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Abstract—We investigate lossy compressed sensing (CS) of a
hidden, or remote, source, where a sensor observes a sparse
information source indirectly. The compressed noisy measure-
ments are communicated to the decoder for signal reconstruction
with the aim to minimize the mean square error distortion. An
analytically tractable lower bound to the remote rate-distortion
function (RDF), i.e., the conditional remote RDF, is derived by
providing support side information to the encoder and decoder.
For this setup, the best encoder separates into an estimation
step and a transmission step. A variant of the Blahut-Arimoto
algorithm is developed to numerically approximate the remote
RDF. Furthermore, a novel entropy coding based quantized
CS method is proposed. Numerical results illustrate the main
rate-distortion characteristics of the lossy CS, and compare the
performance of practical quantized CS methods against the
proposed limits.

Index Terms—Remote source coding, conditional rate-
distortion theory, side information, Blahut-Arimoto algorithm,
wireless sensor networks.

I. I NTRODUCTION

The proliferation of wireless sensor networks (WSNs) calls
for energy-efficient communications in environmental, indus-
trial, healthcare, military, and many other applications [1], [2].
A typical monitoring task consists of sensing and encoding at a
resource-limited sensor, followed by a rate-limited information
transmission to the decoder for signal reconstruction. Since
wireless access is typically the main contributor to energy con-
sumption [2], source compression [3]–[5] is crucial. Moreover,
as most sensor signals are continuous-valued, quantization
[6] is inevitable. Rate-distortion (RD) theory [7, Ch. 2] [8,
Ch. 10] [9, Ch. 9] provides an information-theoretic tool for
performance analysis and benchmarking of practical coding
methods. In particular, the RD function (RDF) represents the
best achievable compression performance for a given distortion
fidelity.
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The source signals of many WSN applications aresparse,
e.g., environmental monitoring [10]–[12], source localization
[13], and cognitive radio communications including spectrum
sensing and direction of arrival estimation [14]. Sparsity can
be utilized by compressed sensing (CS) [15]–[23] that enables
accurate reconstruction of sparse (or compressible) signals
of length-N from M ≤ N noisy linear measurements. The
practical necessity of converting real-valued measurements
into bits for data transmission/storage launched the framework
of quantized CS (QCS) [24]–[27], referred to aslossy CS
herein. Since the encoder of a CS based sensor accesses the
source indirectly, the compression setup gives rise toremote
source coding, also known as indirect/noisy coding [28] [7,
Sect. 3.5, 4.5.4] [29]–[32], first introduced by Dobrushin and
Tsybakov in [28]. Other works on remote compression in non-
CS setups can be found in, e.g., [33]–[35].

The information-theoretic treatment of lossy CS is incom-
plete, i.e.,the remote RDFis not known [24]. Using the replica
method, the remote RDF of a lossy CS setup was derived in
a general form under a large system limit (i.e.,M,N → ∞)
in [36]; however, the remote RDF was not analytically solved.
Most existing QCS analyses focus on theoperational RD
performance in systems where the encoder is restricted to be a
quantizer operating on a single input symbol (either scalar or
vector) at a time. Typically, these assume perfect knowledge
of the sparse signal support, and study high rate quantization
or/and large signal dimensions [37]–[41] [42, Ch. 3]. Scalar
quantization (SQ) based QCS setups were studied in, e.g.,
[25], [43], [44]. Empirical performance of QCS algorithms
that optimize either the encoder or decoder can be found in,
e.g., [25]–[27], [38], [45], [46]; joint optimization of encoder-
decoder pair(s) was studied in [41], [47]–[50]. RD bounds
for directly compressing sparse sources were derived in [51]–
[53], and the compression of (sparse) Bernoulli generalized
Gaussian sources via uniform SQ was addressed in [54].

Deriving a RDF/remote RDF in closed form seems difficult
in general. Remote RDFs have been derived only for few well-
behaved source/observation distributions; see, e.g., the works
in [28], [30], [7, Sect. 4.5.4], [33]–[35] assuming Gaussian
distributions, and [55] considering a remote binary source.
When a closed-form solution is unattainable, one may use
numerical approximation. For example, the Blahut-Arimoto
(BA) algorithm [56], [57] has been adapted to remote sensing
scenarios under joint compression and classification in [58],
and the CEO problem in [59]. Extensions were proposed
to approximate the RDF of a continuous-amplitude source
in [60], and the capacity of a continuous channel in [61].
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Alternative techniques include a mapping approach akin to
deterministic annealing in [62], and Lagrange duality based
convex optimization in [63].

The encoder and/or decoder can possess various types and
degrees of prior knowledge, i.e.,side information(SI), on the
signal of interest, e.g., support, magnitude variations, or occu-
pied frequency bands. Added SI sometimes allows to derive
RD lower bounds in closed form. In particular, compression
with shared SI at the encoder and decoder follows conditional
RD theory introduced by Gray [64], [65]. Compression with
correlated, but not necessarily identical SI at the encoder and
decoder was studied in, e.g., [66]–[68]. For different non-CS
SI-aided compression variants, see, e.g., [7, Sect. 6.1] [69]–
[71] [72, Sect. 11.1] [73, Sect. 5.6].

Contributions: The objective of this paper is to address the
RD performance of CS used in compressing remote sources.
We focus on sparse Gaussian vector sources and the mean
square error (MSE) distortion. The closed-form solution to the
remote RDF seems difficult to find. An analytically tractable
lower bound to the remote RDF, termedthe conditional remote
RDF, is derived by providing support SI to the encoder
and decoder. The best encoder of this setup separates into
a rate independent minimum MSE estimation step, and a
transmission step of the resulting estimate. A modified BA
algorithm is developed to numerically approximate the remote
RDF. Numerical results illustrate the main RD characteristics
of the lossy CS, assess the tightness of the proposed lower
bound, and exemplify the compression performance of various
practical QCS methods against the proposed curves.

The main contributions of this paper are summarized as
follows:

• Information-theoretic formulation of the lossy CS prob-
lem;

• Characterization of the remote RDF, defining the com-
pression limit of the lossy CS;

• Derivation of the conditional remote RDF, i.e., an ana-
lytically tractable lower bound to the remote RDF;

• Development of a numerical approximation method for
the remote RDF;

• Empirical validation of the proposed RD curves and
comparisons to several practical QCS methods;

• Development of a novel entropy coding based QCS
method which approaches the optimal performance given
by the remote RDF.

The proposed lower bound, and the numerically evaluated
remote RDF, shed light on general RD characteristics of
lossy CS. We remark that the treatment of CS as an integral
part of the coding system is general in the sense that no
restrictive assumptions are made for the signal parameters,
and the decoder is not limited to any standard CS signal
reconstruction algorithm. Furthermore, the decoded estimates
are not constrained to be sparse.

Related works: To the best of our knowledge, this is the
first work that approaches lossy CS comprehensively from
the information-theoretic remote source coding perspective.
Initial results were published in [74]; herein we extend them
by providing 1) more detailed and insightful derivations, 2)
a numerical approximation method for the remote RDF, 3)

design of a novel entropy coding based QCS method, and 4)
more extensive empirical performance results. As a difference
to the QCS analyses in [37]–[39], [41], our coding system
is not limited to a quantizer operating on a single input
symbol at a time. Colucciaet al. [40] derived a distortion-
rate lower bound under the support SI at the decoder, but
assume 1) high-rate quantization, 2) a large system regime as
N → ∞, and 3) noiseless measurements; we consider noisy
CS of a finite length vector source encompassing a composite
structure, and the derived results hold for any rate. In a parallel
work by Kipnis et al. [36], the derivation of the remote RDF
is different to ours as they 1) assume a large system limit
M,N → ∞, 2) consider a Bernoulli-Gauss (scalar) source,
and 3) use the replica method. While they provided curves via
the BA algorithm, the requisite alphabet discretization was not
addressed. Whereas most previous BA approaches, including
[36], treat the discretization implicitly via "fine discretization",
or via SQ, we propose an optimized vector quantizer (VQ1)
based discretization method that takes the remote nature of the
lossy CS into account via modified distortion measures, and
that yields accurate approximations of the remote RDF.

Organization: The paper is organized as follows. Sec-
tion II presents the system model and formulates the lossy
CS problem. A lower bound to the remote RDF is derived in
Section III. A numerical approximation method for computing
the remote RDF is developed in Section IV. A novel QCS
method is developed in Section V. Simulation results are
provided in Section VI, and Section VII concludes the paper.

Notations: Italic capital letters denote random variables
(X); boldface non-italic capital letters denote random vectors
(X); boldface non-italic small letters denote realizations of
random vectors (x); boldface italic small and capital letters
denote deterministic vectors (a) and matrices (A), respec-
tively; calligraphy letters denote sets/alphabets (B). A block
of m consecutive random vectors{X1, . . . ,Xm} is denoted
as Xm , {Xn}mn=1. The following operators are used:(·)T

denotes the matrix transpose;⊙ denotes the Hadamard prod-
uct, i.e.,ith entry of vectorC = A⊙B is Ci = AiBi; Tr(·)
denotes the trace of a matrix;rank(·) denotes matrix rank;
max{·} denotes the maximum element;supp(a) denotes the
support of vectora; |B| denotes the cardinality of setB; ‖·‖0
counts the number of non-zero entries of a vector. The set
of symmetric positive semi-definite (definite)N ×N -matrices
are denoted asSN+ (SN++). A diagonal matrix is denoted as
diag(a1, . . . , aN ), an identity matrix asI, and a matrix with
all entries zeros as0. The ℓ2-norm is denoted as‖·‖2. The
logarithmslog(·) are of base2.

II. L OSSYCS VIA REMOTE SOURCE CODING

We investigate the RD performance of the model depicted
in Fig. 1, where the information source is observed via noisy
compressed measurements, encoded with a lossy source code,
and communicated to the decoder for signal reconstruction.
The transmissions from encoderE to decoderD are assumed
to be error-free. The compression task is classified asremote

1The acronym "VQ" will be interchangeably used for "vector quantization"
and "vector quantizer".
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Fig. 1. Lossy CS of a sparse source.

source coding because the encoder accesses the source only
through noisy measurements. The source and the CS measure-
ment model are defined next, followed by the formal statement
of the problem.

A. Source Model

Let {Xn}∞n=1 be a discrete-time memoryless vector source
sequence2. Each vectorXn = [Xn,1 · · · Xn,N ]T is K-sparse3,
K ≤ N , i.e., it takes on values in the continuous source
alphabetX = {x ∈ R

N : ‖x‖0 = K}. The setX thus con-
sists of the union of

(

N

K

)

subspaces, i.e., the signal model
is nonlinear [75], [76]. We further assume that the source
sequence is generated from the memoryless sequence of
tuples {(Gn,Bn)}∞n=1 such thatXn = Gn ⊙Bn, where⊙
denotes the Hadamard product;Gn is a length-N zero mean
Gaussian random vectorGn ∼ N (0,ΣG) with covariance
matrix ΣG ∈ S

N
++; Bn is a length-N binary support ran-

dom vector, independent ofGn, with the discrete alphabet
B = {b1, . . . ,b|B|}, where |B| =

(

N

K

)

is the number of all
possiblesparsity patterns. Eachbs = [bs,1 · · · bs,N ]T ∈ B is
unique, containsK ones andN −K zeros, and is associ-
ated with thea priori probability p(bs) , Pr(B = bs) with
p(bs) ∈ [0, 1] and

∑|B|
s=1 p(bs) = 1.

B. Noisy CS

Let Φ ∈ R
M×N be a fixed and known CS measurement

matrix,K ≤ M ≤ N . The sensor (i.e., the encoder) observes
{Xn}∞n=1 indirectly [15], [16], [18], [23] as

Yn = ΦXn +Wn, n = 1, 2, . . . (1)

whereWn, n = 1, 2, . . . are length-M i.i.d. Gaussian random
measurement noise vectors independent of{Xn}∞n=1, and
each Yn is a length-M measurement random vector that
takes values in the measurement vector spaceY. We use
Wn ∼ N (0,ΣW) with covariance matrixΣW ∈ S

M
++.

CS signal recovery performance is strongly affected by
the structure ofΦ. The restricted isometry property (RIP)
and the coherence ofΦ establish guarantees on stable and
accurate CS signal reconstruction, and they are often used to
assess the quality ofΦ [77, Ch. 5,6]. For instance,Φ with
i.i.d. Gaussian entries satisfies the RIP with high probability
if M ≥ CKlog(N/K), whereC is a positive constant [77,
Ch. 1]. Nonetheless, we make no restricting assumptions on
Φ.

2Due to the independence over time, the time indexn will often be
suppressed for brevity whenever not explicitly needed.

3With slight abuse of terminology, aK-sparse signal containsexactly
(instead ofat most) K non-zero elements.

C. Lossy CS Problem

Let Xm , {Xn}mn=1 andxm , {xn}mn=1 denote the blocks
of m consecutive source random vectors and the corresponding
realizations, respectively. LetXm denote them-fold Cartesian
product of X . Analogous notations are used for the other
vectors. Let X̂ be the reproduction random vector at the
decoder output, taking values in the reproduction alphabet
X̂ . Finally, define the average per-letter mean square error
(MSE) distortion between vectorsx = [x1 · · ·xN ]T ∈ X and
x̂ = [x̂1 · · · x̂N ]T ∈ X̂ as

d(x, x̂) , N−1 ∑N

k=1(xk − x̂k)
2 (2)

and the average per-letter MSE distortion blocksxm ∈ Xm

and x̂m ∈ X̂m as

d(xm, x̂m) , (mN)−1 ∑m

n=1

∑N

k=1(xn,k − x̂n,k)
2. (3)

The lossy source coding system in Fig. 1 operates as
follows [78, Sect. 2.1] [8, Sect. 10.2] [72, Sect. 3.5, 3.6]. The
encoderE observes a block of CS measurementsym ∈ Ym,
and compresses it to a message represented by an indexu ∈ U
of ratemNR bits using an encoder mapping

gm
E

: Ym → U ,
{

1, . . . , 2mNR
}

(4)

where the rateR is defined as the bits/entry ofX. The decoder
D uses the index to reconstruct an estimate ofxm ∈ Xm via
a decoder mapping

gmD : U → X̂m. (5)

A pair (R,D) for distortionD ≥ 0 is achievable if there exists
a sequence of(2mNR,m)-RD codes with mappingsgm

E
and

gm
D

such that lim
m→∞

E
[

d(Xm, gm
D
{gm

E
(Ym)})

]

≤ D. Let R be

the closure of the set of achievable(R,D) pairs.

Definition 1. (Lossy CS source coding problem) Amongst all
E-D pairs of mappings (4) and (5), determine the infimum of
(achievable) ratesR such thatX can be reproduced with the
average distortion satisfyingE

[

d(X, X̂)
]

≤ D, i.e., define [8,
Sect. 10.2]

Rrem
X (D) = inf

(R,D)∈R
R. (6)

We callRrem
X (D) the remote RDFof sourceX.

We remark that the used MSE distortion implies, in general,
non-sparse reconstruction, which might be undesirable in cer-
tain applications. Next, we derive the mathematical expression
for Rrem

X (D).

D. Remote RDF

The general expression of the remote RDF for a discrete
memoryless source with discrete memoryless observations has
been derived in [7, Eqs. (3.5.1) – (3.5.5)]. Adapting the result
to continuous-valued signalsX andY, Rrem

X (D) in (6) can
be expressed as

Rrem
X (D) = min

f(x̂|y):E[d(X,X̂)]≤D

1

N
I(Y; X̂) (7a)

where the optimization is over the conditional probability
density function (PDF)f(x̂|y), commonly referred to asthe
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test channel, andd(x, x̂) is the distortion in (2). The mutual
information betweenY andX̂ is

I(Y; X̂) =

∫

y

∫

x̂

f(y)f(x̂|y)log
f(x̂|y)

f(x̂)
dydx̂ (7b)

and the average MSE distortion betweenX andX̂ is

E
[

d(X, X̂)
] (a)
=

∫

x

∫

y

∫

x̂

f(x)f(y|x)f(x̂|y)d(x, x̂)dxdydx̂

(7c)
where (a) follows from f(x̂|y) = f(x̂|y,x) because
X → Y → X̂ forms a Markov chain. Note that the remote
sensing mechanism is captured by the conditional PDF
f(y|x), governed by the CS measurements in (1).

Due to the time-varying sparsity of{Xn}∞n=1 through
{Bn}∞n=1, the PDFs ofX, and consequently, ofY are mixture
distributions, which seems to make the optimization over
f(x̂|y) in (7a) difficult. Hence, we confine our treatment of
the lossy CS problem of Definition 1 to the following two
approaches. In Section III, we derive an analytically tractable
lower boundto Rrem

X (D), whereas in Section IV we develop
a method to numerically approximateRrem

X (D). Note that the
difficulty resides also in thedirect compression ofX for which
only RD bounds have been derived [51]–[53].

III. R ATE-DISTORTION LOWER BOUND FORLOSSYCS

We derive a lower bound toRrem
X (D) in (7a) by considering

the compression setup of Fig. 2, where the encoderEsi and de-
coderDsi possess side information (SI) on sequence{Bn}

∞
n=1.

Having support SI at the decoder is often optimistic in practice,
but sometimes the encoder may acquire SI onB (i.e., an
estimateB̂) from the measurementsY at a moderate cost via a
sparse signal reconstruction algorithm (see, e.g., the algorithm
listing in [79, Sect. 1.6], and analysis in [80]). Nevertheless,
the shared support SI lets us derive an analytically tractable
lower bound toRrem

X (D) which sheds light on the RD behavior
of the original setup in Fig. 1, and establishes a benchmark
for practical coding methods. The associated RD problem is
formulated below.

A. Lossy CS Problem with Support SI

Owing to the support SI, aninformed lossy source code
is defined as follows [64], [66], [69] [70, Sect. 2.3.1]. The
encoderEsi observes a block of CS measurementsym ∈ Ym

along with the SIbm ∈ Bm, and compresses it to a message
indexu ∈ U using an encoder mapping

gmEsi
: Ym × Bm → U . (8)

The decoderDsi uses the index, and the common SIbm to
reconstruct an estimate ofxm ∈ Xm via a decoder mapping

gm
Dsi

: U × Bm → X̂m. (9)

A pair (R,D) for distortion D ≥ 0 is achievable if
there exists a sequence of informed(2mNR,m)-rate-
distortion codes with mappingsgm

Esi
and gm

Dsi
such that

lim
m→∞

E
[

d(Xm, gm
Dsi

{gm
Esi

(Ym,Bm),Bm})
]

≤ D. Let Rsi be

the closure of the set of such achievable(R,D) pairs.

X
X̂

R
E

K-sparse

D

Signal
estimate

Y

R

Φ

W

source

m
G

B

u

Noisy CS Encoder Decoder

Coding systemB B

si siN
R
NM RN

f g0 1,

Fig. 2. Lossy CS of a sparse source with support SI.

Definition 2. (Lossy CS source coding problem with support
SI) Amongst all Esi-Dsi pairs of mappings (8) and (9),
determine the infimum of (achievable) ratesR such that
X can be reproduced with the average distortion satisfying
E
[

d(X, X̂)
]

≤ D, i.e., define

Rrem
X|B(D) = inf

(R,D)∈Rsi

R. (10)

We call Rrem
X|B(D) the conditional remote RDFof sourceX.

Clearly,R ⊆ Rsi, andRrem
X|B(D) establishes a lower bound to

the best possible compression performance of the lossy CS as

Rrem
X (D) ≥ Rrem

X|B(D). (11)

The remainder of the section is devoted to deriving
Rrem

X|B(D).

B. Conditional Remote RDF

The conditional RDF for a discrete source along with the
respective coding theorems is given in [64]. Extending the
results to aremotecompression setup, the conditional remote
RDF Rrem

X|B(D) can be expressed as

Rrem
X|B(D) = min

{f(x̂|y,bs)}
|B|
s=1:E[d(X,X̂)]≤D

1

N
I(Y; X̂|B) (12a)

where the optimization is over the|B| different test channels
f(x̂|y,bs), s = 1, . . . , |B|, the conditional mutual information
betweenY andX̂ givenB is

I(Y; X̂|B) =
∑|B|

s=1 p(bs)I(Y; X̂|B = bs) (12b)

and the average MSE distortion betweenX andX̂ is

E
[

d(X, X̂)
]

=
∑|B|

s=1 p(bs)E
[

d(X, X̂)|B = bs

]

(12c)

where, as compared to (7c), the expectation is also taken over
B.

Observe that (12b) and (12c) decompose with respect to
realizationsB = bs, s = 1, . . . , |B|. Rrem

X|B(D) in (12a) can
thus be expressed as the weighted sum minimization [64,
Theorem 5]

Rrem
X|B(D) = min

∑|B|
s=1 p(bs)Ds=D

Ds≥0, s=1,...,|B|

∑|B|
s=1 p(bs)R

rem
X|bs

(Ds) (13)

with optimization variables Ds, s = 1, . . . , |B|, where
Rrem

X|bs
(Ds) is the conditional marginal remote RDFof source

X for a fixed realizationB = bs and distortionDs ≥ 0, i.e.,
we have

Rrem
X|bs

(Ds) = min
f(x̂|y,bs):E[d(X,X̂)|B=bs]≤Ds

1

N
I(Y; X̂|B = bs)

(14a)
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where the mutual information betweenY andX̂, conditioned
on B = bs, is

I(Y; X̂|B = bs) =
∫

y

∫

x̂

f(y|bs)f(x̂|y,bs)log
f(x̂|y,bs)

f(x̂|bs)
dydx̂

(14b)

and the average MSE distortion betweenX andX̂, conditioned
on B = bs, is

E
[

d(X, X̂)|B = bs

] (a)
=

∫

x

∫

y

∫

x̂

f(x|bs)f(y|x,bs)f(x̂|y,bs)d(x, x̂)dxdydx̂

(14c)
where in (a) we usedf(x̂|y,x,bs) = f(x̂|y,bs) because
X → Y → X̂ forms a Markov chain when conditioned on
B. Owing to the support SI, all PDFs above are equivalent to
those in (7), except conditioned on a realizationB = bs.

Regarding the above formulations, the characterization of
Rrem

X|B(D) in (13) boils down to deriving eachRrem
X|bs

(Ds),
s = 1, . . . , |B|, in (14a). This is carried out in the next section.

C. Conditional Marginal Remote RDF

Fundamentally, the conditional marginal remote RDF
Rrem

X|bs
(Ds), s = 1, . . . , |B|, in (14a) determines the minimum

(achievable) rateRs such thatX can be reproduced with
the average distortion satisfyingE

[

d(X, X̂)|B = bs

]

≤ Ds

in the setup depicted in Fig. 3, where
∑|B|

s=1 p(bs)Rs = R.
As preliminaries for derivingRrem

X|bs
(Ds), we introduce three

definitions.

Definition 3. (Subsource) Let {Xs,n}
∞
n=1 = {Gn ⊙ bs}∞n=1

be the memoryless sequence of thesth subsource, consisting
of K-sparse source vectors{Xn}∞n=1 restricted to a fixed real-
izationB = bs, s = 1, . . . , |B|. Each subsourceXs comprises
of two parts:

Xs :

{

Xs , Gsupp(bs) ∼ N (0,ΣXs
)

0N−K

(15)

where 1) Xs is a length-K random vector that extracts
the entries ofXs (i.e., the entries ofG) restricted to the
support ofbs, wheresupp(bs) ,

{

k ∈ {1, . . . , N}|bs,k 6= 0
}

denotes the support of vectorbs, Gsupp(bs) extracts the entries
Gk from G for indices k ∈ supp(bs), and the covariance
matrix ΣXs

∈ S
K
++ extracts the entriesΣG(k, k′) from ΣG

for indicesk, k′ ∈ supp(bs); 2) 0N−K is the all-zero vector
corresponding to the entries ofXs for indicesk ∈ supp(bs)

c,
wheresupp(bs)

c ,
{

{1, . . . , N} \ supp(bs)
}

is the comple-
ment ofsupp(bs).

We emphasize that although the subsourcesXs,
s = 1, . . . , |B|, are virtual, i.e., not actually present in
the system, they have an instructive role in our derivations. In
light of decomposability, the subsources bear a resemblance
with composite sources4 [7, Sect. 6.1.1] [70].

Definition 4. (CS measurements of a subsource) Let
{Ys,n}∞n=1 be the memoryless sequence of the CS measure-
ments of form (1) restricted to a fixed realizationB = bs,
i.e., the CS measurements of subsourceXs, s = 1, . . . , |B|, in
(15), defined as

Ys , ΦXs +W = ΦsXs +W (16)

where matrix Φs ∈ R
M×K extracts the K columns

of Φ with indices k ∈ supp(bs); consequently,
we have Ys ∼ N (0,ΣYs

) with covariance matrix
ΣYs

= ΦsΣXs
ΦT

s +ΣW ∈ S
M
++.

Definition 5. (MMSE estimator of a subsource) Let Zs be
a length-N random vector representing the minimum mean
square error (MMSE) estimator of sourceX given Y for
a fixed realizationB = bs, i.e., the MMSE estimator of
subsourceXs in (15) givenYs in (16). EachZs is given
by the conditional expectation as [81, Sect. 8.2]

Zs , E[X|Y,B = bs], s = 1, . . . , |B|, (17)

which, owing to the sparsity ofXs (cf. (15)), decomposes into
two parts:

Zs :











Zs , E[Xs|Y,B = bs]

= ΣXsYs
Σ−1

Ys
Ys = F sYs ∼ N (0,ΣZs

)

0N−K

(18)

where 1) Zs is the length-K random vector that rep-
resents the MMSE estimator ofXs given Y and
B = bs, and 2) 0N−K corresponds to the MMSE es-
timator of the zero part ofXs; for jointly Gaussian
random vectors,Zs is linear [82, Sect. 10.2], where
the cross-covariance matrix isΣXsYs

= ΣXs
ΦT

s ∈ R
K×M ,

F s , ΣXsYs
Σ−1

Ys
∈ R

K×M , andZs ∼ N (0,ΣZs
) with co-

variance matrixΣZs
= F sΣ

T
XsYs

∈ S
K
+ .

Rrem
X|bs

(Ds) in (14a) can be characterized by a two-stage
encoding structure: the encoder first optimally estimates the
subsourceXs (see (15)) from measurementsYs (see (16)),
and then optimally encodes the constructed estimatorZs in
(18). This is elaborated next.

1) MMSE Distortion Separation:Let X̂s be a length-N
random vector representing the reproduction of subsource
Xs at the decoder output (see Fig. 3). Using the MMSE
orthogonality principle [81, Ch. 8.2.1], the average condi-
tional MSE distortionE

[

d(Xs, X̂s)
]

, E
[

d(X, X̂)|B = bs

]

in (14c) separates as

E
[

d(Xs, X̂s)
]

= DZ|bs
+ E

[

d(Zs, X̂s)
]

(19)

4The sequence pair{(Xn,Bn)}∞n=1 forms a jointly stationary and er-
godic regenerative composite source with stationary memoryless subsource
processes;{Bn}∞n=1 is the hidden switch sequence that controls the out-
put process{Xn}∞n=1 by randomly activating the subsources{X

s,n
}∞
n=1

according to probabilitiesp(bs), s = 1, . . . , |B| [7, Sect. 6.1.1] [70].



0090-6778 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2018.2834349, IEEE
Transactions on Communications

6 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION 2018

where we denoted the (rate dependent) average MSE distortion
betweenZs and X̂s asE

[

d(Zs, X̂s)
]

= N−1
E
[

‖Zs − X̂s‖
2
2

]

,
and defined the (rate independent) average MMSE estimation
error with respect to subsourceXs as [82, Sect. 10.2]

DZ|bs
= N−1Tr

(

ΣXs
−ΣZs

)

. (20)

Separation similar to (19) appears also in, e.g., [28]–[30].
2) Reduced Distortion:By the decomposability of (18), the

last term in (19) splits as

E
[

d(Zs, X̂s)
]

= E
[

d(Zs, X̂s)
]

+ E
[

d(0N−K , X̂supp(bs)
c)
]

(21)
whereX̂s is the length-K reproduction random vector asso-
ciated withXs, and X̂supp(bs)

c is the reproduction random
vector associated with the zero part ofXs. Since a RDF is a
monotonic nonincreasing function of the distortion [7, Sect. 2],
it is optimal for Rrem

X|bs
(Ds) to setX̂supp(bs)

c = 0N−K , and
thus the distortion in (19) reduces to

E
[

d(Xs, X̂s)
]

= DZ|bs
+ E

[

d(Zs, X̂s)
]

. (22)

Let D′
s ≥ 0 be a reduceddistortion criterion forsth sub-

source as

D′
s , Ds −DZ|bs

≥ 0, s = 1, . . . , |B|, (23)

whereDs ≥ 0 is the distortion criterion in (14a), andDZ|bs
is

given in (20). Note that by (22),E
[

d(Zs, X̂s)
]

≤ D′
s implies

E
[

d(Xs, X̂s)
]

≤ Ds.
3) Estimate-and-Compress Separation:Let Rdir

Z|bs
(D′

s) de-
note thedirect RDF of the MMSE estimatorZs defined in
(18) for reduced distortionD′

s in (23), i.e., define

Rdir
Z|bs

(D′
s) = min

f(ẑs|zs):E[d(Zs,Ẑs)]≤D′
s

1

N
I(Zs; Ẑs) (24a)

where the minimization is over the test channelf(ẑs|zs), Ẑs

is a length-K reproduction random vector forZs, the average
mutual information betweenZs and Ẑs is

I(Zs; Ẑs) =

∫

zs

∫

ẑs

f(zs)f(ẑs|zs)log
f(ẑs|zs)

f(ẑs)
dzsdẑs

(24b)
and the average MSE distortion betweenZs and Ẑs is

E
[

d(Zs, Ẑs)
]

=

∫

zs

∫

ẑs

f(zs)f(ẑs|zs)d(zs, ẑs)dzsdẑs.

(24c)
The RDF Rdir

Z|bs
(D′

s) can be derived by decorrelat-
ing the Gaussian (effective) sourceZs ∼ N (0,ΣZs

) via
the Karhunen-Loève transform, and applying reverse water-
filling [8, Sect. 10.3.3]. Accordingly, letΣZs

= QsΛsQ
T
s ,

where Λs , diag(λs,1, . . . , λs,K) contains the eigenvalues
λs,1 ≥ . . . ≥ λs,K ≥ 0 of ΣZs

∈ S
K
+ , and the columns of

Qs ∈ R
K×K are the corresponding eigenvectors. Conse-

quently, we have

Rdir
Z|bs

(D′
s) = min∑

K
k=1

D′
s,k=D′

s

D′
s,k≥0, k=1,...,K

1

N

∑K

k=1 max

{

0,
1

2
log

λs,k

D′
s,k

}

(25)
whereD′

s,k, k = 1, . . . ,K, are the optimization variables.
The following proposition, which follows from the proofs

in [28], [30], gives an expression for the conditional marginal
remote RDFRrem

X|bs
(Ds).

Proposition 1. The conditional marginal remote RDF ofXs

in (14a) is given as the (direct) RDF of the MMSE estimator
Zs in (25), i.e., we have

Rrem
X|bs

(Ds) = Rdir
Z|bs

(D′
s), s = 1, . . . , |B|, (26)

whereD′
s = Ds −DZ|bs

≥ 0 is the reduced distortion in(23),
andDZ|bs

is given in(20).

By Proposition 1, the remote source coding problem of
Definition 2 separates into 1) the MMSE estimation ofXs

given Ys, and 2) the derivation of the RDF of the resultant
estimator. On this account, the best encoderEsi comprises
of the MSE-optimal extraction of the subsourcesXs from
the noisy linear measurementsYs in (16), s = 1, . . . , |B|,
followed by the optimal coding of the extracted messages.
The estimate-and-compress separation is illustrated in Fig. 4.

Remark 1. The optimal conditional PDFf(ẑs|zs) for
(24a), and the optimal variables for (25) are interrelated
with Gaussian "forward channels"̂Z ′

s,k , θs,kZ
′
s,k + Vs,k,

k = 1, . . . ,K, in Fig. 4 via parametersθs,k =
λs,k−D′

s,k

λs,k
, and

σ2
Vs,k

= θs,kD
′
s,k, whereZ ′

s,k is thekth element of the decor-
related MMSE estimatorZ′

s = QT
sZs, andVs,k ∼ N (0, σ2

Vs,k
)

is a zero mean Gaussian random variable independent ofZ ′
s,k

[7, Theorem 4.3.2].

Remark2. A proof of the optimality of the two-step cod-
ing structure is implicitly present in the seminal work by
Dobrushin and Tsybakov [28, Sect. 5] for the case with
frequency-weighted MSE distortion where the source and
observable processes are jointly Gaussian and stationary. Fur-
thermore, they proved such optimality explicitly for the MSE
distortion in the case where the observations are noisy versions
of the signal (i.e., no dimension reduction) [28, Sect. 7]. Later,
Wolf and Ziv [30] addressed a distortion-rate framework, and
proved that separation holds for the MSE distortion under
more general conditions (i.e., Gaussianity is not needed).
Consequently, the decomposition principle of Proposition 1
is also valid for non-Gaussian sources/observations; however,
finding analytical expressions forRdir

Z|bs
(D′

s) andDZ|bs
may

be difficult. Similar separation results appear in, e.g., [31],
[34], [35], [7, Ch. 4.5.4].

Remark3. Rrem
X|bs

(Ds) is an upper bound to the conditional

marginal remote RDF of a subsourcẽXs = G̃⊙ bs, where
G̃ is a non-Gaussian random vector with covariance matrix
ΣG̃ = ΣG [7, p. 130].

D. Characterization of the Conditional Remote RDF

Let DZ|B ≥ 0 denote the total average MMSE estimation
error over all subsourcesXs, s = 1, . . . , |B|, with support SI,
i.e., we have

DZ|B ,
∑|B|

s=1 p(bs)DZ|bs

(a)
= N−1

∑|B|
s=1 p(bs)Tr

(

ΣXs
−ΣZs

)
(27)
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Fig. 4. The optimal compression structure with respect to theconditional
marginal remote RDFRrem

X|bs
(Ds) in (14a).

where (a) follows from (20). The conditional remote RDF
Rrem

X|B(D) is given by the following theorem.

Theorem 1. For distortion range
DZ|B ≤ D < 1

N

∑|B|
s=1 p(bs)Tr

(

ΣXs

)

, Rrem
X|B(D) is positive,

and can be evaluated via the convex minimization problem as

Rrem
X|B(D) = min

∑|B|
s=1 p(bs)

∑K
k=1

D′
s,k=D−DZ|B

D′
s,k≥0, k=1,...,K, s=1,...,|B|

1

N

∑|B|
s=1

∑K

k=1 · · ·

p(bs)max

{

0,
1

2
log

λs,k

D′
s,k

}

(28)
where ΣXs

is the covariance matrix ofXs in (15);
λs,1, . . . , λs,K are the eigenvalues of covariance matrix
ΣZs

of Zs in (18); D′
s,k are the optimization variables,

k = 1, . . . ,K, s = 1, . . . , |B|. If the distortion values satisfy
D ≥ 1

N

∑|B|
s=1 p(bs)Tr

(

ΣXs

)

, thenRrem
X|B(D) is zero.

Proof. Applying Proposition 1, substituting (25) into (13), and
recasting the sum distortion constraint in terms of variables
D′

s,k, k = 1, . . . ,K, s = 1, . . . , |B|, along with (27) results in
(28). A valid distortion requiresD ≥ DZ|B ≥ 0. In particular,
for all D ≥ 1

N

∑|B|
s=1 p(bs)Tr

(

ΣXs

)

, we haveRrem
X|B(D) = 0.

If the encoder sends no information (i.e.,R = 0), then the
decoder can set̂X = 0N , resulting in an admissible distortion
becauseE

[

d(X, X̂)
]

= 1
N
E
[

‖X− X̂‖22
]

= 1
N
E
[

‖X‖22
]

=
1
N

∑|B|
s=1 p(bs)Tr

(

ΣXs

)

≤ D.

Remark4. Rrem
X|B(D) is an upper bound to the conditional

remote RDF of a sourcẽX = G̃⊙B, where G̃ is a non-
Gaussian random vector with covariance matrixΣG̃ = ΣG

[7, p. 130].

By Theorem 1,Rrem
X|B(D) is determined by a weighted sum

of the RDFs of the MMSE estimatorsZs under the reduced
distortion criterion, where the weights – the prior probabilities
of the sparsity patternsp(bs), s = 1, . . . , |B| – represent the
"appearance frequencies" of such estimators. In particular,
(28) involves finding the optimal allocation of the distortion
components not only across the|B| different sparsity patterns,
but also across theK entries of each decorrelated random
vectorZ′

s. This type of weighted minimization is discernibly
a consequence of the composite source structure.
Rrem

X|B(D) reflects the remote sensing nature of the lossy
CS: regardless of the rate, the lowest achievable distortion

is ultimately dictated byDZ|B – the constant term solely
governed by the noisy measurement model in (16). This
unavoidable compression performance degradation caused by
the indirect observations of the source distinguishes the lossy
CS from directly compressingX; RD bounds for compressing
sparse sources have been derived in, e.g., [51]–[53]. Note that
a constant distortion floor occurs whether or not the support
SI is available – only the respective levels forRrem

X|B(D) and
Rrem

X (D) are different. This is demonstrated by the numerical
results in Section VI.

IV. N UMERICAL APPROXIMATION OF THEREMOTE RDF

Since finding ananalytical solution for the lossy CS
problem of Definition 1 seems to be elusive, we develop a
method based on the BA algorithm [56], [57] tonumerically
approximatethe remote RDFRrem

X (D) in (7a). As for lossy
CS, the standard algorithm must be adapted to handle 1)
continuous-valued signalsX andY, and 2) the remote com-
pression setup. The former is accomplished by a VQ-optimized
alphabet discretization method, and the latter by appropriately
modifying the distortion measure.

A. Discretization of Signal Alphabets

As the BA algorithm accepts discrete input/output alphabets,
the measurement vector spaceY and the reproduction alphabet
X̂ are discretized via a VQ. LetV , {1, . . . , |V|} be an
index set. The|V|-level VQ is determined by 1) the encoder
regionsSv, v ∈ V, which partition the measurement space,
i.e.,Sv ⊆ Y, Sv ∩ Sv′ = ∅, for anyv 6= v′, and

⋃|V|
v=1 Sv = Y;

2) the reconstruction codebook̂X q , {x̂1, . . . , x̂|V|} with
codevectorŝxv ∈ R

N , v ∈ V . The VQ encoder is a mapping
E
vq : Y → V such that for an inputy ∈ Sv, it produces an

index E
vq(y) = v ∈ V ; the VQ decoder performs an inverse

mappingDvq : V → X̂ q asDvq(v) = x̂v ∈ X̂ q. The random
variableV represents the VQ output.

The next section illuminates the role of the VQ in RD
approximation, and the specific optimization of the VQ is
deferred until Section IV-C.

B. Modified Blahut-Arimoto Algorithm for Lossy CS

Consider a VQ as described above with
p(v) , Pr(V = v) =

∫

y∈Sv
f(y)dy, v ∈ V . Consequently,

index v ∈ V represents all measurement vectors that belong
to VQ regionSv. Similarly, let X̂q be a discrete reproduction
random vector at the output of decoderD with alphabet
X̂ q = {x̂1, . . . , x̂|V|} (i.e., the VQ codebook). Replacing
Y with V , and X̂ with X̂q in (7a), Rrem

X (D) can be
approximated as

Rrem
X,ba(D) = min

p(x̂j |v):E[d(X,X̂q)]≤D

1

N
I(V ; X̂q) (29a)

where the optimization is over the conditional probabilities
p(x̂j |v) , Pr(X̂q = x̂j |V = v), v, j ∈ V . The mutual infor-
mation betweenV andX̂q is

I(V ; X̂q) =
∑|V|

v=1

∑|V|
j=1 p(v)p(x̂j |v)log

p(x̂j |v)

p(x̂j)
(29b)
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and the average distortion betweenX andX̂q is

E
[

d(X, X̂q)
]

=
∑|V|

v=1

∑|V|
j=1 p(v)p(x̂j |v)d̄(X, x̂j |v) (29c)

where d̄(X, x̂j |v) ≥ 0 is the modified distortion measure,
defined as the average per-letter MSE distortion betweenX

and x̂j conditioned onV = v, i.e.,

d̄(X, x̂j |v) , E
[

d(X, x̂j)|V = v
]

, v, j ∈ V

=
1

N

∫

y

E
[

‖X− x̂j‖
2
2|V = v,Y = y

]

f(y|v)dy

=
1

N

∫

y

p(v|y)

p(v)
· · ·

E
[

‖X− x̂j‖22|V = v,Y = y
]

f(y)dy
(a)
=

1

N

1

p(v)

∫

y∈Sv

E
[

‖X− x̂j‖
2
2|Y = y

]

f(y)dy

(29d)
where(a) follows from the Markov chainX → Y → V , and
from p(v|y) = 1, if y ∈ Sv, v ∈ V, and 0 otherwise. Note
that pre-calculated|V|2 quantities d̄(X, x̂j |v) remain fixed
in the algorithm. In the context ofdiscrete remote sources,
a distortion measure similar to (29d) appears in, e.g., [7,
Sect. 3.5] [31], [58].

Consider a Lagrangian for (29a) as

L
(

{p(x̂j |v)}
|V|
v,j=1, λ, {νv}

|V|
v=1

)

=
1

N

∑|V|
v=1

∑|V|
j=1 p(v)p(x̂j |v)log

p(x̂j |v)

p(x̂j)
+

λ
∑|V|

v=1

∑|V|
j=1 p(v)p(x̂j |v)d̄(X, x̂j |v)+

∑|V|
v=1 νv

∑|V|
j=1 p(x̂j |v)

(30)

whereλ > 0 is the Lagrange multiplier associated with the
sum distortion constraint, andνv, v ∈ V , are the Lagrange
multipliers associated with the valid conditional probability
constraints

∑|V|
j=1 p(x̂j |v) = 1, ∀v ∈ V . Following the stan-

dard BA procedure, an(R,D) point of Rrem
X,ba(D) in (29a) is

obtained by sequentially updating the conditional probabilities
p(x̂j |v), and the reproduction probabilitiesp(x̂j) for a fixed
λ at each iterationt = 1, 2, . . . as [8, Sect. 10.8]

p(x̂j|v)
t+1 :=

p(x̂j)
texp

[

−λd̄(X, x̂j |v)
]

∑|V|
j′=1 p(x̂j′)texp

[

−λd̄(X, x̂j′ |v)
]

, v, j ∈ V

(31a)
p(x̂j)

t+1 :=
∑|V|

v=1 p(x̂j |v)t+1p(v), j ∈ V, (31b)

until convergence, and evaluating the rate according to (29b),
and the distortion according to (29c). Hence, different values
for λ sweep the curve forRrem

X,ba(D), which approximates the
remote RDFRrem

X (D) in (7a) with an accuracy that increases
with the number|V|.

The proposed method is summarized in Algorithm 1. The
algorithm can be terminated when the quantities do not signif-
icantly change, e.g., when

∑|V|
j=1

(

p(x̂j)
t − p(x̂j)

t−1
)2

< ǫba
for a pre-defined positive constantǫba > 0. The algorithm
inputs p(v), x̂v, and d̄(X, x̂j |v), v, j ∈ V , are the outcomes
of the VQ optimization. The optimization is carried out next.

C. Vector Quantization Optimization

In Algorithm 1, the accuracy of distortion evaluation
through (29c) is ultimately limited by the|V|2 fixed quantities

Algorithm 1 Modified Blahut-Arimoto algorithm for approx-
imating the remote RDFRrem

X (D)

Inputs: a) Lagrange multipliersλ > 0; b) codevectorŝxv,
and index probabilitiesp(v), v ∈ V , obtained as described in
Section IV-C; c) modified distortion measures̄d(X, x̂j |v),
v, j ∈ V , of form (29d).
Initializations: a) Sett := 1; b) setp(x̂j)

t := 1/|V|, j ∈ V .
for a givenλ
repeat

1) Update the conditional probabilitiesp(x̂j |v)t+1,
v, j ∈ V , according to (31a).
2) Update the reproduction probabilitiesp(x̂j)

t+1, j ∈ V ,
according to (31b).
3) Sett := t+ 1.

until a pre-defined stopping criterion is met.
4) Compute the rateRλ according to (29b), and the distor-
tion Dλ according to (29c).
end for
Output: Rrem

X,ba(D) curve determined by the(Rλ, Dλ)
pairs.

d̄(X, x̂j |v), v, j ∈ V , of (29d). Taking this into account, the
E
vq-Dvq pair, that is, the encoder regionsSv, and codevectors

x̂v, v ∈ V , are optimized to minimize the average MSE
distortion between the sourceX and its|V|-level reproduction
X̂q, i.e., we choose

{S∗
v , x̂

∗
v}v∈V := argmin

{Sv,x̂v}v∈V

1

N
E
[

‖X− X̂q‖22
]

(a)
:= argmin

{Sv,x̂v}v∈V

1

N

∑

v∈V · · ·
∫

y∈Sv

E
[

‖X− x̂v‖
2
2|Y = y

]

f(y)dy

(b)
:= argmin

{Sv,x̂v}v∈V

∑

v∈V p(v)d̄(X, x̂v|v)

(32)
where in (a) we used the Markov chainX → Y → V , and
p(v|y) = 1, if y ∈ Sv, v ∈ V, and 0 otherwise;(b) follows
from (29d).

Remark5. Besidesd̄(X, x̂j |v), v, j ∈ V , our VQ affects the
final distortion in (29c) through the conditional probabilities
p(x̂j |v), v, j ∈ V – the variables to be optimized in iterative
steps (31a) and (31b). In addition, the VQ affects the rate
approximation in (29b) through the index probabilitiesp(v),
v ∈ V . Therefore, we expect to achieve a better approximation
of Rrem

X (D) by incorporating the VQ optimization in the
iterative loop of Algorithm 1, and, thus, generating a unique
VQ for each λ. For example, the mapping approach in
[62] adapts the reproduction points within the optimization
loop. Nevertheless, the proposed non-adaptive discretization
seems to yield decent accuracy for all distortion valuesD, as
demonstrated in Section VI.

Remark 6. Setting the conditional probabilities (31a) as
p(x̂j |v) = 1 for v = j, and0 otherwise, results in reproduction
probabilities p(x̂j) = p(v) for v = j, and 0 otherwise in
(31b). The distortion (29c) forRrem

X,ba(D) then becomes equal
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to the VQ distortion in (32), and the rate (29b) becomes
R = −

∑|V|
v=1 p(v)log(p(v)), i.e., the entropy of quantization

indexV . Rrem
X,ba(D) is thus a "noisy VQ" that randomizes the

mappingV → X̂ q via conditional probabilitiesp(x̂j |v) acting
as a noisy channel between the encoder output and decoder
input.

The joint optimization overSv and x̂v, v ∈ V , in (32)
seems to be intractable, and so we use a common alternat-
ing minimization to derive necessary optimality conditions.
Accordingly, the proposed VQ is equivalent to the VQ in [41]
designed for noiseless channels. The optimal encoder regions
for fixed codevectors satisfy a generalized nearest-neighbor
condition

S∗
v =

{

y : ‖z− x̂v‖
2
2 ≤ ‖z− x̂v′‖22, ∀v

′ 6=v
}

, v ∈ V ,

(33)
where z ∈ R

N is the MMSE estimate ofX given Y = y,
defined as [83]–[85]

z , E[X|Y = y]

=
∑|B|

s=1 p(bs|y)E[X|Y = y,B = bs]

=
∑|B|

s=1

p(bs)f(y|bs)
∑|B|

s′=1 p(bs′)f(y|bs′ )
zs

(34)

where the conditional PDFf(y|bs) is Gaussian asN (0,ΣYs
)

(see Definition 4), andzs , E[X|Y = y,B = bs] is the
MMSE estimate ofX given Y = y and B = bs, which,
by Definition 5, comprises of vectorszs = F sys ∈ R

K and
0N−K . Similarly, the optimal codevectors for fixed encoder
regions satisfy a generalized centroid condition

x̂
∗
v =

1

p(v)

∫

y∈Sv

E[X|Y = y]f(y)dy, v ∈ V . (35)

The VQ can be trained offline in the spirit of the iterative
Lloyd algorithm [86]–[88] by successively applying the nec-
essary optimality conditions (33) and (35) for training data
sets.

V. "ESTIMATE-AND-COMPRESS" QCS METHOD

ApproachingRrem
X (D) in (7a) requires encoding (large)

blocks of vectors. We instead propose a symbol-by-symbol
QCS method that follows the optimal "estimate-and-compress"
principle underlyingRrem

X (D), and is empirically shown to
approachRrem

X (D) in Section VI.

The proposed method, termedECVQ-CS, relies on entropy-
constrained VQ [89], and minimizes a weighted distortion-rate
cost function

(1 − µec)
∑

i∈I p(i)E
[

‖X− ci‖22|I = i
]

−
µec

∑

i∈I p(i)log(p(i))
(36)

where I is the quantization index with index set
I , {1, . . . , |I|}, ci ∈ R

N are the reconstruction codevectors,
and the parameterµec ∈ [0, 1] adjusts the distortion-rate trade-
off. Using alternating optimization [49], [50], [89],ECVQ-CS
can be trained via a three-step iterative algorithm, where 1)

the encoder regions are formed as

S∗
i =

{

y : (1− µec)‖z− ci‖22 − µeclog(p(i)) ≤

(1− µec)‖z− ci′‖22 − µeclog(p(i′)), ∀i′ 6=i
}

, i ∈ I,

(37)
where z = E[X|Y = y] is the MMSE estimate of (34); 2)
the rate terms−log(p(i)), i ∈ I, are updated given the new
regions; 3) the codevectors are set equivalently to (35).
Finally, the index probabilitiesp(i) =

∫

y∈Si
f(y)dy, i ∈ I,

are used to generate a binary source codebook with aver-
age codeword length close to the index entropy via, e.g.,
Huffman coding [90]. The name "estimate-and-compress"
describes the two main steps: the sensor compresses each
measurement realizationy by 1) forming the MMSE estimate
z = E[X|Y = y], and 2) obtaining the optimal encoding index
as i∗ = argmini∈I (1− µec)‖z− ci‖

2
2 − µeclog(p(i)).

VI. N UMERICAL RESULTS

A. Simulation Setup

Consider setups withΣG = σ2
GIN with σ2

G = 1, and
ΣW = σ2

W IM with σ2
W = 0.01. The following curves and

QCS methods are evaluated:
1) Rrem

X|B(D): the conditional remote RDF of Theorem 1.
2) Rrem

X,ba(D): a numerically approximated remote RDF of
Algorithm 1.

3) Rdir
X|B(D): the conditional direct RDF ofX, correspond-

ing to lossy compression ofX with B available as SI at the
encoder and decoder (see [52, Sect. VII-A]). Clearly, we have
Rdir

X|B(D) ≤ Rrem
X|B(D).

4) Rdir
X,ba(D): a numerically approximateddirect RDF of

X which represents lossy compression ofX without support
SI, and is obtained by applying the discretization of Sec-
tion IV-C and Algorithm 1 with usingY = X. Clearly, we
haveRdir

X|B(D) ≤ Rdir
X,ba(D) ≤ Rrem

X,ba(D).
5) ECVQ-CS: the proposed "estimate-and-compress"

method of Section V withµec = 0.1/log(|I|), and Huffman
codewords.

6) VQ-CS: the fixed-rate QCS method in [41], where the
|I|-level VQ is optimized for noiseless channels.

7) VQ-CE: a baseline fixed-rate QCS method that performs
the two stages ofECVQ-CS in the reverse (suboptimal) order:
the encoder optimally quantizesY in the MSE-sense, unaware
of X, and the decoder estimatesX from these quantized
measurements. The encoder ofVQ-CE is an|I|-level VQ that
minimizes the distortion

∑

i∈I p(i)E
[

‖Y − ŷi‖
2
2|I = i

]

with
nearest-neighbor vectorŝyi ∈ R

M , and its decoder consists of
the MSE-optimal codevectors of form (35). This "compress-
and-estimate" approach underlies many early QCS methods,
cf. [27], [38].

8) DZ|B: the average MMSE estimation error in (27)
(knownB).

9) DZ: numerically evaluated average MMSE estimation
error ofX givenY, i.e.,DZ , N−1

E
[

‖X− Z‖22
]

; estimator
Z , E[X|Y] takes values according to (34) (unknownB).

The quantization rate is set aslog|V| = 12 bits for
Rrem

X,ba(D), and varied aslog|I| = 1, . . . , 12 bits for the QCS
methods. The measurement matrixΦ is generated by taking
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the first M rows of an N ×N discrete cosine transform
matrix, and normalizing the columns as‖ · ‖2 = 1. The dis-
tortion is measured as10log10

(

E[d(X,Xest)]/N−1
E[‖X‖22]

)

dB, whereXest is the method-dependent decoded estimate
of X, and E

[

‖X‖22
]

=
∑|B|

s=1 p(bs)Tr
(

ΣXs

)

. The rate is
measured asR bits/entry of X. The convex minimization
problems are solved via CVX [91].

Complexity:As the complexities of Algorithm 1 and the
QCS methods increase exponentially with the number of VQ
levels and |B|, the experiments are confined to moderate
signal dimensions and quantization rates; the most complex
setup used in the paper involvesN = 20, M = 8, K = 2,
and log|V| = log|I| = 12 bits. As for any discretized BA
algorithm, we remark that the same complexity issue due
to a large number of variables remains regardless of the
quantization method. In fact, due to the VQ advantages [92],
the proposed algorithm enjoys a superior trade-off between
the approximation accuracy and the complexity as compared
to, e.g., SQ. Complexities of the QCS methods can be de-
creased via using SQ or low-complexity VQ variants like tree-
structured, multi-step, and lattice VQs [93]. An alternative is to
reconstruct the signal from quantized measurements via, e.g.,
standardℓ1-minimization or a greedy reconstruction method,
albeit with low compression performance [24]. The complexity
of ECVQ-CS could be reduced by approximating the MMSE
estimates (34) by, e.g., the randomized orthogonal matching
pursuit [83]. These considerations, which could allow more
realistic setups withN and M being hundreds, are left for
future study.

B. Rate-Distortion Behavior of Lossy CS

Consider a setup withN = 7, M = 5, K = 1, and equal
support probabilitiesp(bs) = 1/|B|, ∀s = 1, . . . , |B|. Fig. 5(d)
depicts the average distortion versus the average rate for
different compression schemes.

Consider first the SI aided lower boundsRdir
X|B(D),

Rdir
X,ba(D), andRrem

X|B(D) to the remote RDFRrem
X (D) in (7a).

Owing to the direct observations with support SI,Rdir
X|B(D)

appears as the line (in log scale) with slope−6N
K

= −42
dB/bit [52], and yields the lowestR for all values ofD, as
expected. The substantially increased rate forRdir

X,ba(D) as
compared toRdir

X|B(D) is caused by the necessity of convey-
ing the support ofX to the decoder. WhileRdir

X|B(D) and
Rrem

X|B(D) nearly coincide at high distortion, the curves diverge
for moderate to low distortion values. The gradually increasing
gap betweenRrem

X|B(D) and Rdir
X|B(D) for low values ofD

is a consequence of the remote sensing. Note that whereas
arbitrarily small distortion is achievable at asymptotically high
rates forRdir

X|B(D) andRdir
X,ba(D) (i.e., lim

D→0
Rdir

X|B(D) = ∞

and lim
D→0

Rdir
X,ba(D) = ∞), the lowest achievable distortion for

Rrem
X|B(D) is the MMSE estimation error floorDZ|B (i.e.,
lim

D→DZ|B

Rrem
X|B(D) = ∞).

Focus now on the approximate remote RDFRrem
X,ba(D),

i.e., the best achievable performance of any QCS method.
The gap betweenRrem

X|B(D) and Rrem
X,ba(D) represents the

compression loss induced by the random measurements taken

without knowing the sparse support in a QCS setup [24].
The tightness of the lower bound is heavily influenced by
the signal setup parameters, as will be exemplified in the
subsequent experiments. Despite the gap, the proposed lower
bound Rrem

X|B(D) captures the main peculiarities of lossy
CS: the curve has an almost linear distortion region at low
rates, whereas for high rates, the distortion saturates to the
MMSE estimation error floorDZ. We remark that due to
the sparsity, the slope ofRrem

X,ba(D) at low rates is steeper
than the conventional−6 dB/bit. Note that for smallR,
the rate is the most limiting factor to achievable distortion,
and, thus,Rdir

X,ba(D) nearly coincides withRrem
X,ba(D); for

higher rates, the impact of noisy CS measurements increases,
thereby degrading the performance ofRrem

X,ba(D). Regarding
the approximation accuracy ofRdir

X,ba(D) and Rrem
X,ba(D),

observe that the highest obtained rate isR ≈ 1.3 bits, so
the "over-sampling ratio" of the VQ discretization is at least
|V|/2NR ≈ 7.5.

As the encoder ofVQ-CE is CS-blind, its performance
is the worst amongst the QCS methods. The advantages of
entropy coding are shown by the proposedECVQ-CS curves
which, for moderate rates, approach the compression limit
Rrem

X,ba(D). As a proof of validity,VQ-CS eventually saturates
to DZ, which is expected to also happen for the other QCS
methods at sufficiently high rates.

C. Effect of Number of Measurements

For the setup of Section VI-B, Figs. 5(a) – (d) illus-
trate the influence of different numbers of measurements
M = {2, 3, 4, 5} on the compression performance. AsM
increases, i.e., the signal-to-noise ratio increases, the level of
DZ decreases, and the performance of each method without
support SI moves closer to the lower boundRrem

X|B(D). The
largest gain is achieved whenM is increased fromM = 2 to
M = 3, whereas the difference betweenM = 4 andM = 5 is
almost negligible. This matches the CS philosophy: increasing
M beyond the value that suffices for accurate CS signal
recovery does not bring significant gains. In this respect,
provided thatM is already at this satisfactory level, it pays
off to primarily invest in rateR to meet the given distortion
fidelity D. Note that the convergence of the curves to their
respective distortion floors is rather similar for allM , and that
Rdir

X|B(D), Rdir
X,ba(D), Rrem

X|B(D), andDZ|B remain unaltered.

D. Effect of Support Probabilities

Consider a setup withN = 20, M = 8, K = 2, and
unequal support probabilities asp(bs) = αs

pl

/
∑|B|

s′=1 α
s′

pl,
s = 1, . . . , |B|, where0 < αpl ≤ 1 is a parameter that adjusts
the concentration of the probability mass function (PMF) of
B, and 1 > p(b1) ≥ · · · ≥ p(b|B|) > 0. For small values of
αpl, the PMF concentrates around a fraction of elements in
B =

{

b1, . . . ,b|B|

}

, and vice versa.αpl = 1 corresponds to
the uniform distribution, whereasαpl → 0 approaches remote
compression of only a single2-sparse vector. The vectorsbs

in alphabetB are ordered such that the decimal number of a
binary string represented bybs+1 is greater than that ofbs,
s = 1, . . . , |B| − 1 (|B| = 190).
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Fig. 5. RD performance of lossy CS schemes with equal support probabilities forN = 7, K = 1, and the number of measurements (a)M = 2, (b) M = 3,
(c) M = 4, and (d)M = 5. The colors and markers of the curves in (b), (c), and (d) are equivalent to those in (a).

Fig. 6 shows the average distortion versus the average rate
for αpl = {0.98, 0.90, 0.72}. Decreasingαpl reduces the un-
certainty of the signal support which improves the compression
efficiency. This is seen as the increased decay rate ofD for
the non-SI schemes, the shift ofRrem

X,ba(D) towardsRrem
X|B(D)

and Rdir
X,ba(D) towardsRdir

X|B(D), and the reduction of the
gap betweenDZ and DZ|B, which is related to the best
possible support recovery for a given setup. This exemplifies
that, for a sufficiently concentrated PMF ofB, the proposed
ECVQ-CS efficiently encodes sparse vectors from noisy CS
measurements: its performance approaches the best achiev-
able performance of a support unaware QCS method (i.e.,
Rrem

X,ba(D)). The result illustrates the MSE separation principle
(cf. (19)): an efficient QCS method implicitly (successfully)
recoversX from Y, and encodes the resulting estimates
optimally.

VII. C ONCLUSIONS ANDFUTURE WORK

We addressed lossy compression of single-sensor CS from
the remote source coding perspective. By giving support side
information to the encoder and decoder, we derived the con-
ditional remote RDF to establish a compression lower bound
for a finite-rate CS setup. The best such encoder separates
into an MMSE estimation step and an optimal transmission
step. A modified BA algorithm was proposed to numerically
approximate the remote RDF, serving as the best attainable
compression performance of any practical QCS method. The
main RD characteristics of the lossy CS were demonstrated by
comparing the performance of various practical QCS methods
– including the devised near-optimal entropy coding based
QCS method – with the proposed limits.

Finding a closed-form expression forRrem
X (D) remains

the ultimate goal. Alternatively, one could try to accurately
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Fig. 6. RD performance of lossy CS schemes forN = 20, M = 8, K = 2, and power law type support probabilities with parameters (a)αpl = 0.98, (b)
αpl = 0.90, and (c)αpl = 0.72. The colors and markers of the curves in (b) and (c) are equivalent to those in (a).

approximateRrem
X (D), or find a substitute for the shared

support SI to derive a tighter lower bound asRrem
X|B(D). As

for the proposed BA algorithm, one could 1) compare it to
a method based on the mapping approach in [62], 2) assess
the performance gain (i.e., approximation accuracy vs. the
computational complexity) of the VQ discretization against
regular grid quantization, and 3) modify the algorithm to make
it applicable to high-dimensional signal setups. Other open
problems include finding theoretical results for 1) the (almost)
linear slope ofRrem

X,ba(D) at low rates, and 2) the gap between
DZ andDZ|B, which is ultimately defined by support recovery
performance. It has been shown for direct source compression
that if a quantizer is optimized for a memoryless Gaussian
source, and the quantizer is then used to compress a non-
Gaussian source, the resulting distortion is as bad as if the
source were actually Gaussian [94]. If this can be shown

for remote compression, the achieved curves for the QCS
methods are upper bounds to sparse sourcesX̃ = G̃⊙B,
where G̃ is a non-Gaussian random vector with covariance
matrix ΣG̃ = ΣG.
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