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IEEE, Luca Sanguinetti, Senior Member, IEEE, Merouane Debbah, Fellow, IEEE

Abstract

This paper focuses on developing a decentralized framework for coordinated minimum power

beamforming wherein L base stations (BSs), each equipped with N antennas, serve K single-antenna

users with specific rate constraints. This is realized by considering user specific intercell interference

(ICI) strength as the principal coupling parameter among BSs. First, explicit deterministic expressions

for transmit powers are derived for spatially correlated channels in the asymptotic regime in which N

and K grow large with a non-trivial ratio K/N . These asymptotic expressions are then used to compute

approximations of the optimal ICI values that depend only on the channel statistics. By relying on the

approximate ICI values as coordination parameters, a distributed non-iterative coordination algorithm,

suitable for large networks with limited backhaul, is proposed. A heuristic algorithm is also proposed

relaxing coordination requirements even further as it only needs pathloss values for non-local channels.

The proposed algorithms satisfy the target rates for all users even when N and K are relatively small.

Finally, the potential benefits of grouping users with similar statistics are investigated to further reduce

the overhead and computational effort of the proposed solutions. Simulation results show that the

proposed methods yield near-optimal performance.
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I. INTRODUCTION

High spatial utilization is a promising approach to meet the significant spectral efficiency

enhancements required for 5G cellular networks. In general, this achieved by using a large

number of antennas N at the base stations (BSs) to serve a large number of user equipments

(UEs) K on the same frequency-time resources. The need for serving such a large number of

UEs in multicellular environments pronounces the importance of proper precoder design that

takes into account the intercell coordination and subsequent challenges in such large networks.

In the context of massive multiple-input-multiple-output (MIMO) [1], [2] under the assumption

of i.i.d. Rayleigh fading channels (i.e., no spatial correlation), as N → ∞ with K fixed, non-

cooperative precoding schemes such as maximum ratio transmission [3], single-cell [4], [5]

and multicell [6], [7] minimum mean squared error (MMSE) schemes can entirely eliminate

the multicell interference and the performance of is only limited by pilot contamination. As

shown recently in [8], even the pilot contamination is not a fundamental asymptotic limitation

when a small amount of spatial channel correlation or large-scale fading variations over the

array is considered. Despite all this, when N is not relatively large compared to K, cooperation

among cells provides additional benefits in mitigating intercell interference (ICI). Coordinated

multicell resource allocation is generally formulated as an optimization problem in which the

desired network utility is maximized subject to some constraints. In this work, we consider a

coordinated multicell multiuser MIMO system in which L BSs, each equipped with N antennas,

jointly minimize the transmission power required to satisfy target rates for K single-antenna

UEs. We recognize that the ICI coordination in a dense network with a large number of UEs

and antennas is very challenging, due to the practical limitations of backhaul links. Hence,

we are particularly interested in developing a semi-static coordination scheme that allows the

cooperating BSs to locally obtain near-optimal precoders with a minimal information exchange.

A. Prior Work

Coordinated multicell minimum power beamforming has been largely investigated in the

literature [9]–[14] and has recently received renewed interest in the context of green multicellular

networks [15]. The optimal solution to this optimization problem can be computed by means

of second-order cone programming (SOCP) [9] or exploiting uplink-downlink duality [10].

However, this requires full channel state information (CSI) at all BSs, meaning that the locally

measured instantaneous CSI needs to be exchanged among BSs. To avoid the exchange of CSI
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among BSs, several different decentralized solutions have been proposed in the literature [11]–

[14]. The underlying idea of all these methods is to reformulate the optimization problem such

that the BSs are only coupled by real-valued ICI terms. In this way, the centralized problem can

be decoupled by primal or dual decomposition approaches leading to a distributed algorithm,

which needs the ICI values to be continuously exchanged among BSs (to follow the changes

in the fading process). Despite the remarkable reduction in information exchange, when the

system dimensions grow large (as envisioned in 5G networks) and consequently the amount of

information to be exchanged increases, the limited capacity and high latency of backhaul links

in practical networks may become a bottleneck.

A possible way out of these issues is to rely on the asymptotic analysis in which N and K grow

large with a non-trivial ratio K/N . In these circumstances, tools from random matrix theory allow

to derive explicit expressions for (most) performance metrics such that they only depend on the

channel statistics [16]. The asymptotic analysis for the closely related problem, i.e., regularized

zero-forcing precoding, is presented in [17], [18], and the power minimization problem in

conjunction with sum-rate maximization is considered in [19]. In the course of developing large

system analysis for power minimization problem subject to UEs’ rate constraints, one can begin

with the Lagrangian duality formulation developed in [10] where the optimal power assignments

are presented in terms of channel entries. In particular, the results of large system analysis can

be utilized to compute deterministic equivalents for the optimal powers. The authors in [20]–

[24] perform such analysis under i.i.d. Rayleigh fading channels in single-cell [20], [21] and

multicell [22]–[24] settings. The impact of spatial correlation on the asymptotic power assignment

is studied in [25] for a single-cell scenario with UEs experiencing identical correlation matrices.

The deterministic equivalents are found to depend only on the long-term channel statistics and

on the UEs’ target rates. This enables the cross-cell coordination based on slow varying channel

statistics and also provides insights into the structure of the optimal solution as a function of

underlying statistical properties. However, the major drawback in using the asymptotic power

expressions in practical networks of finite size (with a finite number of antennas N ) is that the

rate constraints are not met since those can be guaranteed only asymptotically.

B. Contributions

The main contribution of this paper is to introduce two novel semi-static coordination algo-

rithms that allow BSs to obtain near-optimal QoS-guaranteed precoders locally, and subject to
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relaxed coordination requirements. This is realized by reformulating the optimization problem

such that the BSs are only coupled by ICI values [11]. Then, by utilizing the Lagrangian duality

analysis in [10] and techniques of random matrix theory [16], we derive deterministic equivalents

for the optimal ICIs in terms of channel statistics. They are derived under a generic spatially

correlated channel model. Such an analysis is instrumental to develop two distributed algorithms.

• Algorithm 1 incorporates the deterministic ICIs as approximations for the coordination

messages in finite networks. This allows the BSs to obtain the precoders locally by exploring

the local CSI and exchanges of slow varying channel statistics over the backhaul links.

• Algorithm 2 includes a heuristic simplification in the calculation of approximate ICIs. This

allows an alternative backhaul signaling that reduces the backhaul exchange rate requirement

by a factor of almost 2/N2 compared to Algorithm 1. The performance loss of both

algorithms is shown to be small, with respect to the optimal solution, via numerical results.

The large system analysis is also developed in a special scenario where UEs are assumed to

be grouped on the basis of their statistical properties as in [26], [27]. This allows to derive the

approximate ICIs in concise form, thereby revealing the structure of the coordination messages;

that is, the optimal ICI values in terms of underlying channel statistics. The analysis ultimately

reveals the potential benefits of UE-grouping to further reduce the overhead and computational

effort of the proposed decentralized solutions.

Parts of this paper have been published in the conference publications [28]–[30]. The decen-

tralized solution relying on deterministic ICI values is investigated in an i.i.d Rayleigh fading

model in [28] and in the correlated scenario in [29], [30]. Specifically, the large system analysis

is sketched in [29], [30] while the precise proofs along with derivation details are presented

in the current work. In addition, the analysis is extended to the case where UEs are grouped

on the basis of their statistical properties. In the numerical analysis, the exponential correlation

model, utilized in the conference counterparts, is extended to a more general case where UEs

experience various angle of arrivals and angular spreads. A numerical study for the UE-grouping

scenario is also provided.
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The remainder of this work is organized as follows.1 In Section II, the network model and

problem formulation are presented. Section III deals with the large system analysis of the optimal

power allocations. Section IV makes use of the asymptotic analysis to derive two distributed

solutions with different coordination overheads. In Section V, the analysis is extended to a

network in which the UE population is partitioned in groups on the basis of statistical properties

as in [26], [27]. Section VI describes the simulation environment and illustrates numerical results.

Conclusions are drawn in Section VII while all the proofs are presented in the Appendices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of a multicell multiuser MIMO system composed of L cells where

each BS has N antennas. A total number of K single-antenna UEs is dropped in the coverage

area. We assume that each UE is assigned to a single BS while being interfered by the other

BSs. We denote the set of UEs served by BS b as Ub and the index of the BS associated to UE

k as bk. The set of all UEs is represented by U whereas B collects all BS indexes. Under this

convention and assuming narrow-band transmission, we define hb,k ∈ CN as the channel from

BS b to UE k and wk ∈ CN as the precoding vector of UE k at the intended BS. Then, the

received signal can be written as

yk = hH
bk,k

wksk+
∑

i∈Ubk\k

hH
bk,k

wisi +
∑
b∈B\bk

∑
i∈Ub

hH
b,kwisi + nk (1)

where the first term is the desired received signal whereas the second and third ones represent

intra-cell and inter-cell interference terms, respectively. The zero mean, unit variance data symbol

intended to UE k is denoted by sk, and is assumed to be independent across UEs. Denoting the

receiver noise by nk ∼ CN (0, σ2) and treating interference as noise, the SINR attained at UE k

is given by

Γk =

∣∣hH
bk,k

wk

∣∣2∑
i∈Ubk\k

∣∣hH
bk,k

wi

∣∣2 +
∑

b∈B\bk,j∈Ub

∣∣hH
b,kwj

∣∣2 + σ2
. (2)

1The following notations are used throughout the manuscript. All boldface letters indicate vectors (lower case) or matrices

(upper case). Superscripts (·)T, (·)H, (·)−1, (·)1/2 stand for transpose, Hermitian transpose, matrix inversion and positive

semidefinite square root, respectively. We use Cm×n and Rm×n to denote the set of m× n complex and real valued matrices,

respectively. Furthermore, diag(· · · ) denotes the diagonal matrix with elements (· · · ) on the main diagonal. The sets are indicated

by calligraphic letters and |A| denotes the cardinality of the set A. Tr(A) denotes the trace of A, and ‖ · ‖ represents the

Euclidean norm. Finally, [.]i,j denotes the (i, j)th element of the matrix and A\k excludes the index k from the set.
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A. Coordinated Beamforming

In a coordinated network, the BSs design precoders jointly to satisfy a given set of SINRs for

all UEs while minimizing the total transmit power. In order to reflect different power budgets at

BSs, we consider the problem of minimizing the weighted total transmit power with the transmit

power at BS b weighted by a factor µb as proposed in [10]. This yields

min
{wk}

∑
b∈B

∑
k∈Ub

µb‖wk‖2 s.t. Γk ≥ γk, ∀k ∈ U (3)

where γk denotes the UE’s target SINR obtained from the corresponding target rate. The SINR

target constraints in (3) may appear to be non-convex at a first glance. However, non-convex

constraints of this type can be transformed into a second-order cone constraint [9], which enables

methods for solving (3) via convex optimization. Denoting the ICI term from BS b to UE k as

εb,k, the optimization problem in (3) can be equivalently reformulated as [11]

min
wk,εb,k

∑
b∈B

∑
k∈Ub

µb‖wk‖2 (4a)

s.t.

∣∣hH
bk,k

wk

∣∣2∑
i∈Ubk\k

∣∣hH
bk,k

wi

∣∣2 +
∑

b∈B\bk
εb,k + σ2

≥ γk, ∀k ∈ Ub,∀b (4b)

∑
j∈Ub

|hH
b,kwj|2 ≤ εb,k, ∀k 6∈ Ub, ∀b. (4c)

As shown in [11], (3) and (4) are equivalent at the optimal solution where the ICI constraints

in (4c) are satisfied with equality. The problem formulation in (4) recognizes the ICI constraints as

the principal coupling parameters among BSs, which enforces cross-cell coordination. Therefore,

one may need to solve the problem either centrally [9], [10], [31], which requires full CSI at all

BSs, or distributively, which needs the ICI values to be continuously exchanged among BSs [11]–

[14]. This is hard in practice to achieve due to the practical limitations of backhaul links.

B. Decentralized Solution Via Deterministic Equivalents

We observe that using any fixed ICI term in (4) decouples the problems at BSs. This leads to a

suboptimal solution that, however, satisfies the SINR constraints (if feasible) subject to a higher

total transmit power as compared to the optimal solution. Provided a set of good approximations

for the optimal ICI terms {εb,k}, the individual problems at the BSs can be decoupled subject

to small performance loss. In order to derive such approximations, we need to formulate the
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Lagrange dual problem of (4) to unveil the structure of the optimal beamfomers, and thus,

express the ICIs as a function of channel entries. The authors in [10] show that upon existence,

the unique solution2 to the problem in (3) can be obtained by using Lagrangian duality in

convex optimization. We prove that the Lagrange dual problem of (4) is the same as that of (3),

and thus, we can utilize the Lagrangian duality analysis in [10]. To keep the flow of the work

uninterrupted, the details of Lagrangian duality analysis are presented in Appendix II. As a result

of this analysis, the ICI from BS b to UE k can be expressed as

εb,k =
∑
j∈Ub

∣∣hHb,kwj

∣∣2 =
∑
j∈Ub

δj
∣∣hHb,kvj∣∣2 (5)

where, {vk} denotes a set of minimum mean square error (MMSE) receivers, and {δk} are

scaling factors relating the beamforming vectors to the MMSE receivers as wk =
√
δk/Nvk. In

particular, we have vk = (
∑

j∈U\k λjhbk,jh
H
bk,j

+ µbkNIN)−1hbk,k with {λj} being the Lagrange

dual variables associated with SINR constraints. The optimal Lagrangian multipliers gathered in

λ∗ = [λ∗1, . . . , λ
∗
K ]T are obtained as the unique fixed point solution of

λk =
γk

hH
bk,k

( ∑
j∈U\k

λjhbk,jh
H
bk,j

+ µbkNIN

)−1

hbk,k

∀k ∈ U . (6)

The scaling factors {δk} can be obtained as the unique solution of the set of equations such that

the SINR constraints in (3) are all satisfied, i.e., δ = G−11Kσ
2, where δ = [δ1, . . . , δK ]T, and

the (i, k)th element of the so-called coupling matrix G ∈ CK×K is [10]

[G]k,i =


1
γk
|hH
bk,k

vk|2 for i = k

−|hH
bi,k

vi|2 for i 6= k.
(7)

The optimal ICIs in (5) are expressed in terms of channel entries via parameters {λk}, {δk}

and {[G]i,j}. This allows us to utilize techniques for deterministic equivalents [16], as detailed

in Section III, to characterize the behavior of these parameters in terms of underlying channel

statistics, and thus, propose proper approximations for the optimal ICIs. To this end, we first

need to introduce a statistical model for channel vectors.

2The arguments wj , ∀j of the problem in (3) are defined up to a phase scaling, i.e., if wj is optimal, then wje
iφj is also

optimal [9] where φj is an arbitrary phase rotation for UE j. The uniqueness of the solution is declared as we can restrict

ourselves to precoders wj , ∀j such that the terms {hH
b,kwj} in (2) have non-negative real part and a zero imaginary part.
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C. Channel Model

The channel from BS b to UE k is modeled as hb,k = Θ
1/2
b,k zb,k where zb,k ∈ CN represents

small-scale fading and has i.i.d, zero-mean, unit-variance complex entries. The matrix Θb,k ∈

CN×N accounts for the UE specific channel correlation at BS b. The pathloss due to large scale

fading is implicitly considered in the correlation matrix unless otherwise stated. In the latter case,

pathloss values are explicitly declared by expressing the correlation matrix as a2
b,kΘb,k where

a2
b,k accounts for pathloss from BS b to UE k. The correlated scenario is motivated by the lack

of space for implementing large antenna array and poor scattering environment [32] that must

be considered for a realistic performance evaluation. Moreover, the generic correlated model

takes into account distinct angle of arrivals and angular spreads of UEs’ signal for designing

the precoder vectors. Also, it allows arbitrary configuration for the antenna array, including

geographically distributed arrays.
III. LARGE SYSTEM ANALYSIS

In the following, we exploit the theory of large random matrices [16] to compute the so-

called deterministic equivalents of the optimal Lagrangian multipliers {λ∗k} given by (6) under

the generic channel model presented in Section II-C. Plugging such deterministic equivalents

into (7) allows characterization of the coupling matrix elements {[G]i,j} in (7) in asymptotic

regime, which consequently gives the asymptotically optimal scaling factors {δk}. In doing so,

the following assumptions (widely used in the literature) are made to properly define the growth

rate of system dimensions,

Assumption 1. As N →∞, 0 < lim inf K
N
≤ lim sup K

N
<∞.

Assumption 2. The spectral norm of Θb,k is uniformly bounded as N → ∞, i.e., lim supN→∞

max∀b,k{‖Θb,k‖}<∞.

A. Deterministic Equivalents For Lagrangian Multipliers

The derivation of the deterministic equivalents for the Lagrangian multipliers needs special

handling because of their implicit formulation in (6). In particular, dependency of λ∗ on channel

vectors prevents using trace lemma [16, Theorem 3.4] explicitly for the denominator of (6).

The work in [24] tackles this problem under i.i.d Rayleigh fading channels relying on a method

introduced originally in [33] in a different context. By using the same approach, the following

result is obtained.
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Theorem 1. Let Assumptions 1 and 2 hold. If (4) is feasible and its optimal solution is λ∗, we

have max k |λ∗k − λ̄k| → 0 almost surely where

λ̄k =
γk
m̄bk,k

∀k ∈ U (8)

and m̄bk,k is obtained as the unique non-negative solution of the following system of equations,

evaluated for b ∈ B, i ∈ U

m̄b,i =Tr

(
Θb,i

(∑
j∈U

γjΘb,j

m̄bj ,j + γjm̄b,j

+ µbNIN

)−1)
. (9)

Proof: The proof is given in Appendix III.

We observe that λ̄km̄bk,k represents the deterministic equivalent of the received SINR at BS

bk when the MMSE receiver is aligned toward UE k. The UEs interact through the quantities

m̄b,k,∀b, k such that, at the optimum, the SINR constraints for all UEs are asymptotically satisfied.

B. Deterministic Equivalents For Coupling Matrix Entries

The deterministic equivalents for {λ∗k} in Theorem 1 are used to compute the asymptotically

optimal receive beamforming vectors v̄k = (
∑

j∈U\k λ̄jhbk,jh
H
bk,j

+ µbkNIN)−1hbk,k,∀k in the

dual uplink problem. By plugging {v̄k} into (7), the following result is obtained.

Theorem 2. Let Assumptions 1 and 2 hold, and assume (4) to be feasible. Then, given the set

of λ̄k and m̄b,k, ∀k ∈ U , b ∈ B as in Theorem 1, we have [G]k,i−
[
Ḡ
]
k,i
→ 0 almost surely with

[
Ḡ
]
k,i

=


γk/λ̄

2
k for i = k

− 1
N

m̄′bi,i,k

(1+λ̄km̄bi,k)
2 for i 6= k

(10)

where we have that [m̄′b,1,k, ..., m̄
′
b,K,k] = (IK − Lb)

−1ub,k, ∀k ∈ U and where

[Lb]i,j =
1

N2

Tr (Θb,iTbΘb,jTb)

(1/λ̄j + m̄b,j)2
(11)

and

ub,k =

[
1

N
Tr (Θb,1TbΘb,kTb) , . . . ,

1

N
Tr(Θb,KTbΘb,kTb)

]
(12)

with Tb given by

Tb =

(
1

N

∑
j∈U

λ̄jΘb,j

1 + λ̄jm̄b,j

+ µbIN

)−1

. (13)

Proof: The proof is given in Appendix IV.
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The term m̄′b,i,k is the derivative of m̄b,i,k(x) = 1
N

Tr
(
Θb,i(

1
N

∑
j∈U

γjΘb,j

m̄bj ,j+γjm̄b,j
− xΘb,k +

µbIN)−1
)

with respect to the auxiliary variable x and then evaluated at point x = 0. The term

m̄′bi,i,k in (10) determines the coupling between UE i served by BS bi and UE k, and consequently

indicates the level of interference leaking in between these two UEs. The deterministic equivalents

of entries {
[
Ḡ
]
k,i
} can be used to compute the asymptotically optimal scaling factors as δ̄ =

σ2Ḡ−11K , which depend only on the statistics of channel vectors. Based on these results, we

can now derive the deterministic equivalents of ICI terms {εb,k}, and consequently present the

coordination algorithms.

IV. DISTRIBUTED OPTIMIZATION

The large system analysis provided in Section III, gives the optimal power allocations in the

asymptotic regime. Relying on these results, one can directly obtain asymptotically optimal re-

ceive and transmit beamforming vectors for UE k as v̄k = (
∑

j∈U\k λ̄jhbk,jh
H
bk,j

+µbkNIN)−1hbk,k

and w̄k =
√
δ̄k/N v̄k, respectively. The computation of asymptotic beamformers for UE k needs

only locally measured CSI at the serving BS bk, i.e., hbk,j, ∀j ∈ U , along with the asymptotic

power allocations (i.e., {λ̄j} and {δ̄k}) whose computation needs only statistical information

from neighboring BSs. However, the resulting beamforming vectors satisfy the SINR constraints

only asymptotically [24] but not for a finite value of N , as demonstrated later by numerical

examples. In order to ensure the SINR constraints, we invoke the solution briefly introduced in

Section II-B, which is exploited in more details in the following.

A. Distributed QoS Guaranteed Precoding

The optimization problem formulation in (4) identifies the ICIs as the principal coupling

parameters among BSs. Starting from the ICI formulation in (5) and relying on the large system

analysis in Section III, we propose deterministic equivalents for these coupling parameters as

ε̄b,k = −δ̄j[Ḡ]k,j (14)

with δ̄ = Ḡ−11K , and the deterministic equivalents for the elements of coupling matrix {[Ḡ]k,j}

given as in Theorem 2. Observe that the computation of (14) requires only the channel correlation

matrices {Θb,k, ∀b, k} to be shared among BSs. Thus, plugging the deterministic ICIs from (14)

into the optimization problem in (4), the centralized problem can be decoupled into independent

sub-problems at each BS. This solution is summarized in Algorithm 1.
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Algorithm 1 Decentralized beamforming with approximate ICI values.
1: loop

2: if Any change in the UEs’ statistics or during the initial stage then

3: Each BS sends the updated correlation matrices to the coupled BSs via backhaul.

4: Update λ̄ and δ̄ values locally based on Theorem 1 and 2.

5: Update the approximate ICIs locally based on (14).

6: end if

7: Use the approximate ICIs as fixed εb,k in (4), and solve the sub-problems locally to get

the downlink beamformers.

8: end loop

Algorithm 1 allows the BSs to obtain the precoders locally relying only on shared statistics and

locally available CSI. The resulting precoders satisfy the SINR constraints. The sub-problems

at each BS can be solved using a convex optimization solver or fixed point iterations as shown

in [14]. Note that the resulting problem with approximate ICIs is a restriction of the original

problems (3) and (4), and the infeasibility rate and total transmission power would increase, de-

pending on the accuracy of the ICI approximations. However, since the deterministic equivalents

of ICI terms provide good approximations for the optimal ICI values in the finite regime, the

performance loss is small for a relatively moderate number of UEs and antennas.

B. An Alternative Distributed Precoding Method With Reduced Backhaul Signaling

Although each Θb,k changes slowly in time compared to small-scale fading components, the

exchange of such information among coupled BSs via backhaul links may not be practical when

N and K are large. To overcome this issue, a heuristic solution is proposed that reduces the

amount of shared information subject to slightly higher transmit power (as shown in numerical

results). We notice that [Ḡ]k,j, ∀j ∈ Ub are the coupling terms between UE j,∀j ∈ Ub and UE

k, and define the amount of interference leaking from the precoders of UE j,∀j ∈ Ub to UE

k. In particular, observe that the amount of interference from an interfering BS b to a given

UE k in (14) is given in terms of [Ḡ]k,j,∀j ∈ Ub and δj, ∀j ∈ Ub. On the other hand, for a

given set of Lagrangian multipliers {λ̄k}, the coupling terms [Ḡ]k,j, ∀j ∈ Ub in (10) depend only

on the statistics locally available at the interfering BS b. This observation motivates extraction

of an approximation for the interference that a BS b causes to a non-served UE k based on

partial knowledge of non-local statistics (statistics available at other BSs) while utilizing the



12

Backhaul exchanges
Measurements

Statistics measured locally

Fig. 1: An illustration of locally measured statistics and backhaul signaling in Algorithm 2.

locally available statistics. In doing so, we declare the large-scale attenuation (due to pathloss

and fading) explicitly and express the correlation matrices as a2
b,kΘb,k where a2

b,k accounts for

pathloss from BS b to UE k. We assume that each BS b is able to estimate (perfectly) the channel

correlation matrices a2
b,kΘb,k, ∀k while the correlation matrices a2

b′,kΘb′,k, ∀k from all other BSs

b′ 6= b are not known locally at BS b. Only the large-scale attenuation values {a2
b′,k} are assumed

to be available for the non-local channels. The first assumption relies on the observation that

correlation matrices remain constant for a sufficiently large number of reception phases to be

accurately estimated at the BS [34]. The second one is motivated by the observation that most

current standards require the UEs to periodically report received signal strength indication (RSSI)

values to their serving BSs (usually using orthogonal uplink resources). Under the assumption that

nearby BSs are also able to receive such RSSI measurements, a partial knowledge of non-local

channel statistics can be obtained without any information exchange through backhaul links3.

Under the above assumptions, each BS can locally compute (through Theorems 1 and 2)

approximations of the optimal powers along with the coupling parameters, which can be used

in (14) to locally obtain an approximation for the interference that the BS causes to a non-

served UE. The approximate ICI values are then sent to the respective serving BSs over the

backhaul link to be plugged in the ICI constraints of the local optimization problems. Fig. 1

shows a two-cells example where a given BS b locally measures the statistics of the local

channel vectors, i.e., a2
b,kΘb,k, k ∈ {1, 2}, and obtains the pathlosses of the non-local channels

i.e., a2
b′,k, k ∈ {1, 2}, from the reported received signal strength indication (RSSI). Finally, BS b

3Alternatively, RSSI values can be exchanged among BSs over backhaul links.
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sends the approximation for the interference that it causes to UE2 over the backhaul link. This

solution is summarized in Algorithm 2.

Algorithm 2 Heuristic solution
1: loop

2: if Any change in the UEs’ statistics or during the intial stage then

3: Users broadcast the pathloss information to the nearby BSs using uplink resources.

4: Each BS b locally calculates approximations for δk and [G]i,j values using Theorems 1

and 2 where BS b locally assumes a2
b′,kΘb′,k = a2

b′,kIN ∀k for all b′ 6= b.

5: ICI values ε̄b,k, ∀k 6∈ Ub are computed from (14) at each BS b.

6: Each BS b sends the ICI values ε̄b,k,∀k 6∈ Ub to the corresponding serving BSs.

7: end if

8: BSs use the approximate ICIs as fixed εb,k in (4) and solve the sub-problems locally to

get the downlink precoders.

9: end loop

C. Backhaul Signaling And Complexity Analysis

Table I presents the locally available CSI and the required information exchange over the

backhaul links for a given BS b to obtain the beamformers with Algorithms 1 and 2. Algorithm 2

is a semi-static coordination method that, unlike the available decoupling methods requiring

a continuous exchange of CSI messages [11]–[14], relies only on local channel statistics and

reported path gain values. This makes it more resilient to limited link capacity and latency. Unlike

Algorithm 1 that needs exchanges of correlation matrices over the backhaul links, Algorithm 2

sends the approximate ICI values (scalars) on the backhaul links only when sufficient changes

occur in the channel statistics. This reduces the exchange rate by almost N2/2. In the numerical

analysis of Section VI, a small difference in the transmission powers of these algorithms is

observed, which is due to the difference in the accuracy of approximate ICI values.

Concerning the complexity analysis, we notice that the proposed algorithms need to solve

the sub-problems at BSs subject to the fixed ICIs given by (14). The solution to such sub-

problems can be obtained using SOCP, semidefinite programming (SDP) and uplink-downlink

duality [14]. This latter approach requires lower computational complexity compared to SOCP

and SDP [14]. Specifically, at a given BS b, the Lagrangian multipliers associated with rate
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TABLE I: Locally available knowledge and acquired information over backhaul at BS b

Local CSI at BS b Acquired information from other BSs

Alg. 1 {a2b,jΘb,j}, {hb,j},∀j ∈ U {a2b′,jΘb′,j},∀j ∈ U , ∀b′ 6= b

Alg. 2 {a2b,jΘb,j}, {hb,j},∀j ∈ U {ε̄b′,j}, ∀j ∈ Ub,∀b′ 6= b

and ICI constraints are evaluated via a projected sub-gradient method and a simple fixed point

iteration [14]. This involves a matrix inversion of size N ×N with a complexity per iteration in

the order of O(|Ub| ×N3) where |Ub| denotes the number of UEs served by BS b. Concerning

the calculation of approximate ICIs, we notice that the ICI terms in (14) are updated only when

there are sufficient changes in channel matrix statistics, which vary at a much slower rate than

the fading CSI. The computation of approximate ICIs requires evaluation of {λ̄k} and {δ̄k}

values with a complexity of order O(K ×N3) and O(K3) respectively.

V. NETWORK WITH PARTITIONED UE POPULATION

So far, we have assumed distinct statistical properties for UEs. However, as in many works in

literature (such as [26], [27]), one can consider a special scenario where the UEs are grouped on

the basis of their statistical properties. In particular, each BS partitions the UE population into

groups such that the eigenspaces of correlation matrices in distinct groups be asymptotically

orthogonal (this is referred to as asymptotic orthogonality condition). The main idea of this

section consists of exploiting the asymptotic orthogonality condition, and the similarities of

statistical properties of nearly co-located UEs [26] to get both mathematically and compu-

tationally simpler approximations of the ICI terms. The dependency of approximate ICIs on

group-specific correlation properties allows further reduction in the backhaul exchange rate of

the decentralized solutions in Section IV. Moreover, the analysis motivates development of the

decentralization framework within a context similar to two-stage beamforming [26] (discussed

further in Section VII).

The UE-grouping idea is presented next by using the simple two-cell configuration in Fig. 2.

The detailed multicell model is presented mathematically later on. Consider a BS, equipped

with a linear array, which properly partitions the UE population into distinct groups such that

the angle of arrivals of UEs’ signals within distinct groups, at the given BS, are sufficiently
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Fig. 2: An illustration of UE-groups formation at BSs based on UEs’ angular separation.

separated. Assuming one-ring channel model4, it is shown in [26] that the correlation matrices

of UEs in distinct groups have nearly orthogonal eigenspaces as N → ∞. Following this line

of thoughts, BS b (b′) in Fig. 2, equipped with a linear array, resolves two smaller groups g1, g2

(equivalently g4, g5 for BS b′) and one bigger group g3 (equivalently g6 for BS b′ ) with non-

overlapping supports of AoA distributions. The beams in the figure represent the AoA spread

of UEs’ signal at BSs. Equivalently, the groups with dashed (dotted) contours correspond to the

partition related to BS b (b′). In the following, the index g is used to refer to the gth group, the set

of UEs in group g is denoted by Gg and the set of all groups at a given BS b is denoted by Ab.

In the following, the aforementioned assumptions are presented mathematically for a generic

multicell setting. We declare the large-scale attenuation a2
b,k explicitly and express the correlation

matrices as a2
b,kΘb,k. Also, the correlation matrices are assumed to have eigenvalue decomposition

given as a2
b,kΘb,k = a2

b,kUb,kΞb,kU
H
b,k. The diagonal rb,k × rb,k matrix Ξb,k holds the non-

zero eigenvalues, and the corresponding eigenvectors are stacked in Ub,k ∈ CN×rb,k . Under

grouping assumption, we declare the aforementioned asymptotic orthogonality condition as

follows: UH
b,iUb,j = 0, ∀i ∈ Gg, j 6∈ Gg,∀g ∈ Ab as N → ∞ [26], which indicates the orthog-

onality of eigenspaces of correlation matrices for UEs in distinct groups in asymptotic regime.

Within this context a mathematically attractive problem is to assume a homogeneous model

4In a typical cellular configuration with a tower-mounted BS and no significant local scattering, the propagation between the

BS antennas and any given UE is expected to be characterized by the local scattering around the UE resulting in the well-known

one-ring model [35].
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wherein the UEs in a group have identical correlation while experiencing different pathlosses

i.e. a2
b,kΘb,k = a2

b,kΘb,g, ∀k ∈ Gg,∀g ∈ Ab where a2
b,k accounts for UE specific pathloss values

and Θb,g dictates the group specific correlation properties. These conditions are not verified

exactly in practice. However, as UEs in the same group are likely to be nearly co-located, one

might closely approximate these conditions by proper UE scheduling (specifically when there is

a large pool of UEs to be scheduled), which is not however in the scope of this work.

Given the aforementioned system model, one can write m̄b,i in (9) for UEs in a group g resolved

at BS b as m̄b,i = a2
b,iη̄b,g with η̄b,g being a group specific measure evaluated as ∀g ∈ Ab,∀b

η̄b,g =

rg∑
i=1

(∑
j∈Gg

γj
a2
bj ,j
η̄bj ,gj/a

2
b,j + γj η̄b,g

+Nµb([Ξb,g]i,i)

)−1

(15)

where for a given UE j, we use gj to denote the group resolved at the serving BS bj , which

contains UE j as a member. The formulation of measure η̄b,g follows directly from (9) by sub-

stituting Θb,k, ∀k ∈ Gg with a2
b,kΘb,g, ∀k ∈ Gg. Note that Θb,g = Ub,gΞb,gU

H
b,g with UH

b,gUb,g′ =

0, ∀g, g′ ∈ Ab, g 6= g′ asN →∞, and UH
b,gUb,g = Irg , which gives η̄b,g as in (15). The interac-

tions among UE groups are regulated using η̄b,g values in (15) such that the SINR constraints for

all UEs within the groups are satisfied asymptotically. The corresponding asymptotically optimal

uplink power for UE j can be evaluated as λ̄j/N = γj/(Na
2
bj ,j
η̄bj ,gj).

As a consequence of the considered system model, the optimal ICI terms, as the inter-cell

coordination messages, can be characterized directly in terms of channel statistics and total

transmit power per group as stated in the following corollary.

Corollary 1. Consider the multicell scenario with grouped UEs experiencing homogeneous

correlation properties a2
b,kΘb,k = a2

b,kΘb,g, ∀k ∈ Gg,∀g ∈ Ab. Then under Assumption 2 and

given the growth rate defined in Assumption 1, the optimal ICI values εb,k,∀k ∈ Gg 6∩ Ub converge

almost surely to the deterministic equivalents ε̄b,k with

ε̄b,k = ϕb,ka
2
b,kP̄b,g, ∀k ∈ Gg 6∩ Ub (16)

where
ϕb,k =

Tr((Θb,gTb,g)
2)/Tr(Θb,gT

2
b,g)

(1 + γk(a2
b,kη̄b,g)/(a

2
bk,k

η̄bk,gk))
2

(17)

where the term η̄b,g is the group specific parameter given by (15) or equivalently as η̄b,g =

1
N

Tr(Θb,gTb,g) with Tb,g = ( 1
N

∑
j∈Gg(γja

2
b,jΘb,g

)/(a2
bj ,j
η̄bj ,gj + γja

2
b,j η̄b,g)+µbIN)−1. The asymp-

totic total transmit power at BS b required for serving UEs in Gg∩Ub is denoted by P̄b,g. Stacking

all P̄b,g,∀g ∈ Ab,∀b in a vector, we get the system of equations [P̄1,1, ..., P̄1,|A1|, ..., P̄|B|,|A|B||] =
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(D−L)−1u where the elements of vector u and matrix L are given as [u](b,g) = 1
N

∑
j∈Ub∩Gg γj/a

2
b,j

and [L](b′,g′),(b,g) = 1
N

∑
j∈Ub′∩Gg∩Gg′

ϕb,jγja
2
b,j/a

2
b′,j , respectively. The tuple index (b′, g′) points

to the row/column element corresponding to group g′ at BS b′. The matrix D is a diagonal

matrix where [D](b,g),(b,g) =
η̄2b,g
ζ̄′b,g

with ζ̄ ′b,g = 1
N

Tr
(
Θb,gT

2
b,g/(1− ρb,gTr((Θb,gTb,g)2) )

)
and

ρb,g = 1
N2

∑
j∈Gg 1/(

a2bj ,j

γja2b,j
η̄bj ,gj + η̄b,g)

2.

Proof: The proof is given in Appendix V .

Looking at the derived expression in (16), we observe that the asymptotically optimal ICI

ε̄b,k is directly related to the group aggregated transmit power at the interfering BS b degraded

by the pathloss a2
b,k. The total transmit power is generally proportional to the ratio K/N [36].

Therefore, ICIs are expected to go to zero only when there exists a large imbalance between

these quantities. The parameter ϕb,k in (17) indicates that the UEs with higher SINR targets are

generally assigned smaller ICIs. Also, the target SINRs are multiplied by (a2
b,kη̄b,g)/(a

2
bk,k

η̄bk,gk)

terms to reflect the position of the UEs with respect to the serving and the interfering BSs, as

well as the priority of the BSs via η̄b,g terms.

Assuming properly partitioned UE population, one can directly utilize the ICI expression from

Corollary 1 to obtain the approximate ICIs in Algorithm 1. This brings two benefits: Firstly,

the approximate ICIs can be attained based on group-specific correlation properties that reduces

the backhaul exchange rate. Secondly, the computational effort for ICI evaluation is decreased.

Denoting the total number of groups formed at all BSs by M , we notice that the computation

of asymptotic ICIs for UEs of a group in (16) requires an M ×M matrix inversion as compared

to K ×K matrix inversion required in the generic formulation (14). Generally, we expect M to

be much smaller than K. The viability of this approach is studied numerically in Section VI.

VI. NUMERICAL ANALYSIS

Monte Carlo simulations are now used to validate the performance of the proposed solutions.

The performance metrics are averaged over 1000 independent UE drops and channel realizations.

We consider a network with L cells and assume that the same number of K̄ = K
L

UEs is assigned

to each cell. The UEs are distributed uniformly in the coverage area of cells. The pathloss function

is modeled as a2
b,k = (d0/db,k)

3 where db,k represents the distance between BS b and UE k, and

d0 = 1 m is the reference distance. The BSs are placed 1000m apart from each other. The

transmission bandwidth is W = 10 MHz, and the total noise power σ2 = WN0 is -104 dBm.
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By assuming a diffuse 2-D field of isotropic scatterers around the receiver [37], the correlation

matrix for an antenna element spacing of ∆ is given by

[Θb,k]j,i =
a2
b,k

ϕmax
b,k − ϕmin

b,k

∫ ϕmax
b,k

ϕmin
b,k

ei
2π
w

∆(j−i)cos(ϕ) dϕ (18)

where waves arrive with an angular spread ∆ϕ from ϕmin to ϕmax. The wavelength is denoted

by w, and the antenna element spacing is fixed to half the wavelength ∆ = 1/2w.

A. Performance Evaluation Of The Distributed Precoding Methods

Next, the analyses of Sections III and IV are validated numerically. The UEs are dropped

in a network with 7 cells. Fixed wide angular spread (∆ϕb,k = π
2
) is assigned to UEs served

by a given BS that accounts for well-conditioned correlation matrices. While the channels to

non-served UEs (that are far from the given BS) have an angular spread of π/6 which yields

rank deficient correlation matrices. The angle of arrival is determined by the angular position of

the UEs with respect to the BSs.

Theorems 1 and 2 present the asymptotically optimal power assignments in downlink and dual

uplink problems in terms of channel statistics, which is instrumental to get further insight into

the structure of the optimal solution. As mentioned in Section IV, one might serve UEs in finite

system regime by utilizing the asymptotic power terms in Theorems 1 and 2, i.e., {λ̄K} and

{δ̄K}, and corresponding receive/transmit beamforming vectors, i.e., v̄k = (
∑

j∈U\k λ̄jhbk,jh
H
bk,j

+

µbkNIN)−1hbk,k and w̄k =
√
δ̄k/N v̄k, respectively. However, this approach only guarantees the

target rates to be satisfied asymptotically. This is shown in Fig. 3 where the empirical CDF of

the achievable rates is depicted in downlink and dual uplink problems. The number of antennas

is the same as the number of UEs, and the UEs are served with a target rate of 1 bit/s/Hz/UE

using the asymptotically optimal beamformers, i.e., w̄k and v̄k. It can be seen that the achievable

rates are mainly concentrated around the target rates. However, as shown in Fig. 3-b, 30 percent

of UEs attains a rate of less than 0.7 bit/s/Hz/UE in the downlink with N = 14 antennas. This

percentage reduces to 12 percent when N increases up to almost 100. The empirical CDF shows

that the deviation from the target rate decreases as dimensions of the problem increase and the

rate constraints for all UEs are expected to be satisfied asymptotically.

As mentioned in Section IV, we can explore the availability of local CSI while relying on

deterministic equivalents of ICI values to obtain the QoS guaranteed precoders. Both Algorithm 1

and 2 satisfy the SINR constraints while having a minimum cooperation among BSs. Fig. 4
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Fig. 3: Empirical CDF of achievable rates using asymptotic beamformers, N
K

= 1.

presents the averaged total transmission power required for serving UEs with target rates fixed

to 1 bits/s/Hz/UE. The total number of UEs in the network grows at the same rate as the number

of antennas such that N
K

= 1 in Fig. 4-a and N
K

= 2 in Fig. 4-b. Thus, the spatial loading is fixed

as the number of antennas is increased. The optimal total transmission power using (3) is the

reference curve denoted as the centralized approach. It can be seen in both Fig. 4-a and 4-b that

Algorithm 1 satisfies the target rates subject to small performance degradation even for relatively

small N and K. This gap diminishes further as the number of antennas and UEs are increased.

Based on asymptotic ICI expressions, we observed that the interference caused by a BS

to a non-served UE depends mainly on the local statistics. Utilizing this in Algorithm 2, the

approximate ICIs are evaluated at the interfering BSs relying on local and partial non-local

knowledge of channel statistics. The viability of this approach can be seen from the small

difference in the transmission powers of Algorithms 1 and 2 in Fig. 4. A heuristic case

(included for comparison) labeled as ’i.i.d fully decentralized’ is also depicted in Fig. 4, where

the correlation properties are ignored and the approximated ICI values are derived relying only on

pathloss information. Ignoring the correlation properties when designing the precoders generally

results in a large performance degradation as depicted in Fig. 4. Another observation is the

smaller performance gap among all methods in Fig. 4-b with N
K

= 2, compared to Fig. 4-a with
N
K

= 1, which is due to the increase in the number of degrees of freedom (d.o.f) per UE. In

particular, for any given number of antennas, the number of UEs in Fig. 4-a is twice as large
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Fig. 4: Transmit power vs. K̄, target rate = 1 bits/s/Hz/UE.

as that in Fig. 4-b. In general, the performance gap among various methods diminishes when

the ratio of d.o.f per UE increases. As the ratio of d.o.f per UE goes to infinity the differences

disappear. In particular, this is illustrated in [28] (the conference counterpart of the current work)

under i.i.d Rayleigh fading channel where the transmission powers of all methods converge as

N grows large, given a fixed K.

The other sub-optimal solutions, including ICZF and ZF, design the precoders locally without

cross cell coordination. In particular, ICZF sets ICIs equal to zero while handling the local inter-

ference optimally. ZF attains the precoders by forcing all (intra-cell and inter-cell) interference

terms to zero. These methods are infeasible for some UE drops in the case with N
K

= 1, thus a

fair comparison is not possible and the corresponding curves are omitted in Fig. 4-a . This is in

fact due to narrow angular spreads, which result in lack of degrees of freedom for nulling the

interference to UEs with overlapping angular spreads. In the case with N
K

= 2, ICZF and ZF

attain the target rates subject to 4 dB higher transmission power as compared to Algorithm 1

and 2. As the final remark, the gap in performance of ICZF indicates that a large portion of the

optimal resource allocation gain comes from inter-cell coordination.

B. The Scenario With Partitioned UE Population

In the following, the analysis in Section V is validated numerically. We consider a two-cell

configuration with the same number of UEs assigned to each cell. Additionally, UEs within a
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Fig. 5: Transmit power with grouped UEs versus N when N
K

= 1 and the target rate is 1

bits/s/Hz/UE.

cell are divided equally among three groups according to the arrangement presented in Fig. 2.

We note that the system model considered in Section V is generic and can be applied to larger

configurations. However, here we reused the two-cell example illustrated in Fig. 2 to avoid

redundancy and to keep the numerical results consistent with the explanations in Section V.

As in Corollary 1, the UEs within each group are assumed to have an identical correlation

matrix but with distinct user specific pathloss values. The angular spread for all groups are

assumed to be equal to π
6

and the group-specific correlation matrices are evaluated using (18).

The groups have disjoint angular spreads, and hence, have orthogonal correlation eigenspaces

when N → ∞. However, in finite dimensions, the correlation matrices of distinct groups are

not fully orthogonal. The reference curve in Fig. 5 titled ’Algorithm 1’ calculates approximate

ICI values based on (14) where the non-orthogonality of correlation matrices of distinct groups

is considered in the ICI approximations. On the other hand, the curve titled ’Alg.1 grouped

UEs’ relies on Corollary 1 for deriving approximate ICIs. In the latter case, the UEs in distinct

groups are assumed to have orthogonal correlation matrices. The precoders in both cases are

derived as in Algorithm 1 while utilizing the corresponding ICI approximations. We observe

a small difference in the transmission power of these two cases, which is due to inter-group

orthogonality condition being satisfied only asymptotically. The corresponding curves converge

and both curves approach the optimal solution as dimensions are increased.
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VII. CONCLUSIONS AND DISCUSSIONS

In this work, a decentralization framework was proposed for the power minimization prob-

lem in multicell MU-MIMO networks. The proposed decentralized solutions attain the QoS-

guaranteed precoders locally subject to relaxed coordination requirements. This is particularly

important in practice where the backhaul links suffer from imperfections, including limited

capacity and latency. The analysis under the assumption of partitioned UE population allowed

the ICIs, as the inter-cell coordination messages, to be characterized explicitly in terms of channel

statistics. This, in particular, provided insight into the coordination mechanism. Also, it reduced

the computational complexity of the approximate ICIs. This analysis can be further exploited to

attain substantial complexity reduction in the precoding phase as well. This approach generally

motivates per-group processing, which is reminiscent of two-stage beamforming [26]. To this end,

the UE population is first divided into multiple groups each with approximately the same channel

correlation matrix. Then, the BSs get approximations of interference leakage in-between groups

at a given BS and across cells using results of Theorem 2 and Corollary 1. Declaring the group

specific interference terms as constraints in the optimization problem, similar to ICI constraints

introduced in (4), the BSs get the precoders for UEs in a group independently by exploring CSI

within each group. The search space, in this case, is limited to the group’s degrees of freedom,

which is generally much smaller than N , and thus results into a significant complexity reduction.

As a final remark, we notice that the weighting factors {µb} in (3) provide a mechanism to

tradeoff the power consumption at different BSs [10]. In addition, one can rely on the results

of Theorems 1 and 2 to get a good approximation for total power consumption at BSs based

on statistical information of channel vectors. This can be utilized in a feasibility assessment to

ensure BS-specific power limits where, as in [38]–[40], the infeasibility implies that some UEs

should be dropped (admission control methods) [38] or rescheduled in orthogonal dimensions

(scheduling methods) [39].

APPENDIX I

IMPORTANT THEOREMS AND LEMMAS

In the derivation of large system analysis, we use well-known lemmas including trace lemma [41,

Lemma 2.6], [16, Theorem 3.4] along with rank-1 perturbation lemma [42, Lemma 2.6], [16,

Theorem 3.9]. The former one shows asymptotic convergence of xHAx − 1
N

TrA → 0 when

x ∈ CN has i.i.d entries with zero mean, variance of 1
N

and independent of A. The latter one
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states that addition of rank-1 matrix xxH to the random Gram matrix XXH does not affect trace
1
N

Tr(XXH + IN) term in the large dimensional limit. The formal presentation of these lemmas

are given in [16], [41], [42].

The other result from random matrix theory that characterizes the so-called Stieltjes transform

of the Gram matrix [16] of the propagation channel matrix is given in the following theorem.

Theorem 3. [17, Theorem 1] Consider a channel matrix H ∈ CN×K with columns hk = Θ
1
2
k zk,

where correlation matrices Θk = Θ
1
2
k (ΘH

k )
1
2 are subject to Assumption 2 and vectors zj ∈ CN

have zero mean i.i.d entries of variance 1
N

and eighth-order moment of order O( 1
N4 ). Then, for

HCHH with C = diag{c1, ..., cK} where ck, ∀k are finite deterministic values, we define

mk,i(z, x) ,
1

N
Tr

(
Θk(HCHH + xΘi − zIN)−1

)
(19)

where for z ∈ C\R+ and bounded positive variable x, when dimensions K and N grows large

with fixed ratio of N
K
<∞, it follows that mk,i(z, x)− m̄k,i(z, x)

N→∞−−−→ 0 almost surely and the

deterministic equivalent is given by

m̄k,i(z, x) =
1

N
Tr

(
Θk

(
1

N

K∑
j=1

cjΘj

1 + cjm̄j,i(z, x)
+ xΘi − zIN

)−1)
. (20)

Proof: The fundamental idea of the proof is based on Bai and Silverstein technique [16]

where the deterministic equivalent of mk,i(z, x) is inferred by writing it under the form 1
N

Tr(D−1)

where D needs to be determined. This is performed by selecting D = (R+xΘi−zIN)Θ−1
k and

then taking the difference mk,i(z, x) − 1
N

Tr(D−1) → 0. Then, utilizing random matrix theory

results, the deterministic matrix R is determined such that the difference tends to zero almost

surely. The formal proof of the theorem in a more generic configuration is given in [17].

For clarity, we simplify mk,i(z, x) and m̄k,i(z, x) notations to reflect specific settings. In

particular, we drop the index i and variable x in m̄k,i(z, x) in the cases with x = 0, i.e.,

m̄k(z) = m̄k,i(z, 0). Also, when z is equal to the noise variance, we simply refer to m̄k(z) by

m̄k. In multicell scenario the measures carry a BS index as well, for example, m̄b.k refers to the

measure corresponding to the channel matrix at BS b.

APPENDIX II

LAGRANGIAN DUALITY ANALYSIS

In this appendix, we formulate the Lagrange dual problem of (4). To do so, we first show

that the Lagrange dual problem of (4) is the same as that of (3). To this end, we first write the
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Lagrangian of (4) as

L(wk, λk, βb,k, εb,k) =
K∑
k=1

µbk ‖wk‖2 −
K∑
k=1

λk
N

(∣∣hH
bk,k

wk

∣∣2
γk

−
∑

i∈Ubk\k

∣∣hH
bk,k

wi

∣∣2 −∑
b∈B\bk

εb,k − σ2

)

+
∑
b

∑
k/∈Ub

βb,k

(∑
j∈Ub

∣∣hH
b,kwj

∣∣2 − εb,k)
where {λk} and {βb,k} are the Lagrange dual variables associated with SINR and ICI constraints,

respectively. From complementary slackness [43], we know that either βb,k or
∑

j∈Ub

∣∣hH
b,kwj

∣∣2−
εb,k have to be equal to zero. By setting the variable βb,k to zero, the variable εb,k becomes

unconstrained, and thus, can be chosen to make minwk,εb,k,λk L(wk, λk, βb,k, εb,k) = −∞. This

suggests that βb,k, ∀b, k have non-zero values and consequently complementary slackness implies

the equality εb,k =
∑

j∈Ub

∣∣hH
b,kwj

∣∣2 to hold. By plugging this into the Lagrangian, we can follow

the same approach as in [10] to obtain the Lagrange dual problem of (3) and (4) as5

min
{vk},{λk}

∑
b∈B

∑
k∈Ub

λk
N
σ2

s.t.
λk|vH

khbk,k|2∑
j∈U\k λj|vH

khbk,j|2 + µbkN‖vk‖2
≥ γk, ∀k ∈ U ,

(21)

where the Lagrange dual variables λk/N can be thought of as the UE power in the dual

uplink power minimization problem [10]. The optimal receive beamforming vectors {vk} are

given as a set of minimum mean square error (MMSE) receivers vk = (
∑

j∈U\k λjhbk,jh
H
bk,j

+

µbkNIN)−1hbk,k, and the optimal Lagrangian multipliers λ∗ = [λ∗1, . . . , λ
∗
K ]T are obtained as

in (6). The duality condition provides the downlink precoders as wk =
√
δk/Nvk with the

scaling factors {δk} given as δ = G−11Kσ
2 where δ = [δ1, . . . , δK ]T, and the (i, k)th element

of the so-called coupling matrix G ∈ CK×K is given as in (7).

APPENDIX III

PROOF OF THEOREM 1

Without loss of generality, the noise power σ2 and BS power weights µb, ∀b are assumed to

be equal to one in the following analyses. In order to prove the theorem, we first provide an

intuition by heuristically assuming the Lagrangian multipliers to be deterministic values and given

independently of channel vectors. Then we prove the convergence of the optimal Lagrangian

5The Lagrangian duality between (3) and (21) holds when both (3) and (21) are feasible.
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multipliers in a feasible problem to the deterministic equivalents rigorously via a contradiction

argument. Denoting λ∗ as the fixed point solution to (6) in a feasible optimization problem, the

following equality holds

γk
λ∗k

=
1

N
hH
bk,k

∑
j∈U\k

λ∗j
N

hbk,jh
H
bk,j

+ IN

−1

hbk,k (22)

where the superscript ∗ stands for the optimal solution. Assuming erroneously that λ∗ is given and

independent of channel vectors, trace lemma [41, Lemma 2.6] along with rank-1 perturbation

lemma [42, Lemma 2.6] in (22) yields the following γk
λ∗k
− 1

N
Tr
(
Θbk,k

(∑
j∈U

λ∗j
N

hbk,jh
H
bk,j

+

IN
)−1)→ 0, almost surely. This trace term is equivalent to m∗bk,k in Theorem 3 that satisfies an

almost sure convergence m∗bk,k − m̄
∗
bk,k
→ 0 where m̄∗bk,k is given as a solution of a system of

equations

m̄∗bk,k =
1

N
Tr

(
Θbk,k

(
1

N

∑
j∈U

λ∗jΘbk,j

1 + λ∗jm̄
∗
bk,j

+ IN

)−1)
. (23)

From the above discussion, we may then expect the terms {λ∗k} to be all close to {γk/m̄∗bk,k} for

N and K large enough. However, since the optimal Lagrangian multipliers depend on the channel

vectors, we cannot rely on classical random matrix theory results for proving the asymptotic

convergence of λ∗ to the deterministic equivalents. Thus, we follow the approach introduced

in [24], [33], and prove the asymptotic convergence of λ∗ via a contradiction argument. In

particular, we set λ̄k = γk/m̄bk,k with m̄bk,k given as

m̄bk,k =
1

N
Tr

(
Θbk,k

(
1

N

∑
j∈U

λ̄jΘbk,j

1 + λ̄jm̄bk,j

+ IN

)−1)
. (24)

Then we show via a contradiction argument that the ratios rk = λ̄k
λ∗k

= γk
m̄bk,k

1
λ∗k
, ∀k ∈ U converge

asymptotically to one, which allows the results of the theorem to be claimed. To do so, we

consider BS b with the set of served UEs Ub = {UE1, ...,UEM} where, given the ratios rk, ∀k ∈

Ub, equation (22) can be rewritten as

rkγk
λ̄k

=
1

N
zH
b,kΘ

1/2
b,k

∑
j∈U\k

λ̄j
rj

Bj + IN

−1

Θ
1/2
b,k zb,k, (25)

where Bj = 1
N

Θ
1/2
b,j zb,jz

H
b,jΘ

1/2
b,j . Next, the UE indexes in Ub are relabeled such that the following

holds 0 ≤ r1 ≤ ... ≤ rM with {rj} assumed to be well defined and positive. Rewriting (25) for
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UE M ∈ Ub and replacing all rj,∀j ∈ U in the summation with the largest ratio rM , we get the

following inequality, based on monotonicity arguments,

rMγM
λ̄M

≤ 1

N
zH
b,MΘ

1/2
b,M

 ∑
j∈U\M

λ̄j
rM

Bj + IN

−1

Θ
1/2
b,Mzb,M , (26)

or equivalently

γM
λ̄M
≤ 1

N
zH
b,MΘ

1/2
b,M

 ∑
j∈U\M

λ̄jBj + rMIN

−1

Θ
1/2
b,Mzb,M . (27)

Assume now that rM is infinitely often larger than 1 + l with l > 0 some positive value.

Restricting ourselves to such a subsequence, the monotonicity arguments give the inequality

in (27) equivalently as

γM
λ̄M
≤ 1

N
zH
b,MΘ

1/2
b,M

 ∑
j∈U\M

λ̄jBj + (1 + l)IN

−1

Θ
1/2
b,Mzb,M . (28)

Denoting the right hand side of (28) by ιM , we observe that ιM does not depend anymore on λ∗.

Thus, we can apply trace lemma [41, Lemma 2.6], rank-1 perturbation lemma [42, Lemma 2.6]

and Theorem 3 to the right hand side of the above inequality to get ιM−m̄bM ,M(−(1+l))
N→∞−−−→ 0

with

m̄bM ,M(z) = Tr

(
ΘbM ,M

(∑
j∈U

λ̄jΘbM ,j

1 + λ̄jm̄bM ,j

− zNIN

)−1)
, (29)

which along with (28) results in γM
λ̄M
≤ limN→∞ inf m̄bM ,M(−(1 + l)). On the other hand, we

notice that m̄bM ,M(−(1 + l)) at l = 0 is equal to m̄bM ,M in (24) with λ̄M = γM/m̄bM ,M . Since

m̄bM ,M(−(1 + l)) is a decreasing function of l it can be proved [33] that for any l > 0 we

have limN→∞ sup m̄bM ,M(−(1+ l)) < γM
λ̄M

. This, however, goes against the former condition and

creates a contradiction on the initial hypothesis that rM > 1 + l infinitely often. Therefore, we

must admit that rM ≤ 1 + l for all large values of N and K. Reverting all inequalities and using

similar arguments yields r1 ≥ 1 − l for all large values of N and K. Putting all these results

together yields 1− l ≤ r1, ..., rM ≤ 1 + l, from which we may write maxk∈Ub|rk − 1| ≤ l for all

large values of N and K. Taking a countable sequence of l going to zero, we eventually obtain

maxk∈Ub|rk − 1| → 0. Noticing that rk = γk
m̄bk,kλ

∗
k
, we get maxk∈Ub|λ∗k − λ̄k| → 0 almost surely

with λ̄k = γk
m̄bk,k

. Following the same steps for all other b ∈ B completes the proof.
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APPENDIX IV

PROOF OF THEOREM 2

Given the Lagrangian multipliers {λ̄k} as deterministic values in a feasible problem from

Theorem 1, we derive the deterministic equivalents for the elements of coupling matrix in (7)

using standard random matrix theory tools. To do so, we rewrite the diagonal elements of the

coupling matrix as [G]k,k = 1
γk
| 1
N

hH
bk,k

Σ
\k
bk

hbk,k|2 where Σ
\k
bk

=
(∑

j∈U\k
λ̄j
N

hbk,jh
H
bk,j

+ IN
)−1

and the notation ()\k excludes the kth term from the summation. Given the growth rate in

Assumption 1, we apply trace lemma [41, Lemma 2.6] and rank-1 perturbation lemma [42,

Lemma 2.6] which, gives 1
N

hH
bk,k

Σ
\k
bk

hbk,k − 1
N

Tr(Θbk,kΣbk) → 0 almost surely. The resulted

trace term is equal to mbk,k defined in Theorem 3 where, according to the theorem, we have

mbk,k − m̄bk,k → 0 almost surely. This implies [G]k,k − 1
γk
m̄2
bk,k
→ 0 almost surely, which gives

the diagonal elements of the coupling matrix as stated in the theorem.

The non-diagonal elements of the coupling matrix [G]k,i = − 1
N2 h

H
bi,k

Σ
\i
bi

hbi,ih
H
bi,i

Σ
\i
bi

hbi,k can

be rewritten using matrix inversion lemma [42, Equation 2.2] as

[G]k,i = − 1

N2

hH
bi,k

Σ
\i,k
bi

hbi,ih
H
bi,i

Σ
\i,k
bi

hbi,k(
1 + λ̄k

N
hH
bi,k

Σ
\i,k
bi

hbi,k
)2 , (30)

where Σ
\i,k
bk

=
(∑

j∈U\i,k
λ̄j
N

hbk,jh
H
bk,j

+ IN
)−1 with notation ()\i,k excluding the ith and kth

terms from the summation. Now, we can apply trace lemma [41, Lemma 2.6] and rank-1

perturbation lemma [42, Lemma 2.6] to the denominator of (30) to obtain 1
N

hH
bi,k

Σ
\i,k
bi

hbi,k −
1
N

Tr(Θbi,kΣbi) → 0 almost surely. Therefore, as a result of Theorem 3, we get the almost sure

convergence of the denominator as(
1 +

λ̄k
N

hH
bi,k

Σ
\i,k
bi

hbi,k

)2

−
(
1 + λ̄km̄bi,k

)2 → 0. (31)

We proceed by applying trace lemma [41, Lemma 2.6] to the numerator of (30) that gives

1

N2
hH
bi,k

Σ
\i,k
bi

hbi,ih
H
bi,i

Σ
\i,k
bi

hbi,k −
1

N2
Tr(Θbi,kΣ

\i,k
bi

hbi,ih
H
bi,i

Σ
\i,k
bi

)→ 0 (32)

almost surely. Rearranging the terms inside the trace in (32) and reapplying trace lemma [41,

Lemma 2.6] yields

hH
bi,i

Σ
\i,k
bi

Θbi,k

N2
Σ
\i,k
bi

hbi,i − Tr
(
Θbi,iΣ

\i,k
bi

Θbi,k

N2
Σ
\i,k
bi

)
→ 0 (33)
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almost surely. As a result of rank-1 perturbation lemma [42, Lemma 2.6], the ith and kth excluded

terms in Σ
\i,k
bi

are asymptotically insignificant in the trace, and thus, (31)-(33) give the almost

sure convergence of (30) as

(−[G]k,i)−
1
N2 Tr(Θbi,iΣbi Θbi,kΣbi)(

1 + λ̄km̄bi,k

)2 → 0. (34)

From matrix identities [44], we know that ∂Y−1/∂x = −Y−1(∂Y/∂x)Y−1 with Y being a

matrix depending on variable x. Keeping this in mind, we refer to mbi,i,k(z, x) in its general

form defined in Theorem 3 as mbi,i,k(z, x) = 1
N

Tr
(
Θbi,i

(∑
j∈U

λ̄j
N

hbi,jh
H
bi,j
− zIN − xΘbi,k

)−1)
where in the special setting with x = 0 and z = −1 diminishes to mbi,i. Using the identity,

the numerator of (34) can be written as a derivative of mbi,i,k(z, x) with respect to the auxiliary

variable x at point (z = −1, x = 0), i.e.,

1

N
Tr
(
Θbi,iΣbi Θbi,kΣbi

)
=

∂

∂x
mbi,i,k(z, x)|x=0,z=−1. (35)

Therefore, given the deterministic equivalents of derivative terms m′bi,i,k = ∂
∂x
mbi,i,k(z, x)|x=0,z=−1

in (35), the deterministic equivalents for the non-diagonal elements of the coupling matrix will

follow from (34). In doing so, we notice that Theorem 3 ensures the almost sure convergence of

mbi,i,k(z, x) to its deterministic equivalent given by m̄bi,i,k(z, x) = 1
N

Tr(Θbi,iTbi,k(z, x)) where

Tb,k(z, x) =

(
1

N

∑
j∈U

λ̄jΘb,j

1 + λ̄jm̄b,j,k(z, x)
− xΘb,k − zIN

)−1

. (36)

Therefore, the deterministic equivalents for the derivative terms, hereafter denoted by m̄′bi,i,k, can

be evaluated by deriving the derivative of (36) with respect to x as

T′b,k = Tb

(
1

N

∑
j∈U

λ̄2
jΘb,jm̄

′
b,j,k

(1 + λ̄jm̄b,j)2
+ Θb,k

)
Tb (37)

where Tb = Tb,k(−1, 0), T′b,k = ∂
∂x

Tb,k(−1, x)|x=0 and m̄b,j = m̄b,j,k(−1, 0) . Since m̄′bi,i,k =

1
N

Tr(Θbi,iT
′
bi,k

) with T′b,k given by (37), we get a system of equation to evaluate m̄′bi,i,k as

[m̄′b,1,k, ..., m̄
′
b,K,k] = (IK −Lb)

−1ub,k with ub,k and Lb defined as in (11) and (12), respectively.

Given m̄′bi,i,k, we get the deterministic equivalents for non-diagonal elements of the coupling

matrix from (34) and (35) as [G]k,i = − 1
N
m̄′bi,i,k/

(
1 + λ̄km̄bi,k

)2, which completes the proof.

APPENDIX V

PROOF OF COROLLARY 1

We notice that the ICI from BS b to UE k in term of downlink transmit powers is given by

εb,k = −
∑

j∈Ub pj[G]k,j/‖vj‖2 that carries a normalization term compared to the formulation
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in (5). Assuming UE k to belong to a group g ∈ Ab with Ab denoting the set of all groups of

BS b, one can observe from (10) that [Ḡ]k,j, ∀j 6∈ Gg is zero (due to inter-group orthogonality

assumption) and we get

ε̄b,k = −
∑

j∈Ub∩Gg

p̄j[Ḡ]k,j/‖v̄j‖2 (38)

where the elements of coupling matrix {[Ḡ]k,j} are given in (10) as a function of m̄′bj ,j,k and

m̄bj ,k. The term m̄′bj ,j,k is derivative of m̄bj ,j,k(z.x) with respect to x at point x = 0 and z =

−1, and m̄bj ,j,k(z.x) is the Stieltjes transform in its general form as defined in Theorem 3.

Given identical correlation properties for UEs within a group we can introduce group specific

parameters η̄b,g = m̄b,j/a
2
b,j, ∀j ∈ Gg and η̄b,g,k(z, x) = m̄b,j,k(z.x)/a2

b,j, ∀j ∈ Gg that allows the

asymptotic expressions for the elements of the coupling matrix and consequently the asymptotic

ICI expressions to be simplified. In particular, the derivative of η̄b,g,k(z, x) with respect to x at

point x = 0 and z = −1 can be evaluated similar to Appendix IV from

η̄′b,g,k =
1

N
Tr

(
Θb,gTb,g

(∑
j∈Gg

(λ̄ja
2
b,j)

2Θb,gη̄
′
b,g,k

N(1 + λ̄ja2
b,j η̄b,g)

2
+ a2

b,kΘb,g

)
Tb,g

)
(39)

with

Tb,g =

(
1

N

∑
j∈Gg

λ̄ja
2
b,jΘb,g

1 + λ̄ja2
b,j η̄b,g

+ IN

)−1

(40)

where then similar to (35)-(37), the unknown variable η̄′b,g,k can be solved as

η̄′b,g,k =
a2
b,k

N

Tr((Θb,gTb,g)
2)

1− ρb,gTr((Θb,gTb,g)2)
(41)

with ρb,g = 1
N2

∑
j∈Gg(λ̄ja

2
b,j)

2/(1 + λ̄ja
2
b,j η̄b,g)

2. Similarly, the normalization terms ‖vj‖2 =

1
N2 h

H
b,jΣ

\j
b Σ

\j
b hb,j,∀j ∈ Ub ∩ Gg converges almost surely as

‖vj‖2 −
a2
b,j

N
ζ̄ ′b,g → 0 (42)

where the measure ζb,g(x) is given as ζb,g(x) = 1
N

Tr(Θb,g(
∑

j∈U
λ̄j
N

hb,jh
H
b,j + (1− x)IN)−1), and

similar to (39)-(41), the deterministic equivalent for derivative of ζb,g(x) with respect to x at

x = 0 can be evaluated as

ζ̄ ′b,g =
Tr
(
(Θb,gTb,g)

2
)
/N

1− ρb,gTr((Θb,gTb,g)2)
. (43)

Thus, the deterministic equivalent for εb,k can be evaluated, based on (38) and (42), as ε̄b,k =

−
∑

j∈Ub∩Gg p̄jN [Ḡ]k,j/a
2
bj ,j
ζ̄ ′b,g. Recalling the non-diagonal elements of Ḡ from (10) and using

η̄′b,g,k = m̄′b,j,k/a
2
b,j, ∀j ∈ Gg, we get

ε̄b,k =
(η̄′b,g,k)/(ζ̄

′
b,g)

(1 + λ̄ka2
b,kη̄b,g)

2

∑
j∈Ub∩Gg

p̄j, ∀k ∈ Gg. (44)
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Finally, replacing η̄′b,g,k and ζ̄ ′b,g with equivalents in (41) and (43), respectively, and denoting

Pb,g =
∑

j∈Ub∩Gg p̄j , the interference term ε̄b,k can be written as in the corollary.

Next, we evaluate the total power required at a given BS to serve UEs within a group

in asymptotic regime. In doing so, we start from the SINR constraints in (4), which can be

equivalently written for UE k as

pk
∣∣hH

bk,k
vk
∣∣2 /‖vk‖2

εbk,k +
∑

b∈B\bk εb,k + σ2
≥ γk (45)

where εbk,k denotes the intra-cell interference and εb,k, ∀b ∈ B \ bk are the intercell interference

term. Denoting the SINR of kth UE by Γk, we have Γk − Γ̄k → 0 almost surely with

Γ̄k =
(Na2

bk,k
η̄2
bk,gk

/γkζ̄
′
bk,gk

)p̄k

ε̄bk,k +
∑

b∈B\bk ε̄b,k + σ2
(46)

where the deterministic equivalents for numerator and denominator of (45) directly follows

from (10) and (44). Since the SINR constraints at the optimal point must be satisfied with

equality, we set Γ̄k = γk to evaluate p̄k as

p̄k =
ζ̄ ′bk,gk
η̄2
bk,gk

γk
Na2

bk,k

(ε̄bk,k +
∑
b∈B\bk

ε̄b,k + σ2). (47)

Now, consider BS b′ with a subset of UEs within group g′ ∈ Ab′ . The transmit power imposed

on BS b′ for serving UEs k ∈ Gg′ ∩Ub′ is given by P̄b′,g′ =
∑

k∈Ub′∩Gg′
p̄k, with p̄k given by (47).

Keeping this in mind and plugging (44) into (47), we get a system of equation to evaluate Pb′,g′

as follows

P̄b′,g′
η̄2
b′,g′

ζ̄ ′b′,g′
=

1

N

∑
k∈Ub′∩Gg′

γk
a2
b′,k

σ2 +
∑
b∈B

∑
g∈Ab

∑
k∈Ub′∩Gg′∩Gg

Tr
(
(Θb,gTb,g)

2
)
/Tr(Θb,gT

2
b,g)

N(1 +
γka

2
b,kη̄b,g

a2
b′,kη̄b′,g′

)2

γka
2
b,k

a2
b′,k

P̄b,g

(48)

evaluated ∀b′ ∈ B,∀g′ ∈ Ab′ . By rearranging the above equations in matrix form, the system of

equations in the corollary is obtained.
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