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Abstract—We investigate lossy compressed sensing (CS) of a The source signals of many WSN applications sparse
hidden, or remote, source, where a sensor observes a sparses,g., environmental monitoring [10]-[12], source localization
information source indirectly. The compressed noisy measure- [13], and cognitive radio communications including spectrum

ments are communicated to the decoder for signal reconstruction . . . . . . -
with the aim to minimize the mean square error distortion. An sensing and direction of arrival estimation [14]. Sparsity can

analytically tractable lower bound to the remote rate-distortion b€ utilized by compressed sensing (CS) [15]-[23] that enables
function (RDF), i.e., the conditional remote RDF, is derived by accurate reconstruction of sparse (or compressible) signals
providing support side information to the encoder and decoder. of lengthV from M < N noisy linear measurements. The

For this setup, the best encoder separates into an estimation 3 qtical necessity of converting real-valued measurements

step and a transmission step. A variant of the Blahut-Arimoto . S
algorithm is developed to numerically approximate the remote into bits for data transmission/storage launched the framework

RDF. Furthermore, a novel entropy coding based quantized Of quantized CS (QCS) [24]-[27], referred to &ssy CS
CS method is proposed. Numerical results illustrate the main herein. Since the encoder of a CS based sensor accesses the

rate-distortion characteristics of the lossy CS, and compare the source indirectly, the compression setup gives risestoote
performaénlt_:e_of practical quantized CS methods against the g, ce codingalso known as indirect/noisy coding [28] [7,
proposed fimits. Sect. 3.5, 4.5.4] [29]-[32], first introduced by Dobrushin and
Index Terms—Remote source coding, conditional rate- Tsybakov in [28]. Other works on remote compression in non-
distortion theory, side information, Blahut-Arimoto algorithm,  ~g setups can be found in, e.g., [33]-[35]
wireless sensor networks. . . e : L
The information-theoretic treatment of lossy CS is incom-
plete, i.e.the remote RDHRs not known [24]. Using the replica
method, the remote RDF of a lossy CS setup was derived in
. INTRODUCTION

] ) ] a general form under a large system limit (i.8/, N — o0)
The proliferation of wireless sensor networks (WSNs) cal|g [36]; however, the remote RDF was not analytically solved.

for energy-efficient communications in environmental, indugggst existing QCS analyses focus on tbperational RD

trial, healthcare, military, and many other applications [1], [2herformance in systems where the encoder is restricted to be a
A typical monitoring task consists of sensing and encoding ag@antizer operating on a single input symbol (either scalar or
resource-limited sensor, followed by a rate-limited mformaﬂopector) at a time. Typically, these assume perfect knowledge
transmission to _the d_ecoder for §|gnal reconstruction. Singgihe sparse signal support, and study high rate quantization
W|rele§s access is typically the_maln contr_lbutorfco energy Cofljand large signal dimensions [37]-[41] [42, Ch. 3]. Scalar
sumption [2], source compression [3]-[5] is crucial. Moreoveg antization (SQ) based QCS setups were studied in, e.g.,
as most sensor S|gnaI§ are continuous-valued, quantizaiigsy [43], [44]. Empirical performance of QCS algorithms
[6] is inevitable. Rate-distortion (RD) theory [7, Ch. 2] [84h4t gptimize either the encoder or decoder can be found in,
Ch. 10] [9, Ch. 9] p.rowdes an mforma.tlon-theoretl.c tool fo_@_g_’ [25]-[27], [38], [45], [46]; joint optimization of encoder-
performance analysis and benchmarking of practical codiggcqder pair(s) was studied in [41], [47]-[50]. RD bounds
methods. In particular, the RD function (RDF) represents thg, gjrectly compressing sparse sources were derived in [51]-
best achievable compression performance for a given dlstortB@], and the compression of (sparse) Bernoulli generalized

fidelity. Gaussian sources via uniform SQ was addressed in [54].
. . , Deriving a RDF/remote RDF in closed form seems difficult
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Alternative techniques include a mapping approach akin ¢esign of a novel entropy coding based QCS method, and 4)
deterministic annealing in [62], and Lagrange duality basedore extensive empirical performance results. As a difference
convex optimization in [63]. to the QCS analyses in [37]—-[39], [41], our coding system
The encoder and/or decoder can possess various types igndot limited to a quantizer operating on a single input
degrees of prior knowledge, i.eside information(Sl), on the symbol at a time. Colucciat al. [40] derived a distortion-
signal of interest, e.g., support, magnitude variations, or ocaate lower bound under the support S| at the decoder, but
pied frequency bands. Added S| sometimes allows to derigesume 1) high-rate quantization, 2) a large system regime as
RD lower bounds in closed form. In particular, compressioN — oo, and 3) noiseless measurements; we consider noisy
with shared Sl at the encoder and decoder follows conditior@$ of a finite length vector source encompassing a composite
RD theory introduced by Gray [64], [65]. Compression witlstructure, and the derived results hold for any rate. In a parallel
correlated, but not necessarily identical Sl at the encoder andrk by Kipnis et al. [36], the derivation of the remote RDF
decoder was studied in, e.g., [66]-[68]. For different non-GS different to ours as they 1) assume a large system limit
Sl-aided compression variants, see, e.g., [7, Sect. 6.1] [69}£5 N — oo, 2) consider a Bernoulli-Gauss (scalar) source,
[71] [72, Sect. 11.1] [73, Sect. 5.6]. and 3) use the replica method. While they provided curves via
Contributions: The objective of this paper is to address ththe BA algorithm, the requisite alphabet discretization was not
RD performance of CS used in compressing remote sourcaddressed. Whereas most previous BA approaches, including
We focus on sparse Gaussian vector sources and the mg®), treat the discretization implicitly via "fine discretization",
square error (MSE) distortion. The closed-form solution to ther via SQ, we propose an optimized vector quantizer YVQ
remote RDF seems difficult to find. An analytically tractabl®ased discretization method that takes the remote nature of the
lower bound to the remote RDF, termiek conditional remote lossy CS into account via modified distortion measures, and
RDF, is derived by providing support Sl to the encodethat yields accurate approximations of the remote RDF.
and decoder. The best encoder of this setup separates intQrganization: The paper is organized as follows. Sec-
a rate independent minimum MSE estimation step, andtian Il presents the system model and formulates the lossy
transmission step of the resulting estimate. A modified B&S problem. A lower bound to the remote RDF is derived in
algorithm is developed to numerically approximate the remo8ection I1l. A numerical approximation method for computing
RDF. Numerical results illustrate the main RD characteristitie remote RDF is developed in Section IV. A novel QCS
of the lossy CS, assess the tightness of the proposed lowssthod is developed in Section V. Simulation results are
bound, and exemplify the compression performance of variopvided in Section VI, and Section VII concludes the paper.

practical QCS methods against the proposed curves. Notations: Italic capital letters denote random variables
The main contributions of this paper are summarized @%); boldface non-italic capital letters denote random vectors
follows: (X); boldface non-italic small letters denote realizations of
« Information-theoretic formulation of the lossy CS probrandom vectorsx); boldface italic small and capital letters
lem; denote deterministic vectorsi) and matrices A), respec-
« Characterization of the remote RDF, defining the conively; calligraphy letters denote sets/alphabe#3. (A block
pression limit of the lossy CS; of m consecutive random vectofX,,...,X,,} is denoted
« Derivation of the conditional remote RDF, i.e., an anaas X™ £ {X,,}™_,. The following operators are use¢)”
Iytically tractable lower bound to the remote RDF; denotes the matrix transpose;denotes the Hadamard prod-
« Development of a numerical approximation method fauct, i.e.,sth entry of vectorC = A ® B is C; = A;B;; Tr(+)
the remote RDF; denotes the trace of a matrixank(-) denotes matrix rank;
« Empirical validation of the proposed RD curves anghax{-} denotes the maximum elementipp(a) denotes the
comparisons to several practical QCS methods; support of vector; |B| denotes the cardinality of s&; |-||,

« Development of a novel entropy coding based QC&unts the number of non-zero entries of a vector. The set
method which approaches the optimal performance givefisymmetric positive semi-definite (definitd) x N-matrices
by the remote RDF. are denoted a§} (S¥,). A diagonal matrix is denoted as
The proposed lower bound, and the numerically evaluatdihg(ay,...,an), an identity matrix ad, and a matrix with
remote RDF, shed light on general RD characteristics afl entries zeros af. The />-norm is denoted a#-||,. The
lossy CS. We remark that the treatment of CS as an integlajarithmslog(-) are of base.
part of the coding system is general in the sense that no
restrictive assumptions are made for the signal parameters, ||. LossyYCSVIA REMOTE SOURCE CODING
and the decoder is not limited to any standard CS signal

reconstruction algorithm. Furthermore, the decoded estlmaltr(ﬁ:ig_ 1, where the information source is observed via noisy

are not constrained to be sparse. .
Related works: To the best of our knowledge, this is thecompressed measurements, encoded with a lossy source code,

first work that approaches lossy CS comprehensively fr and communicated to the decoder for signal reconstruction.

: . . . . The transmissions from encoderto decodeD are assumed
the information-theoretic remote source coding perspective. X . o

g . ; i : t0"be error-free. The compression task is classifiecea®te
Initial results were published in [74]; herein we extend them

by providing 1) more de_ta"ed and insightful derivations, 2) 1the acronym "vQ" will be interchangeably used for "vector quantization”
a numerical approximation method for the remote RDF, 3hd "vector quantizer".

We investigate the RD performance of the model depicted
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Kspase: Noisy CS Encoder _ Decoder  signa C. Lossy CS Problem

source~ — — Ry 2 AAAULR | ST =

0 X & Y E Uml\r D | e:;‘*gte LetX™ £ {X,,}™ , andx™ = {x,}™_, denote the blocks
N rM ! o,y I RN of m consecutive source random vectors and the corresponding
E ' W |'_ Coding system ' realizations, respectively. Lét™ denote then-fold Cartesian
______________ product of X'. Analogous notations are used for the other
Fig. 1. Lossy CS of a sparse source. vectors. LetX be the reproduction random vector at the

decoder output, taking values in the reproduction alphabet

) X. Finally, define the average per-letter mean square error
source coding because the encoder accesses the source @%'E) distortion between vectoss = [z; - --2y]T € X and

through noisy measurements. The source and the CS meas}grg—[

_ &1---in]T € X as
ment model are defined next, followed by the formal statement

of the problem. d(x, %) £ NS (2 — i) 2
and the average per-letter MSE distortion blosks € ™

A. Source Model andx™ € X™ as
Let {X,,}22, be a discrete-time memoryless vector source d(x™, &™) 2 (mN)’l Zgzl Zivd(l“n,k — @mk)?_ (3)

sequenck Each vectoiX,, = [X,, --- X, n]" is K-sparsg, , o
K < N, ie. it takes on values in the continuous source 1€ l0ssy source coding system in Fig. 1 operates as
alphabetX = {x € RV : ||x||, = K}. The setX thus con- follows [78, Sect. 2.1] [8, Sect. 10.2] [72, Sect. 3.5, 3.6]. The

sists of the union of(}) subspaces, i.e., the signal modefnICOderE observes a block of CS measurements € J™,

is nonlinear [75], [76]. We further assume that the sourc'd COMPresses it to a message represented by anundéx
sequence is generated from the memoryless sequence®lofdte N R bits using an encoder mapping

tuples {(G,,B,)}>2, such thatX,, = G, ® B,, where® gm YT U R, .72'rnNR} (4)
denotes the Hadamard produ€t;, is a length&V zero mean ] . )

Gaussian random vectd®, ~ A(0,¢) with covariance Where the ratdt is defined as the bits/entry &. The decoder

dom vector, independent d&,,, with the discrete alphabet@ decoder mapping

B={by,...,b}, where|B|= (¥) is the number of all oI U — X )

possiblesparsity patternsEachbg = [bs1---bs v]T € B is

unique, containsk’ ones andN — K zeros, and is associ-A pair (R, D) for distortionD > 0 is achievable if there exists

ated with thea priori probability p(b,) £ Pr(B = b,) with a sequence of2™"*, m)-RD codes with mappingsg* and

p(by) € [0,1] and X% p(b,) = 1. g8’ such that lim E [d(X™, g5 {ge(Y™)})] < D. LetR be
the closure of the set of achievalilg, D) pairs.

B. Noisy CS Definition 1. (Lossy CS source coding problemmongst all
f—D pairs of mappings (4) and (5), determine the infimum of
matrix, K < M < N. The sensor (i.e., the encoder) observ gchlevalgl_e)t ra:_teﬁ% SL:.Ch Fhat)g )c;(ar;zbelegrqduc%d f\.N'th ;he
{X,}52, indirectly [15], [16], [18], [23] as Seage rorton sa isfying[d(X, X)] < D, ., define [8,

Y, =®X,+W,, n=1,2,... (1) RE™(D)= inf R. (6)
(R,D)ER

We call R§¢™ (D) the remote RDFof sourceX.

Let ® € RM*N pe a fixed and known CS measureme

whereW,,, n =1,2,... are lengthA7 i.i.d. Gaussian random

measurement noise vectors independent{Xf,}>° ,, and

eachY, is a lengthA/ measurement random vector that We remark that the used MSE distortion implies, in general,

takes values in the measurement vector sp@icée use non-sparse reconstruction, which might be undesirable in cer-

W.,, ~ N(0,Xw) with covariance matriXw € Sﬂ‘rﬂ. tain applications. Next, we derive the mathematical expression
CS signal recovery performance is strongly affected Bgr RX™ (D).

the structure of®. The restricted isometry property (RIP)

and the coherence ob establish guarantees on stable an@. Remote RDF

accurate CS signal reconstruction, and they are often used tThe general expression of the remote RDF for a discrete

assess the quality ob [77, Ch. 5,6]. For instancep with memoryless source with discrete memoryless observations has

1.i.d. Gaussian entries satisfies the RIP with high probabilityeen derived in [7, Egs. (3.5.1) — (3.5.5)]. Adapting the result

if M > CKlog(N/K), whereC' is a positive constant [77, to continuous-valued signalX and Y, R¥™ (D) in (6) can

Ch. 1]. Nonetheless, we make no restricting assumptions jg&@ expressed as

P,

R¥™(D) = min iI(Y; X) (7a)

2Due to the independence over time, the time indexwill often be f(®ly):E[d(X,X)]<D N

suppressed for brevity whenever not explicitly needed. . . . -
3With slight abuse of terminology, d-sparse signal containexactly where the optimization is over the conditional probability

(instead ofat mos) K non-zero elements. density function (PDF)f(x]y), commonly referred to athe

0090-6778 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2018.2834349, IEEE
Transactions on Communications

4 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION 2018
test channelandd(x, %) is the distortion in (2). The mutual Kospase. Noisy CS  Encoder _ Decoder  signal
information betweerY andX is X Y | U estimate
< . ° @ E ] TILI\? D 3 I >X
I(Y:X) = %)l f(X|Y)d d% 7b RN | RMll Si |, ymNE| 1| gN
( ) ) - v 2 f(y>f(x|y) Og f()’\() y X ( ) E |_ o _w B | L]3_‘ _Coging_syﬁem_ LB_I

and the average MSE distortion betwe¥nand X is

///f fyx)f&ly)d(x, %)dxdydx

(7c) Definition 2. (Lossy CS source coding problem with support
where (a) follows from f(X|y)= f(X|y,x) because Sl) Amongst all E4-Dy; pairs of mappings (8) and (9),
X — Y — X forms a Markov chain. Note that the remotaletermine the infimum of (achievable) ratés such that
sensing mechanism is captured by the conditional PD¥ can be reproduced with the average distortion satisfying
f(y|x), governed by the CS measurements in (1). E[d(X,X)] < D, i.e., define
Due to the time-varying sparsity ofX,}52, through REem (D)= inf R (10)
{B,}22,, the PDFs ofX, and consequently, & are mixture X|B - (R,}J)leRsi '
distributions, which seems to make the optimization ov?
I

Fig. 2. Lossy CS of a sparse source with support Sl.

N o ! e call R, (D) the conditional remote RDBf sourceX.
7 fficult. H f X|B .
/(Xly) in (72) difficult. Hence, we confine our treatment o early, R C Ry, and ;’gﬁg(D) establishes a lower bound to

the lossy CS problem of Definition 1 to the following two
he best possible compression performance of the lossy CS as
approaches. In Section I, we derive an analytically tractabﬁ

lower boundto R¥™ (D), whereas in Section IV we develop RX™(D) > Rx|g(D). (11)

a method to numerically approximai&g™ (D). Note that the ) o
difficulty resides also in theirect compression oK for which "€ remainder of the section is devoted to deriving
only RD bounds have been derived [51]-[53]. R;gﬁ’g(D).

I1l. RATE-DISTORTIONLOWERBOUND FORLOSSYCS B. Conditional Remote RDF

We derive a lower bound t&5™ (D) in (7a) by considering ~ The conditional RDF for a discrete source along with the
the compression setup of Fig. 2, where the encéigeaind de- respective coding theorems is given in [64]. Extending the
coderD; possess side information (SI) on sequefBg }5 ;. results to aemotecompression setup, the conditional remote
Having support Sl at the decoder is often optimistic in practlcaDF R;g“g( ) can be expressed as
but sometimes the encoder may acquire SIBn(i.e., an 1
estimateB) from the measuremeni at a moderate cost via a RYg(D) = min I(Y;X|B) (12a)
sparse signal reconstruction algorithm (see, e.g., the algorithm {F(=ly.b)} 2 EA(X X)]<D N

listing in [79, Sect. 1.6], and analysis in [80]). Neverthelesghere the optimization is over tH@| different test channels

the shared support SI lets us derive an analytically tractagd@xb, b,), s = 1,...,|B], the conditional mutual information
lower bound taR™ (D) which sheds light on the RD behaworbetweeny andX g|ven Bis

of the original setup in Fig. 1, and establishes a benchmark 8] ~
for practical coding methods. The associated RD problem is  1(Y;X[B) = 3.7, p(bs)I(Y;X|B = b,) (12Db)

formulated below. and the average MSE distortion betweXnand X is

18] % _
A. Lossy CS Problem with Support Sl E[d(X,X)] = 2.2, p(bo)E[d(X,X)B=b,]  (12¢)

Owing to the support Sl, ainformed lossy source code Where, as compared to (7c), the expectation is also taken over
is defined as follows [64], [66], [69] [70, Sect. 2.3.1]. ThéB.

encoderE,; observes a block of CS measuremepts ¢ Y™ Observe that (12b) and (12c) decompose with respect to
along with the Slb™ € B™, and compresses it to a messagegalizationsB =b,, s =1,...,[B|. Rjp(D) in (12a) can
indexu € U using an encoder mapping thus be expressed as the weighted sum minimization [64,
m Theorem 5]
géSi :yrn % B’Hl — Z/[ (8) |B‘
RS = min YR (Dy 13

The decodeDy; uses the index, and the common ISI" to x5 (D) S8l b(b.)D.=D 2= P(Do) B, (Ds) - (13)
reconstruct an estimate af” € X" via a decoder mapping D20, s=1,...,|B|

gE U x B™ . 9) with optimization variables D,, s=1,...,|B|, where

Ry, (Ds) is the conditional marginal remote RD& source
A pair (R,D) for distortion D >0 is achievable if X for a fixed realizationB = b, and distortionD, > 0, i.e.,
there exists a sequence of informe@™ V% m)-rate- we have

distortion codes with mappinggg’, and gp'. such that e _ 1 HY-RXIB = b
m m m m = min — ] = Dg

Jim E[d(X™, g8 {gg, (Y™, B"), B"})] < D. Let Ry be AXB.(D)= 0w WX )

the closure of the set of such achievabie D) pairs. (14a)
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fﬁbiﬁﬁiiﬁ Noisy CS  Encoder Decoder Signal We emphasize that although the subsourcgs,,

Y= 1 v = | estimate g — 1 ... |B|, are virtual, i.e., not actually present in
P A ES1 Ol}mNg Dsi | RN’XS the system, they have an instructive role in our derivations. In
W :' bY Codingsystem T, | light of decomposability, the subsources bear a resemblance
—————— L -—-—-——-+* with composite sourcéd7, Sect. 6.1.1] [70].
Fig. 3. Lossy CS of a sparsibsourcewith support SI. Definition 4. (CS measurements of a subsolrceet

{Y;n}52, be the memoryless sequence of the CS measure-
ments of form (1) restricted to a fixed realizatid@ = b,

where the mutual information betweaf andX, conditioned i.e., the CS measurements of subsodce s = 1,..., |5, in
on B = by, is (15), defined as
I(Y;X|B =b,) Y, 22X, +W=&X,+W (16)

, . 14b .
//f}’|b (X]y, bs)log ((|}|,b >d dx (140) where matrix ®, € RM*E  extracts the K columns
of @& with indices k € supp(bs); consequently,
and the average MSE distortion betwé&rmandX, conditioned we have Y, ~AN(0,Xy, ) with covariance matrix

onB = b,, is Sy, = 2. 3x, @] + Sw € S,
E[d(X,X)[B = b,] & @ Definition 5. (MMSE estimator of a subsouicéet Z, be
R ) ) a length random vector representing the minimum mean
f(x[bs) f(ylx, bs) f(X]y, bs)d(x, X)dxdyd& square error (MMSE) estimator of sourd given Y for
xJy Jx

(14c) a fixed realizationB = b;, i.e.,, the MMSE estimator of
where in (a) we used f(X|y,x,bs) = f(X|y,bs) because subsourceX, in (15) givenY, in (16). EachZ, is given
X - Y — X forms a Markov chain when conditioned onby the conditional expectation as [81, Sect. 8.2]
B. Ovvtng to the support SI all PDFs aboye are equivalent to Z. 2EX|Y,B=b,, s=1,...,|B], (17)
those in (7), except conditioned on a realizatiBn= by.
Regarding the above formulations, the characterization which, owing to the sparsity &, (cf. (15)), decomposes into
rem (D) in (13) boils down to deriving eaclie® (D), two parts:

X|B ; A . . X|bs )
s=1,...,|B|,in (14a). This is carried out in the next section. Z. 2 E[X,|Y,B = b,]
Z,: =¥xy. By Y. = F, Y, ~N(0,%z,) (18)

C. Conditional Marginal Remote RDF ON-—K

Fundamentally, the conditional marginal remote RDWhere 1) Z, is the lengthX random vector that rep-
W (Ds), s =1,...,|B|, in (14a) determines the minimumresents the MMSE estimator ofX, given Y and
(achievable) rateR such thatX can be reproduced with B =b,, and 2) Oy_x corresponds to the MMSE es-
the average distortion sansfym]@[ (X,X) B = b,} < D, timator of the zero part ofX_; for jointly Gaussian

in the setup depicted in Fig. 3, whele!®!, p(b,)R, = R. random vectors,Z, is linear [82, Sect. 10.2], where
1 s= S S . . . T
As preliminaries for derivingRiet, (D), we introduce three the cross-covariance matrix Ex.y, = Xx, ®, € RF*M,
definitions. ’ 2 Sy v. By € RFXM, andZ, ~ N'(0,%z,) with co-
o variance matrix®z, = F, X% v € SK.
Definition 3. (Subsourcglet {X, ,}72; = {G, O b}, .
be the memoryless sequence of e subsourceconsisting  Fx|p, (Ps) in (14a) can be characterized by a two-stage

of K-sparse source vectofX, }° , restricted to a fixed real- €NCO ing structure: the encoder first optimally estimates the

izationB = by, s = 1,...,|B|. Each subsourcK, comprises SubsourceX, (see (15)) from measuremenis; (see (16)),
of two parts: and then optrmally encodes the constructed estimztoin
R (18). This is elaborated next. A
X . {Xs = Gaupp(b,) ~ N (0,2x,) (15) 1) MMSE Distortion Separationiet X, be a lengthN
T lon_xk random vector representing the reproduction of subsource

at the decoder output (see Fig. 3). Using the MMSE
orthogonalrty principle [81, Ch. 8. 2 1], the average condi-
tional MSE distortionE[d(X,,X,)] 2 E[d(X,X)|B = b,]

where 1) X, is a length# random vector that extracts
the entries ofX, (i.e., the entrles ofG) restricted to the

support ofb,, Wheresupp £{ke{l,... N}bsi # 0} in (14c) separates as

denotes the support of vectbg Gupp(b.) extracts the entries

Gy from G for indices k € supp(bs), and the covariance E[d(X,.X,)] = Dz, + E[d(Z,,X,)] (19)
matrix Xx_ € SKJr extracts the entrieXg (k, k') from Xg

for indicesk, k' € supp(bs); 2) On_x is the all-zero vector  *The sequence paif(Xn,Bn)}32, forms a jointly stationary and er-

corresponding to the entries . for indicesk € supp(b.)©, godic regenerative composite source with stationary memoryless subsource
p g Al S pp( ) processes{B, }52 = is the hidden switch sequence that controls the out-

A .
wheresupp(b;)© {{1 S NH SUPp(bs)} is the comple- process{X, }>° ; by randomly actlvatlng the subsourcéX, ,,
ment Ofsupp(b ). according to probab|I|t|e$(bs), s=1,...,|B|[7, Sect. 6.1.1] [70].

n 1
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where we denoted the (rate dependent) average MSE distoriiofi28], [30], gives an expression for the conditional marginal
betweerZ, and X, asE[d(Z,,X,)] = N7'E[||Z, — X,|j3], remote RDFRY:, (D).
and defined the (rate independent) average MMSE estimation

error with respect to subsourég, as [82, Sect. 10.2]
DZ\bS = NﬁlTI‘(ZXS - EZS)- (20)

Separation similar to (19) appears also in, e.g., [28]-[30].
2) Reduced DistortionBy the decomposability of (18), the
last term in (19) splits as

E[d(Z,,X,)] = E[d(Zs, Xo)] +E[dOn-— 10 Kouppi.e)]

Proposition 1. The conditional marginal remote RDF of,
in (14a)is given as the (direct) RDF of the MMSE estimator
Z, in (25), i.e., we have

(Ds> =R

dir
Z|b,

rem

X|bs (D;)v 5:17~-'a|B|7 (26)

whereD = D, — Dz, > 0is the reduced distortion i(23),
and Dz, is given in(20).

By Proposition 1, the remote source coding problem of

where X, is the lengthk reproduction random vector assoP€finition 2 separates into 1) the MMSE estimation Xf

ciated with X, and Xsupp(bs)c is the reproduction random
vector associated with the zero partXf. Since a RDF is a
monotonic nonincreasing function of the distortion [7, Sect.
it is optimal for R™ (D) to setX, . p.)c = On—x, and

thus the distortion in (19) reduces to

E [d(Xw Xs)] = DZ|b5 + E[d(zs; Xs)} : (22)

Let D, > 0 be areduceddistortion criterion forsth sub-
source as

(23)

whereD; > 0 is the distortion criterion in (14a), anlz;,, is
given in (20). Note that by (22F [d(Z,, X,)] < D/, implies
E[d(XMXs)] S Ds- .

3) Estimate-and-Compress Separatidret R%lfbs (D) de-
note thedirect RDF of the MMSE estimatoZ, defined in
(18) for reduced distortioD’, in (23), i.e., define

D, 2 Dy~ Dy, >0, s=1,...,|8|,

dir

1 N
Zlb. min —1(Zs;Zs)

R
(2. |2,)E[d(Zs,2))<D, N

(Ds)

(24a)

where the minimization is over the test chanyfié€k;|z,), Zs
is a lengthX" reproduction random vector fé;, the average
mutual information betwee, andZ, is

I(ZS;ZJ:/ / f(zs>f(zs|zs)1ogf(28|fs)

f(2s)

and the average MSE distortion betweénand 7. is

E[d(Zs,Zs)] :/ / f(zs) f(2s|24)d(zs, 25 )dz,d2Z,.
o (24c)

The RDF Ry (D.) can be derived by decorrelat-
ing the Gaussian (effective) sourc®, ~ N (0,Xz.) via
the Karhunen-Loéve transform, and applying reverse wat
filling [8, Sect. 10.3.3]. Accordingly, le®z, :QSASQI,
where A, £ diag(As1,.-.,As,x) contains the eigenvalues
s > ... > Ak >0 of Bz, € SE, and the columns of
Q. € REXK are the corresponding eigenvectors. Cons
quently, we have

dzsdzs
(24b)

i 1 As
dir / . s,k
Rz, (D) = mi — >y max< 0, =log—
K p —p' N 2°°D
k=1 s,k =s s,k
D{ ,>0,k=1,...K

(25)
WhereD;7k, k=1,..., K, are the optimization variables.
The following proposition, which follows from the proofs

%

given Y, and 2) the derivation of the RDF of the resultant
estimator. On this account, the best encoBgr comprises
the MSE-optimal extraction of the subsourcEs from

e noisy linear measuremen¥; in (16), s=1,...,|8],
followed by the optimal coding of the extracted messages.
The estimate-and-compress separation is illustrated in Fig. 4.

Remark 1. The optimal conditional PDF f(Z|z,) for
(24a), and the optimal variables for (25) are interrelated

with Gaussian "forward channelsZ! , £ 0, 2., + Vi,

k=1,...,K,in Fig. 4 via parameterg, , = % and

UXQ/M = 051D, ,, whereZ( , is thekth element of the decor-
related MMSE estimatdZ, = Q!Z,, andV x ~ N(0,0%, )
is a zero mean Gaussian random variable independéﬁjpf
[7, Theorem 4.3.2].

Remark2. A proof of the optimality of the two-step cod-
ing structure is implicitly present in the seminal work by
Dobrushin and Tsybakov [28, Sect. 5] for the case with
frequency-weighted MSE distortion where the source and
observable processes are jointly Gaussian and stationary. Fur-
thermore, they proved such optimality explicitly for the MSE
distortion in the case where the observations are noisy versions
of the signal (i.e., no dimension reduction) [28, Sect. 7]. Later,
Wolf and Ziv [30] addressed a distortion-rate framework, and
proved that separation holds for the MSE distortion under
more general conditions (i.e., Gaussianity is not needed).
Consequently, the decomposition principle of Proposition 1
is also valid for non-Gaussian sources/observations; however,
finding analytical expressions fdi‘ziiﬁ)S (D)) and Dz1,, may

be difficult. Similar separation results appear in, e.g., [31],
[34], [35], [7, Ch. 4.5.4].

Remark3. Ry, (Ds) is an upper bound to the conditional

arginal remote RDF of a subsourge, = G @ b,, where

is a non-Gaussian random vector with covariance matrix
Ec’; =g [7, p. 130]

e_
D. Characterization of the Conditional Remote RDF

Let Dz g > 0 denote the total average MMSE estimation
error over all subsourceX, s =1,...,|B|, with support SI,
i.e., we have

Dz £ 512, p(bs) Dz,

. 27)
W N1 BL p(b,)Tr (B, — 37.)
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‘Optimal "forward channel” for Zg is ultimately dictated byDz g — the constant term solely
MMSE estimation | 7! L Z/ | governed by the noisy measurement model in (16). This
of X5 from Y 3 s, 1 | unavoidable compression performance degradation caused by
FY 7 - the indirect observations of the source distinguishes the lossy
l_s’ F | CS from directly compressin¥; RD bounds for compressing
| s I sparse sources have been derived in, e.g., [51]-[53]. Note that

a constant distortion floor occurs whether or not the support
Sl is available — only the respective levels fBga"};(D) and
R$™(D) are different. This is demonstrated by the numerical
results in Section VI.

Fig. 4. The optimal compression structure with respect todheditional
mgrgmal remot% RDH;{;?‘{ (Ds) in (14a). P IV. NUMERICAL APPROXIMATION OF THEREMOTE RDF

Since finding ananalytical solution for the lossy CS
. problem of Definition 1 seems to be elusive, we develop a
where (a) follows from (20). The conditional remote RDF ethod based on the BA algorithm [56], [57] teimerically

Rx (D) is given by the following theorem. approximatethe remote RDFRI™ (D) in (7a). As for lossy
Theorem 1. For distortion range CS, the standard algorithm must be adapted to handle 1)
Dy <D< % Z'?_‘lp(bs)Tr(Ex.), i (D) is positive, continuous-valued signalX andY, and 2) the remote com-

and can be evaluated via the convex minimization problem BESSion setup. The former is accomplished by a VQ-optimized
alphabet discretization method, and the latter by appropriately

Rigr (D) = min 1 S8 K ... modifying the distortion measure.

12 p(b.) S, DL =D DgyslV

D! x>0,k=1,...K,s=1,...,|B| . o i
’ 1. Aag A. Discretization of Signal Alphabets
p(bs)maxs 0, ~log—2 . . .
2 °D., As the BA algorithm accepts discrete input/output alphabets,
’ (28) the measurement vector spaé@nd the reproduction alphabet

where Xx. is the covariance matrix ofX, in (15); X are discretized via a VQ. Lev = {1,...,V|} be an
As1s---, A5,k are the eigenvalues of covariance matrixndex set. ThegV|-level VQ is determined by 1) the encoder

¥z, of Zs in (18), D;k are the optimization variables, regionsS,, v € V, which partition the measurement space,
k=1,....,K, s=1,...,|B|. If the distortion values satisfy i.e.,S, C ¥, S, NS, = 0, foranyv # v/, andJ\", 8, = ;

D> LB pb)Tr(Ex.), then RT3 (D) s zero. 2) the reconstruction codebook® £ {1, ..., &y} with

. . " . odevectorst,, € RV, v € V. The VQ encoder is a mappin
Proof. Applying Proposition 1, substituting (25) into (13), anCqu 1) 1 such that for an inpu?r co it producespang
recasting the sum distortion constraint in terms of variables, ° o

. - index EY4(y) = v € V; the VQ decoder performs an inverse
D, . k=1,...,K,s=1,...,|B|, along with (27) results in . va . oq vl Sq
(28). A valid distortion require® > D g > 0. In particular, mappingD™® : V — &4 as D*4(v) = &, € 4. The random

1 B o variableV represents the VQ output.
forall D> 53> .7 P(bs)T}"(ZXs)'_We haveRx g (D) = 0 The next section illuminates the role of the VQ in RD
If the encoder sends no information (i.&k,= 0), then the

2 e — - - ~ approximation, and the specific optimization of the VQ is
decoder can se&X = Oy, resulting in an admissible d'Stort'O”deferred until Section IV-C.
becauseE [d(X,X)] = SE[|X-X|}] = FE[IX|3] =

1 B
~ Lom1 P(02)Tr(3x,) < D. B. Modified Blahut-Arimoto Algorithm for Lossy CS
Remark4. Ryp(D) is an upper bound to tt]e conditional  ~gnsider a VQ as described above with
remote RDF of a sourc&X = G © B, where G is a non- p(y) 2 Pr(V =v) = fyes, f(y)dy, veV. Consequently,
Gaussian random vector with covariance maffig = ¥c index v € V represents all measurement vectors that belong
[7, p. 130]. to VQ regionsS,. Similarly, let X9 be a discrete reproduction

By Theorem 1,R;§|I;§(D) is determined by a weighted sumrandom vector at the output of decodBr with alphabet
of the RDFs of the MMSE estimatoi®, under the reduced X = {&1,..., &y} (i.e., the VQ codebook). Replacing
distortion criterion, where the weights — the prior probabilite¥ with ¥, and X with X9 in (7a), R™(D) can be
of the sparsity patterng(bs), s =1,...,|B| — represent the approximated as
"appearance frequencies" of such estimators. In particular, 1 ~
(28) involves finding the optimal allocation of the distortion ~ RX.ba(D) = min ~1(V;X9) (29a)

: - p(@; |v):E[d(X, X)) <D NV

components not only across th8| different sparsity patterns,
but also across thél entries of each decorrelated randoriwhere the optimization is over the conditional probabilities
vectorZ/,. This type of weighted minimization is discerniblyp(&;|v) £ Pr(X% = &;|V = v), v,j € V. The mutual infor-
a consequence of the composite source structure. mation betweer/ and X4 is

R (D) reflects the remote sensing nature of the lossy - ) Gl
CS:Xrlégg(ar()jless of the rate, the lowest achievable distortion /(V:X%) = PO DN P(U)p(gﬁﬂv)logp;(%l,)) (29b)
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and the average distortion betweXnand X4 is Algorithm 1 Modified Blahut-Arimoto algorithm for approx-
X v |w imating the remote RDFRY™ (D)

E[d(X, X] = 32,21 255, p(0)p(&;[v)d(X, #;]v) (29¢) —jnoitsa) Tagrange multiplierss > 0; b) codevectors,,
where d(X, £;|v) > 0 is the modified distortion measure, and index probabilitieg(v), v € V, obtained as described in
defined as the average per-letter MSE distortion betvléen Section IV-C; ¢) modified distortion measurgeX, z;|v),

and4; conditioned onl’ = v, i.e., v,j €V, of form (29d).
_ Initializations: a) Sett := 1; b) setp(&,)* :=1/|V|, j € V.
d(X, &;v) —E [d(X, &))|V =v], v,jeV for a given\
[IX —&; 3]V =v,Y =y] f(ylv)dy repeat
/y H %1l 1#61) 1) Update the conditional probabilitieg(;|v)!*?,
/ v, j € V, according to (31a).
y 2) Update the reproduction probabilitig&z ;) ™!, j € V,
L [||X &3V =0, Y = y]| f(y)dy according to (31b).
(a) S 121y 3) Sett :=t+ 1.
= E||X—&,|5]Y = d
N p(v) /yGS,,, L ilalY =y]f(y)dy until a pre-defined stopping criterion is met.

. (29d)  4) compute the rat&®, according to (29b), and the distor-
where(a) follows from the Markov chairX — Y — V, and tion D, according to (29¢).

from p(vly) =1, if y € S,, veV, and0 otherwise. Note  and for
that pre-calculatedV|? quantitiesd(X, &;|v) remain fixed Output: R¥™ (D) curve determined by théRj, Dy)
in the algorithm. In the context ofiiscreteremote sources, pairs, "
a distortion measure similar to (29d) appears in, e.g.,
Sect. 3.5] [31], [58].

Consider a Lagrangian for (29a) as

—_

d(X,%,|v), v,7 € V, of (29d). Taking this into account, the

VI . : g
({p(mﬂv)}u v A b)) = e Ev4-DV4 pair, that is, the encoder regioss, and codevectors
ZM ZM p(0)p(&;]v) 1Og J|' )+ 53_,“, v_e V, are optimized to m|n.|m|ze the average _MSE
> N p(&;) (30) distortion between the sourée and its|V|-level reproduction
)\‘Z‘l ! z'j‘:‘ll p(V)p(&;]v)d(X, &]v)+ X4, i.e., we choose
S v, S, (o) . ] .
=t ! Lo . . {8y, &, tvey = argmin NEH\X?XQH%}
where A > 0 is the Lagrange multiplier associated with the {Sv,#0}vev
sum distortion constraint, and,, v € V, are the Lagrange (@ remin iz b
multipliers as‘s?ciated with the valid conditional probability (Sudotoey N 7Y€
: v ~ .
constraintsy_ ", p(#;|v) = 1, Vv € V. Following the stan- E[[|X — 2,/3]Y =y] f(y)dy
dard BA procedure, aR, D) point of Ri{L. (D) in (29a) is yeS,
i i i nditi iliti () T A
obEalned by sequentially up_datlng the _c_o_ndlponal prol:_:ab|llt|es = argmin Y, o, p(0)d(X, &,[v)
p(&;|v), and the reproduction probabilitiegz;) for a fixed {Su,B0}vev
\ at each iterationt = 1,2, ... as [8, Sect. 10.8] (32)

o o where in(a) we used the Markov chaiX —Y — V, and
p(&;) exp[—Ad(X, Z;|v)]

p(&;]0) ! = s il ,v,jey plly)=1 i yeS, veV, and0 otherwise;(b) follows
SV p(@ ) texp [~ A(X, &j[v)] from (29d).
p(@;)t+ ZM p(@;]0)Hp(v), j €V ((giS)) Remark5. Besidesd(X,#;[v), v,j € V, our VQ affects the
1 J ’ )

final distortion in (29¢) through the conditional probabilities
until convergence, and evaluating the rate according to (29b)i;|v), v,j € V — the variables to be optimized in iterative
and the distortion according to (29c). Hence, different valueteps (31a) and (31b). In addition, the VQ affects the rate
for A\ sweep the curve foR¥™, (D), which approximates the approximation in (29b) through the index probabilitie),
remote RDFRi™ (D) in (7a) with an accuracy that increases € V. Therefore, we expect to achieve a better approximation
with the numbef)V)|. of R¥™(D) by incorporating the VQ optimization in the
The proposed method is summarized in Algorithm 1. Thterative loop of Algorithm 1, and, thus, generating a unique
algorithm can be terminated when the quantities do not signfQ for each A. For example, the mapping approach in
icantly change, e.g., WheE ( (&) — p(&,)t~ 1) < epa 162] adapts the reproduction points within the optimization
for a pre-defined positive constalga > 0. The algorithm loop. Nevertheless, the proposed non-adaptive discretization
inputs p(v), #,, andd(X, £;[v), v,j € V, are the outcomes seems to yield decent accuracy for all distortion valliesas
of the VQ optimization. The optimization is carried out nextdemonstrated in Section VI.

o o Remark 6. Setting the conditional probabilities (31a) as

C. Vector Quantization Optimization p(&;|v) = 1 for v = 5, ando otherwise, results in reproduction
In Algorithm 1, the accuracy of distortion evaluatiorprobabilities p(&;) = p(v) for v =j, and 0 otherwise in

through (29c) is ultimately limited by thg’|? fixed quantities (31b). The distortion (29c) foRX}. (D) then becomes equal
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to the VQ distortion in (32), and the rate (29b) becomdbe encoder regions are formed as

R=- Z,[)’Z‘Ip(v)log(p(v)), i.e., the entropy of quantization ) )

indexV. R, (D) is thus a "noisy VQ" that randomizes the Si = { y (1= pu*)z = eill3 — n*log(p(i)) <

mappingV — X9 via conditional probabilitieg(z;|v) acting (1 — u)||z — e ||3 — pclog(p(i')), Vz";éi}, teZ,

as a noisy channel between the encoder output and decoder (37)
wherez = E[X|Y =y] is the MMSE estimate of (34); 2)

input.

The joint optimization overS, and &,, v € V, in (32) the_rate terms-log(p(i)), ¢« € Z, are updated_given the new
seems to be intractable, and so we use a common alterh§@ions; 3) the codevectors are set equivalently to (35).
ing minimization to derive necessary optimality conditiond;inally, the index probabilitiep(i) = [ ., f(y)dy, i € Z,
Accordingly, the proposed VQ is equivalent to the VQ in [41§7€ used to generate a binary source codebook W_lth aver-
designed for noiseless channels. The optimal encoder regi@d§ codeword length close to the index entropy via, e.g.,
for fixed codevectors satisfy a generalized nearest-neighb$ffman coding [90]. The name "estimate-and-compress”

condition describes the two main steps: the sensor compresses each
) ) measurement realizatignby 1) forming the MMSE estimate
Sk = {y Nz — &5 < ||z — 2|3, VU’;AU}, vey, z = E[X]Y = y], and 2) obtaining the optimal encoding index
(33) asi* = argmin,cy (1 %)z — ¢;[3 — u*log(p(0)).
wherez € RY is the MMSE estimate oX given Y =y,
defined as [83]-[85] VI. NUMERICAL RESULTS
z 2EX|Y =] A. Simulation Setup
=B p(b|y)EX]Y = y,B = b,] (34) Consider setups with¥g = oZIn with o% =1, and

18| p(bs)f(y|bs) Yw = oIy with o3, = 0.01. The following curves and

=21 Z'?‘_lp(bgf)f(ylbsf)_s QCS methods are evaluated:

where the conditional PDF(y|b;) is Gaussian a8/ (0, Xv,)
(see Definition 4), andz, = E[X|Y =y,B =b,] is the
MMSE estimate ofX given Y =y and B = b,, which,

1) R;glfg(D): the conditional remote RDF of Theorem 1.

2) R}, (D): a numerically approximated remote RDF of
Algorithm 1.

3) RY[p(D): the conditional direct RDF oKX, correspond-

by Definition 5, comprises of vectots, = F.y, € R* and jnq to lossy compression &k with B available as Sl at the

On-r. Similarly, the optimal codevectors for fixed encodegncoder and decoder (see [52, Sect. VII-A]). Clearly, we have
regions satisfy a generalized centroid condition R()i(iTB(D) < Ryt (D).

4) R, .(D): a numerically approximatedirect RDF of
X which represents lossy compressionfwithout support
] o o ] .~ Sl, and is obtained by applying the discretization of Sec-
The VQ can be trained offline in the spirit of _the iterativgjon 1v-C and Algorithm 1 with usingY = X. Clearly, we
Lloyd algor_lthn”_n [86]—[8_8_] by successively applylng t_he NeChave RYIr, (D) < RY" (D) < R, (D).
essary optimality conditions (33) and (35) for training data 5) ECVQ-CS: the proposed "estimate-and-compress"
sets. method of Section V withuc® = 0.1/log(|Z]), and Huffman
codewords.
6) VQ-CS: the fixed-rate QCS method in [41], where the
|Z|-level VQ is optimized for noiseless channels.
7) VQ-CE: a baseline fixed-rate QCS method that performs
the two stages dECVQ-CS in the reverse (suboptimal) order:
Approaching Ri™ (D) in (7a) requires encoding (large)the encoder optimally quantizés in the MSE-sense, unaware
blocks of vectors. We instead propose a symbol-by-symi@fl X, and the decoder estimaté from these quantized
QCS method that follows the optimal "estimate-and-compreggeasurements. The encodend)-CE is an|Z|-level VQ that
principle underlyingRi™ (D), and is empirically shown to minimizes the distortior), . p() E[||Y — ;]3] = ] with
approachRi™ (D) in Section VI. nearest-neighbor vectogs € R, and its decoder consists of
The proposed method, termBA'VQ-CS, relies on entropy- the MSE-optimal codevectors of form (35). This "compress-

constrained VQ [89], and minimizes a weighted distortion-rafd'd-éstimate” approach underlies many early QCS methods,

cost function cf.8[)27é, [38].th MMSE. estimati n @7
. ) z/s. the average estimation error in
(L= %) ez POE[IX — i3I = i] - (known B)
ec o o

1> ez p(i)log(p(i)) 9) Dz: numerically evaluated average MMSE estimation
where I is the quantization index with index seterror of X givenY,i.e.,Dz £ N7'E[|X — Z|3]; estimator
I 2{1,...,|Z]}, ¢; € RY are the reconstruction codevectorszZ £ E[X|Y] takes values according to (34) (unknoi).
and the parametegi* € [0, 1] adjusts the distortion-rate trade- The quantization rate is set a®g|V| =12 bits for
off. Using alternating optimization [49], [50], [BOECVQ-CS  R¥™. (D), and varied asog|Z| = 1, ..., 12 bits for the QCS
can be trained via a three-step iterative algorithm, where methods. The measurement matdxis generated by taking

& = $ / _EIXIY =ylf(y)dy. vev. (@)

V. "ESTIMATE-AND-COMPRESS QCS METHOD

(36)
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the first M rows of an N x N discrete cosine transformwithout knowing the sparse support in a QCS setup [24].
matrix, and normalizing the columns ds || = 1. The dis- The tightness of the lower bound is heavily influenced by
tortion is measured af0log,, (E[d(X, X*")]/N'E[||X||3]) the signal setup parameters, as will be exemplified in the
dB, where Xt is the method-dependent decoded estimaseibsequent experiments. Despite the gap, the proposed lower
of X, and E[|X|2] = 3%, p(b,)Tr(Ex,). The rate is bound Ris(D) captures the main peculiarities of lossy
measured ask bits/entry of X. The convex minimization CS: the curve has an almost linear distortion region at low
problems are solved via CVX [91]. rates, whereas for high rates, the distortion saturates to the
Complexity: As the complexities of Algorithm 1 and the MMSE estimation error floorDz. We remark that due to
QCS methods increase exponentially with the number of VIQe sparsity, the slope aRy'} (D) at low rates is steeper
levels and|B|, the experiments are confined to moderatdan the conventional-6 dB/bit. Note that for smallR,
signal dimensions and quantization rates; the most complie rate is the most limiting factor to achievable distortion,
setup used in the paper involve$ =20, M =8, K =2, and, thus,Rglgfba(D) nearly coincides withRg%, (D); for
and log|V| = log|Z| = 12 bits. As for any discretized BA higher rates, the impact of noisy CS measurements increases,
algorithm, we remark that the same complexity issue duleereby degrading the performance B, (D). Regarding
to a large number of variables remains regardless of tttee approximation accuracy oRy', (D) and Rx%.(D),
guantization method. In fact, due to the VQ advantages [92pserve that the highest obtained ratefs~ 1.3 bits, so
the proposed algorithm enjoys a superior trade-off betwe#ite "over-sampling ratio" of the VQ discretization is at least
the approximation accuracy and the complexity as compargd /2™ ~ 7.5.
to, e.g., SQ. Complexities of the QCS methods can be de-As the encoder ofVQ-CE is CS-blind, its performance
creased via using SQ or low-complexity VQ variants like treés the worst amongst the QCS methods. The advantages of
structured, multi-step, and lattice VQs [93]. An alternative is tentropy coding are shown by the propo$edVQ-CS curves
reconstruct the signal from quantized measurements via, ewghjch, for moderate rates, approach the compression limit
standard/;-minimization or a greedy reconstruction methodRi¢"t. (D). As a proof of validity, VQ-CS eventually saturates
albeit with low compression performance [24]. The complexity Dz, which is expected to also happen for the other QCS
of ECVQ-CS could be reduced by approximating the MMSEnethods at sufficiently high rates.
estimates (34) by, e.g., the randomized orthogonal matching
pursuit [83]. These considerations, which could allow morge. Effect of Number of Measurements
realistic setups withV and M being hundreds, are left for For the setup of Section VI-B, Figs. 5(a) — (d) illus-

future study. trate the influence of different numbers of measurements

) , ) M =1{2,3,4,5} on the compression performance. A4

B. Rate-Distortion Behavior of Lossy CS increases, i.e., the signal-to-noise ratio increases, the level of
Consider a setup withlv =7, M =5, K =1, and equal D, decreases, and the performance of each method without

support probabilities(b,) = 1/|B[, Vs = 1,..., |B|. Fig. 5(d) ~support SI moves closer to the lower bouRgf (D). The
depicts the average distortion versus the average rate r@rgest gain is achieved whe¥ is increased fronM —921to
different compression schemes. M = 3, whereas the difference betwegh = 4 andM = 5 is

Consider first the SI aided lower boundB{z(D), almost negligible. This matches the CS philosophy: increasing
R;‘grba( ), and ;’gﬁg( ) to the remote RDER™ (D) in (7a). M beyond the value that suffices for accurate CS signal
Owing to the direct observations with support $a<)1(1‘TB( ) recovery does not bring significant gains. In this respect,
appears as the line (in log scale) with S|0|96K — _49 provided thatM is already at this satisfactory level, it pays
dB/bit [52], and yields the lowesR for all values OfD as Off to primarily invest in rateR to meet the given distortion
expected. The substantially increased rate mggba as fidelity D. Note that the convergence of the curves to their

compared toRg(ler( ) is caused by the necessity of ConVeyrespectlve distortion floors is rather similar for aff, and that

dir dir rem
ing the support ofX to the decoder. Whllnglger( ) and Ryig(D), Bx'pa(D), Bxjg (D), and Dgp remain unaltered.
R;a"};( ) nearly coincide at high distortion, the curves diverge

for moderate to low distortion values. The gradually increasirfgs Effect of Support Probabilities
gap betweenR;gﬁ’g( ) and R;‘(“YB( ) for low values of D Consider a setup withlV = 20, M =8, K=2, and
is a consequence of the remote sensing. Note that whergaequal support probabilities ag(b,) = apl/Z‘Lf' 1 ag'l,
arbitrarily small distortion is achievable at asymptotically high = 1,...,|B|, where0 < o,y < 1lis a parameter that adjusts
rates for R§g(D) and kYY", (D) (i.e., lim R;lger(D) =00 the concentration of the probability mass function (PMF) of
and lim R{Y, (D) = o), the lowest achievable distortion forB» and1 > p(by) > --- > p(byg) > 0. For small values of
e 730, apl, the PMF concentrates around a fraction of elements in
xB(D) is the MMSE estimation error flooDz g (i.e., 5= {b bz b, and vice versaay = 1 corresponds to
lim Rrem ( ) OO) - 1. : |B\ ¢ pl p
DDz XIB the unlform dlstnbutlon, whereas,; — 0 approaches remote
Focus now on the approximate remote RDngga(D), compression of only a singlg-sparse vector. The vectols,
, the best achievable performance of any QCS methdnl.alphabetB are ordered such that the decimal number of a
The gap betweenggﬁg( ) and Ry%, (D) represents the binary string represented Hy 1 is greater than that obs,
compression loss induced by the random measurements taken1, ..., |B| — 1 (|B] = 190).
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Fig. 5. RD performance of lossy CS schemes with equal support probabilitie§ fer7, K = 1, and the number of measurements &)= 2, (b) M = 3,
(c) M =4, and (d)M = 5. The colors and markers of the curves in (b), (c), and (d) are equivalent to those in (a).

Fig. 6 shows the average distortion versus the average rate VII. CONCLUSIONS ANDFUTURE WORK

for ap = {0.98,(_).90,0.72}. Decrt_eas!nglpl reduces the un-  We addressed lossy compression of single-sensor CS from
certainty of the signal support which improves the compressigil, remote source coding perspective. By giving support side
efficiency. This is seen as the increased decay rat® 66r jnformation to the encoder and decoder, we derived the con-
the non-SI schemes, the shift 87, (D) towardsiy|g (D)  gitional remote RDF to establish a compression lower bound
and RY",,(D) towards R§[(D), and the reduction of the for a finite-rate CS setup. The best such encoder separates
gap betweenDz and Dz, which is related to the bestinto an MMSE estimation step and an optimal transmission
possible support recovery for a given setup. This exemplifiggep. A modified BA algorithm was proposed to numerically
that, for a sufficiently concentrated PMF 8, the proposed approximate the remote RDF, serving as the best attainable
ECVQ-CS efficiently encodes sparse vectors from noisy C&mpression performance of any practical QCS method. The
measurements: its performance approaches the best achigyin RD characteristics of the lossy CS were demonstrated by
able performance of a support unaware QCS method (i.€emparing the performance of various practical QCS methods
X'ba(D)). The result illustrates the MSE separation principle including the devised near-optimal entropy coding based
(cf. (19)): an efficient QCS method implicitly (successfullyloCs method — with the proposed limits.
recoversX from Y, and encodes the resulting estimates Finding a closed-form expression fagi™ (D) remains

optimally. the ultimate goal. Alternatively, one could try to accurately

0090-6778 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2018.2834349, IEEE
Transactions on Communications

12 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION 2018

on) o . - ~~ 0
% R (D) %
a) R ® a)
c 5¢ VR0 - £ -5
= SR
=) VQ-CE 9
| VQ-CS ||
'é) -10 #ECVQ-CS| | g -10
o) R ~+D; o)
) ->-DZ|B ()
N 15+ = -15
G )
£ z
2 -20°F a\ ] g -20
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Rate R (bits) Rate R (bits)
@ (b)

o

&

N
ol

Normalized Distortion D (dB)
AN
o

R
o

0 0.2 0.4 0.6 0.8

Rate R (bits)
©
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approximate R\g™ (D), or find a substitute for the sharedfor remote compression, the achieved curves for the QCS
support Sl to derive a tighter lower bound Bgﬁg(D). As methods are upper bounds to sparse souXes G © B,

for the proposed BA algorithm, one could 1) compare it tawhere G is a non-Gaussian random vector with covariance
a method based on the mapping approach in [62], 2) asses#rix X = Xg.
the performance gain (i.e., approximation accuracy vs. the
computational complexity) of the VQ discretization against

regular grid quantization, and 3) modify the algorithm to make ] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
it applicable to high-dimensional signal setups. Other opeht of things for smart cities,IEEE Internet of Things Jvol. 1, no. 1, pp.
problems include finding theoretical results for 1) the (almost) 22-32, Feb. 2014.

linear slope ofRi, (D) at low rates, and 2) the gap betweenl2] M. Vecchio, R. Giaffreda, and F. Marcelloni, “Adaptive lossless entropy

Dz andDg s, which is ultimately defined by supportrecovery — o™s oo s fg:a_tTgséo_Tllggw?:?t{E;oi Jrans' Wireless Commyn.

performance. It has been shown for direct source compressig@) C. Shannon, “A mathematical theory of communicatioMhe Bell
that if a quantizer is optimized for a memoryless Gaussian System Technical Journalol. 27, no. 3, pp. 379-423, Jul. 1948.

i ; ——, “Coding theorems for a discrete source with a fidelity criterion,”
source, and the quantizer is then used to compress a ndfi- IRE Nat. Conv. Reovol. 7, pp. 142-163, 1959.

Gaussian source, the resulting distortion is as bad as if th§ z. Xiong, A. Liveris, and S. Cheng, “Distributed source coding for

source were actually Gaussian [94]. If this can be shown sensor networks,TEEE Signal Processing Magvol. 21, no. 5, pp.
80-94, Sep. 2004.
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