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Stochastic Geometric Coverage Analysis in mmWave Cellular
Networks with Realistic Channel and Antenna Radiation Models

Mattia Rebato, Student Member, IEEE, Jihong Park, Member, IEEE, Petar Popovski, Fellow, IEEE, Elisabeth De
Carvalho, Senior Member, IEEE, Michele Zorzi, Fellow, IEEE

Abstract—Millimeter-wave (mmWave) bands will play an im-
portant role in 5G wireless systems. The system performance
can be assessed by using models from stochastic geometry that
cater for the directivity in the desired signal transmissions as well
as the interference, and by calculating the signal-to-interference-
plus-noise ratio (SINR) coverage. Nonetheless, the accuracy of the
existing coverage expressions derived through stochastic geome-
try may be questioned, as it is not clear whether they capture the
impact of the detailed mmWave channel and antenna features. In
this study, we propose an SINR coverage analysis framework that
includes realistic channel model and antenna element radiation
patterns. We introduce and estimate two parameters, aligned
gain and misaligned gain, associated with the desired signal beam
and the interfering signal beam, respectively. The distributions
of these gains are used to determine the distribution of the
SINR which is compared with the corresponding SINR coverage
calculated via system-level simulations. The results show that
both aligned and misaligned gains can be modeled as exponential-
logarithmically distributed random variables with the highest
accuracy, and can further be approximated as exponentially
distributed random variables with reasonable accuracy. These
approximations can be used as a tool to evaluate the system-
level performance of various 5G connectivity scenarios in the
mmWave band.

Index Terms—Millimeter-wave, channel model, antenna radi-
ation pattern, large-scale cellular networks, stochastic geometry.

I. INTRODUCTION

Millimeter-wave (mmWave) frequencies can provide 20-
100 times larger bandwidth than current cellular systems.
To enjoy this benefit in 5G cellular systems, the significant
distance attenuation of the desired mmWave signals needs
to be compensated by means of sharpened transmit/receive
beams [2], [3]. The directionality of mmWave transmissions
can induce intermittent yet strong interference to the neigh-
boring receivers. The sharpening of the directional beams
reduces the probability of interference from the mainlobe,
while increasing the signal strength within the mainlobe. This
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has a significant impact on the statistics of the signal-to-
interference-plus-noise ratio (SINR) across the network.

In this paper, we incorporate the experimental models for
mmWave channels and antenna radiations into the tools of
stochastic geometry. This results in a sufficiently realistic
framework for system-level analysis of mmWave systems.
Fig. 1 illustrates the framework, which can be seen as a semi-
heuristic, as it bridges the gap between a very theoretical study
at a large scale (stochastic-geometric analysis), and practical
measurements at a small scale. The novelty of our work
compared to the existing works on mmWave SINR coverage
analysis is summarized in the following subsections.

A. Background and Related Works

The SINR coverage of a mmWave cellular network has
been investigated in [4]–[11] using stochastic geometry, a
mathematical tool able to capture the random interference
behavior in a large-scale network. Compared to traditional cel-
lular systems using sub-6 GHz frequencies, the major technical
difficulty of mmWave SINR coverage analysis comes from
incorporating their unique channel propagation and antenna
radiation characteristics in a tractable way, as detailed next.

1) Channel gain model: mmWave signals are vulnerable
to physical blockages, which can lead to significant distance
attenuation under non-line-of-sight (NLoS) channel conditions
as opposed to under line-of-sight (LoS) conditions. This is
incorporated in the mmWave path loss models by using
different path loss exponents for LoS and NLoS conditions.
Besides this large-scale channel gain, there exists a small-scale
fading due to reflections and occlusions by human bodies.
In order to capture this, while maximizing the mathematical
tractability, one can introduce an exponentially distributed gain
as done in [8]–[11]. This implies assuming Rayleigh fading,
which is not always realistic, particularly when modeling the
sparse scattering characteristics of mmWave signals [8].

At the cost of making analytical tractability more difficult,
several works have detoured this problem by considering
generalized small-scale channel gains that follow a gamma
distribution (i.e., Nakagami-m fading) [4]–[6] or a log-normal
distribution [7]. Nevertheless, such generic fading models have
not been compared with real mmWave channel measurements,
and may therefore either overestimate or underestimate the
actual channel behaviors.

2) Antenna gain model: Both base stations (BSs) and user
equipments (UEs) in 5G mmWave systems are envisaged to
employ planar antenna arrays that enable directional transmis-
sions and receptions. A planar antenna array comprises a set
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(a) With the ISO element pattern [1].
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(b) With the 3GPP element pattern [12].

Fig. 1: An illustration of our mmWave network model (top) and the channel model of each link with the transmitter/receiver antenna radiation model (bottom):
(a) With the ISO element pattern, antenna gain parameters come from our previous work [1]; (b) With the 3GPP element pattern, antenna gain parameters
follow from the 3GPP specifications [12]. For both element radiation patterns, channel parameters are obtained from a measurement-based mmWave channel
model provided by the NYU Wireless Group [13].

of patch antenna elements placed in a two-dimensional plane.
The radiation pattern of each single antenna element is either
isotropic or directional, which are hereafter denoted as ISO
and 3GPP element patterns, respectively. By superimposing
the radiation of all the antenna elements, a planar antenna
array is able to enhance its radiation in a target direction while
suppressing the radiation in other directions.

The 3GPP element pattern is incorporated in the antenna
gain model provided by the 3GPP [12]. Compared to the
ISO element pattern, the directional antenna elements in the
3GPP element pattern enable element-wise beam steering,
thereby yielding higher mainlobe and lower sidelobe gains,
i.e., increased front-back ratio1, as visualized in Fig. 1b. Such
benefit diminishes as the beam steering direction becomes
closer to the plane of the antenna array. In order to solve this
problem, the 3GPP suggests to equip each BS with 3-sectored
antenna arrays [12], thus restricting the beam steering angle
to ±60◦.

The said radiation characteristics and antenna structure
of the 3GPP element pattern complicate the antenna gain
analysis. For this reason, most of the existing approaches based
on stochastic geometry [1], [5]–[11], [16] still resort to the ISO
element pattern. This underestimates the front-back ratio of the
actual cellular system, degrading the accuracy in the mmWave
SINR coverage analysis. Furthermore, the antenna gains are
commonly approximated by using two constants obtained from
the maximum and the second maximum lobe gains [5]–[11]. It
is unclear whether such an approximation is still applicable for
the mmWave SINR coverage analysis with realistic radiation
patterns. By approximating the original system model with a
simplified one, whose performance is determined by a mathe-

1The front-back ratio is the difference expressed in decibels between the
gain of the mainlobe and the second maximum gain. This ratio increases with
the number of antenna elements [14], [15].

matically convenient intensity measure, tractable yet accurate
integral expressions for computing area spectral efficiency
and potential throughput are provided in [17]. The considered
system model accounts for many practical aspects which are
typically neglected, e.g., LoS and NLoS propagation, antenna
radiation patterns, traffic load, practical cell associations, and
general fading channels. However, a measurement-based chan-
nel characterization is missing.

Recently, a few studies [18] and [19] incorporate the impact
of directional antenna elements on the stochastic geometric
SINR coverage analysis, by approximating the element radia-
tion pattern as a cosine-shaped curve under a one-dimensional
linear array structure. Compared to these works, we consider
two-dimensional planar arrays, and approximate the combined
array-and-channel gain as a single term, as detailed in the
following subsection.

3) Aligned/misaligned gain model: In order to solve the
aforementioned issue brought by inaccurate channel gains, one
can use measurement-based channel gain models, such as the
models provided by the New York University (NYU) Wireless
Group [13], which are operating at 28 GHz as described
in [13], [20]–[22]. However, the NYU channel gain model
requires a large number of parameters, and is thus applicable
only to system-level simulators with high complexity, as done
in our previous study [23].

In our preliminary work [1], we simplified the NYU chan-
nel gain model via the following procedure so as to allow
stochastic geometric SINR coverage analysis.

(i) We separated the path loss gains from the small-scale
fading, and treated them independently in a stochastic
geometric framework. The fading term can be considered
as representative of propagation effects when the user
moves locally, and is independent of the link distance.
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(ii) For each downlink communication link, we combined
the channel gain and the antenna gain into an aggregate
gain. The aggregate gain is defined for the desired com-
munication link as aligned gain and for an interfering
link as misaligned gain, respectively.

(iii) We applied a curve fitting method to derive the distribu-
tions of the aligned/misaligned gains.

(iv) Finally, we derived the distribution of a reference user’s
SINR, which is a function of path loss gains and
aligned/misaligned gains, by applying a stochastic ge-
ometric technique to the path loss gains and then by
exploiting the aligned/misaligned gain distributions.

The limitation of our previous work [1] is its use of the
ISO element pattern in step (ii). This results in excessive
sidelobe gains, particularly including backward propagation,
which are unrealistic. To fix this problem, in this study we
also apply the 3GPP element pattern to the aforementioned
aligned/misaligned gain model, thereby yielding a tractable
mmWave coverage expression that ensures high accuracy,
comparable to the results obtained from a system-level sim-
ulator. Moreover, instead of signal-to-interference ratio (SIR)
as considered in [1], we focus on the SINR evaluation by
incorporating also the impact of the noise power.

A recent work [16] is relevant to this study. While ne-
glecting interference, it firstly considers a simplified keyhole
channel, and then introduces a correction factor. The aggregate
channel gain thereby approximates the channel gain under the
mmWave channel model provided by the 3GPP [24]. Com-
pared to this, using the NYU channel model [13], we addi-
tionally consider a realistic antenna radiation pattern provided
by the 3GPP [12]. In addition, we explicitly provide the SINR
coverage probability expression using these realistic channel
and antenna models, as well as its simplified expression.

B. Contributions and Organization

The contributions of this paper are summarized below.

• Accurate distributions of aligned and misaligned gains
are provided (see Remarks 1-4), which reflect the NYU
mmWave channel model [13] and the 3GPP mmWave
antenna radiation model [12].

• Considering the ISO element pattern, following from our
preliminary study [1], the aligned gain is shown to follow
an exponential distribution, despite the scarce multipath
in mmWave channels (Remark 1). On the other hand, we
show that the misaligned gain can be approximated with a
log-logistic distribution (Remark 3) having a heavier tail
than the exponential distribution, which can be lower and
upper bounded by a Burr distribution and a log-normal
distribution, respectively.

• In contrast, for the 3GPP element pattern, we show that
both aligned and misaligned gains independently follow
an exponential-logarithmic distribution (Remarks 2 and
4), which has a lighter tail compared to the exponential
distribution.

• Applying these aligned and misaligned gain distributions,
the downlink mmWave SINR coverage probabilities with

the ISO and 3GPP element patterns are derived using
stochastic geometry (Propositions 1 and 2).

In spite of the exponential-logarithmical distribution of the
aligned/misaligned gains of the 3GPP element pattern, it is
still possible, in the SINR calculation, to approximate both
gains independently using exponential random variables with
proper mean value adjustment (Remark 5 and Fig. 12),
yielding a further simplified (though slightly less accurate)
SINR coverage probability expression (Proposition 3). The
feasibility of the exponential approximation under the 3GPP
element pattern comes from the identical tail behaviors of
both aligned/misaligned gains, that cancel each other out
during the SINR calculation. Following the same reasoning,
this approach provides a similar approximation under the ISO
element pattern that leads to the different tail behaviors of both
the aligned/misaligned gains due to the low front-back ratio
obtained with isotropic elements (see Fig. 12 in Sect.V).

The remainder of this paper is organized as follows. Sec-
tion II describes the channel model and antenna radiation
patterns. Section III proposes the approximated distributions
of aligned and misaligned gains. Section IV derives the
SINR coverage probability. Section V validates the proposed
approximations and the resulting SINR coverage probabilities
by simulation, followed by our conclusion in Section VI.

II. SYSTEM MODEL

In this study, we consider a downlink mmWave cellular
network where both BSs and UEs are independently and ran-
domly distributed in a two-dimensional Euclidean plane. Each
UE associates with the BS that provides the maximum average
received power, i.e., minimum path loss association. The UE
density is assumed to be sufficiently large such that each BS
has at least one associated UE. Multiple UEs can be associated
with a single BS, while the BS serves only a single UE per
unit time slot according to a uniformly random scheduler, as
assumed in [1], [8], [11] under stochastic geometric settings.
Out of these serving users in the network, we hereafter focus
on a reference user that is located in the origin of the area
considered, and is denoted as the typical UE. This typical
UE’s SINR is affected by the antenna array radiation patterns
and channel gains, as described in the following subsections.

A. Antenna Gain

Each antenna array at both BS and UE sides contributes to
the received signal power, according to the radiation patterns
of the antenna elements that comprise the antenna array. The
amount is affected also by the vertical angle θ, horizontal angle
φ, and polarization slant angle ζ, as described next.

1) Element radiation pattern: For each antenna element
in an antenna array, we consider two different radiation
patterns: isotropic radiation and the radiation provided by the
3GPP [25]. The element radiation pattern A

(z)
E (θ, φ) (dB)

for superscript z ∈ {ISO, 3GPP} specifies how much power
is radiated from each antenna element towards the direction
(θ, φ).

Following our preliminary study [1], with the ISO element
pattern, each antenna element radiates signals isotropically
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with equal transmission power. Hence, for all θ ∈ [0, 180◦]
and φ ∈ [−180◦, 180◦], the ISO element radiation pattern is
given as

A
(ISO)
E (θ, φ) = 0 dB. (1)

The 3GPP element pattern is realized according to the
specifications in [12], [25] and [26]. First, differently from
the previous configuration, it implies the use of three sectors,
thus three arrays, placed as in traditional mobile networks2.
Second, the single element radiation pattern presents high
directivity with a maximum gain in the main-lobe direction
of about 8 dBi. The 3GPP AE of each single antenna element
is composed of horizontal and vertical radiation patterns.
Specifically, this last pattern AE,V (θ) is obtained as

AE,V (θ) = −min

{
12

(
θ − 90

θ3dB

)2

, SLAV

}
, (2)

where θ3dB = 65◦ is the vertical 3 dB beamwidth, and
SLAV = 30 dB is the side-lobe level limit. Similarly, the
horizontal pattern is computed as

AE,H(φ) = −min

{
12

(
φ

φ3dB

)2

, Am

}
, (3)

where φ3dB = 65◦ is the horizontal 3 dB beamwidth, and
Am = 30 dB is the front-back ratio. Using together the
previously computed vertical and horizontal patterns we can
compute the 3D antenna element gain for each pair of angles
as

A
(3GPP)
E (θ, φ) = Gmax −min {− [AE,V (θ) +AE,H(φ)] , Am} ,

(4)

where Gmax = 8 dBi is the maximum directional gain of the
antenna element [12]. The expression in (4) provides the dB
gain experienced by a ray with angle pair (θ, φ) due to the
effect of the element radiation pattern.

2) Array radiation pattern: The antenna array radiation
pattern A

(z)
A (θ, φ) determines how much power is radiated

from an antenna array towards the steering direction (θ, φ).
Following [25], the array radiation pattern with a given ele-
ment radiation pattern A(z)

E (θ, φ) is provided as

A
(z)
A (θ, φ) = A

(z)
E (θ, φ) + AF(θ, φ). (5)

The last term AF(θ, φ) is the array factor with the number n
of antenna elements, given as

AF(θ, φ) = 10 log10

[
1 + ρ

(∣∣a · wT ∣∣2 − 1
)]
, (6)

where ρ is the correlation coefficient, set to unity by assuming
the same correlation level between signals in all the transceiver
paths [25]. Since it represents the physical specifications of the
array, AF is equally computed for both ISO and 3GPP models.
The term a ∈ Cn is the amplitude vector, set as a constant
1/
√
n while assuming that all the antenna elements have equal

amplitude. The term w ∈ Cn is the beamforming vector, which
includes the mainlobe steering direction, to be specified in

2We note that, even if three sectors are present in each BS site, only a
single sector is active and transmitting in each time instant.

Section II-B2. This last term depends on the considered pair
of angles (θ, φ), although, for ease of notation, we are not
reporting this dependency in the equation. Further explanation
of the relation between array and element patterns can be
found in [15] and [25].

In Fig. 2a we report a comparison of the two continuous
element radiation patterns (i.e., AE). The figure permits to
understand the difference between the ISO element pattern
showing a fixed gain and the 3GPP element pattern providing
8 dBi directivity. As a consequence of the element pattern
used, we can see the respective shape of the array radiation
pattern (i.e., AA) in Fig. 2b. The plot permits to see the
reduction of undesired sidelobes and backward propagation
when considering the 3GPP curve with respect to the ISO
element pattern. Furthermore, shape and position of the main
and undesired lobes vary as a function of the steerable di-
rection. Further definitions and accurate examples for these
concepts can be found in [15].

3) Field pattern (i.e., antenna gain): Finally, applying the
given antenna array pattern A(z)

A (θ, φ), we obtain the antenna
gain for the channel computations. This gain consists of a
vertical field pattern F(z)(θ, φ) and a horizontal field pattern
G(z)(θ, φ), with the polarization slant angle ζ. For simplicity,
in this study we consider a purely vertically polarized antenna,
i.e., ζ = 0. Following [26], the vertical and horizontal field
patterns are thereby given as follows

F(z)(θ, φ) =

√
A

(z)
A (θ, φ) cos(ζ) =

√
A

(z)
A (θ, φ), (7)

G(z)(θ, φ) =

√
A

(z)
A (θ, φ) sin(ζ) = 0. (8)

B. Channel gain

Following the system-level simulator settings [13], we di-
vide the channel gains into two parts: (i) path loss that depends
on the link distance; and (ii) the channel gain multiplicative
component. The latter gain is affected not only by the channel
randomness but also by the antenna array directions. The
following channel gain computation aspects are independent
of the different radiation pattern considered, thus they are valid
for both ISO and 3GPP.

The antenna array direction is determined by the BS-UE
association. To elaborate, for each associated BS-UE link,
denoted as the desired link, their beam directions are aligned,
pointing their main-lobe centers towards each other. As a
consequence, for all non-associated BS-UE links, denoted as
interfering links, the beam directions can be misaligned. In
order to distinguish them in (ii), we define aligned gain and
misaligned gain as the channel gain for the desired link and for
an interfering link, respectively. The definitions of path loss
and aligned/misaligned gains are specified in the following
subsections.

1) Path loss: By definition, the set of BS locations follows
a homogeneous Poisson point process (HPPP) Φ with density
λb. At the typical UE, the desired/interfering links can be in
either LoS or NLoS state. To be precise, from the perspective
of the typical UE, the set Φ of all the BSs is partitioned into
a set of LoS BSs ΦL and a set of NLoS BSs ΦN . According
to the minimum path loss association rule, the desired link
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Fig. 2: Illustrations of the element radiation gains and the array radiation gains for the ISO and 3GPP element patterns, with respect to the horizontal steering
angle φ ∈ [−180◦, 180◦] while the vertical steering angle θ is fixed at 90◦.

can be either LoS or NLoS, specified by using the subscript
i ∈ {L,N}. Likewise, the LoS/NLoS state of each interfering
link is identified by using the subscript j ∈ {L,N}.

For a given link distance r, the LoS and NLoS state proba-
bilities are pL(r) = e−0.0149r and pN (r) = 1−pL(r) [5], [13],
[20]. Here, compared to the system-level simulator settings
in [13], [20], we neglect the outage link state induced by severe
distance attenuation. This assumption does not incur a loss
of generality for our SINR analysis, since the received signal
powers that correspond to outage are typically negligibly
small.

When a connection link has distance r and is in state
j ∈ {L,N}, transmitted signals passing through this link
experience the following path loss attenuation

`j(r) = βjr
−αj , (9)

where αj indicates the path loss exponent and βj is the path
loss gain at unit distance [13], [27].

2) Aligned and misaligned gains: In both ISO and 3GPP
element patterns, for a given link, a random channel gain is
determined by the NYU channel model that follows mmWave
channel specific parameters [13], [20] based on the WIN-
NER II model [28]. These parameters are summarized in
Tab. I, and discussed in the following subsections. In this
model, each link comprises K clusters that correspond to
macro-level scattering paths. For cluster k ≤ K, there exist
Lk subpaths, as visualized in Fig. 1. Moreover, the first cluster
angle (i.e., φk, k = 1) exactly matches the LOS direction
between transmitter and receiver in the simulated link.

Given a set of clusters and subpaths, the channel matrix of
each link is represented as

H(z) =
K∑
k=1

Lk∑
l=1

gklF
(z)
RX

(
φRX
kl

)
uRX

(
φRX
kl

)
F

(z)
TX

(
φTX
kl

)
u∗TX

(
φTX
kl

)
(10)

Tab. I: List of notations and channel parameters considered in the NYU
mmWave network simulator [21].

Notation Meaning: Parameters

f Carrier frequency: 28 GHz

Φb BS locations following a HPPP with density λb

pL(r) LoS state probability at distance r: pL = e−0.0149r

xo, x Serving and interfering BSs or their coordinates

αj Path loss exponent, with j ∈ {L,N}: αL = 2, αN = 2.92

βj Path loss gain at unit distance: βL = 10−7.2, βN = 10−6.14

`j(r) Path loss at distance r in LoS/NLoS state

nTX, nRX # of antennas of a BS and a UE

G(z)
o , G(z)

x Aligned and misaligned gains, with z ∈ {ISO, 3GPP}
f

(z)
Go
, f

(z)
Gx

Aligned and misaligned gain PDFs

K # of clusters ∼ max{Poiss(1.8), 1}
Lk # of subpaths in the k-th cluster ∼ DiscreteUni[1, 10]

φRX
kl , φTX

kl Angular spread of subpath l in cluster k [13]:
φ

(·)
k ∼ Uni[0, 2π], ∀k 6= 1, φ

(·)
kl = φ

(·)
k + (−1)lskl/2

skl ∼ max{Exp(0.178), 0.0122},
gkl Small-scale fading gain: gkl =

√
Pkl exp(−j2πτklf)

τkl Delay spread induced by different subpath distances.

Pkl Power gain of subpath l in cluster k [20]:

Uk ∼ Uni[0, 1], Zk ∼ N (0, 42), Vkl ∼ Uni[0, 0.6],
Pkl = P ′kl/

∑
P ′kl, P

′
kl = U

τkl−1
k 10−0.1Zk+Vkl/Lk, τkl = 2.8

where gkl is the small-scale fading gain of subpath l in cluster
k, and uRX and uTX are the 3D spatial signature vectors of
the receiver and transmitter, respectively. Note that u∗TX stands
for the complex conjugate of vector uTX. Furthermore, for
brevity, we use subscript or superscript TX (RX), referring
to a transmitter (receiver) related term. Moreover, φRX

kl is the
angular spread of horizontal angles of arrival (AoA) and φTX

kl

is the angular spread of horizontal angles of departure (AoD),
both for subpath l in cluster k [13]. Note that, for ease of
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computation, we consider a planar network and channel, i.e.,
we neglect vertical signatures by setting their angles to 90◦

(i.e., π/2 radian). Finally, F
(z)
TX and F

(z)
RX are the field factor

terms of transmitter and receiver antennas, respectively and
they are computed as in (7) with z ∈ {ISO, 3GPP}.

We consider directional beamforming where the mainlobe
center of a BS’s transmit beam points at its associated UE
(we recall that φ1 is the mainlobe center angle as shown in
the channel illustration of Fig. 1), while the mainlobe center
of a UE’s receive beam aims at the serving BS. We assume
that both beams can be steered in any directions. Therefore,
considering the ISO element pattern, we can generate a beam-
forming vector for any possible angle in [0, 360◦]. Instead,
with the three-sectors consideration adopted in the 3GPP
element pattern, the beamforming vectors for any possible
angles are mapped within one of the three sectors, thus using
an angle in the interval [0, 120◦].

At the typical UE, the aligned gain G(z)
o is its beamforming

gain towards the serving BS at xo. With a slight abuse of
notation for the subscript xo, G

(z)
o is represented as

G(z)
o = |wTRXxo

H(z)
xo wTXxo |

2 (11)

=

∣∣∣∣∣
K∑
k=1

Lk∑
l=1

gklF
(z)
RX

(
wTRXxo

uRXxo

)
F

(z)
TX

(
u∗TXxo

wTXxo

)∣∣∣∣∣
2

(12)

where wTXxo ∈ CnTX is the transmitter beamforming vector
and wTRXxo

∈ CnRX is the transposed receiver beamforming
vector computed as in [14], [15]. Their values contain in-
formation about the mainlobe steering direction and both are
computed using the first cluster angle φ1 as

wTTX = [w1,1, w1,2, . . . , w√nTX,
√
nTX ], (13)

where wp,r = exp (j2π [(p− 1)∆V Ψp/λ+ (r − 1)∆HΨr/λ]),
for all p, r ∈ {1, . . . ,√nTX}, Ψp = cos (θs), and
Ψr = sin (θs) sin (φ1). The terms ∆V and ∆H are the
spacing distances between the vertical and horizontal
elements of the array, respectively. Then, angles θs and φs
are the steering angles and θs is kept fixed to 90◦. We assume
all elements to be evenly spaced on a two-dimensional plane,
thus it equals ∆V = ∆H = λ/2. The same expression can be
used to compute the receiver beamforming vector wRX with
the exception that its dimension is nRX.

Similarly, the typical UE’s misaligned gain G
(z)
x is its

beamforming gain with an interfering BS at x

G(z)
x = |wTRXxH(z)

x wTXx |2 (14)

where wTXx and wRXx respectively are the transmitter and
receiver beamforming vectors. It is noted that both G

(z)
o and

G
(z)
x incorporate the effects not only of the mainlobes but

also of all the other sidelobes. We highlight that even if both
aligned and misaligned gain definitions are valid for both the
ISO and 3GPP configurations, the gains will have a different
distribution in the two radiation patterns.

C. SINR definition

The typical UE is regarded as being located at the origin,
which does not affect its SINR behaviors thanks to Slivnyak’s

theorem [29] under the HPPP modeling of the BS locations. At
the typical UE, let xo and all the x ∈ Φi respectively indicate
the associated and interfering BSs as well as their coordinates.
We note that the set Φi represents BS locations following a
HPPP with density λi, i ∈ {L,N}.

Using equations (9), (12), and (14), we can represent SINRi
as the received SINR at the typical UE associated with xo ∈
Φi, i ∈ {L,N}, which is given by

SINRi =
G

(z)
o `i(r

i
xo)∑

x∈ΦL/xo

G
(z)
x `L(rLx ) +

∑
x∈ΦN/xo

G
(z)
x `N (rNx ) + σ2

,

(15)

where the term rixo denotes the association distance of the
typical UE associating with xo ∈ Φi and along similar lines,
rix denotes the association distance of a generic UE associating
with x ∈ Φi and i ∈ {L,N}. Knowing that the typical UE is
located in the origin o, rx is equals to ‖x‖. Here, we assume
that each BS transmits signals with the maximum power PTX
through the bandwidth W . In (15), SINRi is normalized by
PTX. The term σ2 denotes the normalized noise power σ2 that
equals σ2 = WN0/PTX where N0 is the noise spectral density
per unit bandwidth.

III. ALIGNED AND MISALIGNED GAIN DISTRIBUTIONS

Starting from the expressions derives in the previous section,
it is practically infeasible to further approximate aligned and
misaligned gains using analytic methods, as analyzing each
of their subordinate terms is a major task in itself, as shown
by related works. Therefore, in this section we focus on the
aligned gain G(z)

o in (12) and the misaligned gain G(z)
x in (14)

with ISO and 3GPP element patterns, and aim at deriving their
distributions.

Following the definitions in Sect. II-B, the aligned gain G(z)
o

is obtained for the desired received signal when the angles
of the beamforming vectors wTXxo and wRXxo are aligned
with the AoA and AoD of the spatial signatures uTXxo and
uRXxo in the channel matrix H(z)

xo . The misaligned gain G
(z)
x

is calculated for each interfering link with the beamforming
vectors and spatial signatures that are not aligned.3 Fig. 1
shows an example of misalignment between the beam of
the desired signal (yellow or green colored beam) and the
interfering BSs beams (red colored beams).

In the following subsections, using curve fitting with the
system-level simulation, we derive the distributions of the
aligned gain G(z)

o and the misaligned gain G(z)
x .

A. Aligned gain distribution

Running a large number of independent runs of the NYU
simulator we empirically evaluated the distribution of the

3At the typical UE, the serving BS’s beamforming is aligned with the
typical UE, whereas the beamforming vectors of interfering BSs are de-
termined by their own associated UEs that are uniformly distributed. For
this reason, each interfering BS’s beamforming has a circularly uniform
orientation. Consequently, in (14), the angles of the beamforming vectors
wTXx and wRXx as well as the angles of the spatial signatures uTX and uRX

are not aligned with the angles of G(z)
o , which are independent and identically

distributed (i.i.d.) across different interfering BSs.



0090-6778 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2019.2895850, IEEE
Transactions on Communications

7

1 2 3 4 5 6 7
Gain G

o ×10
4

10
-8

10
-6

10
-4

10
-2

P
D

F
Data samples
Exponential fit

Fig. 3: Fitting of the aligned gain G
(ISO)
o with the ISO element pattern.

The empirical PDF of G(ISO)
o is obtained by the NYU mmWave network

simulator [21], and is fit with the exponential distribution in Remark 1
(nRX = 64, nTX = 256).

aligned gain G
(z)
o . From the obtained data samples we have

noticed that G(z)
o is roughly exponentially distributed G(ISO)

o ∼
Exp(µo) when an ISO element pattern is used. Indeed, the
signal’s real and imaginary parts are approximately indepen-
dent and identically distributed zero-mean Gaussian random
variables. This exponential behavior finds an explanation in
the small-scale fading effect implemented in the channel model
using the power gain term Pkl computed as reported in Tab. I.
We report in Fig. 3 an example of the exponential fit of the
simulated distribution. The fit has been obtained using the
curve fitting toolbox of MATLAB.

For the purpose of deriving an analytical expression, it is
also interesting to evaluate the behavior of µo as a function
of the number of antenna elements at both receiver and
transmitter sides. For this reason, in our analysis we consider
the term µo as a function of the number of elements. We show
in Fig. 4 the trend of the parameter µo versus the number of
antenna elements at the transmitter side nTX and at the receiver
side nRX. Again, using the MATLAB curve fitting toolbox, we
have obtained a two-dimensional power fit where the value of
µo can be obtained as in the following remark.

Remark 1. (Aligned Gain, ISO) At the typical UE, under
the ISO antenna model, the aligned gain G

(ISO)
o can be

approximated by an exponential distribution with probability
density function (PDF)

f
(ISO)
Go

(y;µo) = µoe
−µoy (16)

where µo = 0.814
(nTXnRX)0.927 .

This result provides a fast tool for future calculations.
Indeed, the expression found for the gain permits to avoid
running a detailed simulation every time. We note that
from a mathematical point of view the surface of the term
µo(nTX, nRX) is symmetric. In fact, the gain does not depend
individually on the number of antennas at the transmitter or
receiver sides, but rather on their product, so we can trade the
complexity at the BS for that at the UE if needed.

By contrast, using the 3GPP element pattern, we have
noticed that the data samples of G(3GPP)

o can no longer be
approximated as an exponentially distributed random variable.
Instead, an exponential-logarithmic distribution provides the
most accurate fitting result with the simulated desired gain,
validated by simulation as shown in Fig. 5.

Remark 2. (Aligned Gain, 3GPP) At the typical UE, and

Fig. 4: Fitting of the aligned gain distribution parameter µo with the ISO
element pattern, with respect to the number of antenna elements nTX and nRX.
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Fig. 5: Fitting of the aligned gain G(3GPP)
o with the 3GPP element pattern.

The empirical PDF of G(3GPP)
o fits with the exponential-logarithmic distribu-

tion in Remark 2. It no longer fits with an exponential distribution, as opposed
to the ISO element pattern’s (nRX = 64, nTX = 256).

adopting the 3GPP element pattern, the aligned gain G(3GPP)
o

can be approximated by an exponential-logarithmic distribu-
tion with PDF

f
(3GPP)
Go

(y; bo, po) =
1

− ln(po)

bo(1− poe−boy)

1− (1− po)e−boy
. (17)

where the parameters bo and po are specified in Tab. II.

Exponential-logarithmic distributions are often used in the
field of reliability engineering, particularly for describing
the lifetime of a device with a decreasing failure rate over
time [30]. Its tail is lighter than that of the exponential
distribution, which is explained by the 3GPP element pattern’s
high directivity and sidelobe attenuation that mostly yield a
higher aligned gain than the ISO element pattern’s aligned
gain.

An exponential-logarithmic distribution is determined by
using two parameters bo and po, as opposed to the ISO element
pattern’s exponential distribution with a single parameter µo.
Precisely, the distribution is given by a random variable that
is the minimum of N independent realizations from Exp(bo),
while N is a realization from a logarithmic distribution with
parameter 1−po. Due to its generation procedure, the relation-
ship between the two parameters and the number of antenna
elements is not representable with a simple function in a way
to be generalized as done in Remark 1 for the ISO element
pattern. In particular, due to the extreme characteristics of
the gain, even a small variation in the well-fitted parameters
yields a significant change in the fitting accuracy. For this
reason, obtaining a good-fit of the parameters that can be
generalized requires an exhaustive search, with an extremely
large number of combinations. Therefore, for 16 practically
possible combinations of nTX and nRX, the appropriate values
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Tab. II: Aligned gain’s exponential-logarithmic distribution parameters
(bo, po) with the 3GPP element pattern for different nTX and nRX. The
table is symmetric, so we hereafter report only the upper triangular part.

(bo, po)
nTX

4 16 64 256

nRX

4 (0.002, 0.112) (4e-4, 0.075) (0.0001, 0.0713) (7.84e-5, 0.15)

16 − (2e-4, 0.15) (8.24e-5, 0.511) (1.93e-5, 0.1223)

64 − − (1.84e-5, 0.15) (4.83e-6, 0.089)

256 − − − (1.96e-6, 0.1126)
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10
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D
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Log-logistic fit

Fig. 6: Fitting of the aligned gain G
(ISO)
x with the ISO element pattern.

The empirical PDF of G(ISO)
x is obtained by the NYU mmWave network

simulator [21], and is fit with the log-logistic distribution in Remark 3
(nRX = 64, nTX = 256).

of bo and po are provided in Tab. II by curve-fitting of the
system-level simulation results.

B. Misaligned gain distribution

Following the same procedure as used for the aligned gain
with the NYU simulator, we extract the distribution of the mis-
aligned gain G(z)

x under the ISO and 3GPP element patterns.
With the ISO element pattern, we found that the G(ISO)

x PDF
displayed in Fig. 6 has a steep decreasing slope in the vicinity
of zero, while showing a heavier tail than the exponential
distribution. This implies that the occurrence of strong interfer-
ence is not frequent thanks to the sharpened mainlobe beams,
yet is still non-negligible due to the interference from sidelobes
that include the backward propagation. We examined possible
distributions satisfying the aforementioned two characteristics,
and conclude that a log-logistic distribution provides the most
accurate fitting result with the simulated misaligned gain.

Remark 3. (Misaligned Gain, ISO) At the typical UE, and
using ISO antenna elements, the misaligned gain G

(ISO)
x can

be approximated by a log-logistic distribution with PDF

f
(ISO)
Gx

(y; a, b) =

(
b
a

) (
y
a

)b−1(
1 +

(
y
a

)b)2 (18)

where the values of a and b are provided in Tab. III.

A log-logistic distribution is given by a random variable
whose logarithm has a logistic distribution. The shape is
similar to a log-normal distribution, but has a heavier tail [31].
For a similar reason addressed after Remark 2, a log-logistic
distribution is determined by two parameters a and b, and their
relationship with the number of antenna elements is difficult
to generalize. We instead report the appropriate values of a
and b for 16 combinations of nTX and nRX in Tab. III.

Next, with the 3GPP element pattern, we identified the
G

(3GPP)
x PDF in Fig. 7. Using the simulated data samples

Tab. III: Misaligned gain’s log-logistic distribution parameters (a, b) with the
ISO element patterns for different nTX and nRX.

(a, b)
nTX

4 16 64 256

nRX

4 (3.28, 0.877) (2.51, 0.743) (2.11, 0.722) (1.92, 0.709)

16 − (3.49, 0.656) (3.28, 0.612) (2.89, 0.589)

64 − − (2.55, 0.57) (1.98, 0.551)

256 − − − (1.45, 0.547)
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Fig. 7: Fitting of the aligned gain G(3GPP)
x with the 3GPP element pattern.

The empirical PDF of G(3GPP)
x fits with the exponential-logarithmic distribu-

tion in Remark 4. It no longer fits with a log-logistic distribution, as opposed
to the ISO element pattern’s (nRX = 64, nTX = 256).

we have performed a test on the decay of the tail in order
to understand if the behavior was heavy tailed. It turns out
that the PDF of G(3GPP)

x has a lighter tail than the exponential
distribution, which is far different from the heavy-tailed G(ISO)

x

distribution. In this case, we found that the misaligned gain
G

(3GPP)
x fits well an exponential-logarithmic distribution, as

also used for the aligned gain G(3GPP)
o in Remark 2.

Remark 4. (Misaligned Gain, 3GPP) At the typical UE,
and adopting the 3GPP element pattern, the misaligned gain
G

(3GPP)
x can be approximated by an exponential-logarithmic

distribution with PDF

f
(3GPP)
Gx

(y; bx, px) =
1

− ln(px)

bx(1− pxe−bxy)

1− (1− px)e−bxy
. (19)

where the values of parameters bx and px are provided
in Tab. IV.

Although both G
(3GPP)
o and G

(3GPP)
x can be described by

using exponential-logarithmic distributions, these two results
come from different reasons, respectively. For G

(3GPP)
o , it

follows from the higher mainlobe gains than under the ISO el-
ement pattern that yields the exponentially distributed G(ISO)

o .
For G(3GPP)

x , on the contrary, its light-tailed distribution origi-
nates from attenuating sidelobes, reducing the interfering prob-
ability. For these distinct reasons, the distribution parameters
(bo, po) for G(3GPP)

o and (bx, px) for G(3GPP)
x are different, as

shown in Tab. II and Tab. IV. Moreover, we note that in order
to precisely fit both the distributions for the 3GPP case, due
to the particular behavior of both tail and slope parts we have
studied several well known distributions. We have evaluated
the accuracy by measuring the root-mean-square error (RMSE)
and obtained Tab. V. By evaluating the RMSE, we have
concluded that the exponential-logarithmic distribution was the
most accurate distribution, among the ones evaluated, for both
G

(3GPP)
o and G(3GPP)

x .
The fitting plots of both aligned and misaligned gains,
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Tab. IV: Misaligned gain’s exponential-logarithmic distribution parameters
(bx, px) with the 3GPP element patterns for different nTX and nRX.

(bx, px)
nTX

4 16 64 256

nRX

4 (4.428, 4.3e-5) (0.7967, 3.7e-5) (0.288, 6.8e-5) (1.2e-04, 1.5e-9)

16 − (0.2873, 6.5e-5) (0.024, 3.6e-5) (0.075, 7.4e-7)

64 − − (0.2316, 1.5e-4) (0.0133, 2.34e-5)

256 − − − (0.2406, 2.7e-4)

Tab. V: Minimized RMSE for aligned and misaligned gains under different
fitting distributions (for the case when the fitted distribution shape was unable
to match the data, we marked it as avoid).

Distribution Type Minimized RMSE
Go Gx

Exponential 1.99e-6 7.46
Exponential-logarithmic 4.11e-7 0.51

Burr 4.26e-6 1.74
Log-logistic − 1.63
Log-normal − −
Log-Cauchy − 0.56

Gamma − 0.80
Weibull 4.27e-6 0.63

Rayleigh − −
Nakagami − 1.04

Lévi − 1.73

respectively Figs. 3–5 and Figs. 6–7, permit to see the approx-
imation error which is introduced due to the fitting procedure.
However, we note that we are plotting the curves using a log-
scale for the y-axis, thus when the PDF becomes smaller even
if the error gap looks bigger, the real error may be smaller.

Note that G(ISO)
x is often considered as a Nakagami-m or

a log-normal distributed random variable [5]–[7]. In Sect. V,
we will thus compare our proposed distributions for G(z)

x with
them. For a fair comparison, for a Nakagami-m distribution
with nTX = 256 and nRX = 64, we will use its best-
fit distribution parameters obtained by curve-fitting with the
system-level simulation, which are given with the PDF as
follows.

f
(ISO)
Gx

(y;m, g) =
2mm

Γ(m)gm
y2m−1 exp

(
−m
g
y2

)
,

{
m = 0.099

g = 50.53

(20)

With this PDF, we will observe in Sect. V that a Nakagami-
m distribution underestimates the tail behavior of G(ISO)

x too
much, thereby leading to a loose empirical upper bound for
the SINR coverage probability.

Likewise, for a log-normal distribution with nTX = 256
and nRX = 64, we will consider the following PDF with the
parameters.

f
(ISO)
Gx

(y;σ, µ) = 1

yσ
√

2π
exp

(
− (log y−µ)2

2σ2

)
,

{
σ = 2.962

µ = 0.908
(21)

Under the ISO element pattern, it will be shown in Sect. V
that a log-normal distribution is a better fit than a Nakagami-
m distribution, yet it still underestimates the interference,
yielding an empirical upper bound to the SINR coverage
probability.

As an auxiliary result, we will also provide the result with
a Burr distribution [32]. This overestimates the tail behavior
of G(ISO)

x , leading to the empirical lower bound of the SINR

coverage probability. For this, we will consider the following
PDF under nTX = 256 and nRX = 64.

f
(ISO)
Gx

(y; c, k) = ckyc−1

(1+yc)k+1 ,

{
c = 0.692

k = 0.518
(22)

IV. MMWAVE SINR COVERAGE PROBABILITY

In this section, we aim at deriving the closed-form expres-
sion of the SINR coverage probability CSINR(T ), defined as the
probability that the typical UE’s SINR is no smaller than a tar-
get SINR threshold T > 0, i.e., CSINR(T ) := Pr(SINR ≥ T ).
In the first subsection, utilizing the aligned/misaligned gains
provided in Sect. III, we derive the exact SINR coverage
expressions under ISO and 3GPP element patterns. In the
following subsection, applying a first-moment approximation
to aligned/misaligned gains, we further simplify the SINR
coverage expressions.

A. SINR Coverage

Let rixo denote the association distance of the typical UE
associating with xo ∈ Φi. By using the law of total probability,
CSINR at the typical UE can be represented as

CSINR(T ) = Pr
(
SINR ≥ T, xo ∈ ΦL︸ ︷︷ ︸

SINRL≥T

)
+ Pr

(
SINR ≥ T, xo ∈ ΦN︸ ︷︷ ︸

SINRN≥T

)
(23)

= ErLx0

[
Pr
(
SINRL ≥ T |rLxo

)]
+ ErNxo

[
Pr
(
SINRN ≥ T |rNxo

)]
.

(24)

In (24), two expectations are taken over the typical UE’s
association distance rixo . The PDF of rixo is given by [10]
as

frixo
(r) := f|xo|,i(r, xo ∈ Φi) (25)

= 2πλi(r)r exp

(
− 2πλb

[ ∫ r

0

vpi(v)dv +

∫ (rαiβi′/βi)
1
α
i′

0

vpi′(v)dv

])
(26)

where λi(r) = λbpi(r), and i′ indicates the opposite LoS/N-
LoS state with respect to i.

For the ISO element pattern, the typical UE’s SINR coverage
probability CSINR(T ) in (24) is then derived by exploiting
frixo (r) while applying Campbell’s theorem [29] and the

G
(ISO)
o distribution in Remark 1.

Proposition 1. (Coverage, ISO) At the typical UE, and consid-
ering arrays with ISO radiation elements, the SINR coverage
probability CSINR(T ) for a target SINR threshold T > 0 is
given as

CSINR(T ) =
∑

i∈{L,N}

∫ ∞
0

fr
xio

(r) exp

(
−µoTrαiσ2

βi

)

× LILi

(
µoT

`i(r)

)
LINi

(
µoT

`i(r)

)
dr, (27)

where LIji (r) is the Laplace transform of the interference from
BSs ∈ φj , for j ∈ {L, N}, to the typical UE and is given
in (28) with z = ISO.
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Sketch of the Proof: Starting from the SINR joint probability
in (24) and applying the SINR definition we obtain an ex-
pression which depends on the CCDF F

(ISO)
Go

(y;µo). Then,
applying Remark 1, which provides a channel gain expression
with specific distribution, together with Slyvnyak’s theorem
and the mutual independence of PPPs ΦLi and ΦNi we obtain
the final coverage expression. The detailed proof is provided
in Appendix I. �

Note that 1/µo is the mean aligned gain in Remark 1. The
misaligned gain PDF f (ISO)

Gx
(y) and its corresponding parame-

ters are provided in Remarks 3 and 4 as well as in Tab. III. As
opposed to the standard method where the exponential random
variables can be found in both desired and interfering links,
the misalignment gain in our interfering link follows a log-
logistic distribution. This does not allow to further expand the
expression as done in the standard method, yet the expression
can easily be calculated numerically as done in [19], which is
far simpler than the system-level simulation complexity. Then,
the term pi is the LoS/NLoS channel state probability defined
in Sect. II-B.

For the 3GPP element pattern, following the same pro-
cedure and G

(3GPP)
o distribution in Remark 2, we obtain

CSINR(T ) as shown in the following proposition.

Proposition 2. (Coverage, 3GPP) At the typical UE, and
considering arrays with 3GPP radiation elements, the SINR
coverage probability CSINR(T ) for a target SINR threshold
T > 0 is upper bounded as

CSINR(T ) ≤
∑

i∈{L,N}

∫ ∞
0

fr
xio

(r)

ln (po)
ln

(
1− (1− po)

× exp

(
−boTrαiσ2

βi

)
LILi

(
boT

`i(r)

)
LINi

(
boT

`i(r)

))
dr, (29)

where the Laplace transform LIji (r) for j ∈ {L,N} is given
in (28) with z = 3GPP at the bottom of this page.
Sketch of the Proof: The first step of the demonstration is
equivalent to the one in Proposition 1 with the only difference
that G(3GPP)

o follows an exponential-logarithmic distribution
with the CCDF F (y; bo, po) = ln

(
1− (1− po) e−boy

)
/ln po.

Then, differently from the previous proposition, Jensen’s in-
equality is used to obtain an upper bound of the SINR coverage
probability. The remainder of the proof follows the Proof of
Proposition 1. For completeness, the detailed derivation is
provided in Appendix II. �

It is worth noting that the Laplace transform expression
in (28) is used for both ISO and 3GPP element patterns,
i.e., in Propositions 1 and 2. Here, the element pattern is
differentiated only by the distribution of the misaligned gain
f

(z)
Gx

(g) contained therein. For different element patterns and
their fitting results, we can thus change f (z)

Gx
(g) accordingly

while keeping the rest of the terms, thereby allowing us to
quickly compare the resulting SINRs. This is an advantage of
the analysis, that avoids redundant calculations.

B. Simplified SINR coverage

In this subsection, our goal is to further simplify the SINR
coverage probability expressions in Propositions 1 and 2. To
this end, we revisit a channel-antenna gain approximation
approach that is commonly used with stochastic geometric
analysis, as done in [5]–[11]. This approach relies on ap-
proximating the channel gain based on its first-moment value,
and may therefore be less accurate compared to the simulated
result.

Nevertheless, with a slight refinement, we conjecture that
such a simple approach can still provide a tight approximation,
also for the 3GPP element pattern. In fact, the only major
difference, with respect to the ISO case is the presence of a
high front-back ratio, which in turn is due to the directivity
gain considered. With this purpose in mind, we elaborate the
approximation procedures of the channel and antenna gains
as follows. For the channel gain, instead of directly using the
realistic channel model, we consider a first-order approximated
Rayleigh fading channel with the mean value that is identically
set as that of the realistic channel model. For the antenna gain,
as illustrated in Fig. 2b, we approximate the continuous array
gain using only two constants, i.e., mainlobe gain M

(z)
s and

sidelobe gain m(z)
s . The mean aligned gain Υ

(z)
o and the mean

misaligned gain Υ
(z)
x are determined by these two antenna gain

constants that are specified by the ISO and 3GPP element
patterns, as detailed in the following remark.

Remark 5. (Simplified Aligned/Misaligned Gains) For a given
antenna array radiation pattern z ∈ {ISO, 3GPP}, we consider
the following channel and array radiation approximations.

• Rayleigh fading channel gain – Both the aligned gain
G

(z)
o and the misaligned gain G

(z)
x at the typical UE

independently follow an exponential distribution, i.e.,

G(z)
o ∼ Exp(1/Υ(z)

o ) and G(z)
x ∼ Exp(1/Υ(z)

x ). (30)

• Piece-wise constant array gain – The average channel
gains Υ

(z)
o and Υ

(z)
x , taken from [5], are given as:

Υ(z)
o = M

(z)
TX M

(z)
RX and (31)

Υ(z)
x =


M

(z)
TX M

(z)
RX w.p. ϕTX

2π
ϕRX
2π

M
(z)
TX m

(z)
RX w.p. ϕTX

2π (1− ϕRX
2π )

m
(z)
TXM

(z)
RX w.p. (1− ϕTX

2π )ϕRX
2π

m
(z)
TXm

(z)
RX w.p. (1− ϕTX

2π )(1− ϕRX
2π ),

(32)

L
I
j
i
(r) = exp

−2πλb ∫ ∞
0

∫ ∞(
βjr

αi

βi

) 1
αj

[
1− exp

(
−
`j(v)µoTg

`i(r)

)]
vpj(v)dv

 f
(z)
Gx

(g)dg

 (28)
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where the mainlobe gain M (z)
s and the sidelobe gain m(z)

s

are set as

M (ISO)
s = ns (33)

M (3GPP)
s = 100.8ns (34)

m(z)
s = 1/sin2

(
3π

2
√
ns

)
, (35)

and ns with s ∈ {TX,RX} denotes the number of the
transmit/receive antenna elements.

With the ISO element pattern, it is noted that the said
simplified model becomes identical to the model considered
in [10]. In this case, the sidelobe gain m(z)

s in (35) is obtained
from the array’s 3 dB beamwidth4 that equals

√
3/ns.

With the 3GPP element pattern, by constrast, the mainlobe
gain in (34) is 100.8 ≈ 6.31 times higher than in the ISO
radiation case, due to its maximum 8 dBi directivity gain
at each antenna element as discussed in Section II-A. The
sidelobe gain in (35) is computed in the same manner for
both ISO and 3GPP element patterns, yet has the different
physical meanings for each case as detailed next.

Following [10], the sidelobe gain in (35) with the ISO
element pattern corresponds to the second maximum lobe gain,
as shown in Fig. 8. On the contrary, (35) with the 3GPP
element pattern is mostly below the second maximum lobe
gain. This implicitly captures the 3GPP element pattern’s
sidelobe reduction as shown in Fig. 8.

Unlike the ISO element pattern, it is noted that (35) with
the 3GPP element pattern approximates the third maximum
lobe gain on average, but is not always identical to the
third maximum value. In fact, due to the element-wise beam
steering, the antenna gain under the 3GPP element pattern
is not symmetrical about the steering angle, so each lobe’s
gain can only be ordered for a given steering angle, as further
explained in [15].

Finally, utilizing the aligned and misaligned gains in Re-
mark 5, we obtain the simplified SINR coverage probability.

Proposition 3. (Simplified Coverage) Using the simplified
aligned and misaligned gains in Remark 5, the simplified SINR
coverage probability ĈSINR(T ) at the typical UE with a target

4Note that the previously defined θ3dB and φ3dB parameters were deter-
mined by the 3 dB beamwidth of the element radiation pattern, whereas ϕs
is given by the 3 dB beamwidth of the array radiation pattern.
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Fig. 8: Comparison between the array radiation gains with the ISO and 3GPP
element patterns and their piece-wise constant approximated gains given in
Remark 5, with respect to the horizontal steering angle φ ∈ [−180◦, 180◦]
while the vertical steering angle θ is fixed at 90◦.

SINR threshold T > 0 is given by

ĈSINR(T ) =
∑

i∈{L,N}

∫ ∞
0

fr
xio

(r) exp

(
− Trαiσ2

βiM
(z)
TX M

(z)
RX

)

× L̂ILi

(
T (`i(r))−1

M
(z)
TX M

(z)
RX

)
L̂INi

(
T (`i(r))−1

M
(z)
TX M

(z)
RX

)
dr, (36)

where L̂Iji (t) is given at the bottom of this page.
Proof: See Theorem 1 in [10]. �

In the next section, we will validate that this simplified SINR
coverage expression becomes accurate for the 3GPP element
pattern, as conjectured at the beginning of this subsection.

V. NUMERICAL RESULTS AND COMPARISONS

In this section, by using the NYU mmWave network
simulator [21], we validate our analytical mmWave SINR
coverage expressions with the ISO element pattern in Propo-
sition 1 and the expression with the 3GPP element pattern
in Proposition 2, as well as their simplified SINR coverage
expressions proposed in Proposition 3. For easier comparison,
the channel-antenna configurations considered in this section
are categorized as four models as summarized in Tab. VI. The
antenna configurations are illustrated in Fig. 8, and the channel
configurations are detailed in Sect. II-B and Remark 5. Other
simulation parameters are: carrier frequency f = 28 GHz,

L̂
I
j
i
(s) = exp

(
− 2πλb

∫ ∞(
βj
βi
rαi

) 1
αj

[
ϕTXϕRX

4π2
F
(
M

(z)
TX M

(z)
RX

)
+
ϕTX

2π

(
1−

ϕRX

2π

)
F
(
M

(z)
TX m

(z)
RX

)

+
(
1−

ϕTX

2π

) ϕRX

2π
F
(
m

(z)
TX M

(z)
RX

)
+
(
1−

ϕTX

2π

)(
1−

ϕRX

2π

)
F
(
m

(z)
TX m

(z)
RX

)]
vpj(v)dv

)
(37)

where F (x) = sxv−αiβi/(1 + sxv−αiβi).
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Tab. VI: List of the channel-antenna configurations considered in Sect. V.

Configuration Channel Antenna element radiation Array radiation

Model 1 [1] NYU [13] ISO continuous main/sidelobes

Model 2 NYU [13] 3GPP [12] continuous main/sidelobes with smaller sidelobe radiations

Model 3 [10] Rayleigh − piece-wise constant main/sidelobes (M(ISO) or m(ISO))

Model 4 Rayleigh − piece-wise constant main/sidelobes (M(3GPP) or m(3GPP))
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Fig. 9: SINR coverage probability with the ISO element pattern under
Model 1 for different misaligned gain fitting distributions: (i) the log-logistic
distribution in Remark 3, (ii) the Nakagami-m distribution in (20), (iii) the
log-normal distribution in (21), and (iv) the Burr distribution in (22). The
aligned gain is fitted with the exponential distribution in Remark 1, and
{nTX, nRX} = {256, 64}.

bandwidth W = 500 MHz, BS density λb = 100 BSs/km2

and transmission power PTX = 30 dBm.
Figs. 9 and 10 show the SINR coverage probability with the

ISO element pattern under Model 1. In Fig. 9, the coverage
probability obtained from the NYU network simulator fits well
our proposed coverage expression in Proposition 1 that utilizes
the aligned gain’s exponential distribution in Remark 1 and
the misaligned gain’s log-logistic distribution in Remark 3.
The proposed SINR coverage probability expression is also
compared to the SINR coverage probabilities with the mis-
aligned gain’s Nakagami-m and log-normal distributions that
are commonly used in stochastic geometric mmWave SINR
coverage analysis [5]–[7]. It shows that both Nakagami-m
and log-normal distributions given respectively in (20) and
(21) underestimate the interference tail behaviors, therefore
yielding empirical upper bounds for the SINR coverage prob-
ability. Another misaligned gain’s Burr distribution given in
(22) by contrast yields an empirical lower bound for the SINR
coverage probability. All these bounds are too loose to approx-
imate the simulated SINR coverage probability, emphasizing
our appropriate choice of the misaligned gain’s log-logistic
distribution.

Fig. 10, by comparing the curves with the antenna element

-40 -20 0 20 40 60 80
SINR threshold T  [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
IN

R
 c

o
v
e
ra

g
e
 p

ro
b
.

Simulation 64 x 16
Analysis 64 x 16
Simulation 256 x 64
Analysis 256 x 64

ISO

Fig. 10: SINR coverage probability with the ISO element pattern under
Model 1. The aligned gain is fit with the exponential distribution in Remark 1,
and the misaligned gain is fitted with the log-logistic distribution in Remark 3,
for {nTX, nRX} = {64, 16} and {256, 64}.

configuration {nTX, nRX} = {64, 16} and the curves with
{nTX, nRX} = {256, 64}, shows that the increase in the
number of antenna elements not only yields a higher SINR but
also makes the SINR coverage probability expression in Propo-
sition 1 more accurate. The latter is because the front-back
ratio increases with the number of antenna elements [14], [15].
Following a similar reasoning as discussed after Remarks 2
and 4, this reduces the impact of the high-order statistics on
the alignment and misaligned gains, and thereby Proposition 1
becomes more accurate.

Next, Fig. 11 illustrates the SINR coverage probability
with the 3GPP element pattern under Model 2. We observe
that the simulated coverage probability fits well with our
proposed coverage expression in Proposition 1 that utilizes
the exponential-logarithmic distributions of aligned and mis-
aligned gains in Remarks 2 and 4, respectively. As seen by
comparing Fig. 11 to Fig. 10, the SINR coverage probability
with the 3GPP element pattern is higher than the coverage
probability with the ISO element pattern. This is because of the
3GPP element pattern’s higher front-back ratio that provides
higher directivity, thereby increasing the aligned gain. It also
provides lower interference that decreases the misaligned gain,
consequently yielding a higher SINR. These results highlight
the presence of different performance trends as the network’s
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density increases. This means that it is possible to accurately
identify an optimal deployment density of the BSs. We have
further studied this aspect in [15].

Finally, Fig. 12 illustrates the simplified SINR coverage
probability expressions provided in Proposition 3 under Mod-
els 3 and 4 that are specified in Remark 5. As conjectured
at the beginning of Sect. IV-B, the simplified SINR coverage
probability expressions become more accurate approximations
for the 3GPP element pattern than for the ISO element pattern.
Precisely, the maximum difference between the simulated
and the analytic SINR coverage probabilities are obtained as
7.7% with the 3GPP element pattern and as 9.5% with the
ISO element pattern in Fig. 12b. This originates from both
aligned and misaligned gains’ identical tail behaviors that fol-
low an exponential-logarithmic distribution. These high-order
behaviors are thus canceled out during the SINR calculation,
and the first-order statistics thereby becomes dominant, from
which the first-moment approximation used in the simplified
SINR coverage expressions benefit. On the contrary, with ISO
element pattern, the aligned gain and misaligned gains have
different tail behaviors as provided in Remarks 1 and 3,
and the corresponding simplified SINR coverage probability
expression therefore becomes less accurate.

Moreover, the figure describes the benefit of the non-
simplified SINR coverage probability expressions provided in
Propositions 1 and 2 respectively under Models 1 and 2.
In contrast to the simplified expressions that are plausible
only with the 3GPP element pattern, the non-simplified SINR
coverage probability expressions well approximate the simu-
lated SINR coverage probabilities with both 3GPP and ISO
element patterns, so long as the number of antenna elements
is sufficiently large, as seen by comparing Figs. 12a and 12b.
In addition, with a slight increase in complexity, these non-
simplified SINR coverage probability expressions are more
accurate than the simplified expressions, and so are appropriate
for investigating ultra-reliable scenarios as considered in [33]–
[36], which prefer to maximize accuracy rather than improving
analytical tractability. It is also noted again that the simplified
aligned and misaligned gains in Remark 5 are only applicable
for the SINR calculation. Thus, the non-simplified aligned and
misaligned gains in Remarks 1-4 are still useful, for instance
when deriving the mmWave interference distribution [37] or
calculating the mmWave signal-to-noise ratio (SNR) under a
noise-limited regime [37], [38].

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this study we have highlighted the impact of realistic
mmWave channel behaviors and element patterns on the
downlink SINR coverage probability in a large-scale mmWave
network, via the NYU mmWave network simulator [21] under
the 3GPP element pattern model [25]. By introducing the
aligned and misaligned gains, we have provided an analyt-
ical model that captures such realistic channel-antenna gain
characteristics, thereby deriving the SINR coverage probability
expressions.

Especially for the 3GPP element pattern, arguably the
most practical antenna configuration, we proposed a further
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Fig. 11: SINR coverage probability with the 3GPP element pattern under
Model 2. The aligned and misaligned gains are fit independently with the
exponential-logarithmic distributions in Remarks 2 and 4, respectively, for
{nTX, nRX} = {64, 16} and {256, 64}.

simplified SINR coverage probability expression. This relies
only on the exponentially distributed aligned and misaligned
gains, which are known to be the simplest random variables
for deriving the SINR coverage probability expressions.

With a slight increase in complexity, we have also provided
non-simplified SINR coverage probability expressions as well
as the corresponding aligned and misaligned gain distributions.
These analytic expressions are versatile, and thus are expected
to be exploited in more generic scenarios that particularly
necessitate a higher accuracy, which could be an interesting
topic for further research. Furthermore, with the proposed
analytic framework, an extension of this work could be to
investigate other mmWave network settings such as different
carrier frequencies, channel/antenna models, and an uplink
scenario. Besides, beyond the specific examples treated in the
paper, our proposed methodology approach can be applied to
study other cases.

APPENDIX I – PROOF OF PROPOSITION 1
Consider the joint probability Pr

(
SINR ≥ T, xo ∈ Φi

)
=

Pr
(
SINRi ≥ T

)
in (24) when the typical UE associates with a

BS in state i ∈ {L,N}. Applying the SINR definition in (15)
to (24), it is recast as follows.

Pr
(
SINRi ≥ T

)
= Erixo ,I

L
i ,I

N
i

[
Pr

(
G

(ISO)
o `i(rixo )

(ILi + INi ) + σ2
≥ T

)]
(38)

= Erixo ,I
L
i ,I

N
i

[
Pr

(
G

(ISO)
o ≥

T (ILi + INi + σ2)

`i(rixo )

)]
(39)

= Erixo ,I
L
i ,I

N
i

[
F

(ISO)
Go

(
T (ILi + INi + σ2)

`i(rixo )
;µo

)]
(40)

The last step is because the innermost probability in (39)
corresponds to G(ISO)

o ’s CCDF F (ISO)
Go

(y;µo) with y that equals
T (ILi + INi + σ2)/`i(rixo).

Next, applying F (ISO)
Go

(y;µo) = exp(−µoy) in Remark 1 to
(40), we obtain
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Fig. 12: Comparison between the SINR coverage probability expressions under Models 1 and 2 and their simplified expressions under Models 3 and 4. The
simulated curves are obtained only under Models 1 and 2 without simplifying the channel-antenna configurations.

(40) = Erixo ,I
L
i ,I

N
i

[
exp

(
−µoTσ2

`i(rixo )

)

exp

(
−µoTILi
`i(rixo )

)
exp

(
−µoTINi
`i(rixo )

)]
(41)

= Erixo

[
e
− µoTσ

2

`i(rixo
) EILi

[
e
−
µoTI

L
i

`i(rixo
)

]
EINi

[
e
−
µoTI

N
i

`i(rixo
)

]]
. (42)

The last step is firstly because rixo is independent of ILi and of
INi , according to Slyvnyak’s theorem [29]. It is additionally
because ILi and of INi are mutually independent owing to the
Markov property for the PPPs ΦLi and ΦNi [29]. The innermost
two expectation terms in (42) can be represented using the
Laplace transform LX(s) := EX [esX ]. Then, the outermost
expectation can be calculated using rixo ’s PDF frixo in (26),
yielding

(42) =
∫ ∞

0
frixo

(r) exp

(
−µoTσ2

`i(r)

)
LILi

(
µoT

`i(r)

)
LINi

(
µoT

`i(r)

)
dr.

(43)

Lastly, in what follows we expand LIji (s) with s =

µoT/`
i(r) in (43), i.e., the Laplace transform of the interfer-

ence from the BSs in Φj for j ∈ {L,N} when xo ∈ Φi.
Following the interference expression in (15), its Laplace
transform is represented as follows

L
I
j
i
(s) = EΦj ,Gx

exp
−s ∑

x∈Φj

G
(ISO)
x `j(rx)

 (44)

(a)
= EΦj

 ∏
x∈Φj

EGx

[
exp

(
−sG(ISO)

x `j(rx)
)] (45)

(b)
= exp

(
− 2πλb

∫ ∞(
βjr

αi

βi

) 1
αj

(
1−EGx

[
e−sG

(ISO)
x `j(v)

])
vpj(v)dv

)
,

(46)

step (a) follows from the fact that G(ISO)
x is independent of

Φj and from i.i.d. G(ISO)
x ’s. Step (b) comes from applying

the probability generating functional (PGFL) of a HPPP [29].
Since the interfering BS locations and G

(ISO)
x ’s are indepen-

dent, (46) is recast as follows

(46) =

exp

(
− 2πλbEGx

∫ ∞(
βjr

αi

βi

) 1
αj

1− e
−µoTG

(ISO)
x `j(v)

`i(r)

 vpj(v)dv

).
(47)

The innermost expectation can be calculated using Gx
(ISO)’s

PDF f
(ISO)
Gx

(y; a, b) in Remark 3. Combining this result
with (43) and (24) and applying the law of total probability
completes the proof. �

APPENDIX II – PROOF OF PROPOSITION 2

Replacing the exponentially distributed G
(ISO)
o by the

G
(3GPP)
o in the joint probability calculation eq. (38), we get

Pr
(
SINRi ≥ T

)
= Erixo ,I

L
i ,I

N
i

[
Pr

(
G

(3GPP)
o `i(rixo )

(ILi + INi ) + σ2
≥ T

)]
(48)

= Erixo ,I
L
i ,I

N
i

[
F

(3GPP)
Go

(
T (ILi + INi + σ2)

`i(rixo )
; bo, po

)]
.

(49)

Similarly as before, the last step is because the innermost
probability corresponds to G(3GPP)

o ’s CCDF F (3GPP)
Go

(y; bo, po)
with y that equals T (ILi + INi + σ2)/`i(rixo).

Next, applying F
(3GPP)
Go

(y; bo, po) =
ln(1−(1−po)e−boy)

ln po
in

Remark 2 to (49), we obtain
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(49) = Erixo ,I
L
i ,I

N
i

[
1

ln(po)
ln

(
1− (1− po) exp

(
−boTσ2

`i(rixo )

)
exp

(−boTILi
`i(rixo )

)
exp

(−boTINi
`i(rixo )

))]
(50)

≤ Erixo

[
1

ln(po)
ln

(
1− (1− po)e

− boTσ
2

`i(rixo
)

EILi

[
e
−
boTI

L
i

`i(rixo
)

]
EINi

[
e
−
boTI

N
i

`i(rixo
)

])]
. (51)

The last step is firstly because rixo is independent of ILi and
of INi , according to Slyvnyak’s theorem [29]. Additionally
because ILi and of INi are mutually independent owing to the
Markov property for the PPPs ΦLi and ΦNi [29]. However,
differently from the proof of Proposition 1, here we used
Jensen’s inequality to derive an upper bound of (50). This
permits to bring the expectations inside the logarithm, thanks
to the fact that CCDF of G(3GPP)

o is a concave function. Then,
the outermost expectation can be calculated using rixo ’s PDF
frixo in (26), yielding

(51) =
∫ ∞

0

fr
xio

(r)

ln (po)
ln

(
1− (1− po)

× exp

(
−boTrαiσ2

βi

)
LILi

(
boT

`i(r)

)
LINi

(
boT

`i(r)

))
dr. (52)

To conclude the proof, the Laplace transforms are used as
in eq. (46) of the proof of Proposition 1, where the interfering
gain G(ISO)

x is replaced with the respective G(3GPP)
x . �
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