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Abstract—In this paper, we devise a highly efficient machine
learning-based channel estimation for orthogonal frequency di-
vision multiplexing (OFDM) systems, in which the training of
the estimator is performed online. A simple learning module is
employed for the proposed learning-based estimator. The training
process is thus much faster and the required training data
is reduced significantly. Besides, a training data construction
approach utilizing least square (LS) estimation results is proposed
so that the training data can be collected during the data
transmission. The feasibility of this novel construction approach
is verified by theoretical analysis and simulations. Based on this
construction approach, two alternative training data generation
schemes are proposed. One scheme transmits additional block pi-
lot symbols to create training data, while the other scheme adopts
a decision-directed method and does not require extra pilot
overhead. Simulation results show the robustness of the proposed
channel estimation method. Furthermore, the proposed method
shows better adaptation to practical imperfections compared with
the conventional minimum mean-square error (MMSE) channel
estimation. It outperforms the existing machine learning-based
channel estimation techniques under varying channel conditions.

Index Terms—machine learning, channel estimation, OFDM.

I. INTRODUCTION

RTHOGONAL frequency division multiplexing (OFD-

M) has been widely used in wireless broadband systems.
Channel estimation is of vital importance for coherent OFDM
systems and has been extensively studied. In the systems that
employ pilot-aided channel estimation, the subcarriers that
carry pilot signals are multiplexed with the data subcarriers [1].
Initial channel estimates at pilot subcarriers are often obtained
first with least-squares (LS) estimation, and then interpolation
schemes are exploited to produce the channel responses at data
subcarriers. Many techniques can be adopted for interpolating
and a favored one is the minimum mean-square error (MMSE)
interpolation due to its excellent performance [2]. To perform
MMSE interpolation, one needs to know the second-order
channel statistics. Therefore, additional manipulation is re-
quired for the acquisition of channel statistics, and the channel
statistics mismatch may cause severe performance degradation.
Recently, deep learning (DL)-based channel estimation has
been proposed for wireless communications systems including
OFDM systems, multiple input multiple output (MIMO), and
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massive MIMO systems. DL techniques, such as deep neural
network (DNN) [3]-[13], recurrent neural network (RNN)
[14], and convolution neural network (CNN) [15]-[19], have
been leveraged to perform channel estimation. These methods
merely need a dataset to train the neural network, and channel
statistics are thus not required in the channel estimation phase.
Furthermore, these DL techniques bring tangible new benefits.
Specifically, DNN has demonstrated a surprising ability to
capture the complicated characteristics of data and thus the
DNN-based approach has advantages when wireless channels
suffer from serious distortion and interference. CNN shines in
image recovering and image denoising. Therefore, the CNN-
based approach has a high potential to improve the estimation
performance. The RNN with long short time memory (LSTM)
has the ability to capture long-time information in the data
sequence. Due to this, the RNN-based approach can track a
time-varying channel dynamically by exploiting the behavior
of correlation in the time domain.

Most of those DL-based approaches train the estimator
in an offline manner, where a large-scale training dataset is
required. It is cumbersome to create high-quality datasets
that agree well with real-world applications and there is a
shortage of available datasets for DL-based communication
systems compared with image processing and natural language
processing (NLP) applications. In addition, these approaches
are not amenable to wireless systems where channels change
rapidly. Although an untrained DNN-based estimator proposed
in [13] does not require offline training, the architecture of
DNN in [13] is designed for massive MIMO channel estima-
tion, which cannot be directly extended to the OFDM systems.
However, employing an online training scheme can avoid
the aforementioned problems faced by the offline training
manner [20]. This is because, in an online training scheme,
training data is collected during the real-time transmission
and thus agrees well with real-world applications. Besides,
since the learning module of the learning-based estimator is
trained in real-time, it can be adapted to the changing channel
conditions. However, little attention has been paid to the ma-
chine learning (ML)-based channel estimation with an online
training scheme. In designing ML-based channel estimation
with online training, there are three main challenges. First, in
the existing ML-based channel estimation methods, the true
channel responses are used as labels in training data. However,
the true channel responses are not known in practice. Second,
the size of the provided training data is usually limited,
which may not be enough to train the learning module. Third,
the training procedure should be completed fast to meet the
latency constraint.
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In this paper, we propose a linear machine learning (LML)-
based channel estimation with online training. The main
contributions are as follows.

e We devise a low complexity machine learning-based
channel estimation with an online training scheme. In
the proposed scheme, training data is generated during
transmission and the estimator is trained periodically
online. Therefore, the estimator can be optimized for
the real-time channel conditions and adapt to channel
changes.

o We propose a novel training data construction approach.
In the proposed scheme, the true channel responses are
replaced by their estimates to label training data so that
the training data can be collected online. The proposed
training data structure is validated by theoretical analysis
and simulations.

o Based on the proposed data structure, two alternative
training data generation schemes are given. In one
scheme, adding one block pilot symbol into the con-
ventional OFDM frame, the required training data can
be provided using the LS estimation results of the block
pilot symbol. The other scheme creates training data in a
decision-directed manner, which improves the spectrum
efficiency.

o A linear structure is employed as the learning module,
where the outputs are the linear combination of the
inputs. A lower training period and a smaller amount of
training data can be achieved due to the simplicity of
the learning module. In addition, since the training data
provided by the proposed generation scheme is limited,
the linear structure shows better performance compared to
the other machine learning techniques, e.g., DNN, which
is demonstrated by simulation experiments.

The remainder of this paper is organized as follows. The
system model, conventional channel estimation methods, and
machine learning-based channel estimation are introduced
in Section II. The proposed linear machine learning-based
channel estimator is illustrated in Section III. The online
training data generation schemes are explained in Section IV.
The performance of the proposed estimator and the proposed
training data generation schemes are validated by simulations
in Section V. Section VI concludes this paper.

Notation: We use boldface small letters and capital letters
to denote vectors and matrices, respectively. E[-], ||-||,, and ®
represent the expectation, the Euclidean norm, and circular
convolution, respectively. The superscripts (), (", O,
()7", and (-)" denote the conjugate of complex, the transpose,
the Hermitian transpose, the inversion, and Moore-Penrose
(MP) generalized matrix inverse, respectively. The superscripts
()" and ()f stand for time domain and frequency domain,
respectively.

II. CHANNEL ESTIMATION
A. System Model
We consider a single-input single-output (SISO) OFDM sys-
tem under a slowly fading wide-sense stationary uncorrelated
scattering (WSSUS) channel, in which the channel impulse
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Fig. 1. Sketch diagram for the OFDM symbol partition.

response (CIR) is constant during one OFDM symbol. The
received signal in the time domain can be expressed as

y'=x'®@h' +z, (1)

where x' is a vector containing the transmitted signal in time
domain and h' is the CIR vector. z represents the white
Gaussian noise vector. We assume that the length of the cyclic
prefix (CP) is larger than the channel length and the time and
frequency synchronizations are accurate. After the CP removal
and discrete Fourier transform (DFT) operation, the received
signal can be written as

yl =X'hf +z, )

where X! is a diagonal matrix containing the transmitted
signal. hf denotes the channel frequency response (CFR)
vector. z is a white Gaussian noise vector.

In this paper, we consider a low complexity channel estima-
tion scheme, in which an OFDM symbol is divided into several
groups and channel estimation is performed on each group
individually. For simplicity, we assume that the same estimator
is used to perform channel estimation for all the groups. To
this end, we adopt the pilot arrangement shown in Fig. 1,
where the division of the OFDM symbol is also illustrated. K,
Df, N4, and M represent the number of available subcarriers
per one OFDM symbol, the spacing between pilot subcarriers
(PS), the number of OFDM symbols or data symbols in a
frame, and the number of pilot subcarriers in one group,
respectively. We assume that M < P, where P denotes the
number of pilot subcarriers in an OFDM symbol. Since the
computational complexity of interpolation is linear to M, a
small M is crucial for reducing the implementation complexity
of the channel estimator. G is the number of groups and
G=K/ ((M — 1)Df).

In Fig. 1, the pilots are regularly placed at the same locations
for each OFDM symbol, which belong to the comb-type pilot
arrangement [2]. In addition, the subcarriers at both ends
are pilot subcarriers so that the groups have the same data
structure. Hence, the index set of the pilot subcarriers in an
OFDM symbol is given by

Q2 {1,1+D" 1+2D" ... [K}. (3)
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Since all the groups use the same estimator, we only
consider the channel estimation problem for the kth group,
specifically using X[ , to estimate hfj ;. X! , isa M x M
diagonal matrix containing the pilot signals in the kth group.
hg i is @ .S x 1 vector containing the CFRs at data subcarriers
in the kth group, where S is the number of data subcarriers
in a group.

Note the channel estimation method proposed in this paper
is not only developed for the pilot arrangement depicted in
(3) but also applicable for the general case of the comb
pilot arrangement. This is because we can simply repeat
the procedures of the proposed method to generate several
estimators when the subcarriers at both ends are not pilot
subcarriers and more than one estimator may be required. This
only leads to additional computation.

B. Conventional Channel Estimation Methods

Conventionally, channel estimation for the considered pilot
pattern is performed in two steps. The CFRs at the pilot
subcarriers are first obtained and then, interpolation is applied
to estimate the CFRs at the data positions.

The LS method is usually employed to estimate the CFRs
at the pilot positions, which is performed as

B, = (Xhi) vhe “)

where yf)_k is a vector containing the received signals corre-
sponding to lep_k in frequency domain.

These LS estimates are then interpolated to estimate hg_k.
The process of the interpolation can be denoted as

hf , = Wqh! ,, (5)

where Wy is the S x M interpolation matrix. Denote hi =
[hf ,,---,hf 4] as the vector containing the CFRs at data
positions in an OFDM symbol.

The conventional interpolation techniques reviewed in [2]
can be regarded as different approaches to calculate Wg.
Among those techniques, the optimum one is the MMSE
interpolation [2], in which Wy is given by

-1

Waninise = Rug ut (Rug ne +021) . (©
d_k"p_k p_k p_k

where h;_k contains the actual channel responses for fl;_k.

Ryt nf = E [hg_k (hi_k)H

d_kMp_k
matrix between the data subcarriers and pilot subcarriers.

is the channel correlation

H
Rhf,_k b, = E {h;_k (hg_k> } denotes the channel autocor-

relation matrix. o2 is the variance of noise contained in hlfD

and I is a identity matrix. Notice that W4 yvse does not
change w.r.t. the group index k. Since we assume a WSSUS
channel and the same data structure for all the groups, the
second order channel statistics in (6) are invariant w.r.t. k£ [1].
Thus, W4 mumske is the same for all the groups.

As can be seen from (6), MMSE interpolation requires
the knowledge of channel correlation and noise variance.
The precise channel correlation matrices are cumbersome to
be acquired. Though (6) is derived under an ideal channel

model described in (2), the practical systems may have many
unknown imperfections, such as symbol timing offset (STO),
carrier frequency offset (CFO), and non-linear distortion. The
ideal channel model does not match the real channel environ-
ment. As a result, MMSE interpolation in (6) usually suffers
from performance degradation in real applications.

When STO and CFO are present, the received signal in the
time domain will be

_ j2mne

Un = Yn_ge "OFT, (7

where y! _, denotes the (n — 6) th element of y* and 6 is the
timing error. The value of 6 is usually negative and small. ¢ is
the frequency offset times symbol duration. Nppr is the size
of DFT.

STO causes linear phase shifts among frequency channel
responses and thus influences the channel correlation [21]. As
a result, the channel correlation in (6) is inaccurate and should
be modified with the knowledge of the timing error. However,
the value of the timing error is unknown and a certain loss will
result with STO assumed to be 0. CFO causes inter-carrier
interference (ICI) and reduces the performance of channel
estimation [22]. Unlike STO, CFO cannot be addressed by
properly designing the parameters of the MMSE interpolation
even if the value of CFO is known.

To reduce the peak-to-average power ratio (PAPR), the clip-
ping and filtering approach is usually adopted. After clipping,
non-linear distortion on the transmitted signal arises, and the
distorted signal is given by [23]

o Jam fen] <4

Ty = ®)

Ae?® | otherwise,

where z!, is the nth element of x'. A represents some

amplitude threshold and ®,, is the phase of z,.

It is difficult to get the expression of MMSE interpolation
under a non-linear model, as shown in (8). By treating the
non-linear distortion as noise, distortion-aware linear MMSE
(DA-LMMSE) estimation proposed in [10] can improve the
estimation performance. However, the required effective noise
variance incorporating non-linear distortion is hard to obtain
in practical systems.

t

C. ML-based Channel Estimation

It is cumbersome to deal with the aforementioned imperfec-
tions in MMSE interpolation. Thus, ML-based channel estima-
tion techniques are adopted to address practical imperfections
[10], [23]. In ML-based channel estimation, the inputs are the
LS estimates ﬁf)_k and the neural network is a black box to
process on the LS estimates and get the outputs flfj > 1.€., the
estimated channel responses at data subcarriers. Through train-
ing, the ML-based estimator can be optimized for a particular
hardware configuration and channel. Therefore, information
about the channel or the derivation of the channel estimator
in closed form is not required and practical imperfections are
addressed by exploiting the underlying structures of channel
state information during the training process [8].

In ML-based channel estimation, it is important that the
channel conditions, especially the practical imperfections to
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Black box

Fig. 2. Sketch diagram for LML-based channel estimation.

be addressed, in the training procedure and the deployment
procedure remain the same. However, most of the existing ML-
based channel estimation techniques employ an offline training
manner and it is challenging to create high-quality datasets
whose features agree well with real-world applications. In
addition, the estimator cannot be trained again during trans-
mission even if the channel changes. The ML-based channel
estimation with offline training is not amenable to systems
where channel conditions change rapidly. It motivates us to
explore an online training scheme, where training data is
collected during the real-time transmission and the learning-
based estimator is trained in real-time to adapt to changing
channel conditions.

III. LINEAR ML-BASED CHANNEL ESTIMATION

To design an online training scheme, we need to address
two problems: how to reduce the amount of required training
data and how to collect training data online.

A. Network Structure

The size of the training dataset is usually proportional to the
number of parameters to be trained in a neural network [13]. A
deep neural network often has a large number of parameters
and thus requires a large dataset for training. For example,
if a fully connected neural network with L layers are used
and each layer has U; neurons, there will be Zf;ll UUi11
parameters to be trained. For the sake of reducing the required
training data, we use a simple network structure as shown in
Fig. 2, where there are only M S parameters to be trained.
Moreover, only one such network has to be trained since the
same estimator is used for all the subcarrier groups in an
OFDM symbol, as mentioned in Section II-A.

In this network, the outputs are directly connected with the
inputs through a complex weight matrix Wy, where Wy =
(Wi, ,W};S]T. wqs denotes the weight vector connecting

the sth output hfj , . with the inputs hf, i.e.,
7t T of
ha ks = Washy i )

We can see that the learning module keeps the same struc-
ture as conventional channel estimation methods described
in Section II-B, which makes it compatible to the existing
implementation. It belongs to the linear channel estimation and

thus we call it linear machine learning (LML)-based channel
estimation.

We restrict the learning module to a smaller class of
functions, i.e., the linear functions, so that the required training
data can be reduced greatly. This strategy, which restricts the
estimator to a certain class of functions and then finds the best
estimator in that class, is also used in [3]. Furthermore, the
linear learning module is chosen by comparing it with machine
learning techniques that are applied for channel estimation
in recent literature, including DNN and extreme learning
machine (ELM). DNN is a typical deep learning technique,
while ELM has a very simple network structure and is the
most promising technique to reduce the required training data.
Also, it keeps the non-linear fitting ability. The simulation
results presented in Fig. 11 in Section V show that for the
proposed online training scheme the linear learning module
has better performance than the other two machine learning
techniques although those two techniques have better potential
performance. It indicates that the training data provided in the
proposed online training scheme is not sufficient for those two
techniques. In addition, the computational complexity of the
learning module is low and its training is fast. The detailed
analysis is presented in Subsection ITI-C.

Although the proposed channel estimation method has the
same structure as the conventional linear channel estimation
methods, the way to obtain the interpolation matrix in (5) is
quite different, which is in a data-driven manner. This results
in two main advantages of the proposed method. First, under
complicated channel models, e.g., non-linear one shown in (8),
the estimator in the proposed method can be directly optimized
through training, while the conventional method need the exact
expression of the estimator, which is cumbersome to derive.
Moreover, the proposed method can adapt to some unknown
imperfections. In contrast, the conventional methods usually
suffer from performance degradation if those imperfections
are not modeled and addressed.

It should be noted that the proposed method loses non-
linearities compared with the Deep learning-based channel
estimation. As a result, the proposed method may fail to
address some severe non-linear imperfections. A DNN may
be applied to replace the linear learning module to enable
non-linear fitting ability. However, the online training scheme
needs to be reconsidered and a much larger training dataset
should be provided. We left this problem for our future work.

B. Train the Estimator

To learn the weight matrix Wy, a training dataset is
required. Assume the size of the dataset is 7" and T' >
M, where M is the input dimension of the estimator as
shown in Fig. 2. The dataset 7 can be expressed as 7 =
{x1(1),y0 (1)) ,.... x1(T),y0 (T))}, where x; and yo
denote the input and the label for the input, respectively. The
issue about how to generate the inputs and labels online is
interpreted in the next section.

The training is to derive the weight matrix Wy, that
minimizes the loss function Lo = &|Waxg —yo||§ over
the dataset T, i.e.,, Wq. = argmin Y [|[Wax; (t) — yo (t)]5.

Wy t
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This optimization problem has an analytical solution, which
is given by

Wa. = Yo(Xp)', (10)

where Yo = [yo (1), ...,y0 (T)] is a S x T matrix containing
the labels and X; = [x1(1),....,x1 (T)] is a M x T matrix
containing the inputs. The MP generalized inverse (XI)Jr can
be calculated using the singular value decomposition (SVD)
[24].

With the learned weight matrix W 4,, channel estimation
can be performed to obtain the channel responses at data
subcarriers using (9). Wy, is obtained during the transmission
of OFDM symbols. This is real-time training and thus we call
the training process as online training.

C. Complexity Analysis

We use the number of complex multiplications (CMs) to
measure the computational complexity. For simplicity, the
numbers of CMs for calculating the M x T (M < T)
matrix pseudo-inverse and the M x M matrix inverse are
assumed to be Chpiny (TM?) and Ciny (M?), respectively. We
compare the proposed method with the MMSE estimation
and the ML-based estimation counterpart, i.e., DNN-based
estimation [23] and complex ELM (C-ELM) based estimation
[20]. For a fair comparison, we assume that these methods
have the same input dimension M and output dimension S
except DNN-based estimation. For DNN-based estimation, we
split a complex number into a real part and an imaginary
part. Thus, the input dimension and the output dimension of
DNN-based estimation are 2 and 2.5, respectively. In DNN-
based estimation, there are real-valued multiplications. When
calculating the computational complexity, we consider that 4
real-valued multiplications are equivalent to one CM.

The ML-based estimation has two phases, i.e., the training
phase and the estimation phase, and we analyze the computa-
tional complexity for the two phases individually. The required
numbers of CMs for the estimation phase are summarized in
Table I, where N; and ¢; denote the number of layers and
the number of neurons at the [th layer, respectively. L is the
number of hidden neurons in the C-ELM. As can be seen,
the proposed method has a significantly lower computational
complexity compared to the other methods, especially the
DNN-based estimation and MMSE estimation.

As for the training phase, the proposed method requires
Chiny (TM?)+T (M + S) CMs. In C-ELM-based estimation,
the calculation of the output weights needs Cpiny (TLQ) +
T(L+S) CMs. Since the number of hidden neurons L is
usually larger than the input dimension M, the number of
CMs in C-ELM-based estimation has already exceeded the
proposed method when only the calculation of the output
weights is taken into account. The training complexity of
DNN-based estimation cannot be measured using the number
of CMs because it is trained iteratively with back propagation
(BP). The time consumption of training is hard to satisfy
the latency constraint in practical uses and thus DNN-based
estimation is trained in an offline manner [23]. ELM is well
known for its fast training capability. The training complexity
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TABLE I
COMPLEXITY COMPARISON

[ Estimators [
C-ELM-based [20]
DNN-based [23]
MMSE
Proposed

Numbers of CMs |
MSL

MSZZN:ll ClCl—1
Cinv (M3) + M(M + S)
MS

of the proposed method is even lower than C-ELM. Hence,
the training of the proposed method can be performed online.

IV. GENERATION OF TRAINING DATA

The training data (x1 (¢),yo (t)) given above is not de-
scribed in detail, where ¢ is the serial index in the dataset. In
this section, we first introduce a novel training data structure,
which can be collected online. Then, we present the analysis
of the feasibility of the novel training data structure. Based on
this training data structure, we propose two alternative training
data generation schemes.

A. Training Data Structure

Conventionally, the input x; is the LS estimates at pilot
subcarriers, and the label y¢ is the ideal output, i.e., the actual
values of channel responses at the corresponding data subcar-
riers. The input can be obtained by transmitting pilot signals,
while the label is hard to provide during the transmission of
OFDM symbols. However, we find that the LS estimates at
data subcarriers can replace their actual values to be the labels,
whose feasibility analysis is presented in the next subsection.
This label can be obtained by transmitting extra pilot signals
(the signals at data subcarriers are also known at the receiver)
or in a decision-directed way, which is illustrated in Section
IV-C. With this structure, training data can be collected during
the transmission of OFDM symbols.

The input-output palr for training data is given by x; (t) =
hf , and yo (t) = h ,. hf , is similar to h{ , in (5), which
contains the LS estimates at pilot subcarrlers hd _; contains
the LS estimates at corresponding data subcarriers.

This structure makes it possible that the collected training
data and the transmitted signals to be recovered are from the
same OFDM frame. This is quite meaningful for a machine
learning-based channel estimation technique since it guaran-
tees that the channel conditions in the training phase and the
deployment phase are the same. The training data may capture
practical imperfections, such as non-linear distortion, that
cannot be well described by tractable models. As a result, the
impact on the estimation performance of these imperfections
may be alleviated through training over the collected data.

B. Feasibility Analysis

It has been demonstrated in the literature that an estimator
can be learned through training on a dataset labeled by true
channel responses, i.e., (ghp t,hd t) } where hg_t

denotes the vector contaimng true channel responses at data
subcarriers. However, in the proposed method, hgt in the
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dataset is replaced by its estimation result hd ;- The labels of
training data h a_¢ are not the ideal outputs hf a_¢ and influenced
by noise. Furthermore, the performance of labels is usually not
satlsfactory since we use a s1mple method, i.e., LS estimation,
to obtain the labels. Therefore, we demonstrate the feasibility
of the proposed training data in this subsection.

First, it should be noticed that the training of the estimator
is not meant to achieve the performance of the labels, i.e., the
LS estimates. This is because the learning module does not
exactly produce the labels after training. The performance of
the learned estimator is usually not the same as that of labels.
This is verified in simulation experiments and the simulation
results are given in Fig. 5.

Next, we show that like the conventional training data,
the proposed training data has the property that the optimal
estimator can be learned when the average loss function
approaches its expectation. This condition usually holds when
the size of training data gets infinitely large. When true channel
responses are used2 as labels, the loss function is Lo =

thML ; hg_tH , where hfy;; , = W4h! , denotes the
output of the estimator. Its expectation is the mean square error
(MSE). The average loss function can be minimized through
training and thus the learned estimator has the minimum MSE
since the average loss function is the MSE.

When LS estimates are uged as labels, the loss function
is Ly = lHBQML t Bg t
loss function becomes UfASE + ofg as derived in Lemma 1,
where o is the MSE of hayr, ¢ and 0% is the MSE of LS
estimation. During training, the parameters of the estimator
are optimized by minimizing the average loss function, which
can be formulated as arg min (o + 0fg). Since oig is not

. Then, the expectation of the
2

influenced by W4, we (lilave

arg min (UQSE + afs) = arg min o3 gp-
Wy Wq

It indicates that the learned estimator also has the minimum
MSE. Therefore, it is proved that when the average loss func-
tion approaches its expectation, using the proposed training
data can learn the optimal estimator like the conventional
training data with ideal labels.

Lemma 1: E {éHflfdML_t — fl(fi_t

2
_ 2 2
2] = oymsE T Oig-

L2
Proof: E { thML . —hi tH ] can be expressed as
—*ll2

3
P f £
: (hdML_t,s - hd_t,s - ns) ] s

where n, denotes the estimation noise in hd b Ts is inde-

pendent of hf ,, and thus is independent of hdML ¢ Since

p_t’
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hdML s is the linear combination of hlD 4 1€, hdML ts =
wgshy ;. (11) can be simplified as

R R 2
E |: hflML_t,s - hfl_t,s :|
=E [(hdML £ hd ¢ 9) (hdML t.s hg_t,s) } (12)

—HE [né‘ ns}
= ose T Ots-

The above analysis result can be intuitively explained as
follows. When the learning module is trained using one labeled
sample, the noise in the label may cause the parameters in the
learning module to be modified in the wrong direction. How-
ever, the influence of noise may vanish with the accumulation
of training data. This is because the noise in labels, i.e., the
LS estimates, is zero-mean Gaussian noise [2] and the errors
in modifying the parameters caused by noise may cancel each
other out.

In fact, label noise has been investigated in the machine
learning field and it is shown that symmetric label noise may
not affect the training performance [25]. In our proposed
training data, the noise in labels is also symmetric since it
is zero-mean Gaussian noise. Furthermore, in addition to the
above analysis under the ideal condition, we also conduct
simulation experiments to demonstrate the feasibility of our
proposed training data in practical situations, and the results
and the corresponding analysis are given in Section V. In Fig.
6, the performance of the learned estimator using the proposed
training data is compared with that using true channel respons-
es. From the results, it is shown that when the size of training
data is sufficiently large, which can be achieved in practice,
the performance degradation caused by the noise in labels is
quite small.

C. Training Data Generation Schemes

In this section, we give two alternative training data gener-
ation schemes.

In a pilot-aided manner: An intuitive approach is to
transmit block pilot symbols, in which all the subcarriers
convey pilot signals, ahead of conventional data symbols so
that the channel responses at “data” subcarriers can also be
estimated using LS estimation. We call this approach as pilot
aided training data generation (PATDG) scheme.

Training data is generated based on the LS estimation results
using the block pilot symbol, i.e.,

B = (X0 7'y (13)

Considering the transmission efficiency, block pilot symbols
should be as few as possible. Therefore, these pilot symbols
should be fully utilized to generate training data. Fig. 3
illustrates the proposed training data generation scheme. The
consecutive (M — 1)D! LS estimates form one group, i
which M items work as the estimates of pilot subcarriers hf
and S items work as the estimates of data subcarriers hfj "
One such 3roup thus can provide one pair of training data

(hg 0l ). At most K — (M — 1)Df + 1 such groups can
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be generated based on hf, as shown in Fig. 3. In this way,
K — (M —1)D" + 1 sample pairs can be obtained based on
hf. If N, block pilot symbols are transmitted in the training
phase, N, (K — (M —1)D! +1) sample pairs can be provided
with the proposed training data generation scheme. The dataset

T is given by T = {(fllfo_p flfd_l) yeees (ﬁlfo_T’ ﬁfd-T) } and
the size of 7 is

T =N,(K—(M—1)D" +1). (14)

O LS estimates in h'

»i K »
M-1)D! i’
© 0 - 6 6 60 ©---0 6 oh
1 2 K—(M-1)D" +1
I R .
~ ~ f £ p_t>id ¢
/’lprJ hdfil_l hdJA hpf/“w

One group
Fig. 3. Sketch diagram for illustrating how to generate sample pairs.

Note that the modulation mode of block pilot symbols
should be the same with data symbols.

Under certain conditions, one block pilot symbol is suffi-
cient, i.e., IV, = 1. This will be demonstrated by simulation
results in Section V. The procedures of the proposed esti-
mation method with PATDG along with the data structure are
shown in Fig. 4. When receiving an OFDM frame, the receiver
first train the estimator using the training data provided by
the block pilot symbol. Then, the trained estimator is used
to obtain the channel responses at data subcarriers of OFDM
symbols. The estimator is re-trained for each OFDM frame
and thus can adapt to quickly changing channel conditions.

Data structure

Afrlamc
- A
fg ? o e @ | @ Pilot subcarrier
§ %@ E O O | O Data subcarrier
o
B9 50 Q
z | = ¢ :
zlel | ® o
cle 0o o
@ o) fe)
e |e °
: »
>
Time

Procedures '(‘)f proposed estimation method

| 4
Generating
training data

T

W,

Performing

Trainin;
3 channel estimation

Fig. 4. Data structure and procedures of the proposed channel estimation
method with PATDG.

In a decision-directed manner: Different from the PATDG,
we propose another scheme called the decision-directed train-
ing data generation (DDTDG) scheme, which does not require
extra pilot overhead for the generation of training data. The
main idea behind DDTDG is inspired by the decision-directed
channel estimation (DDCE), which uses the detected symbols

as pilots to track the channel. Similarly, we can collect training
data in a decision-directed way.

In the proposed DDTDG scheme, the data structure is the
same as the one shown in Fig. 1. Initial channel estimates
are first obtained with a simple channel estimation algorithm,
which is the LS method with linear-interpolation. Using initial
estimation, the single tap equalization in the frequency domain
can be performed followed by the hard decision to recover
the transmitted data [26]. Then, the recovered data is fed back
and treated as a block pilot symbol to calculate hf using (13).
In the sequel, training data can be generated with hf as the
PATDG scheme.

In order to explain the principle of DDTDG specifically,
we use the procedure of the proposed channel estimation
method with DDTDG to present how it works. The procedure
is shown in Algorithm 1 and Steps 1 to 5 represent the
procedure of DDTDG. Initial estimation ﬁg is first obtained
using linear interpolation. The result ﬁg is then used to recover
the transmitted data and generate training data. With the
collected training data, the estimator can be learned using (10)
and the interpolation matrix Wy can be updated. With the
updated W, the output of the algorithm flfi can be calculated
using (5).

Algorithm 1 Proposed channel estimation algorithm with
DDTDG
Input:
pilot signals X£, received signals y*;
Output:
channel responses at data subcarriers hf;
1: caleulate h! | (k =1,...,G) using (4);
2: calculate flg using hf . With linear interpolation;
3: recover the transmitted data with single tap equalization
and hard decision;
4: calculate hf using (13) with the recovered data regarded
as pilots;
5: generate training data 7 using hf as shown in the PATDG
scheme;
6: obtain W4 based on 7 using (10);
7: update h using W4 based on (5).

It can be seen that the Algorithm 1 does not need the extra
pilot overhead and therefore it does not cause any loss in
spectral efficiency while generating training data.

V. SIMULATION RESULTS

We simulate three typical scenarios, including the linear
channel with perfect synchronization, the linear channel with
imperfect synchronization, and the non-linear channel depicted
in (8) with perfect synchronization. Under scenario 1, there is
a closed-form expression for the optimal estimator, i.e., the
MMSE channel estimation shown in (6), so that we have
a good baseline to verify the performance of the proposed
method. Under scenario 2 and 3, we examine the adaption
of the proposed method to practical imperfections, including
STO, CFO, and non-linear distortion. Moreover, we validate
the use of a linear learning module for our proposed online
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TABLE II
SYSTEM PARAMETERS
Number of subcarriers 512 CP length 128
Symbol period (with CP) 32 us Bandwidth 10MHz
Channel model [27] Pedestrian B Modulation QPSK
Pilot interval Df =3 Estimator taps | M = 2
Block pilot symbols Np =1 Data symbols | Ng =
Available subcarriers K =410
TABLE I

CHANNEL PARAMETERS

Omin Emax Non-linear distortion
Scenario 1 0 0 No
Scenario 2 | -20, -40 | 0.01, 0.05 No
Scenario 3 0 0 Yes

training scheme through comparisons with other machine
learning techniques, e.g., deep neural networks, under scenario
3. Since deep neural networks have better potential under
this scenario due to their stronger fitting abilities, convincing
evidence can be provided for the superiority of a linear
learning module in the proposed scheme if the linear learning
module still outperforms other machine learning techniques.

The simulations are based on the model described in Section
II-A. The system parameters are shown in Table II and the
channel parameters for the three scenarios are shown in Table
III, where 6,,,;, and e, represent the minimum value of STO
and the maximum value of normalized CFO, respectively. The
STO and the normalized CFO are assumed to be uniformly
distributed within [fmin, ...,0] and £epax, respectively. For
the non-linear distortion, the amplitude threshold A in (8) is
set as the root mean square of signal, as in [23]. We use
normalized MSE (NMSE), as shown in (15), to measure the
estimation performance. When MSE is hard to be calculated,
bit error rate (BER) is used and zero-forcing (ZF) equalization
and hard decision are adopted to recover the information bits.
The NMSE and BER are obtained by averaging over 5000
independent Monte Carlo runs.

N 2
e | - i

NMSE =
E||n/l5]

15)

A. Simulation Results under Scenario 1

We demonstrate the feasibility of the proposed training data
labeled by estimated channel responses through simulation
experiments under this scenario and test the robustness of the
proposed channel estimation method.

Fig. 5 compares the NMSE performance of the proposed
channel estimation method with the two training data genera-
tion schemes. We can see that although labels in the proposed
training data structure are the estimated channel responses
using LS estimation, the proposed method with PATDG and
that with DDTDG both achieve much better performance as
opposed to LS estimation. It shows that the performance of
learned estimation is not related to the estimation performance

of labels. Moreover, the proposed method with PATDG is
robust to noise and yields a result close to MMSE estimation
for all signal-to-noise ratios (SNRs), while that with DDTDG
suffers from significant performance degradation at lower
SNRs. This is because DDTDG uses the detected data as
the transmitted data to calculate labels, and the wrongly
detected data generates bad labels and thus causes performance
degradation. This problem becomes more severe at low SNRs,
where the ratio of wrongly detected data raises. Therefore,
the DDTDG scheme is sensitive to the noise level and not
suitable for the systems that operate in low SNR environments.
However, for the systems where the power of the received
signal is strong and spectrum efficiency is given preference,
DDTDG is a better choice than PATDG. In the following
simulations, we only use PATDG for the proposed method.
This is because the two schemes perform closely at high SNRs
and PATDG can represent the proposed training data structure
better than DDTDG. The labels in PATDG are calculated using
the accurate transmitted data.

T T
—8— LS estimation

Proposed estimation method with DDTDG
=¥ Proposed estimation method with PATDG
= & ' MMSE estimation

NMSE

1072

5
SNR (dB)

Fig. 5. The NMSE performance of MMSE estimation, LS estimation, and
the proposed method with PATDG and DDTDG vs. SNR under scenario 1.

To provide further insights on the proposed training data
structure, we compare it with the conventional one, i.e., the
training data labeled by actual channel responses. The results
are presented in Fig. 6. First, through the comparison between
the proposed method and the one with the training data labeled
by actual channel responses, we can see that the performance
loss caused by the estimation error in labels decreases with the
increasing SNR. Moreover, when the size of the dataset is over
280, performance loss becomes quite small even at the SNR of
-10 dB and the performance of the proposed method gets close
to that of MMSE estimation. According to (14), a block pilot
symbol can provide 408 samples in our simulations. Therefore,
one symbol is enough, i.e., N, = 1, and an estimator with
near-optimal performance can be learned even at a low SNR.

Fig. 7 shows the NMSE performance for two pilot intervals
DFf and besides Pedestrian B (PB) the performance under an
additional channel model, i.e., Office A (OA), is displayed
as well. Notice that the results of the proposed method are
all close to the MMSE estimation for different pilot inter-
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Fig. 6. The NMSE performance of the proposed method and MMSE
estimation vs. the size of the dataset under scenario 1. The proposed method
is trained with estimated labels and accurate labels, respectively.

vals and for different channel models. The simulation results
demonstrate the robustness of the proposed method to the pilot
intervals and propagation environments.

NMSE

=% Proposed method with pilot interval 3 under PB

——&— MMSE estimation with pilot interval 3 under PB

==X ==+ Proposed method with pilot interval 6 under PB

==+ @+ MMSE estimation with pilot interval 6 under PB

= W Proposed method with pilot interval 3 under OA

= @ :MMSE estimation with pilot interval 3 under OA
T

-10 0 10 18
SNR (dB)

Fig. 7. The NMSE performance of the proposed method and MMSE
estimation vs. SNR for different pilot intervals and channel models under
scenario 1.

B. Simulation Results under Scenario 2

Under this scenario, we compare the proposed method with
two conventional estimation methods, linear interpolation and
a fixed MMSE estimation method proposed in [21]. We choose
the linear interpolation because it is a widely used method
in practical systems due to its simplicity. The fixed MMSE
estimation uses the STO statistics to improve the performance
and we call it the average MMSE (AMMSE) estimation in
this paper.

Fig. 8 depicts the BER curves under various values of
Omin- It can be seen that STO corrupts the linear interpolation
severely. In addition, the comparison between the proposed

1
~
~o. L
-1 L .
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oo 1.08e-3
~
S, [----- V- - ===
o, 7
~
~
“sa 24
~ -~
~
o ~o~
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—oe— Est. w. linear int. Hmln:-20,emx:0.01 \
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—— Proposed est. Hm“]:-ZU,emaX:U,Ol N N
N
— @ Est.w. linearint. 6 . =-40,e  =0.01
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~w ‘Proposedest. 6 . =-40,c  =0.01 N
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Fig. 8. The BER performance of the proposed method, estimation with linear
interpolation, and average MMSE estimation vs. Ejp/Ng for different 0y,
under scenario 2.

T T T
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Fig. 9. The BER performance of the proposed method, estimation with linear
interpolation, and average MMSE estimation vs. Ejy /Ny for different emax
under scenario 2.

method and the average MMSE estimation, in which the used
STO statistics are assumed to be accurate, reveals that the
proposed method addresses STO even better. It outperforms
the average MMSE estimation especially when 6,,;, = —40
at high SNR regions. It shows that the proposed method can
learn the timing error based on training data and then deal
with it very well.

Fig. 9 presents the BER curves under different values
of €max. As can be seen, the proposed method and the
average MMSE estimation suffer from similar performance
degradation when ey, grows to 0.05, which shows that the
proposed method fails to address CFO as well. This is because
the proposed method employs a linear learning module and
CFO cannot be addressed through a linear operation of the
estimator. It shows that the proposed method is not adaptive
to the practical imperfections which cannot be compensated
by a linear operation.
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Fig. 10. The BER performance of the proposed method, C-ELM-based
estimation, and DNN-based estimation vs. Ej/No under scenario 3. The
proposed method, C-ELM-based estimation, and DNN-based estimation are
trained in an offline manner.

C. Simulation Results under Scenario 3

To validate the linear learning module, we employ the C-
ELM [20] and the three-layer DNN [23] to the black box in
Fig. 2 for benchmarking purposes, respectively. The number
of hidden neurons L in C-ELM is set as 8. The numbers
of neurons in each layer of DNN are 4, 8, 4, respectively.
The number of neurons per layer is chosen through extensive
simulation experiments. Specifically, those chosen parameters
for C-ELM and DNN show better or at least similar perfor-
mance compared with other parameter settings according to
our experiment results.

First, we assume that the training data can be obtained
in an offline manner as assumed in recent literature, e.g.,
in [14], [17], [23]. Specifically, a sufficiently large dataset
labeled by actual channel responses is provided and the
channel conditions in the online estimation stage are the
same with the channel models used in the offline training.
In this way, the ML-based channel estimation methods can
achieve the potential performance of their learning modules.
The performance of the proposed method is shown in Fig.
10 along with two other ML-based estimation methods. These
two methods outperform the proposed method, which shows
the two other methods have better achievable performance than
the proposed method thanks to their non-linear fitting ability.

Then, we simulate the situation where offline training is
not provided and PATDG is applied to generate the training
data. The simulation results are given in Fig. 11. It can be
seen that although the other two ML-based estimation methods
have better achievable performance, the proposed method
still outperforms them, which validates the use of the linear
learning module. The advantage over the two other ML-based
estimation methods stems from its requiring fewer training
samples than those methods. In addition, it can be seen that
the performance of the proposed method is better than the
distortion unaware MMSE (DU-MMSE) channel estimation,
where the non-linear distortion is not considered. And its
performance approaches the distortion-aware LMMSE (DA-

10

T
=+ DNN [23] based estimation
—©— C-ELM [20] based estimation
—&— DU-MMSE estimation

—%F— Proposed estimation method
DA-LMMSE [10] estimation

BER

E,/N, (dB)

Fig. 11. The BER performance of the proposed method, DU-MMSE esti-
mation, DA-LMMSE estimation, C-ELM-based estimation, and DNN-based
estimation vs. Ej/Ng under scenario 3. The proposed method, C-ELM-based
estimation, and DNN-based estimation employ the online training scheme
proposed in this paper.

LMMSE) channel estimation [10], where the effective noise
variance incorporating non-linear distortion is used. It demon-
strates that the proposed method can be trained to approach
the optimal linear estimator under a non-linear channel and
compensate non-linear distortion to a certain degree.

D. Simulation Results under Changing Scenarios

Finally, we evaluate the performance of the proposed
method under varying channel conditions. We consider the
situation where the channel changes within the three scenarios
at equal probability when the transmission of the current
OFDM frame is ended. In Scenario 2, e,.x = 0.01 and
0 min = —20. For ML-based channel estimation methods with
offline training, it is important for the learning module to work
effectively when the channel mismatches the one for training
[23]. This is because the estimator cannot be trained during
transmission although the channel may change. The estimator
is usually trained under a proper channel to have robust
performance. As the SNR during transmission is unknown,
the network is usually trained at a certain SNR value. In the
offline training scheme of [15] the network is trained at the
SNR value of 22 dB.

We compare the proposed method with the two other ML-
based channel estimation methods used in the experiment
above. Those two methods adopt the offline training scheme
of [15] and the estimators are trained at the £, /Ny value of 22
dB under Scenario 3. Scenario 3 is chosen because it shows
the best performance among the three scenarios according
to our simulation experiments. We simulate their average
performance using the Mont Calo method and the results are
displayed in Fig. 12. It can be observed that the average
performance of the proposed method is better than the two
other ML-based channel estimation methods although the two
methods have better performance when the channel matches
the one for training, as shown in Fig. 10. This is because the
training data in the proposed method is collected online and
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Fig. 12. The BER performance of the proposed method, C-ELM-based
estimation, and DNN-based estimation vs. Ejp/Np under changing scenarios.
The proposed method employs the online training scheme proposed in this
paper, while C-ELM-based estimation and DNN-based estimation employ the
offline training scheme proposed in [15].

it is always trained under the correct channel conditions. It
demonstrates the advantage of the proposed online training
scheme over the existing ML-based channel estimation with
offline training in the situation that the channel changes.

VI. CONCLUSION

In this paper, we propose a low complexity learning-based
channel estimation method. Different from the deep learning-
based channel estimation, offline training is not required in
the proposed method. It is trained online thanks to its fast
learning ability and the proposed training data generation
schemes, which collect training data online. The proposed
training data structure is validated by theoretical analysis and
simulations. The simulation results also demonstrate the ad-
vantages of the proposed method. First, the proposed channel
estimation method is robust to pilot intervals and channel
environments. Then, as a data-driven method, the proposed
scheme is adaptive to practical impairments like STO and
non-linear distortion. Furthermore, since the available training
data is limited in the proposed scheme, the employed linear
machine learning method has better performance compared to
C-ELM and DNN, although these methods have better fitting
abilities.

It is worth noting that the proposed channel estimation
method fails to compensate CFO, which cannot be addressed
by linear operations of the estimator, and with sufficient
training data deep learning techniques show higher poten-
tial than the employed linear learning module. However, in
the proposed scheme, the provided training dataset is small,
which hinders the application of deep learning techniques. It
would be interesting future work to improve the training data
generation method and explore the potential of applying deep
learning techniques to the online training scheme.
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