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Statistical Analysis of Multiple Antenna Strategies
for Wireless Energy Transfer

Onel L. A. López, Hirley Alves, Richard D. Souza, Samuel Montejo-Sánchez

Abstract—Wireless Energy Transfer (WET) is emerging as a
potential solution for powering small energy-efficient devices. We
propose strategies that use multiple antennas at a power station,
which wirelessly charges a large set of single-antenna devices.
Proposed strategies operate without Channel State Information
(CSI) and we attain the distribution and main statistics of the
harvested energy under Rician fading channels with sensitivity
and saturation energy harvesting (EH) impairments. A switch-
ing antenna strategy, where a single antenna with full power
transmits at a time, provides the most predictable energy source,
and it is particularly suitable for powering sensor nodes with
highly sensitive EH hardware operating under non-LOS (NLOS)
conditions; while other WET schemes perform alike or better in
terms of the average harvested energy. Under NLOS switching
antennas is the best, while when LOS increases transmitting
simultaneously with equal power in all antennas is the most
beneficial. Moreover, spatial correlation is not beneficial unless
the power station transmits simultaneously through all antennas,
raising a trade-off between average and variance of the harvested
energy since both metrics increase with the spatial correlation.
Moreover, the performance gap between CSI-free and CSI-based
strategies decreases quickly as the number of devices increases.

I. I NTRODUCTION

With the advent of the Internet of Things (IoT) era, there is
an increasing interest in energy efficient technologies in order
to prolong the battery life time of the devices. The recent
trends in energy harvesting (EH) techniques provide a funda-
mental efficient method that avoids replacing or recharging
batteries, which may be costly, inconvenient or hazardous,
e.g., in toxic environments, for sensors embedded in building
structures or inside the human body [1]. Many types of EH
schemes, according to the energy source, have been consid-
ered, based on solar, piezoelectric, wind, hydroelectric, and
wireless radio frequency (RF) signals [2]. While harvesting en-
ergy from environmental sources is dependent on the presence
of the corresponding energy source, RF-EH provides key ben-
efits in terms of being wireless, readily available in the form
of transmitted energy (TV/radio broadcasters, mobile base
stations and handheld radios), low cost, and having small form
factor implementation. Hence, it becomes potentially suitable
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for a variety of low-power applications such as wireless sensor
networks (WSNs) and RF identification (RFID) networks [3]1.

Three main transmit scenarios can be distinguished in
RF-EH networks2, namely Wireless Energy Transfer (WET)
[5], Wireless Powered Communication Network (WPCN) [6]
and Simultaneous Wireless Information and Power Transfer
(SWIPT) [7]. In the first scenario a power transmitter transfers
energy to EH receivers to charge their batteries, without any
information exchange, while WPCN refers to those cases
where the EH receiver uses the energy harvested in a first
phase to transmit its information in a second phase. Finally, in
the third scenario a hybrid transmitter is transferring wireless
energy and information signals using the same waveform to
multiple receivers. More details on each of these scenarios can
be found in [8], along with a survey on energy beamforming
(EB) techniques. In this work we focus on WET scenarios,
that also could be seen as an element of WPCN systems3,
while readers can refer to [9] for a review and discussion on
recent progress on SWIPT technologies.

A. Related Work

Many recent works have considered specifically WET and
WPCN setups in different contexts and scenarios. An overview
of the key networking structures and performance enhancing
techniques to build an efficient WPCN is provided in [10],
while authors also point out new and challenging research
directions. A power beacon (PB) that constantly broadcasts
wireless energy in a cellular network for RF-EH was proposed
in [11]. These PBs are deployed in conjunction with base
stations to provide power coverage and signal coverage in
the network, while the deployment of this hybrid network
under an outage constraint on data links was designed using
stochastic-geometry tools. In [12], a hybrid access point (AP)
was proposed where the AP broadcasts wireless power in
the downlink followed by data transmission using the har-
vested energy in the uplink in a time-division duplex (TDD)

1In fact, commercial WET-enabled sensors and RFID tags are already
in the market; check for instance www.powercastco.com. Readers are also
encouraged to refer to [4] and references therein for a complete overview of
the specific characteristics and challenges of RFID networks. Therein, authors
re-examine notions of power and spectral efficiency from an energy-constraint
perspective and establish the trade-offs between diversity order and spatial
multiplexing gains.

2In this work we consider those RF-EH networks where the RF signals are
intentionally transmitted for powering the EH devices. Alternatively, wireless
EH refers to those setups where devices harvest energy from non-dedicated
RF signals.

3This is because WPCN setups include WET, which is followed by a
wireless information transfer phase.
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manner. Also in TDD setups, works in [13]–[15] consider
the transmission of separately short energy and information
packets (stringent delay constraints) in ultra-reliable WPCN
scenarios under different channel conditions, e.g., Rayleigh or
Nakagami-m fading. Authors either analyze the performance
of the information transmission phase [13], or optimize it
by using power [14] control or cooperative schemes [15].
Some scheduling strategies that allow a direct optimization
of the energy efficiency of the network are also proposed in
[16]. Additionally, an energy cooperation scheme that enables
energy cooperation in battery-free wireless networks with
WET is presented in [17].

Yet, WET requires shifts in the system architecture and
in its resource allocation strategies for optimizing the energy
supplying, thus, avoiding energy outages. In that regard, au-
thors in [18] study the probability density function (PDF),
the cumulative distribution function (CDF), and the average
of the energy harvested from signals transmitted by multiple
sources. Interestingly, such information allows to determine
the best strategies when operating under different channel
conditions. Additionally, multi-antenna EB, where the energy-
bearing signals are weighted at the multiple transmit antennas
before transmission, has been proposed very recently [19],
[20]. The average throughput performance of EB in a WPCN,
consisting of one hybrid AP with multiple antennas and a
single-antenna user, is investigated in [19]. The impact of
various parameters, such as the AP transmit power, the energy
harvesting time, and the number of antennas in the system
throughput is analyzed. In [20], authors propose an EB scheme
that maximizes the weighted sum of the harvested energy and
the information rate in multiple-input single-output (MISO)
WPCN. They show that their proposed scheme achieves the
highest performance compared to existing work. In practice,
the benefits of EB in WET crucially depend on the available
CSI at the transmitter. An efficient channel acquisition method
for a point-to-point multiple-input multiple-output (MIMO)
WET system is designed in [21] by exploiting channel reci-
procity. Authors provide useful insights on when channel
training should be employed to improve the transferred energy.
Meanwhile, the training design problem is studied in [22] for
MISO WET systems in frequency-selective channels.

B. Contributions and Organization of the Paper

The problem of CSI acquisition in WET systems is critical
and limits the practical significance of some previous work.
This is because WET systems are inherently energy-limited,
and part of the harvested energy would need to be used
for CSI acquiring purpose [23]. In fact, the required energy
resources to that end cannot be neglected when there is a
large number of antennas and/or if the estimation takes place
at the EH side since it requires complex baseband signal
processing. Even when previous problems could be addressed
in some particular scenarios, there is still the problem of
CSI acquisition in multi-user setups, specially in IoT use
cases where the broadcast nature of wireless transmissions
could be exploited for powering a massive number of devices
simultaneously. In such cases, effective CSI-free strategies are
of vital importance.

This paper addresses CSI-free WET with multiple trans-
mit antennas, while assuming practical characteristics of EH
hardware. The main contributions of this work can be listed
as follows:

• We present and analyze multiple antenna strategies at a
dedicated PB serving a large set of RF-EH devices with-
out any CSI. We do not consider any other information
related to devices such as topological deployment, battery
charge; although, such information could be crucial in
some setups4. Our derivations are specifically relevant for
scenarios where it is difficult and/or not worth obtaining
such information, e.g., when powering a massive number
of low-power EH devices uniformly distributed in a
given area and possibly with null/limited feedback to the
PB. Additionally, the performance analysis considers the
harvested energy at the receiver, and comparisons with
ideal CSI-based schemes are carried out;

• We attain the distribution and some main statistics of
the harvested energy in correlated Rician fading channels
under each WET scheme and ideal EH operation. These
results are extended to more practical scenarios where EH
sensitivity and saturation impairments come to play. The
Rician fading assumption is general enough to include a
class of channels, ranging from Rayleigh fading channel
without line of sight (LOS) to a fully deterministic LOS
channel, by varying the Rician factorκ;

• When powering a given sensor, we found that switching
antennas such that only one antenna with full power
transmits at a time, guarantees the lowest variance in
the harvested energy, thus providing the most predictable
energy source. This technique is particularly suitable
under highly sensitive EH hardware and when operating
under non LOS (NLOS) conditions;

• While under NLOS it is better switching antennas, under
some LOS it is better transmitting simultaneously with
equal power by all antennas. Also, latter strategy provides
the greatest fairness when powering multiple sensors
when there is a large number of antennas since devices
are more likely to operate near or in saturation. Addi-
tionally, an increase in the spatial correlation is generally
prejudicial, except when transmitting simultaneously with
equal power by all antennas, for which there is a trade-
off between average and variance of the harvested energy
since both metrics increase with the spatial correlation;

• Numerical results validate our analytical findings and
demonstrate the suitability of the CSI-free over the CSI-
based strategies as the number of devices increases.

Next, Section II presents the system model, while Section III
introduces the WET strategies under study. Their performance
under Rician fading is investigated in Section IV, while
Section V presents numerical results. Finally, Section VI
concludes the paper.

Notation: Boldface lowercase letters denote vectors, while
boldface uppercase letters denote matrices. For instance,
x = {xi}, wherexi is the i-th element of vectorx; while

4For instance, the PB could prioritize those devices that are more distant
and/or with low battery charge by focusing more energy on their directions.
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TABLE I
MAIN SYMBOLS

T,S Dedicated power station and set of sensor nodes M Number of antennas atT
Sj j−th sensor node (j−th element ofS) h Complex fading channel vector
α,β Real and imaginary parts ofh, respectively l Number of energy beams transmitted byT
wk k−th precoding vector for thek−th energy beam ̟1,̟2 Sensitivity and saturation levels of the EH hardware
̺j Path loss of the linkT → Sj times the overall transmit

power ofT
g Function that describes the relation between harvested en-

ergy and RF input power
ξrfj , ξj Incident RF energy and harvested energy atSj η Energy conversion efficiency
ξ0 Harvested energy under the ideal EH linear model κ Rician fading factor
µ Mean vector of real and imaginary parts ofh R Normalized covariance matrix of elements ofα, β
ρ Uniform spatial correlation coefficient τ Exponential spatial correlation coefficient
δ General correlation parameter σ2 Variance of the elements ofα andβ
λ Eigenvalue ofR Λ Diagonal matrix containing the values ofλ
B Matrix with orthogonalized eigenvectors ofR ϕ,ψ Non central chi-squared distribution parameters
ξth

p1, p2, p3

Minimum amount of RF input power for whichS
can operate
Curve fitting parameters of benchmark EH model

κ∗1, κ
∗

2 κ that maximizes the variance of the harvested
energy under theAA scheme andSA or AA−CSI
schemes, respectively

X = {xi,j}, wherexi,j is the i-th row j-th column element
of matrix X. By I we denote the identity matrix, and by1
we denote a vector of ones. The superscript(·)T denotes the
transpose,det(·) the determinant, and byDiag[x1, x2, · · · ]
we denote the diagonal matrix with elementsx1, x2, · · · .
The ℓp−norm of vectorx is || x ||p =

(
∑

i |xi|p
)1/p

[24,
Eq.(3.2.13)].C is the set of complex numbers andi =

√
−1

is the imaginary unit. Meanwhile,x∗ is the conjugate ofx,
and | · | is the absolute operation, or cardinality of the set,
according to the case.E[ · ] andVAR[ · ] denote expectation and
variance, respectively, whileP[A] is the probability of event
A. y ∼ N (µ,R) is a Gaussian random vector withE[y] = µ

and covarianceR, W ∼ RIC(κ) is a Rician random variable
(RV) with factor κ [25, Ch.2], whileV ∼ Γ(m, a/m) is a
gamma random variable with PDF and CDF given by

fV (v) =
(m/a)m

Γ(m)
vm−1e−mv/a, v ≥ 0, (1)

FV (v) = 1− Γ(m,mv/a)

Γ(m)
, v ≥ 0, (2)

where Γ(p) and Γ(p, x) are the complete and incomplete
gamma functions, respectively. Additionally,Z ∼ χ2(ϕ, ψ)
is a non-central chi-squared RV withϕ degrees of freedom
and parameterψ, thus, its PDF and CDF are given by [25,
Eqs.(2-1-118) and (2-1-121)]

fZ(z) =
1

2
e−(z+ψ)/2

( z

ψ

)ϕ/4−1/2
Iϕ/2−1

(
√

ψz
)

, z ≥ 0, (3)

FZ(z) = 1−Qϕ/2

(
√

ψ,
√
z
)

, z ≥ 0, (4)

where In is the n-th order modified Bessel function of the
first kind [25, Eq.(2-1-120)] andQ is the Marcum Q-function
[25, Eq.(2-1-122)]. According to [25, Eq.(2-1-125)]

E[Z] = ϕ+ ψ, VAR[Z] = 2(ϕ+ 2ψ). (5)

Table I summarizes the main symbols used throughout this
paper.

II. SYSTEM MODEL

Consider the scenario in Fig. 1, in which a dedicated power
stationT equipped withM antennas, powers wirelessly a large

set S = {S1, S2, · · · , S|S|} of single-antenna sensor nodes
located nearby. Quasi-static channels are assumed, where the
fading process is considered to be constant over the transmis-
sion of a block and independent and identically distributed
(i.i.d) from block to block. The fading channel coefficient
between thei-th antenna ofT and thej−th sensor nodeSj
is denoted ashi,j ∈ C, while hj ∈ C

M×1 is a vector with the
channel coefficients from the power station antennas toSj .

In general, during WET power stationT may transmit with
up to l ≤M energy beams to broadcast energy to all sensors
in S. Then, the incident RF power at thej−th EH receiver is
given by5

ξrfj = ̺j

∣

∣

∣
hTj

l
∑

k=1

wkxk

∣

∣

∣

2

= ̺j

l
∑

k=1

∣

∣hTj wk

∣

∣

2
, (6)

wherewk ∈ CM×1 denotes the precoding vector for generat-
ing thek−th energy beam, andxk is its energy-carrying signal.
Without loss of generality, we assume that eachxk is taken
independently from an arbitrary distribution withE[|xk|2] =
1, ∀k [12], [18], [21]. Additionally, we set

∑l
k=1 ||wk||22 = 1,

while ̺j accounts for the path loss of the linkT → Sj times
the overall transmit power ofT . By considering negligible
noise energy, the harvested energy6, ξj , can be written as
a function of ξrfj as ξj = g(ξrfj ) where g : R → R is
a non-decreasing function of its argument. In generalg is
nonlinear7 and mathematical analyses are cumbersome, but
starting from the linear model the accuracy can be significantly

5Notice that the EH receiver does not need to convert the received signal
from the RF band to the baseband in order to harvest the carried energy.
Nevertheless, thanks to the law of energy conservation, it can be assumed
that the total incident RF power (energy normalized by the baseband symbol
period) matches the power of the equivalent received baseband signal.

6We use the terms energy and power indistinctly, which can be interpreted
as if block duration is normalized.

7Although in this work we just state the harvested energy as a function
of the incident RF power, we would like to highlight that in practiceg
also depends on the modulation and incoming waveform [26], and some
approaches have been considered in the literature for exploiting this. For
instance [27]: energy waveform, which relies on deterministic multisine at
the transmitter so as to excite the rectifier in a periodic manner by sending
high energy pulses; and energy modulation, which relies on single-carrier
transmission with inputs following a probability distribution that boosts the
fourth order term in the Taylor expansion of the diode characteristic function.
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Fig. 1. System model: dedicated power stationT equipped withM antennas,
powers wirelessly a setS of single-antenna sensor nodes located nearby.

improved by considering three main factors that limit strongly
the performance of a WET receiver [3], [14], [28], [29]:(i) its
sensitivity̟1, which is the minimum RF input power required
for energy harvesting;(ii) its saturation level̟ 2, which is
the RF input power for which the diode starts working in the
breakdown region, and from that point onwards the output DC
power keeps practically constant; and(iii) the energy efficiency
η ∈ [0, 1] in the interval̟1 ≤ ξrfj ≤ ̟2, which we assume
as constant. Therefore, we can writeξj as

ξj = g(ξrfj ) =







0, ξrfj < ̟1

ηξrfj , ̟1 ≤ ξrfj < ̟2

η̟2, ξrfj ≥ ̟2

. (7)

Notice that the linear model assumed in most of the related
literature, e.g., [1], [8], [11]–[13], [15], [16], [19]–[23], [29],
does not take into account the sensitivity and saturation
phenomena, which is equivalent to operate with̟1 = 0 and
̟2 →∞. Thus, taking these impairments into consideration
in the scenarios under discussion is an important contribution
from a practical perspective.

III. WET STRATEGIES

First, in Subsection III-A we characterize the performance
of WET for three different strategies atT without any CSI,
while two alternative strategies that require full CSI are
presented as benchmarks in Subsection III-B.

A. WET Strategies without CSI

Since no CSI is available andwk cannot depend on the
channel coefficients,T does not form energy beams to reach
efficiently eachSj . Therefore, for these kind of strategies it
is only necessary focusing on the performance of an arbitrary
userSj , while also settingl = 1.

1) One Antenna (OA): Is the simplest strategy because
only one out ofM antennas transmitting with full power is
used for powering the devices. Then, using (6) we obtain

ξjOA = g
(

̺j |hi,j |2
)

, (8)

where i ∈ {1, 2, · · · ,M}. Notice that in this casew1 is a
vector of zeros with entry1 in the i−th element. There is
no difference whetherT is equipped with only one or several
antennas when operating with theOA strategy.

2) All Antennas at Once (AA): TheOA strategy does not
exploit multiple antennas, thus, it does not take advantage of
that degree of freedom. One obvious and simple alternative is
transmitting with all antennas but with reduced power at each,
w1 = (1/

√
M)1M×1, thus,8

ξjAA = g

(

̺j
M

∣

∣

∣

M
∑

i=1

hi,j

∣

∣

∣

2
)

. (9)

The OA and AA schemes are the extreme cases of a more
general strategy whereK out of M antennas are selected
to power the sensors. As a consequence, theK-out-M ’s
performance is limited by that of theOA andAA strategies.

3) Switching Antennas (SA): Instead of transmitting with
all antennas at once,T may transmit with full power by one
antenna at a time such that all antennas are used during a
block. Assuming equal-time allocation for each antenna, the
system is equivalent to that in which each sub-block duration
is 1/M of the total block duration, and the total harvested
energy accounts for the sum of that of theM sub-blocks.
That is

ξjSA =
1

M

M
∑

i=1

g
(

̺j |hi,j |2
)

. (10)

Note thatw1 in each sub-block is given as in theOA strategy,
but the choseni is different in each sub-block.

B. Benchmark WET Strategies

For the sake of describing some benchmark strategies,
herein we consider that full CSI is available atT . SensorsS
could use a “small” amount of energy9 to send some pilot
symbols to T in order to acquire the CSI. This requires
reciprocal channels, thus,T should be listening at the time of
the transmission. Otherwise,T has to send the pilots and wait
for a feedback from the sensor(s) informing the CSI. Whatever
the case, it seems unsuitable in a setup where a large number of
energy constrained sensors require the powering service from
T , specially if we also consider the multiple access problem.
Therefore, we present the following CSI-based strategies only
as benchmarks for those presented in the previous subsection.
We assume thatT knows also the EH hardware characteristics,
e.g.,̟1, ̟2, η, of the EH sensors and the goal is to maximize
the overall energy harvested byS.

1) Best Antenna (OA− CSI): This strategy is the counter-
part for the previousOA scheme when full CSI is available.
In this case, the antenna that provides the greatest amount
of overall harvested energy is selected out of the overall set.
Therefore,l = 1 and

|S|
∑

j=1

ξjOA−CSI = max
i=1,...,M

|S|
∑

j=1

g
(

̺j |hi,j |2
)

, (11)

since this timew1 is a vector of zeros with entry1 in the
selected antenna index. Of course, in a multi-user system

8Notice that any other power allocation is not advisable sinceT does not
know how the channels are behaving.

9Coming from a short phase whereS are first powered by one of the
previous CSI-free strategies, or even from some residual energy after previous
rounds.
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where the nodes benefit from the WET phase simultaneously,
the best antenna is usually not the same for all users. Different
from (11), another possible implementation may be that in
which some users are optimized first and then the others, but
in all these scenarios the complexity scales quickly with the
number of users while reducing the overall performance.

2) Best Transmit Beamforming (AA− CSI): This strategy
is the counterpart for the previousAA scheme when full CSI
is available. In this case, instead of transmitting with the same
power over each antenna,T precompensates throughwk for
the channel and EH hardware effects before transmission such
that the overall harvested energy atS is maximized. Hence,

|S|
∑

j=1

ξjAA−CSI = max
{wk}

|S|
∑

j=1

g
(

̺j

M
∑

k=1

∣

∣hTj wk

∣

∣

2
)

, (12)

wherel is set toM since that is the maximum possible number
of energy beams. In case the system performance maximizes
with a smaller l, which may be the case when|S| < M ,
then, some of the optimum beamformers are all-zeros vectors.
Notice that theOA− CSI scheme is less sensitive to CSI
imperfections than theAA− CSI. This is because the former
only relies on the power gain of the channel, while the latter
requires the full characterization, envelope and phase, of the
channel coefficients.

C. Comparison of the WET Strategies for|S| = 1 and under
Ideal EH Linear Model

Some useful insights come from setting|S|=1 and using
the ideal EH linear model such that̟1=0 and̟2→∞. In
this case, we denoteξ0 as the harvested energy at the unique
sensor node while we avoid using the subindexj, then, (8),
(9), (10), (11) and (12) can be rewritten as

ξ0OA = η̺|hi|2, (13)

ξ0AA =
η̺

M

∣

∣

∣

M
∑

i=1

hi

∣

∣

∣

2

, (14)

ξ0SA =
η̺

M

M
∑

i=1

|hi|2, (15)

ξ0OA−CSI = η̺ max
i=1,··· ,M

|hi|2, (16)

ξ0AA−CSI = η̺max
w1

|hTw1|2
(a)
= η̺

M
∑

i=1

|hi|2, (17)

where (a) comes from settingw1 = h∗/||h||2 which is the
optimum precoding vector for Maximum Ratio Transmission
(MRT) [30] in a MISO system.

Theorem 1. The following relations are satisfied:

ξ0OA ≤ ξ0OA−CSI ≤ ξ0AA−CSI =Mξ0SA, (18)

ξ0AA ≤ ξ0AA−CSI =Mξ0SA. (19)

Proof. According to (13), (16), (17) and (15) we have that

ξ0OA = η̺|hi|2 ≤ η̺ max
i=1,...,M

|hi|2 = ξ0OA−CSI

(a)

≤ η̺
M
∑

i=1

∣

∣hi
∣

∣

2
= ξ0AA−CSI =Mξ0SA, (20)

where the equality in(a) is only whenM = 1. Thus, (18)
is satisfied. Now, for the second part of the proof we proceed
from (14), (17) and (15) as follows.

ξ0AA

η̺
=

1

M

∣

∣

∣

∣

M
∑

i=1

hi

∣

∣

∣

∣

2 (a)

≤ 1

M

( M
∑

i=1

∣

∣hi
∣

∣

)2

(b)
=

∣

∣

∣

∣h
∣

∣

∣

∣

2

1

M

(c)

≤
∣

∣

∣

∣h
∣

∣

∣

∣

2

2

(b)
=

M
∑

j=1

∣

∣hi
∣

∣

2

=
ξ0AA−CSI

η̺
=
Mξ0SA
η̺

, (21)

where(a) comes from applying the triangular inequality and
generalizing as shown in [31, Section 1.1.7],(b) follows from
using each time theℓp−norm notation, while(c) from the
inequality between the arithmetic and quadratic mean.

IV. A NALYSIS UNDER RICIAN FADING

Herein we assume that channels undergo Rician fading,
which is a very general assumption that allows modeling a
wide variety of channels by tuning the Rician factorκ ≥ 0,
e.g., whenκ = 0 the channel envelope is Rayleigh distributed,
while whenκ→ ∞ there is a fully deterministic LOS channel.
Since this work deals mainly with CSI-free WET schemes,
and for such scenarios the characterization of one sensor
is representative of the overall performance, we focus our
attention to the case of a generic node, thus avoiding subindex
j. Additionally, the performance gap between the CSI-free
and CSI-based WET schemes is maximum for|S| = 1
and analyzing such scenario when CSI is available allows
getting analytical expressions along with some useful insights.
Previous assumptions imply that the envelope distribution of
hi is Rician distributed with factorκ, e.g., |hi| ∼ RIC(κ)
while the channels are Gaussian with independent real and
imaginary parts,h = α + iβ with α,β ∼ N

(

1√
2
µ, σ2R

)

,
where σ2R and µ are respectively the covariance matrix10

and mean vector ofα,β [33]. Specifically,σ2 is the variance
of eachαi, βi, hence,|ri,j | ≤ 1, ri,i = 1, ∀i, j.

We assumeµ = µ[1]M×1, e.g., equal mean over all the
fading paths, while factorκ is connected toµ andσ2 as

κ =
µ2

2σ2
, (22)

and normalizing the channel power gain asµ2+2σ2 = 1 [33],
e.g.,E

[

|hi|2
]

= 1, we attain

σ2 =
1

2(1 + κ)
, µ2 =

κ

1 + κ
. (23)

Even when in practiceµ = µ[1]M×1 does not strictly
hold since the channel coefficientshi usually have different

10Hence, we consider the spatial correlation phenomenon, which occurs
due to insufficient spacing between antenna elements, small angle spread,
existence of few dominant scatterers, and the antenna geometry. The general
concept of spatial correlation is usually linked only to a positive spatial
correlation, even when the negative correlation is also physically possible
mainly due to the use of decoupling networks and antenna geometry effects.
On the other hand, notice that correlation between the coefficientshi is highly
probable in the kind of systems we are investigating here because of the short
range transmissions [32]. Even though, by settingR = I we are also able of
modeling completely independent fading realizations over all the antennas.
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phases on average, such assumption does not impact on the
performance of theOA, SA, OA− CSI and AA− CSI
schemes. This is because under theOA, SA andOA− CSI
schemesT does not transmit through more than one antenna
simultaneously while the instantaneously phase of the signal
at the receiver does not affect the EH process. Meanwhile,
under theAA− CSI scheme the PB precompensates through
a beamforming vector for both the channel gains and phases
such that the average transmission energy is maximized and it
was shown according to (15) and (17) thatξ0AA−CSI =MξSA.
On the other hand, different mean phases do impact on the
system performance under theAA scheme since the energy
transmission takes place over all antennas simultaneously and
the phases of the signals coming from different antennas could
have either a constructive or destructive aggregation at the
receiver side which can be more/less accentuated according
to their mean values. It is possible to show analytically that
the performance of theAA scheme is maximized when the
mean phases of channel coefficients are equal but a deeper
discussion is outside of our scope in this article. In any
case, our performance results for theAA scheme can be
considered as upper-bounds for the performance in practical
setups, which can be accurate when the mean phases of the
channel coefficients are similar.

A. Distribution of the Harvested Energy under Ideal EH
Linear Model

Now, we proceed to characterize the distribution of the
harvested energy when using each of the WET strategies
analyzed in the previous section under the ideal EH linear
model.

1) OA: Obviously, the spatial correlation has no impact on
the performance of theOA scheme since under that schemeT
selects only one antenna without using any information related
with the other antennas. From (13) we proceed as follows

ξ0OA = η̺|hi|2 = η̺(α2 + β2)

(a)
= η̺σ2

(

α̂2 + β̂2
)

(b)∼ η̺σ2χ2
(

2,
µ2

σ2

)

(c)∼ η̺

2(1 + κ)
χ2

(

2, 2κ
)

, (24)

where (a) comes from normalizing the variance ofα and
β such thatα̂, β̂ ∼ N

(

1√
2

µ
σ , 1

)

, (b) comes from the direct
definition of a non-central chi-squared RV [25, Ch.2], and(c)
follows after using (22) and (23).

2) AA: Now we focus on the performance of theAA
scheme. Based on (14) we have that

ξ0AA =
η̺

M

∣

∣

∣

M
∑

i=1

αi + i

M
∑

i=1

βi

∣

∣

∣

2 (a)
=

η̺

M

∣

∣α̂+ iβ̂
∣

∣

2

(b)
=
η̺σ2δ

M

∣

∣θ + iϑ
∣

∣

2
=
η̺σ2δ

M

(

θ2 + ϑ2
)

(c)∼ η̺σ2δ

M
χ2

(

2,
M2µ2

δσ2

)

(d)∼ η̺δ

2M(1 + κ)
χ2

(

2,
2κM2

δ

)

, (25)

where(a) comes from usinĝα =
∑M
i=1 αi and β̂ =

∑M
i=1 βi

and notice that̂α, β̂ are still Gaussian RVs [34] with mean
ME[αi] =

1√
2
Mµ and varianceσ2δ with

δ =

M
∑

i=1

M
∑

j=1

ri,j ; (26)

while (b) follows after variance normalization such thatθ, ϑ ∼
N
(

M√
2δ

µ
σ , 1

)

. Finally, (c) comes from using the definition
of a non-central chi-squared RV [25, Ch.2], while(d) from
using (22) and (23). Notice that for the special case of
uniformly spatial correlated fading such that the antenna
elements are correlated between each other with coefficient
ρ (ri,j = ρ, ∀i 6= j), we have that

δ =M
(

1 + (M − 1)ρ
)

. (27)

Additionally, in order to guarantee thatR is positive definite
and consequently a viable covariance matrix,ρ is lower
bounded by− 1

M−1 [35], thus− 1
M−1 ≤ ρ ≤ 1 and 0 ≤

δ ≤M2.

3) SA: From (15), we writeξ0SA as

ξ0SA =
η̺

M

M
∑

i=1

(

α2
i + β2

i

)

=
η̺

M

(

αTα+ βTβ
)

. (28)

Sinceα andβ are i.i.d between each other we focus on the
product αTα and the results are also valid forβTβ. Let
us definev = R−1/2

(

α − 1√
2
µ
)

/σ which is distributed as

N
(

0, I
)

, then

α = σR1/2v +
1√
2
µ

αTα =
(

σR1/2v +
µ√
2

)T (
σR1/2v +

µ√
2

)

=
(

v +R−1/2 µ√
2σ

)T
σ2R

(

v +R−1/2 µ√
2σ

)

, (29)

where last step comes from simple algebraic transformations.
Notice that

R = BΛBT , (30)

which is the spectral decomposition ofR [36, Ch.21]. In (30),
Λ is a diagonal matrix containing the eigenvalues ofR, and
B is a matrix whose column vectors are the orthogonalized
eigenvectors ofR. In order to find the eigenvalues,λs, ofR,
we require solvingdet

(

R−λI
)

= 0 for λ, which is analytical
intractable for a general matrixR. However, for the special
case of uniform spatial correlation with coefficientρ we are
able of proceeding as follows
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det
(

R−λI
)

=det









1−λ ρ ··· ρ
ρ 1−λ ··· ρ

...
...

...
...

ρ ρ ··· 1−λ









=det









(1−λ−ρ)









I+









1
1−λ−ρ

1
1−λ−ρ

...
1

1−λ−ρ









[ ρ, ρ, ··· , ρ ]

















(a)
= (1−λ−ρ)M









1+[ ρ, ρ, ··· , ρ ]









1
1−λ−ρ

1
1−λ−ρ

...
1

1−λ−ρ

















(b)
= (1−λ−ρ)M−1

(

1−λ+ρ(M−1)
)

, (31)

where (a) comes from using the Matrix determinant lemma
[36], while (b) follows after some algebraic manipulations.
Now, two different eigenvalues are easily obtained by match-
ing (31) with 0. These areλ=1−ρ with multiplicity M−1
andλ=1+ρ(M−1) with multiplicity 1, thus

Λ = Diag
[

1− ρ, · · · , 1− ρ, 1 + (M − 1)ρ
]

. (32)

Meanwhile, the corresponding eigenvectors,e, satisfyRe =
λe, thus,

• for λ = 1− ρ we have




1 ρ ··· ρ
ρ 1 ··· ρ
...

...
... ρ

ρ ρ ··· 1









e1
e2
...
eM



=(1−ρ)





e1
e2
...
eM











e1+ρ
∑M
i=2 ei

ρe1+e2+ρ
∑M
i=3 ei

...
ρ
∑M−1
i=1 ei+eM






=







(1−ρ)e1
(1−ρ)e2

...
(1−ρ)eM













ρ
∑M
i=1 ei

ρ
∑M
i=1 ei

...
ρ
∑M
i=1 ei






=

[ 0
0
...
0

]

−→
M
∑

i=1

ei = 0, (33)

• and forλ = 1 + ρ(M − 1) we have




1 ρ ··· ρ
ρ 1 ··· ρ
...

...
... ρ

ρ ρ ··· 1









e1
e2
...
eM



=
(

1 + ρ(M − 1)
)





e1
e2
...
eM











e1+ρ
∑M
i=2 ei

ρe1+e2+ρ
∑M
i=3 ei

...
ρ
∑M−1
i=1 ei+eM






=











(

1+ρ(M−1)
)

e1
(

1+ρ(M−1)
)

e2

...
(

1+ρ(M−1)
)

eM

















ρ
∑M
i=1 ei

ρ
∑M
i=1 ei

...
ρ
∑M
i=1 ei






=





ρMe1
ρMe2

...
ρMeM



 −→ e1= · · ·=eM . (34)

Thus, the eigenvectors associated toλ = 1 − ρ satisfy (33),
while the eigenvector associated toλ =

(

1 + ρ(M − 1)
)

satisfies (34). After orthogonalization by using the Gram-
Schmidt process [37], and normalization, the resulting vectors
still satisfy either (33) or (34) according to the case. For the

latter, the resulting vector is[1/
√
M, 1/

√
M, · · · , 1/

√
M ],

therefore

BT =









b1,1 b2,1 ··· bM,1
b1,2 b2,2 ··· bM,2

...
...

...
...

b1,M−1 b2,M−1 ··· bM,M−1
1√
M

1√
M

··· 1√
M









, (35)

where
∑M

i=1 bi,j = 0 for j = 1, · · ·M − 1.
Now, substituting (30) into (29) yields

αTα=
(

v+
(

BΛBT
)− 1

2
µ√
2σ

)T

σ2BΛBT
(

v+
(

BΛBT
)− 1

2
µ√
2σ

)

(a)
=

(

BTv+Λ− 1
2BT µ√

2σ

)T

σ2Λ
(

BTv+Λ− 1
2BT µ√

2σ

)

(b)
=

(

Q+ d
1√
2

µ

σ

)T

σ2Λ
(

Q+ d
1√
2

µ

σ

)

(c)
= σ2

M
∑

i=1

λii

(

ςi + di
1√
2

µ

σ

)2

, (36)

where (a) comes after some algebraic transformations,(b)
follows from taking Q = BTv ∼ N

(

0, I
)

and d =

Λ− 1
2BT × 1M×1, for which using (35) and (32) yields

d =

[

0, 0, · · · , 0,
√

M
1+(M−1)ρ

]T

, (37)

and finally (c) comes from settingςi ∼ N
(

0, 1
)

. Notice that
λi is the i-th eigenvalue ofR. Using (36) into (28) yields

ξ0SA
(a)
=

η̺σ2

M

M
∑

i=1

λii

[

(

ςi + di
1√
2

µ

σ

)2

+
(

ωi + di
1√
2

µ

σ

)2
]

(b)
=
η̺σ2

M

[

(1 − ρ)

2(M−1)
∑

i=1

ς2i +
(

1 + (M − 1)ρ
)

×

×
2

∑

i=1

(

ωi +

√

M

2
(

1 + (M−1)ρ
)

µ

σ

)2
]

(c)∼ η̺

2M(1 + κ)

[

(1 − ρ)χ2
(

2(M − 1), 0
)

+

+
(

1 + (M − 1)ρ
)

χ2
(

2,
2κM

1 + (M − 1)ρ

)

]

, (38)

where (a) comes from definingωi ∼ N
(

0, 1
)

to use when
evaluating the termβTβ in (28), which has the same form
given in (36), while(b) follows from using (37). In(b) we also
regrouped similar terms, which allows writing(c) after using
the direct definition of a non-central chi-square distribution
[25, Ch.2] along with (22) and (23).

Under the assumption of uniform spatial correlation with
parameterρ (ri,j = ρ, ∀i 6= j), (38) holds; however,
notice that for theAA scheme we were able of writing the
distribution merely as a function of parameterδ, which is
not linked to any specific kind of correlation; hence, we can
expect that the behavior under theSA scheme depends, at least
approximately, onδ rather on the specific entries of matrixR.
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To explore this, we substituteρ = δ−M
M(M−1) coming from (27),

into (38), such that we attain

ξ0SA∼ η̺

2M2(1+κ)

[

M2−δ
M−1

χ2
(

2(M−1), 0
)

+δχ2
(

2,
2κM2

δ

)

]

.

(39)

For validation purposes let us assume an exponential cor-
relation matrix such thatri,j = τ |i−j| where τ is the
correlation coefficient of neighboring antennas11, henceδ =
M + 2

∑M−1
i=1 (M − i)τ i. Fig. 2 shows Monte Carlo results

comparing the exact (28) and approximate (39) expressions
of the harvested energy distribution under theSA scheme. As
shown, they match accurately except when the setup is jointly
characterized by very smallκ and relatively largeM and τ ,
as it is the case ofκ = 0, M = 16 andτ = 0.8. In the other
cases, (39) holds accurately, while matching exactly (28) and
(38) under uniform spatial correlation. Notice that whenτ = 0
or 1, the system is under an extreme case of uniform spatial
correlation and (39) becomes exact; hence, for fixedκ andM ,
(39) has the least accurate convergence to the exact distribution
for some0 < τ∗ < 1. The value(s) ofτ∗ could be seen as the
one(s) providing the greatest difference or distance betweenR
and its equivalent uniform correlation matrix with coefficient
ρ.12

Remark 1. Therefore,ξ0SA is approximately distributed as a
linear combination of a chi-square RV and a non-central chi-
square RV, with2(M − 1) and 2 degrees of freedom, respec-
tively. Unfortunately, it seems intractable finding a closed-form
expression for the distribution ofξ0SA even when using(39),
except for

• δ = 0, for whichξ0SA ∼ η̺
2(M−1)(1+κ)χ

2
(

2(M−1), 0
)

+η̺κ
1+κ .

The latter term results from the fact that whenδ → 0 the
PDF of δχ2

(

2, 2κM
2

δ

)

is 1 at2Mκ, and0 otherwise;

• δ = M , for which ξ0SA ∼ η̺
2M(1+κ)

[

χ2
(

2(M − 1), 0
)

+

χ2
(

2, 2Mκ
)

]

∼ η̺
2M(1+κ)χ

2
(

2M, 2Mκ
)

, which can be
easily verified by using the direct definition of a non-
central chi-squared RV;

• δ =M2, for which ξ0SA ∼ η̺
2(1+κ)χ

2
(

2, 2κ
)

.

Remark 2. For full positive correlation, e.g.,δ = M2, the
performance of theSA scheme matches that of theOA. This
is an expected result since even by switching antennas the
energy harvested atS keeps the same.

11This model is physically reasonable since the correlation decreases with
increasing distance between antennas [35]. Still, simulation results that are
not included in this paper evidence that the trends and accuracy of our results
under such exponential correlation model remain valid independently of the
correlation profile.

12There are many similarity metrics and concepts of distance between
matrices in the literature, such as theℓp−norm distances, the trace distance,
the correlation matrix distance [38], just to name a few. Each of them has been
shown to be appropriate under different goals. However, in the context of our
work it is not clear which one fits better for findingτ∗, and even having such
information, the following analyses are expected to be cumbersome. For this
reason, we have carried out extensive simulations and found thatτ∗ is unique
and increases very slowly withM such that forM = 3 → τ∗ ≈ 0.75 while
for M = 32 → τ ≈ 0.85. Therefore, notice that our results are expected to
be accurate in most of practical scenarios where also a non-negligible LOS
parameter influences positively on the accuracy of (39), as shown in Fig. 2b.

0 0.5 1 1.5 2 2.5 3 3.5 4
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0.5
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2
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0
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1
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2

Fig. 2. PDF ofξ0
SA

based on Monte Carlo simulation of exact (28) and
approximate (39) expressions. We setη̺ = 1 and useM ∈ {4, 16} and
τ ∈ {0.2, 0.8}; while (a) κ = 0 (top), and(b) κ = 3 (bottom).

4) OA− CSI: According to (16) finding the distribution
of ξ0OA−CSI is equivalent to the problem of finding the
distribution of the Signal-to-Noise Ratio in a correlated Rician
single-input multiple-output (SIMO) channel scenario, where
the receiver withM antennas uses Selection Combining (SC).
We first analyze the case of uniform spatial correlation with
coefficientρ, for which we can directly use [39, Eq.(21)] to
state

Fξ0OA−CSI
(η̺x) =e−

κ
ρ

∞
∫

0

[

1−Q
(
√

2ρt

1−ρ,
√

2(1+κ)x

1− ρ

)]M

×

× e−tI0
(

2

√

κt

ρ

)

dt, (40)

fξ0OA−CSI
(x) =

d

dx
Fξ0OA−CSI

(x)=
M(1+κ)

η̺(1−ρ) e
−κ
ρ
− 1+κ
η̺(1−ρ)

x×
∞
∫

0

e−
t

1−ρ I0

(

2

√

κt

ρ

)

[

1−Q
(

√

2ρt

1−ρ,
√

2(1+κ)x

η̺(1−ρ)
)

]M−1
×

× I0

( 2

1−ρ

√

ρt(1+κ)x

η̺

)

dt. (41)

Now and as done in the previous subsection, we utilize
the transformationρ = δ−M

M(M−1) , which hopefully allows
converting (40) and (41) into expressions valid for systems
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Fig. 3. PDF of ξ0
OA−CSI

based on Monte Carlo simulation of (16) and
numerical evaluation of approximation given in (42). We setη̺ = 1 and use
M ∈ {4, 16} and τ ∈ {0.2, 0.8}; while (a) κ = 0 (top), and(b) κ = 3
(bottom).

with any kind of correlation. By doing so, the PDF for instance
becomes the one shown in (42) at the top of the next page.

Similar to our approach in the previous subsection, herein
we validate (42) by comparing it with the distribution of the
harvested energy using Monte Carlo simulation in scenarios
with exponential correlated fading. Results in Fig. 3 evidence
the same behavior as discussed in Fig. 2 and corroborate the
accuracy of (42), which is only affected when a very smallκ,
and relatively largeM andτ , coincide together.

For two specific setups it is even possible to get simplified
expressions as follows

• For uncorrelated channels, for whichδ =M , the channel
coefficients are i.i.d, thus,

Fξ0OA−CSI
(η̺x) = P

[

ξ0OA−CSI < η̺x
]

= P
[

max
i=1,...,M

|hi|2 < x
]

(a)
= P

[

|hi|2 < x
]M

(b)
= P

[

z < 2(1 + κ)x
]M

= FZ
(

2(1 + κ)x
)M

, (43)

where in (a) we take advantage of the i.i.d property of
the channel realizations and(b) comes from makingz =

2(1 + κ)|hi|2 whereZ ∼ χ2(2, 2κ). Now,

fξ0OA−CSI
(x) =

d

dx
Fξ0OA−CSI

(x) =
d

dx
FZ

(2(1 + κ)x

η̺

)M

(a)
=

2(1+κ)M

η̺
FZ

(2(1+κ)

η̺
x
)M−1

fZ

(2(1+κ)

η̺
x
)

, (44)

where(a) comes from using the chain rule. Notice that
fZ(x) and FZ(x) are given respectively in (3) and (4)
with ϕ = 2 andψ = 2κ.

• For fully correlated channels, for whichδ = M2, the
performance under theOA− CSI scheme matches that of
theOA strategy since the fading behaves instantaneously
equal over all the antennas.
Finally, notice that when correlation is the minimum,δ =
0, the performance gain of this scheme over that of the
OA strategy should be the maximum.

5) AA− CSI: For theAA− CSI scheme the characteri-
zation is much easier sinceξ0AA−CSI = Mξ0SA according to
(21), thus, by using (39) we attain

ξ0AA−CSI

∼ η̺

2M(1+κ)

[

M2−δ
M−1

χ2
(

2(M−1), 0
)

+δχ2
(

2,
2κM2

δ

)

]

.

(45)

Notice that the analysis in Remark 1 can be extended to this
case straightforwardly.

6) Comparisons and Remarks:Since the distribution of the
harvested energy is related in all the cases with the non-central
chi-squared distribution but for theOA−CSI scheme, we are
able to find the mean and variance statistics according to (5).
Under uncorrelated channels,δ =M , we can also provide an
upper bound for the mean ofξ01OA−CSI

by using [40, The. 2.1]
such that

E
[

ξ0OA−CSI

]

η̺
≤ 1

M

M
∑

i=1

E[|hi|2] +
√

M − 1

M
×

×

√

√

√

√

M
∑

i=1

VAR
[

|hi|2
]

+

M
∑

i=1

E
[

|hi|2
]2− 1

M

(

M
∑

i=1

E
[

|hi|2
]

)2

E
[

ξ0OA−CSI

]
(a)

≤ η̺
(

E[|hi|2] +
√

(M − 1)VAR[|hi|2]
)

(b)
= η̺

(

1 +

√

(1 + 2κ)(M − 1)

1 + κ

)

. (46)

where(a) comes from using
∑M
i=1E

[

|hi|2
]

=ME
[

|hi|2
]

and
∑M

i=1VAR
[

|hi|2
]

= MVAR
[

|hi|2
]

, while (b) follows after
using (5). Notice that forM = 1 the equality is satisfied
as expected. Regarding the variance, it is shown in [41, The.
3.1] that the best upper bound forVAR

[

max
i=1,...,M

|hi|2
]

is

MVAR
[

|h1|2
]

. However, that result is not tight for the fading
distribution of our interest here, and we dispense with that
result.

In Table II we summarize the statistics of the energy
harvested under the operation of each of the WET schemes.
We also include the CDF expressions, which can be easily
obtained by usingFZ(z) in (4) in most cases. When it was
impossible a full characterization for all the values ofδ, we
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fξ0
OA−CSI

(x) =
M2(M − 1)(1 + κ)

η̺(M2 − δ)
e
−
κM(M−1)
δ−M

−
(1+κ)M(M−1)

η̺(M2−δ)
x

∞
∫

0

e
−
tM(M−1)

M2−δ I0

(

2

√

κM(M − 1)t

δ −M

)

×

×

[

1−Q

(

√

2(δ −M)t

M2 − δ
,

√

2(1 + κ)M(M − 1)x

η̺(M2 − δ)

)

]M−1

I0

(

2

M2 − δ

√

(δ −M)M(M − 1)t(1 + κ)x

η̺

)

dt. (42)

provide the results for the case of i.i.d channel realizations
whereδ =M . Some remarks follow next.

Remark 3. For theAA scheme, both the mean and variance of
the harvested energy, increase with the correlation parameter
δ. Thus, the greatest gain in the mean harvested energy occurs
when channels are fully positive correlated, for whichδ =M2.
In fact, when channels are fully positive correlatedS harvests
M times more energy under theAA scheme than when using
theOA strategy, but with a dispersionM2 times greater. This
can be easily corroborated also from the very definition of

ξ0AA sinceξ0AA = η̺
M

∣

∣

∣

∑M
i=1 hi

∣

∣

∣

2 (a)
= η̺

M

∣

∣

∣Mhi

∣

∣

∣

2

= η̺M
∣

∣hi
∣

∣

2
=

η̺Mξ0OA, where(a) comes from the fact that forδ =M2 all
the channel coefficients are the same, e.g.,hi = hn, ∀i, n =
1, ...,M .

For the particular valueδ = 0, the dispersion of the
harvested energy becomes0, thus in such situationsT pro-
vides a stable, non-random, energy supply toS, such that
ξ0AA = η̺Mκ

1+κ . This setup guarantees the exact prediction of
the harvested energy, which grows linearly withM in LOS
channels. However, under Rayleigh conditions the harvested
energy becomes0, which is because of cancellation of the
multiple path signals at the sensor.

Remark 4. The average energy harvested under theSA
and AA− CSI schemes is constant, while the variance is
a convex function of the spatial correlation parameterδ,
which can be easily corroborated by checking that the second
derivative ofVAR

[

ξ0SA
]

andVAR
[

ξ0AA−CSI

]

with respect to
δ is non negative. The minimum variance for a given LOS
parameter occurs whenδ = M

(

1 − min
(

κ(M − 1), 1
))

,
which comes from setting the first derivative ofVAR

[

ξ0SA
]

or VAR
[

ξ0AA−CSI

]

to 0 and solving forδ, while using also
the restriction δ ≥ 0. Therefore, for increasing/decreasing
δ above/belowM

(

1 − min
(

κ(M − 1), 1
))

, the variance
increases.

Additionally, notice that the variance of the harvested
energy under theSA scheme is

• η2̺2(1+2κ)
M(1+κ)2 for δ =M , which is inversely proportional to

the number of antennas;
• η2̺2(1+2κ)

(1+κ)2 for δ = M2, which is independent of the
number of antennas;

Remark 5. Notice thatE[ξ0OA] ≤ E[ξ0OA−CSI] ≤ η̺M =
E
[

ξ0AA−CSI

]

=ME
[

ξ0SA
]

, since forM ≥ 1 and κ ≥ 0 we

have that

(1 + κ)2 ≥ 1 + 2κ

1 + 2κ

(1 + κ)2
≤ 1

1 + 2κ

(1 + κ)2
(M − 1) ≤M − 1

√

(1 + 2κ)(M − 1)

1 + κ
≤

√
M − 1 ≤M − 1

E
[

ξ0OA−CSI

]

η̺
=1+

√

(1 + 2κ)(M − 1)

1 + κ
≤M,

which agrees with(18) of Theorem 1. We have ignored the
impact ofδ in the exact expression ofE

[

ξ0OA−CSI

]

since there
is no closed form, instead we used the upper bound given in

(46) for the case ofδ =M . Finally,
E

[

ξ0AA

]

η̺ = δ+κM2

M(1+κ) ≤M=

E

[

ξ0AA−CSI

]

η̺ =M
E

[

ξ0SA

]

η̺ holds sinceM ≥ 1, and agrees with
(19).

Remark 6. For κ ≥ 0, the average harvested energy under
the operation of theAA scheme is an increasing function ofκ
since d

dκE
[

ξ0AA

]

> 0. For OA, SA and AA− CSI schemes,
the average harvested energy does not depend on the LOS
parameter. Meanwhile, the variance of the harvested energy
decreases withκ whenOA is used, while it has a maximum
on κ∗1 = 1 − δ

M2 , κ∗2 = (δ−M)(M2−δ)
δM(M−1) , whenAA and,SA or

AA− CSI, are utilized, respectively. This is because

d

dκ
VAR

[

ξ0OA−CSI

]

< 0,

d

dκ
VAR

[

ξ0AA

]

≷
κ<κ∗1

κ>κ∗1

0,

d

dκ
VAR

[

ξ0SA
]

≷
κ<κ∗2

κ>κ∗2

0,

d

dκ
VAR

[

ξ0AA−CSI

]

≷
κ<κ∗2

κ>κ∗2

0.

Remark 7. The average harvested energy under the CSI-
based WET schemes overcomes the CSI-free counterparts. But,
interestingly, for i.i.d channels andM ≥ 2, T manages to
harvest more energy on average under theAA scheme than
when using theOA− CSI scheme, even without consider-
ing the energy cost associated to the CSI acquisition, when
M > 1+2κ

κ2 . This is because under such condition andδ =M ,
E

[

ξ0AA

]

η̺ = 1+Mκ
1+κ > 1 +

√
(1+2κ)(M−1)

1+κ ≥ E

[

ξ0OA−CSI

]

η̺ holds.

Previous condition can also be written asκ > 1+
√
M+1
M .

In many cases not only a high average of harvested energy is
desirable but also a low variance. Let us assume for instance
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TABLE II
STATISTICS OF THEHARVESTEDENERGY FOR|S| = 1 AND UNDER THE IDEAL L INEAR EH MODEL

Scheme E
[

ξ0
]

/(η̺) VAR
[

ξ0
]

/(η2̺2) Fξ0(η̺z)

OA 1 1+2κ
(1+κ)2

1−Q1
(√

2κ,
√

2(1 + κ)z
)

AA δ+κM2

M(1+κ)
δ(δ+2κM2)

M2(1+κ)2
1−Q1

(

M
√

2κ
δ
,

√

2M(1+κ)z
δ

)

SA 1
(M+2κδ)M2

−2δM(1+κ)+δ2

M3(M−1)(1+κ)2
δ =M =⇒ 1−QM

(√
2Mκ,

√

2M(1 + κ)z
)

OA−CSI
∞
∫

0

x
η̺
fξ0

OA−CSI
(x)dx 1

η2̺2

(

∞
∫

0

x2fξ0
OA−CSI

(x)dx− e
−
κM(M−1)
δ−M

∞
∫

0

[

1−Q
(
√

2(δ−M)t
M2

−δ
,
√

2(1+κ)M(M−1)z
M2

−δ

)

]M

e−t×
δ=M

≤ 1+

√
(1+2κ)(M−1)

1+κ
E
[

ξ0OA−CSI

]2
)

×I0
(

2
√

κM(M−1)t
δ−M

)

dt
δ=M
=

[

1−Q1

(√
2κ,

√

2(1+κ)z
)

]M

AA−CSI M
(M+2κδ)M2

−2δM(1+κ)+δ2

M(M−1)(1+κ)2
δ =M =⇒ 1−QM

(√
2Mκ,

√

2(1 + κ)z
)

that the sensor requires a reliable energy supply each time
that it harvests energy fromT transmissions, and that exceeds
the valueξth. The value ofξth may be seen as the minimum
amount of energy for whichS can operate, which in general
satisfiesξth ≥ η̟1. In such cases a question arises:What is
the more suitable WET strategy?The probability of energy
outage is the performance metric to be evaluated in this case,
and it is defined asP[ξ0 < ηξth] = Fξ0(ηξth). The more
reliable scheme would have the lowest probability of energy
outage.

Remark 8. The SA strategy provides WET rounds with the
lowest variance in the harvested energy, thus, it is more
predictable. Additionally, it is the only strategy for which
the variance of the harvested energy over multiple rounds
decreases by increasing the number of antennasM for δ <
M2. Therefore, this scheme can provide a deterministic (non
random) source of energy whenM → ∞, e.g.,ξ0SA = η̺.

Remark 9. For WET strategies without CSI and under i.i.d
Rician channels, notice that

• whenκ→ 0, e.g., Rayleigh fading, the energy harvested
under theOA andAA schemes follows the same distri-
bution, hence no diversity (no gain) is attained from using
all antennas at once. For that scenario, theSA scheme
performs best, since although with the same average
harvested energy as the others, its variance is the lowest
and decreases withM ;

• when κ > 0, the average harvested energy under the
AA scheme is the greatest among all WET schemes, and
increases linearly withM . However, it is also more dis-
persed because of its higher variance that also increases
linearly with M .

Figs. 4 and 5 show the PDF of the harvested energy
normalized by η̺, which allows validating the analytical
results by Monte Carlo simulations. Specifically, for Fig. 4 we
consider uncorrelated channels while settingκ ∈ {0, 3} and
M ∈ {4, 16}, and notice that the upper bound forE[ξ0OA−CSI]
provided in (46) is also validated, and it is shown to be less
tight whenM increases. As expected, the CSI-based schemes
outperform their counterparts that do not take advantage of any
information. When there is NLOS (κ = 0), it is shown that the
AA andOA schemes perform the same and without any gain
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Fig. 4. PDF ofξ0 for η̺ = 1, R = I andM ∈ {4, 16}, (a) κ = 0 (top),
and (b) κ = 3 (bottom).

from increasing the number of antennas, thus, in such cases
theSA scheme is the best alternative if no CSI information is
available. Notice that by increasingM , the PDF ofξ0SA gets
narrower around its mean, thus, providing a more predictable
energy supply. This situation holds forκ > 0, and among
the CSI-free schemes the average harvested energy under the
AA scheme is the greatest and increases withM , which is a
very attractive characteristic. Meanwhile, in Fig. 5 the PDF
of the harvested energy is shown when using each of the
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Fig. 5. PDF ofξ0 for η̺ = 1, M = 8, κ ∈ {0, 3} and exponential correlation withτ ∈ {0, 0.6, 1}. (a) AA, (b) SA, (c) OA−CSI and(d) AA−CSI.

WET schemes13 with M = 8, κ ∈ {0, 3} and exponential
correlation withτ ∈ {0, 0.6, 1} → δ ∈ {8, 24.626, 64}. Notice
that correlation impacts negatively on the performance of both
CSI-based schemes. Indeed, the greater the correlation the
lesser the gains of operating with CSI, and the performance
under each CSI-based scheme matches that of its CSI-free
counterpart forτ = 1. Additionally, comments in Remarks 2, 3
and 4 are corroborated, while results also validate the pro-
vided analytical approximations and complement our analysis
around Fig. 2 and 3.

Fig. 6a shows the energy outage performance for a setup
with M = 8 andκ = 1. Notice that for relatively smallξth the
schemes can be ordered according to a performance decreasing
order asAA− CSI > OA− CSI > SA > AA > OA.
Thus, theSA scheme performs the best among the CSI-free
strategies, while for relatively largeξth the AA scheme is
superior, and it could even reach a performance greater than
that achieved byOA− CSI. The very idealisticAA− CSI
scheme is the clear winner in this regard also. A more detailed
analysis of the energy outage is presented in Fig. 6b, where
the regions where each CSI-free WET strategy performs the
best are shown for a wide range of values ofκ, exponential

13Since analytical approximations for the distribution of the energy har-
vested under theSA and AA− CSI schemes were only obtained for
δ ∈ {M,M2} → τ ∈ {0, 1}, the expressions were validated through Monte
Carlo for the case ofτ = 0.6.

correlation parameterτ andM ∈ {4, 16}. The OA scheme
does not appear since it is always outperformed by eitherSA or
AA strategy. Notice thatSA benefits less from a greater LOS
parameter and/or a greater energy threshold and/or greater
spatial correlation. Finally, the number of antennas does not
impact strongly on delimiting the regions for which one
scheme outperforms the other in terms of the energy outage
probability.

B. Statistics of the Harvested Energy under Sensitivity and
Saturation Phenomena

The statistics of the harvested energy under the ideal EH
linear model, for which the harvested energy is always propor-
tional to the incident RF power with factorη, was investigated
in the previous subsection. In practice, the sensitivity and
saturation phenomena limit also the EH performance. Incident
signal powers below the sensitivity level cannot be harvested,
while power levels in the saturation region cannot be fully
exploited. Therefore, systems with high variance in the RF
incident power, e.g., all the CSI-based and the AA scheme,
are more sensitive to these phenomena. In this subsection
we depart from ideal results in Subsection IV-A to attain the
distribution and main statistics of the harvested energy in more
practical setups.
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Fig. 6. (a) Probability of energy outage as a function of the minimum amount
of energy required for the sensor operation andR = I, M = 8 andκ = 1
(top).(b) Region for whichFξSA (z)≷FξAA

(z) (bottom). We setη = ̺ = 1.

Theorem 2. The energy harvested under each of the schemes
when|S| = 1 is distributed as

Fξ(ξ) ∼=







Fξ0(η̟1), 0 ≤ ξ < η̟1

Fξ0(ξ), η̟1 ≤ ξ < η̟2

1, ξ ≥ η̟2

, (47)

which is only an approximation when using theSA scheme.
The PDF ofξ can be easily derived from(47).

Proof. We have thatξrf = ξ0/η. Then, for theOA and
AA schemes,ξ = g(ξrf) = g(ξ0/η) is satisfied accord-
ing to (8) and (9). Additionally, notice that sinceg is
a non-decreasing function which saturates at some point,
argmaxi=1,...,M g(̺|hi|2) may have several solutions, but def-
initely one of them is alwaysargmaxi=1,...,M ̺|hi|2. There-
fore, ξOA−CSI = g(ξ0OA−CSI/η) is also satisfied. Similarly,
for the AA− CSI scheme we have thatargmaxw1 |hTw1|2
is at least one of the optimum beamformers that maxi-
mizes g

(

̺|hTw1|2
)

, thus, ξAA−CSI = g(ξ0AA−CSI/η). For
the SA scheme the situation is different since in general
1
M

∑M
i=1 g

(

̺|hi|2
)

6= g
(

̺
M

∑M
i=1 |hi|2

)

, however it could be
used as an approximation that becomes tighter asρ increases.
Therefore,

ξ ∼= g(ξ0/η), (48)

which is satisfied with equality for all the schemes but forSA.
Using (48) and (7) it is straightforward attaining (47).

Notice that for̟1 = 0, ̟2 → ∞ and each WET scheme,
(47) matches exactly the CDF of the harvested energy given
in the previous subsection. On the other hand, previously we
have also attained the average and variance of the harvested
energy, and consequently for the RF incident power too. As
commented, the variance analysis allows explaining the energy
outage performance in conjunction with the CDF curves.
Henceforth, we focus only on the average harvested energy
when considering the sensitivity and saturation phenomena.
The following lemma provides an analytical result that is
useful for the average harvested energy characterization given
right after in Theorem 3.

Lemma 1. Let q1(ϕ, φ) = E[g(φZ1)] and q2(ψ, φ) =
E[g(φZ2)], whereZ1 ∼ χ2(ϕ, 0) andZ2 ∼ χ2(2, ψ), then

q1(ϕ, φ) =
2η

Γ(ϕ/2)

(

φΓ
(

1 +
ϕ

2
,
̟1

2φ

)

− φΓ
(

1 +
ϕ

2
,
̟2

2φ

)

+

+
̟2

2
Γ
(ϕ

2
,
̟2

2φ

)

)

, (49)

q2(ψ, φ) ≈
η

Γ(m)

[

φ(ψ + 2)

m

(

Γ
(

m+ 1,
m̟1

φ(ψ + 2)

)

+

−Γ
(

m+1,
m̟2

φ(ψ+2)

)

)

+̟2Γ
(

m,
m̟2

φ(ψ+2)

)

]

, (50)

where g is the function defined in(7) and m = (ψ/2 +
1)2/(ψ + 1).

Proof. According to (3) and (4), the distribution ofZ1 can be
simplified as follows

fZ1(z) =
1

2
zϕ/4−1/2e−z/2 lim

ψ→0

Iϕ/2−1(
√
ψz)

ψϕ/4−1/2

(a)
=

1

2
zϕ/4−1/2e−z/2

1

Γ(ϕ/2)

(z

4

)ϕ/4−1/2

(b)
=

1

2Γ(ϕ/2)

(z

2

)ϕ/2−1

e−z/2 (51)

FZ1(z) = 1−Qϕ/2(0,
√
z) = 1− Γ(ϕ/2, z/2)

Γ(ϕ/2)
, (52)

where (a) comes from finding the limit by using l’Hôpital
rule successively and(b) follows after simple algebraic trans-
formations. For getting (52), it is required evaluatingQ(0,

√
z)

by using its definition and performing some limit operations
or equivalently one may use the result in (51) for finding the
CDF; in any case the result matches (52). Now, using (51) and
(52) along with (7) to calculateE[g(φZ1)] we obtain

E[g(φZ1)] = ηφ

∫ ̟2/φ

̟1/φ

zfZ1(z)dz + η̟2

∫ ∞

̟2/φ

fZ1(z)

=
η

Γ(ϕ/2)

∫

̟2
φ

̟1
φ

(z

2

)
ϕ
2

e−
z
2 dz+η̟2

(

1−FZ1

(̟2

φ

)

)

=
ηφ

Γ(ϕ/2)

(

− 2Γ(1 + ϕ/2, z/2)
)

∣

∣

∣

̟2/φ

̟1/φ
+

+ η̟2
Γ(ϕ/2, ̟2/(2φ))

Γ(ϕ/2)
, (53)
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and (49) follows after some simple algebraic transformations.
Continuing with the second part of the proof, the PDF ofZ2

can be simplified according to (3) as follows

fZ2(z) =
1

2
e−(z+ψ)/2I0(

√

ψz), (54)

which is the power distribution under Rician fading channel
with κ = ψ/2 and average power(ψ+2) [25]. Unfortunately,
to the best of our knowledge computing

∫

zfZ2(z)dz is not
analytically tractable, thus, we were not able of finding an
exact closed form expression. However we can take advantage
of the fact that form = (κ + 1)2/(2κ + 1), the Rician
distribution approximates the Nakagami-m [42], thenZ2 ∼
Γ
(

(ψ/2+1)2

ψ+1 , (ψ+2)(ψ+1)
(ψ/2+1)2

)

approximately. Now,

E[g(φZ2)] = ηφ

∫ ̟2/φ

̟1/φ

zfZ2(z)dz + η̟2

∫ ∞

̟2/φ

fZ2(z)dz

(a)≈ ηφ

̟2/φ
∫

̟1/φ

( m

ψ+2

)mzme−
mz
ψ+2

Γ(m)
dz+η̟2

(

1−FZ2

(̟2

φ

)

)

(b)
= −ηφ(ψ + 2)

mΓ(m)
Γ
(

m+ 1,
mz

ψ + 2

)∣

∣

∣

̟2/φ

̟1/φ
+

+ η̟2

Γ
(

m, m̟2

φ(ψ+2)

)

Γ(m)
, (55)

where(a) comes from using (1) and(b) follows from solving
the integral and using (2). Then, after some simple algebraic
transformations we attain (50).

Theorem 3. The average harvested energy under sensitivity
and saturation phenomena, and for each of the WET schemes
(but for OA− CSI) when|S| = 1, is given by

E[ξOA] = q2

(

2κ,
̺

2(1 + κ)

)

, (56)

E[ξAA] = q2

(2M2κ

δ
,

δ̺

2M(1 + κ)

)

, (57)

E[ξSA] ≈ q1

(

2(M − 1),
(M2 − δ)̺

2M2(M − 1)(1 + κ)

)

+

+ q2

(2κM2

δ
,

δ̺

2M2(1 + κ)

)

, (58)

E[ξAA−CSI] = q1

(

2(M − 1),
(M2 − δ)̺

2M(M − 1)(1 + κ)

)

+

+ q2

(2κM2

δ
,

δ̺

2M(1 + κ)

)

. (59)

Proof. According to (24) we have thatξ0OA/η ∼
̺

2(1+κ)χ
2(2, 2κ), then, using (48) yields E[ξOA] =

E[g(ξ0OA/η)], and using the results in Lemma 1 we attain
(56). Similarly, using (25), (39) and (45) along with (48),
we have thatξAA = ξ0AA/η ∼ ̺δ

2M(1+κ)χ
2
(

2, 2M
2κ
δ

)

, ξSA ≈
ξ0SA/η ∼ ̺

2M2(1+κ)

[

M2−δ
M−1 χ

2
(

2(M −1), 0
)

+δχ2
(

2, 2κM
2

δ

)]

and ξAA−CSI = Mξ0SA/η, respectively, and after using
Lemma 1 we attain (57), (58) and (59).

Notice that a closed-form expression for the average har-
vested energy underOA− CSI was not tractable using the
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Fig. 7. A comparison between the harvested power for (i) the utilized model
taking into account sensitivity and saturation phenomena, (ii ) the non-linear
EH model in [44], and (iii ) the measurement data from a practical EH circuit
[43]. Configuration parameters are:̟1 = −22 dBm, ̟2 = −4.8 dBm,
η = 25%, while through curve fitting we attain:p1 = 0.015, p2 = 140 and
p3 = 84.

ideal linear EH model, thus, neither here. Finally, sinceq2 is
given approximately in (50), the analytical characterizations
of the average harvested energy provided in Theorem 3 are
approximations given they all depend onq2; hence, they
approximate also their counterparts in the previous subsection
when̟1 = 0 and̟2 → ∞.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we investigate the performance of the WET
strategies under Rician fading and exponential correlation.
Based on the experimental data in [43], we assume sensors
equipped with EH hardware characteristics̟1 = −22 dBm,
̟2 = −4.8 dBm andη = 25%14. In Fig. 7 we show how our
model fits the experimental data; while we also consider the
non-linear harvesting model proposed in [44] which is based
on a logistic function. Specifically, the non-linear model is
given byξ = p3

(

1+ep1p2

1+e−p1(ξrf−p2)
−1

)

/ep1p2 , wherep1, p2, p3
can be easily found by a standard curve fitting tool. Notice that
the non-linear model fits more accurately the data in almost
the entire region of input powers than our EH linear model;
however, it fails in modeling the sensitivity phenomenon since
if, and only if, ξrf = 0 → ξ = 0.

Next, we consider a setup with|S| = 1 and show in Fig. 8
the average harvested energy as a function of̺ under the non-
linear EH model [44], and the ideal and non ideal EH linear
models considered in this work; while for short, we do not
present the performance results of theOA scheme. Obviously,
the average harvested energy performance is an increasing
function of̺, which is related to the average RF signal power.
Notice that for the ideal EH linear model the average harvested
energy increases linearly, but when operating under the non-
ideal linear and non-linear EH models that is not longer the

14Rather than the maximum efficiency, we assume a more conservative
value that allows fitting better the entire experimental data. Notice also that
operating with such conversion efficiency is viable for many other EH devices
as reported in [3].
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curves obtained through
integration using (42)
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Fig. 8. Average harvested energy as a function of̺ under ideal and non ideal EH linear model, and non-linear model of [44], forM = 8, κ = 3 and
τ = 0.4. (a) AA, (b) SA, (c) OA− CSI and (d) AA− CSI.

case. The ideal EH model overestimates heavily the average
harvested energy when̺ is small or large, thus, it is only
suitable for a finite range of̺ . This range depends on the
system setup and on the utilized WET scheme. For instance,
the performance of the three EH models are similar when
̺ ∈ [−50,−35] dB for theSA andOA− CSI schemes, while
the range is approximately shifted to the left10 log10(M)
dB when utilizing theAA and AA− CSI schemes. This is
because under the ideal EH linear model,AA andAA− CSI
schemes share similar average harvested energy performance,
and approximatelyM times greater than the performance
attained underSA and OA− CSI schemes. Notice that our
non-ideal linear EH model, which explicitly considers the
sensitivity and saturation phenomena, succeeds in matching
the performance of the non-linear EH model proposed in [44]
when operating under medium to high average input powers
for which this model was proven to be accurate. In fact, and
because of the sensitivity phenomenon, our non-ideal linear
model predicts an abrupt decay in the average harvested energy
when̺ decreases to very small values; what does not happen
under the non-linear model that does not take strictly into
account this phenomenon, hence, for small̺ the accuracy of
our model is foreseen to be tight to practice. Additionally,
analytical expressions provided in Theorem 3 are corroborated

also in Fig. 8. The gap between simulation and analytical
results come from the fact that functionq2 in Theorem 3
is approximated according to (50), however, in all the cases
analytical results capture well the impact of sensitivity and
saturation impairments.

Given the validation of our non-ideal EH linear model,
we use it next for analyzing the system performance when
powering multiple sensors, e.g.,|S| ≥ 1. To that end, we
consider that sensorsS are uniformly distributed in the disk
region of radiusR = 10m [9], [10] aroundT , thus, the
distance betweenSj andT , denoted asιj , is distributed with
fιj (x) = 2x/R2, x ≤ R. We assume that̺ j = ι−3

j /50,
which may model practical scenarios with path-loss exponent
3, transmit power of40 dBm, and27 dB of average signal
power attenuation at a reference distance of1m [42]. Also,
the LOS factors and correlation coefficients are expected
to decrease with the distance in practical setups, hence we
take this into consideration and assume an exponential decay
given by κj = 10 × e−ιj/2, τj = e−ιj/3. For example,
this means that at1m→ κj ≈ 6.07, τ ≈ 0.72, while at
the disk edge these values drop toκj ≈ 0.07, τ ≈ 0.04.
Notice that, under the CSI-free schemes, the performance
metrics such as average harvested energy per user and average
energy outage per user, can be easily computed by departing
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Fig. 9. (a) Average harvested energy per user (top) and(b) average energy
outage per user (bottom), as a function of|S| for M = 8.

from results in Section IV and performing integration over
fι1(x). For the CSI-based schemes, which are used only as
benchmarks, mathematical analyses in multi-user setups and
under sensitivity and saturation phenomena are cumbersome
and we resort to Monte Carlo methods and global optimization
solvers when finding optimum energy beamformings. Notice
that this may be impossible to implement in practice and the
performance gains should decrease with the cardinality ofS.
These are some of the main reasons for using the CSI-free
WET strategies and the scope of this work.

Fig. 9 shows the average harvested energy and outage per
user as a function of the number of sensors. Since the average
performance of the CSI-free schemes does not depend on
|S|, it appears as straight lines, while the performance of
the CSI-based schemes gets asymptotically worse with|S|.
The latter is because as|S| increases, selecting the best
antenna under theOA− CSI scheme converges to select any
random antenna, e.g.,OA, while for theAA− CSI scheme,
the chances of creating sharp and strong beams capable of
reaching all the users, decreases. Observe that theSA scheme
outperforms theOA strategy in terms of average harvested
energy under sensitivity and saturation phenomena, which is
different from the ideal case discussed in Subsection IV-A.
Also, this scheme performs the best in terms of energy outage
because of the relatively small values ofη̟1 as discussed
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Fig. 10. Standard deviation of the harvested energy in dBm as afunction of
M .

in Fig. 6. This means that in order to get the advantages
of the diversity order and low-variance of theSA scheme,
sensors have to be able of operating at very low power levels
and requiring uninterrupted operation. Additionally, the CSI-
based schemes outperform their CSI-free counterparts in both
metrics and the gap is significant when powering a relatively
small number of sensors. However, as|S| increases (and even
for |S| = 1) the CSI acquisition procedures and associated
energy expenditures become a problem and limit the practical
benefits of these schemes. In fact, according to the analyses
in Subsection IV-A the performance gap between theAA and
AA− CSI schemes is even expected to decrease if any of
M,κ, τ increases. Moreover, notice that the approximations
obtained in Subsection IV-B for|S| = 1 hold for any value of
|S| when using the CSI-free schemes, and as shown in Fig. 9,
the expressions are particularly accurate for theOA andAA
schemes, while not for theSA strategy for the reasons given
in Theorems 2 and 3.

Finally, as a metric of fairness in the wireless powering we
show in Fig. 10 the standard deviation of the harvested energy
across time (channel realization) and space (sensor location)
as a function ofM . Herein we focus only on the CSI-free
schemes15, hence, the results are independent of the number
of sensors. Notice that for the considered system setup theSA
scheme is not only the more reliable (as shown in Fig. 9b)
but also the fairest for relatively small number of antennas
M , while asM increases theAA scheme becomes the clear
winner. The latter is because more sensors are induced to work
near or in the saturation region, hence, outperforming all the
other CSI-free schemes in terms of average harvested energy,
outage and fairness. Finally, as theOA scheme utilizes only
one antenna, its performance is independent ofM .

VI. CONCLUSION AND FUTURE WORK

In this paper, we analyzed three WET strategies that a
dedicated power station equipped with multiple antennas can
utilize when powering a large set of single-antenna devices.

15Notice that schemes based on CSI can be designed for optimizing the
wireless powering fairness instead of the total harvested energy which is the
goal of the CSI-based schemes utilized in this work as benchmarks.
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These strategies operate without any CSI, which is a very
practical assumption since it is very challenging to acquire
CSI at the transmit side in low-power WET systems with large
number of users. The distribution of the harvested energy when
using each of the multi-antenna schemes is attained supposing
Rician fading channels under sensitivity and saturation EH
phenomena and compared to other two CSI-based benchmark
strategies. We investigated the impact of spatial correlation
among the antenna elements evidencing its benefits only
when transmitting simultaneously with equal power by all
antennas, while under the operation of the other schemes
the system performance may reduce considerably when the
spatial correlation increases. When powering a given sensor,
we found that: the switching antennas strategy, where only
one antenna with full power transmits at a time, guarantees
the lowest variance in the harvested energy, thus providing the
most predictable energy source, and it is particularly suitable
under highly sensitive EH hardware and when operating under
poor LOS conditions. Moreover, while under NLOS it is better
switching antennas, when LOS increases it is better to transmit
simultaneously with equal power by all antennas. Also, latter
strategy provides the greatest fairness in the wireless powering
of multiple sensors when there is a large number of antennas
since devices are more likely to operate near or in saturation.
Numerical and simulation results validate our findings and
demonstrate the suitability of the CSI-free over the CSI-based
strategies as the number of devices increases. All these are
fundamental results that can be used when designing practical
WET systems.
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