sensors with the highest AoI to minimize the immediate
cost.

Remark 2: For the case with no energy limitations at the
source nodes, a Whittle index policy can be obtained which is
asymptotically optimal and has low complexity. For instance,
in [39], scheduling multiple sensors with a transmission con-
straint was modeled as a restless multi-armed bandit (RMAB)
and a Whittle index policy was obtained. In RMAB, at each
time slot, a specific subset of “arms” is selected by the
decision maker [41, Chap. 6]. In order to cast our problem
as an RMAB and be able to find a Whittle index policy,
we first need to ensure that, for an optimal policy, exactly M
sensors are commanded by the edge node at each time slot.
However, it is clear that in our system model, commanding
exactly M sensors at each time slot is highly sub-optimal.
This is because of the energy harvesting nature of the sensors.
Namely, when the battery level (or the AoI) is low, it is optimal
not to command the sensor. Inspired by the procedure of
finding a Whittle index policy [41, Chap. 6], we could start by
relaxing the per-slot transmission constraint to the long-term
average constraint, and decouple the problem along the sen-
sors by using the Lagrange function. Then, by applying the
constrained MDP (CMDP) concepts, we can find an optimal
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TABLE II

DEFAULT SIMULATION PARAMETERS

policy for the relaxed decoupled problem. Here, there are two
main challenges: 1) properly modifying the optimal relaxed
policy to satisfy the per-slot constraint, and 2) mathematical
analysis to show the above policy is asymptotically optimal.
Studying these aspects will be striven for in our future work.

VII. SIMULATION RESULTS

In this section, we numerically analyze the structural prop-
erties of an optimal policy obtained by the VIA. Moreover,
simulation results are presented to demonstrate the perfor-
mance of the proposed VIA summarized in Algorithm 1,
the proposed Q-learning algorithms – Q-learning with exact
and partial battery knowledge – obtained by Algorithm 2, and
the proposed algorithms under the transmission limitations –
optimal and sub-optimal – developed in Section VI.

A. Simulation Setup

The simulation setup is as the following, unless otherwise
stated. We consider K = 3 EH sensors, i.e., K = {1, 2, 3}.
Each sensor k ∈ K has a battery with capacity Bk = 15
units of energy. At each time slot, the probability that the
value of fk is requested (i.e., rk(t) = 1) is denoted by pk,
i.e., Pr{rk(t) = 1} = pk. We set pk = 0.15, k ∈ K. For
the VIA, we set the threshold parameter as θ = 0.001. For the
Q-learning method, we set ε(t) = 0.02+0.98 e−εdt with decay
parameter εd = 10−7. The learning rate is set to α(t) = 0.5
during the first 1/εd = 107 slots and after that α(t) = 0.01.
Table II summarizes the default simulation parameters.

B. Structure of an Optimal Deterministic Policy

We analyze the structural properties of an optimal determin-
istic policy obtained by the VIA for a particular sensor, e.g.,
sensor 1, and investigate the effect of the EH probability λ1

and transmit success probability ξ1.
Fig. 3 illustrates the structure of the obtained optimal

deterministic policy for different values of the EH probability
λ1 with the transmit success probability ξ1 = 0.9. Each point
represents a potential state of the system as a pair of values
of the battery level and AoI, (b, Δ). In particular, a red circle
indicates that the optimal action in a given state is that the
edge node does not command the sensor (i.e., a = 0), and a
blue square indicates that the optimal action is that the edge
node commands the sensor (i.e., a = 1). The set of blue points
is referred to as the command region hereinafter.

From Fig. 3(a)–(d), we observe that the optimal determin-
istic policy has a threshold-based structure with respect to the
battery level and the AoI, which can be expressed as follows:

1) If the optimal action in state s = {b, Δ} is a = 1,
then for all the states s′ = {b′, Δ}, in which b′ ≥ b,
the optimal action is a = 1 as well.

2) If the optimal action in state s = {b, Δ} is a = 1,
then for all the states s′ = {b, Δ′}, in which Δ′ ≥ Δ,
the optimal action is a = 1 as well.4

To exemplify this threshold-based structure in Fig. 3(a), con-
sider point (5, 17). Since the optimal action at the point (5, 17)
is a = 1, we observe that the optimal action at all the points
(5, Δ) where Δ ≥ 17, and all the points (b, 17) where b ≥ 5,
is also a = 1.

By comparing Figs. 3(a)–(d) with each other, we observe
that the command region (i.e., the set of blue square points)
enlarges by increasing the EH probability λ1. This is due to the
fact that since the sensor harvests energy more often, the edge
node commands the sensor to send fresh measurements more
often. Note that Fig. 3(d) is associated with an extreme case
in which the edge node always harvests energy at each time
slot; in this case, there is always at least one unit of energy
available in the battery of the sensor, and thus, for all the states
with b ≥ 1, the optimal action is a = 1.

Fig. 4 illustrates the threshold-based structure of the
obtained optimal deterministic policy for different values of
the transmit success probability ξ1 with the EH probability
λ1 = 0.04. Figs. 4(a)–(d) illustrate that the command region
expands by increasing the transmit success probability ξ1. This
is due to the fact that by increasing ξ1, the communication link
from the sensor to the edge node becomes more reliable, and
thus, the edge node commands the sensor more often as it has
more confidence about receiving the transmitted status update
packet. Fig. 4(a) depicts an extreme case with ξ1 = 0, in which
the link from the sensor to the edge node is always in the failed
state and the edge node never receives any commanded status
update; to conserve the sensor’s battery, the optimal action is
clearly a = 0.

C. Performance and Learning Behaviour of the Proposed
Algorithms

We investigate the performance and learning behaviour of
the proposed Q-learning algorithms with exact and partial
battery knowledge. To this end, we analyze the performance
of the proposed algorithms in terms of the long-term average
costs defined in (5) and (6). As a remark, the VIA serves as
a lower bound to the proposed Q-learning algorithms since it
knows the exact statistical model of the environment, and con-
sequently, the state transition probabilities of the underlying
MDP. Similarly, the Q-learning method with the exact battery
knowledge (referred to as Q-learning-exact hereinafter) is a
lower bound to the Q-learning algorithm having only the
partial battery knowledge (referred to as Q-learning-partial
hereinafter).

For comparison, we consider two baseline policies: greedy
(myopic), greedy-threshold, and random policy. In the greedy

4In Section V, we analytically proved this statement for the special case
ξk = 1. In this section, the numerical results show that an optimal policy has
a threshold-based structure with respect to the AoI for all the values of ξk as
well.
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Fig. 3. Structure of an optimal deterministic policy π∗
1 obtained by the VIA for each state s = {b, Δ} with the transmit success probability ξ1 = 0.9 for

different values of the EH probability λ1. Red circle: no command a = 0; blue square: command a = 1.

policy, whenever the value of physical quantity fk is requested
(i.e., rk(t) = 1), the edge node commands sensor k (i.e.,
ak(t) = 1), regardless of the battery stage and AoI; sen-
sor k sends a status update if the battery is non-empty,
i.e., bk(t) ≥ 1. In the greedy-threshold policy, whenever the
value of physical quantity fk is requested (i.e., rk(t) = 1),
the edge node commands sensor k if the battery level of
sensor k is above a threshold bTh (i.e., bk(t) ≥ bTh). Note
that the greedy-threshold policy with bTh = 1 is equivalent to
the greedy (myopic) policy. In the random policy, whenever
the value of physical quantity fk is requested (i.e., rk(t) =
1), the edge node selects a random action ak(t) ∈ {0, 1}
according to the discrete uniform distribution.

Fig. 5 depicts the performance of each algorithm for the EH
probabilities λ1 = 0.04, λ2 = 0.05, and λ3 = 0.06, and the
transmit success probabilities ξk = 0.15, ∀k ∈ K. Figs. 5(a)–
(c) are associated with the per-sensor long-term average cost
(C̄k) for sensor 1, 2, and 3, respectively. Fig. 5(d) illustrates
the long-term average cost over all the sensors (C̄).

As it is shown in Fig. 5(d), Q-learning-exact performs close
to the VIA and the proposed RL algorithms outperform the
baseline methods in terms of the long-term average cost.
The figures show that among the greedy-threshold baseline
policies, the greedy (myopic) policy (bTh = 1) results in the

best performance. Q-learning-exact, and also the VIA, reduce
the average cost approximately by a factor of 2 compared to
the greedy algorithm. Furthermore, the average cost decreases
roughly 30 % for Q-learning-partial compared to the (myopic)
greedy algorithm.

Interestingly, the gap between Q-learning-partial and
Q-learning-exact is small, when the EH probability is high
enough. As it is shown in Figs. 5(a)–(c), the largest gap occurs
for the sensor with the lowest EH probability, i.e., sensor 1; on
the contrary, the smallest gap is obtained for sensor 3 having
the highest EH probability. This is due to the fact that when the
energy becomes scarce, the edge node receives status updates
more rarely; consequently, the information about the battery
levels at the edge node becomes more outdated, i.e., more
uncertain, inhibiting the capability of Q-learning-partial to
take near-optimal actions as taken by Q-learning-exact.
Overall, Fig. 5 demonstrates that the proposed algorithm
for a realistic scenario has high performance even if the
edge node performs actions based on the outdated battery
information.

In Fig. 5(a), the greedy policy performs as poorly as the
random policy, because the EH probability is low, and thus,
it is highly sub-optimal to command the sensor at all states. As
it can be seen in Figs. 5(a)–(c), the lowest long-term average
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Fig. 4. Structure of an optimal deterministic policy π∗
1 obtained by the VIA for each state s = {b, Δ} with the EH probability λ1 = 0.04 for different

values of the transmit success probability ξ1. Red circle: no command a = 0; blue square: command a = 1.

cost is associated with the sensor that has the highest EH
probability, i.e., sensor 3. This is because sensor 3 harvests
energy more often, and thus, it can send status updates more
frequently upon receiving a command from the edge node.
Recall that the command region enlarges by increasing the
EH probability, i.e., the edge node commands the sensor more
frequently.

By comparing Figs. 5(a)–(c) with each other, we observe
that by increasing the EH probability λk the long-term average
cost for the VIA, and also for the Q-learning, moves toward
the long-term average cost for the greedy policy. This is
because by increasing the EH probability, the command region
enlarges, and thus, an optimal policy tends to the greedy
policy.

D. Performance Under the Transmission Constraint

We investigate the performance of the proposed optimal
and sub-optimal solutions presented in Section VI. The results
are obtained by averaging each algorithm over 200 episodes
whereas each episode takes 106 slots. We compare the pro-
posed policy with the greedy and random policies. In the
greedy policy, due to transmission constraint, the edge node
commands no more than M sensors with the largest AoI from
the set W(t) = {rk(t) = 1, k ∈ K} (i.e., the set of sensors

whose measurements are requested by user(s)). In Fig. 6(a),
the performance of the optimal and sub-optimal policies are
compared for different values of the transmission constraint
parameter M in a simple scenario with K = 4, Bk = 4,
Δk,max = 8, and pk = 1. As shown, the gap between the
proposed optimal and sub-optimal solutions is small, even
though the complexity of the sub-optimal is significantly lower
than that of the optimal solution, as discussed in Section VI.
In Fig. 6(b), a more realistic scenario is considered in which
K = 25, Bk = 7, Δk,max = 64, pk = 1. Note that running
our algorithm to find an optimal policy in this scenario is
not tractable because the state space dimension is |S| ≈
5 × 1067. For the benchmarking, we also plot the optimal
policy for the case without any transmission constraint to
serve as a lower bound. As shown, the performance of sub-
optimal policy is close to the lower bound for M ≥ 2, which
shows the effectiveness of the proposed sub-optimal solution.
Furthermore, the sub-optimal policy yields roughly 50 % lower
average cost than the baseline methods for (almost) all values
of M .

VIII. CONCLUSION AND FUTURE WORK

We investigated a status update control problem in an IoT
sensing network consisting of multiple users, multiple EH
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Fig. 5. Learning behaviour of the proposed VIA and Q-learning algorithms in comparison to baseline policies.

Fig. 6. Performance of the proposed optimal and sub-optimal policies under the transmission limitation in comparison to the baseline policies.

sensors, and a wireless edge node. We modeled the problem
as an MDP and proposed two classes of RL based algorithms:
a model-based VIA relying on dynamic programming, and a
model-free Q-learning method. Furthermore, we developed a

Q-learning method for the realistic case in which the edge
node does not know the exact battery levels. The proposed
Q-learning schemes do not need any information about the
EH model. We also proposed an optimal and a low-complexity
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sub-optimal algorithm for a massive IoT scenario where the
edge node can command only a limited number of sen-
sors. Simulation results showed that an optimal policy has
a threshold-based structure and the proposed RL algorithms
significantly reduce the long-term average cost compared to
several baseline methods.

Interesting future direction of this work would be to inves-
tigate the case where the edge node cannot serve the requests
from all the users at one time slot, and study the impact of user
scheduling on the age-optimal policies for the large-scale EH
IoT networks. Another future direction could be to search for
optimal and/or low-complexity algorithms under both the par-
tial battery knowledge at the edge node and the transmission
limitation.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: As discussed in Section IV-A, the optimal state-
value function v∗k(s) can be computed iteratively by the VIA.
In the VIA, the optimal state-value function of state s at
iteration n = 1, 2, . . ., denoted by v∗k(s)(n), is updated as
(see (15))

v∗k(s)(n) = min
a∈Ak

∑
s′∈Sk

Pk(s′|s, a)
[
ck(s, a) + γv∗k(s′)(n−1)

]
= min

a∈Ak

q∗k(s, a)(n−1), ∀s ∈ Sk. (20)

Thus, an optimal policy at nth iteration is given
by π∗

k(a|s)(n) = 1{a=arg mina∈Ak
q∗

k(s,a)(n)}. Accordingly,
an optimal action in state s at nth iteration, denoted by
a∗

k(s)(n), reads as

a∗
k(s)(n) = arg min

a∈Ak

q∗k(s, a)(n). (21)

For any arbitrary initialization v∗k(s)(0), the sequence
{v∗k(s)(n)} can be shown to converge to the optimal state-value
function v∗k(s) [38, Sect. 4.4], i.e.,

lim
n→∞ v∗k(s)(n) = v∗k(s). (22)

(i) In order to prove that v∗k(s) is non-decreasing with
respect to the AoI, we define two states s = {b, Δ} and s =
{b, Δ}, where Δ ≥ Δ, and show that v∗k(s) ≥ v∗k(s). Accord-
ing to (22), it suffices to prove that v∗k(s)(n) ≥ v∗k(s)(n), ∀n.
We prove this by mathematical induction. The initial values
can be chosen arbitrarily, e.g., v∗k(s)(0) = 0 and v∗k(s)(0) = 0,
thus, the relation v∗k(s)(n) ≥ v∗k(s)(n) holds for n = 0. Assume
that v∗k(s)(n) ≥ v∗k(s)(n) for some n. We need to prove that
v∗k(s)(n+1) ≥ v∗k(s)(n+1) as well. From (20) and (21), we have

v∗k(s)(n+1) − v∗k(s)(n+1)

= min
a∈Ak

q∗k(s, a)(n)−min
a∈Ak

q∗k(s, a)(n)

= q∗k
(
s, a∗

k(s)(n)
)(n) − q∗k

(
s, a∗

k(s)(n)
)(n)

(a)

≤ q∗k
(
s, a∗

k(s)(n)
)(n) − q∗k

(
s, a∗

k(s)(n)
)(n)

, (23)

where (a) follows from the fact that taking action a∗
k(s)(n)

in state s is not necessarily optimal. We show that
q∗k

(
s, a∗

k(s)(n)
)(n) − q∗k

(
s, a∗

k(s)(n)
)(n) ≤ 0 for all possible

actions a∗
k(s)(n) ∈ {0, 1}. We present the proof for the case

corresponding to (17d) where b ≥ 1 and a∗
k(s)(n) = 1; for the

other three cases (17a)–(17c), the proof follows similarly. We
have the relations in (24), shown at the bottom of the page,
where in step (a) we use the result of (17d), step (b) follows
from the assumption Δ ≤ Δ, and steps (c) and (d) follow
from the induction assumption.

q∗k(s, 1)(n) − q∗k(s, 1)(n)

=
∑

s′∈Sk

Pk(s′|s, 1)
[
ck(s, 1) + γv∗k(s′)(n)

]
−

∑
s′∈Sk

Pk(s′|s, 1)
[
ck(s, 1) + γv∗k(s′)(n)

]
(a)
= λkξk

(
1 + γv∗k(b, 1)(n)

)
+ (1− λk)ξk

(
1 + γv∗k(b− 1, 1)(n)

)
+ λk(1− ξk)

(
min{Δ + 1, Δk,max}+ γv∗k(b, min{Δ + 1, Δk,max})(n)

)
+ (1 − λk)(1− ξk)

(
min{Δ + 1, Δk,max}+ γv∗k(b− 1, min{Δ + 1, Δk,max})(n)

)
− λkξk

(
1 + γv∗k(b, 1)(n)

)
− (1− λk)ξk

(
1 + γv∗k(b − 1, 1)(n)

)
− λk(1− ξk)

(
min{Δ + 1, Δk,max}+ γv∗k(b, min{Δ + 1, Δk,max})(n)

)
− (1 − λk)(1− ξk)

(
min{Δ + 1, Δk,max}+ γv∗k(b− 1, min{Δ + 1, Δk,max})(n)

)
= (1− ξk) (min{Δ + 1, Δk,max} −min{Δ + 1, Δk,max})︸ ︷︷ ︸

(b)≤0

+ γλk(1 − ξk)
(
v∗k(b, min{Δ + 1, Δk,max})(n) − v∗k(b, min{Δ + 1, Δk,max})(n)

)
︸ ︷︷ ︸

(c)≤0

+ γ(1− λk)(1− ξk)
(
v∗k(b − 1, min{Δ + 1, Δk,max})(n) − v∗k(b− 1, min{Δ + 1, Δk,max})(n)

)
︸ ︷︷ ︸

(d)≤0

≤ 0. (24)
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q∗k(s, 1)− q∗k(s, 1)− q∗k(s, 0) + q∗k(s, 0)

=
∑

s′∈Sk

Pk(s′|s, 1)
[
ck(s, 1) + γv∗k(s′)

]
−

∑
s′∈Sk

Pk(s′|s, 1)
[
ck(s, 1) + γv∗k(s′)

]
−

∑
s′∈Sk

Pk(s′|s, 0)
[
ck(s, 0) + γv∗k(s′)

]
+

∑
s′∈Sk

Pk(s′|s, 0)
[
ck(s, 0) + γv∗k(s′)

]
= λk

(
1 + γv∗k(b, 1)

)
+ (1− λk)

(
1 + γv∗k(b− 1, 1)

)
−λk

(
1 + γv∗k(b, 1)

)
−(1− λk)

(
1 + γv∗k(b− 1, 1)

)
−λk

(
min{Δ + 1, Δk,max}+ γv∗k(b + 1, min{Δ + 1, Δk,max})

)
−(1− λk)

(
min{Δ + 1, Δk,max}+ γv∗k(b, min{Δ + 1, Δk,max})

)
+λk

(
min{Δ + 1, Δk,max}+ γv∗k(b + 1, min{Δ + 1, Δk,max})

)
+(1− λk)

(
min{Δ + 1, Δk,max}+ γv∗k(b, min{Δ + 1, Δk,max})

)
=

(
min{Δ + 1, Δk,max} −min{Δ + 1, Δk,max}

)
︸ ︷︷ ︸

(a)≥0

+ γλk

(
v∗k(b + 1, min{Δ + 1, Δk,max})− v∗k(b + 1, min{Δ + 1, Δk,max}

)
︸ ︷︷ ︸

(b)≥0

+ γ(1− λk)
(
v∗k(b, min{Δ + 1, Δk,max})− v∗k(b, min{Δ + 1, Δk,max})

)
︸ ︷︷ ︸

(c)≥0

≥ 0. (25)

(ii) In order to prove that v∗k(s) is non-increasing with
respect to the battery level, we define two states s = {b, Δ}
and s = {b, Δ}, where b ≥ b. By using induction and
following the similar steps as we have done in (i), one can
easily show that v∗k(s) ≥ v∗k(s). �

APPENDIX B
PROOF OF PROPOSITION 2

Proof: We define states s = {b, Δ} and s = {b, Δ},
where Δ ≥ Δ. We show that δq∗k(s) ≥ δq∗k(s), which can
be rewritten as q∗k(s, 1) − q∗k(s, 1) − q∗k(s, 0) + q∗k(s, 0) ≥ 0.
We present the proof for the case where 1 ≤ b < Bk; for the
other two cases, i.e., b = 0 and b = Bk, the proof follows
similarly. We have the relations in (25), shown at the top of
the page, where step (a) follows from the assumption Δ ≤ Δ,
and steps (b) and (c) follow from Proposition 1. �
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