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Abstract—Vehicle-to-everything (V2X) communication is a
growing area of communication with a variety of use cases.
This paper investigates the problem of vehicle-cell association in
millimeter wave (mmWave) communication networks. The aim
is to maximize the time average rate per vehicular user (VUE)
while ensuring a target minimum rate for all VUEs with low sig-
naling overhead. We first formulate the user (vehicle) association
problem as a discrete non-convex optimization problem. Then, by
leveraging tools from machine learning, specifically distributed
deep reinforcement learning (DDRL) and the asynchronous actor
critic algorithm (A3C), we propose a low complexity algorithm
that approximates the solution of the proposed optimization
problem. The proposed DDRL-based algorithm endows every
road side unit (RSU) with a local RL agent that selects a local
action based on the observed input state. Actions of different
RSUs are forwarded to a central entity, that computes a global
reward which is then fed back to RSUs. It is shown that each
independently trained RL performs the vehicle-RSU association
action with low control overhead and less computational com-
plexity compared to running an online complex algorithm to solve
the non-convex optimization problem. Finally, simulation results
show that the proposed solution achieves up to 15% gains in
terms of sum rate and 20% reduction in VUE outages compared
to several baseline designs.

Index Terms—V2X, mmWave, user-cell association, reinforce-
ment learning, scheduling, 5G, neural networks.

I. INTRODUCTION

The automotive industry is experiencing a technological
revolution enabled by vehicle-to-everything (V2X) communi-
cation. On the one hand, V2X communication enhances safety
and efficiency of transportation by extending drivers’ field-
of-view (FoV) [1]. On the other hand, emerging applications
i.e., platooning, autonomous driving, collision avoidance, and
dynamic map sharing are necessary for spearheading the
vision of intelligent transportation systems [2]. In this regard,
a tremendous growth of traffic in vehicular communication
systems ought to be handled by the next generation of mobile
services (5G). The state-of-the-art communication technology
for enabling vehicular communication is dedicated short range
communication (DSRC) based on IEEE 802.11p protocol.
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DSRC offers connectivity up to a range of 1000m and
the maximum achievable rate of 27 Mbps [3]. Field testing
of DSRC with omni-directional antennas in a real system
provided the maximum data rate of 6 Mbps [4]. Researches
on the other hand have advocated cellular solution for ve-
hicular communication mainly because the infrastructure is
already deployed. 3GPP has standardized long term evolution
vehicular (LTE-V) as an extension of already existing fourth
generation (4G) LTE standard. LTE-V integrates PC5 interface
to enable vehicle-to-vehicle (V2V) communication and the Uu
interface enables vehicle-to-infrastructure (V2I) communica-
tion. Achieving higher data rates with the currently deployed
cellular standard is a challenging task since the maximum data
rate of 4G system is limited to 100 Mbps for highly mobile
scenarios. Therefore, it is highly unlikely that the current
technologies will fulfill the stringent requirements posed by
the next generation of vehicular devices which will generate
terabytes of data per hour. 5G is intended to support a diverse
range of services, however, the initial solutions are expected to
provide support for high throughput and low latency use cases
[5]. The increasing popularity of mission critical use cases are
forcing network operators and service providers to ensure a
high quality of experience/service (QoE/QoS) level.

The expected growth of traffic demands including V2X
communication systems calls for higher spectral efficiencies,
in which communication over millimeter wave (mmWave)
bands has become a pivotal research interest in 5G technology.
However, the sensitivity of mmWave signals to blockages,
higher pathlosses, frequent handovers in dense networks,
highly mobile scenarios, and the huge difference in signal-
to-interference plus noise ratio (SINR) between the line-of-
sight (LOS) and non-LOS links are the major deployment
challenges in mmWave communication [6]. To overcome
the aforementioned challenges, researchers have focused on
developing efficient beamforming strategies [7]-[8], joint user
association and radio resource allocation methods [9], and
enabling multi-connectivity [10]-[11].

A. Related Work
Vehicle-cell association refers to the association of a vehicle

with the road side unit (RSU) and it affects the system
performance. In the currently deployed LTE/LTE-Advanced
networks, the state-of-art association policy is the maximum
received power association [12], where a vehicle connects
to the RSU with the maximum received power. The asso-
ciation based on the maximum received power is feasible
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for homogeneous networks and is not deemed as a practical
solution considering the inherent nature and challenges of
5G technology. Emerging heterogeneous networks (HetNets)
with variable cell size i.e., macro, pico, and femto requires
a different approach than the traditional received power asso-
ciation. To ensure the loads are evenly balanced among the
different cells, a load balancing strategy is devised in [13]
to increase the system capacity and to avoid congestion at
the macro basestation due to the highest transmit power. An
active load balancing strategy for mobile users is presented
in [14], where the next associating basestation is predicted
based on the past associations and the resources are reserved
beforehand. A similar approach for predicting the next user-
cell association is presented in [15], where the association
decision is based on a combined metric of the received signal
strength, the delay, and the handover cost using nonlinear
regression modeling. Another approach for load balancing
is biasing transmit power towards increasing/decreasing cell
coverage known as cell breathing [16]. Furthermore, energy
efficiency is a key parameter in the design of 5G cellular
networks and researchers have studied several approaches with
different scenarios, assumptions, and network statistics. A user
association strategy for preserving energy in sleeping cells is
presented in [17], where the user is associated to an active
basestation on the basis of maximum mean channel access
probability. Authors in [18] study an energy efficient user
association problem in heterogeneous networks with concave
utility function. Authors in [19] investigate the design of a
user-cell association policy with the aim of maximizing the
weighted sum of energy efficiency for multiple-input multiple-
output (MIMO) enabled cellular networks. The joint design of
energy efficient framework for optimizing the user association
and resource allocation under network stability constraints
is studied in [20]. Furthermore, the works in the literature
investigate optimizing network utilities based on different
optimization objectives such as minimizing the transmit power,
minimizing a weighted combination of transmit power and
resource allocation, and the joint design of user association and
transmit power optimization. A joint transmit power and re-
source allocation approach enabling ultra-reliable low-latency
communication (URLLC) in vehicular networks is proposed
in [21]. The user-cell association problem is formulated as
a convex utility function and solved in a centralized manner
using the sub-gradient algorithm in [22]. The joint design
of user association and transmit power selection for massive
MIMO heterogeneous networks under imperfect channel state
information (CSI) is studied in [23]. The user-cell association
problem for two-tier networks operating at high frequency and
mmWave frequency is studied in [24]. Authors in [25] study
the performance of online algorithms for the multi-tier multi-
cell user association problem. The URLLC use case is studied
from the perspective of a scalable framework, which takes into
account delay, reliability, packet size, network architecture,
and topology in [26]. However, associating a mmWave user
with a basestation without considering the mobility may
result in frequent handovers hereby, degrading the overall
system performance. Recently, the deep learning paradigm has
gained interest of researchers, followed by exciting results in

fields i.e., vehicular communication, user-cell association and
communication at mmWave. Edge computing is an emerging
concept and authors in [27] discuss the applications that
must be provided at the network edge with special empha-
sis on URLLC enabled services i.e, V2X communication.
A knowledge-driven edge computing mechanism using the
asynchronous actor critic (A3C) based learning algorithm for
vehicular networks is studied in [28]. A centralized rein-
forcement learning based resource allocation solution for out-
of-coverage vehicular users is proposed in [29]. Authors in
[30] have used recurrent neural network to predict the next
associating basestation with which a mobile node will connect.
A deep learning based user-cell association problem for sum-
rate maximization is considered in [31], where the input to the
neural network (NN) is only the geographical position of the
users. The authors in [31] show that the association problem
can be solved in a computation efficient manner using deep
learning framework, where the optimization based solution
has computational complexity of KM2 per basestation (K is
the users and M is the number of basestations) compared to
2KM computations of artificial NN. Furthermore, the author
in [32] proposed a vehicle position control solution using
the A3C framework to solve the LOS blockage problem in
mmWave vehicle-to-vehicle (V2V) relaying. The aforemen-
tioned works investigate the user-cell association problem
with different objectives such as energy efficient user-cell
association, joint design of user-cell association, resource allo-
cation and joint design of transmit power, user-cell association.
However, a common feature of all optimization-based studies
is the requirement of intensive computation to perform the re-
association under varying network conditions, i.e., propagation
characteristics, fading and mobility. Hence, above solutions
may incur huge computational and communication overhead
during the re-association, specially for MIMO networks with
multiple users and basestations. Therefore, the solutions in the
existing literature may not always be feasible to implement
under mmWave channel fluctuations due to the mobility. On
the other hand, deep reinforcement learning (DRL) is a new
paradigm for effective decision making and, compared to state-
of-the-art optimization techniques, it can operate in a compu-
tationally efficient manner [31]. Another advantage of DRL
approaches is that they can operate efficiently without relying
on predefined models that characterizes the environmental
statistics.

B. Our Contribution

The main contribution of this paper is the design of a
novel low complexity machine learning based vehicle-RSU
association algorithm in mmWave communication networks.
We formulate an optimization problem that maximizes the
average sum rate of all the vehicles and at the same time
minimizes the probability of events in which the average rate
fall below a predefined threshold. In our proposed approach,
we have utilized multiple RSUs serving multiple vehicles
with low signaling overhead in a distributed way. Due to the
assumption of mobility and the use of mmWave, adopting
conventional optimization techniques for vehicle-RSU asso-



2332-7731 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2019.2941191, IEEE
Transactions on Cognitive Communications and Networking

3

ciation incurs huge computational overhead. To solve the for-
mulated problem, we adopt the RL framework to approximate
the solution of the network-wide optimization problem with
low computational and signalling overhead compared to the
centralized approaches. We have utilized the approximation
ability of NN to mimic the input-output response, since NN
are capable of approximating linear/non-linear functions up to
desired accuracy. The distributed setting in our work allows
each RSU to run an independent NN-based solver, which
makes the decision entirely based on its own observed state.
Furthermore in our proposed approach, the computationally
intensive tasks are performed offline and the validation tasks
are performed online. Here, offline training is utilized to
approximate the solution of the NP-hard problem without
strict time constraints using a large dataset that captures the
environment dynamics. Offline training alleviates the require-
ment of intensive computation in the scenarios where the
training time of NN is beyond the operational timescales. On
the other hand, online training offers the capability of on-
the-job learning through trial and error approach. In online
training, the agent builds a model after repeated interactions
over time and is limited by strict constraints of the operating
environment. To account for the computation overhead in the
online learning phase, the transmission time slot is divided
into computation and transmission times. Interestingly, the
results yield higher value of the objective function when the
NN is trained offline and yields comparable performance to
the centralized optimization based approach when the RSUs
are deployed without offline training. Simulation results show
that the proposed solution reduces the outages in terms of
VUE rates dropping below a predefined threshold by 20%
and increases the sum rate by 15% compared to several state-
of-the-art baseline models. An exemplary application for this
scenario is video streaming, where the users are watching
different videos with strict delay constraints. In this case, the
user’s QoE is proportional to the achieved rate but in concave
manner [33]. Therefore, the first priority is to guarantee the
minimum threshold rate per user, and afterwards improving
their individual rates.

The rest of the paper is structured as follows. Section II
explains the system model and presents the problem formula-
tion. The RL based vehicle association scheme is discussed in
Section III. Simulation setting and the performance analysis
are presented in Section IV and V respectively. Finally, the
concluding remarks are provided in Section VI.

Notations: We will use boldface lower case letter x and
boldface upper case letter X to represent vectors and matrices
respectively. The cardinality of set X is denoted as X and xH
denotes the Hermitian or the conjugate transpose of vector x.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We study the downlink system with single-input multiple-
output (SIMO) transmission consisting of a set B of B
RSUs and a set V of V vehicles. We consider a mmWave
communication system, where each vehicle can be served by
one or several RSUs. Illustration of the multi-RSU scenario
operating in the downlink direction and situated alongside a

RSU’s jointly serving vehicle

RSU independently serving a vehicle

Fig. 1. Layout of the mmWave vehicular network.

two lane road is presented in Fig. 1. Each RSU is equipped
with Nt transmit (Tx) antennas and each vehicle is equipped
with 1 receiver (Rx) antenna. For simplification we assume
that each RSU has a single RF chain and beamforming is
performed in the analog domain. In the next subsections, we
explain the mmWave channel model, the segmentation of time
slot and the problem formulation.

A. Channel Model

Considering the generic mmWave channel with L paths
[34], the frequency domain channel vector from RSU b to
vehicle v is given as:

hbv =

√
Nt
L

L∑
l=1

αlub(θ
AoD
l , φAoD

l )uv(θ
AoA
l , φAoA

l ), (1)

where αl represents the amplitude gain of the lth path compo-
nent. ub(.) and uv(.) represent the RSU and vehicle antenna
responses at azimuth and elevation angles respectively, and
θAoA
l , θAoD

l represent the angle of arrival and angle of departure
of the lth path component. We consider a block-fading channel
model, so hbv is assumed to be constant over the channel
coherence time Tc. Moreover, vehicle association with RSU
at time slot t is indicated by zbv(t) ∈ {0, 1}, i.e., zbv(t) = 1
when vehicle v ∈ V is served by RSU b ∈ B at time slot t
and 0 otherwise. The achievable rate of vehicle v at time slot
t is given by,

rv(t) = ω log2

(
1+

∑
b pbvzbv(t)|fbvhbv|2

σ2 +
∑
v′
∑
b′ pb′v′zb′v′(t)|fb′v′hb′v|2

)
,

(2)
where pbv is the transmission power, ω is the bandwidth,
and fbv is the analog beamformers from RSU b to vehicle
v. Moreover, v′ ∈ V\{v} denotes any other vehicle except v,
b′ ∈ B\{Bv} represents all interfering RSUs and σ2 represents
the noise power. However, since in mmWave communications,
some time slots are reserved for beam training and alignment
[35], the effective rate is lower than the rate specified by
(2). Before we define the effective rate, we explain the beam
training and alignment scheme we consider in this paper. We
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adopt a similar strategy to what has been proposed in [36],
where the beam training is performed by using the pilot signals
received on the uplink. The pilot signals received at different
basestations are combined with the beamforming vectors and
are fed to the cloud processor, which designs the coordinated
beamformers to maximize the achievable rate. In [36], the
coordinated beamformers are designed to serve a single user.
However, In contrast to that scheme, we consider that one
vehicle can be served with multiple RSUs based on their
locally observed states as shown in Fig. 2 i.e., the RSUs can
choose to serve different or same vehicles at each time.

B. Time Slot Segmentation

In this work, we are utilizing mmWave bands for mobile ve-
hicles and the communication can be performed every channel
coherence time or the beam coherence time, where the channel
coherence time is much shorter than the beam coherence
time. Therefore, we consider the communication according
to the beam coherence time TB, which is divided into two
periods: (i) training and beamforming period (Ttr) and (ii) data
transmission period (Td) as it is the case in [36]. However,
in every Ttr period, vehicles send uplink pilot signals using
omni-directional antenna in a sequential manner (one after
the other), and the deep learning algorithm proposed in [37] is
used to find the best associating vehicle from each RSU b. The
algorithm in [37] includes the advantages of both the policy
based and the value based learning techniques. The actor
network in this framework formulates a policy and the critic
network criticizes that policy. The detailed description of the
reinforcement learning framework is explained in Section III.
Moreover, considering the training and beamforming period,
the effective rate Rv(t) achieved at vehicle v in a time slot t
is expressed as:

Rv(t) =

(
1− Ttr

TB

)
rv(t). (3)

Vehicle 4 Vehicle 7 Vehicle z

DataPilot

Deep learning using uplink pilot signals Downlink data transmission

Vehicle 1 Vehicle 2 Vehicle w

Beam coherence time = 𝑇𝐵  

Vehicle 3 Vehicle 5 Vehicle x

Vehicle 6 Vehicle 4 Vehicle y

RSU 1

RSU 2

RSU 3

RSU 6

Learning

𝑇𝑡𝑟  𝑇𝑑  

Fig. 2. Timing diagram of computation and transmission phases.

C. Problem Formulation

The provisioning of uninterrupted service to mobile users is
a challenging use case for 5G wireless networks. In this regard,
the aim of this work is to enable mmWave wireless connec-
tivity in high mobility scenario. To realize this in practice, we
formulate an optimization problem with the goal of optimizing
the tradeoff between maximizing the sum of average rate
of all the vehicles while minimizing the probability that the
average rate per vehicle falls bellow a predefined threshold.
Optimizing only over the former metric may result in uneven
resource allocation, yielding unacceptable low data rates for
some vehicles. This is prevented by ensuring reliability in
terms of maintaining the average rate per vehicle above a
threshold rate. Our metric is:

f(z) = lim
T→∞

V∑
v=1

t∑
τ=1

Rv(τ)

V t
− λ
(

Pr
{ t∑
τ=1

Rv(τ)

t
< RTh

v

})
,

(4)
where λ controls the trade-off between maximizing the sum
of expected rates and maintaining the probability of falling
below RTh

v as low as possible and z(t) = [zbv(t)]
v∈V
b∈B for all

t. Formally, the overall optimization problem is cast as:

maximize
z(t)

f(z(t)), (5a)

subject to (2), (3), (5b)
V∑
v=1

zbv(t) = 1 ∀b ∈ B,∀t, (5c)

zbv(t) ∈ {0, 1} ∀b ∈ B,∀v ∈ V,∀t (5d)

Here, (5c) and (5c) imply that each RSU can at most serve
one vehicle. The optimization problem defined in (5) has inte-
ger constraints, and in general discrete optimization problems
are NP hard [38]. Due to the fast dynamics in the vehicular
networks, solving (5) after each beam training period has to be
carried out with low latency and computation overhead. The
vehicular user association techniques in the existing literature
assume large coherent times and ideal cooperation among
basestations while neglecting overheads, in which case these
solutions become inapplicable for mmWave applications. To
address this issue we resort to machine learning tools for per-
forming the vehicle-RSU association task in a computationally
efficient manner, which is discussed in details in the upcoming
section.

III. REINFORCEMENT LEARNING BASED VEHICLE-RSU
ASSOCIATION

Machine learning based solutions have outperformed the
start-of-art in a variety of applications. Applying machine
learning tools in a mobile environment is motivated by the
fact that it can learn the environment geometry using the past
experience and the environment statistics [36]. In particular,
the RL-based solution are preferred over the conventional
optimization techniques due to the reduction in associated
overhead making it a prominent solution to support highly
mobile scenarios [31]. A major challenge in using optimiza-
tion techniques to solve distributed mobile wireless network
problems in which the environment is highly variable is the
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computation complexity (the high running time). Such tech-
niques rely on information exchange and require running high
complexity algorithms yielding a tradeoff between overhead
and performance. On the other hand, RL can convert the
problem to state-action mapping in which given a certain
state as an input, RL agent performs an action based on
offline training. RL based algorithms do not require any model
before hand, instead they learn the model through interactions
with the environment. RL has produced promising results
in various fields i.e., power control, edge computing and
caching [39]. In this paper, we consider using distributed
deep reinforcement learning (DDRL) to solve the problem
of vehicle-cell association in highly mobile environment. In
this section we explain the Markov decision process (MDP)
formulation for our proposed problem and we present our
DDRL-based algorithm that we propose to approximate the
solution of the proposed integer programming problem.

A. MDP Formulation

Reinforcement learning follows the similar idea as MDP,
where the applied decision have affect on the partially random
outcome. MDP is used to express the environment for RL
problems and here we explain the relation of the MDP
with the assumption of mobility and the use of mmWave in
vehicular networks. Let us define the channel observed by
RSU b at time instant t for all the vehicles in the network
as htb = (htbv; v ∈ V), the experienced rate of vehicle
observed by each RSU is Rt = (Rv(t); v ∈ V), the prob-
ability of threshold violation of each vehicle can be defined
as ζv(t) = Pr{ 1

T

∑t
τ=1Rv(τ) < Rthv } and the violation

probability observed by each RSU is ζt = (ζv(t); v ∈ V).
At each time instant, the local state observed by each RSU
b ∈ B can be described by stb = (htb,R

t, ζt), where the state
includes the observed channels, the experienced rates, and the
probability of violations of all the vehicles. Wireless chan-
nels are often highly non-stationary and the assumptions of
mmWave makes the channel variations more abrupt. Moreover,
vehicular mobility adds more randomness in the mmWave
channel making it intractable. This change in the channel
translates into the experienced rates observed by the vehicles
and the threshold violations, hereby impacting the entire state.
The state behaviour is captured by the Morkovian property
corresponding to the class of memoryless MDPs, due to the
assumption of mobility, mmWave and multiple serving RSUs
which make the state stb entirely independent and random.

State: The state stb of the RL agent b consists of the
aforementioned variables required for decision making along
with the history of last k channels. In summary, the state stb
is represented as:
• The last k channel observations htb, ...,h

t−k+1
b

• The threshold violation indicator ζt.
• The experienced rate of vehicles Rt.
In particular, the observed state stb by each RSU b is aimed

to design a control policy πb = (πzb), where πzb is the
vehicle association policy. Generally, the RSUs in the network
observe the input state at the beginning of each time instant
and accordingly make the action (association policy) for the

vehicles i.e., π(st) = (πzb(s
t
b); b ∈ B) = (ztb), where

ztb = (ztbv; v ∈ V).
Action: The action of the agent is to determine the optimal

vehicle-RSU association ztb for RSU b i.e., zbv = 1, v ∈ V .
The action performed as per the policy π(stb) is represented
as a probability distribution π : π(stb, z

t
b) ∈ (0, 1) of action

atb in response to state stb. The action taken by the RL agent
of RSU b is as follows:
• RSU-vehicle association i.e., atb = z

t
b, v ∈ V .

The problem at hand captures the tradeoff between max-
imizing the experienced rate and minimizing the probability
of threshold violation for each RSU b, which can be formally
defined with a reward function.

Reward: The reward function capturing the tradeoff of the
optimization problem (5) in this work is defined as:

fb(s
t
b, z

t
b) =

V∑
v=1

t∑
τ=1

Rv(τ)

V t
− λ

V∑
v=1

(
1
{ t∑
τ=1

Rv(τ)

t
< RTh

v

})
.

Each RL agent observes a state stb at each time instant
and chooses an action ztb from the set of the feasible ac-
tions according to its policy π, where the policy is the
probability distribution of actions (vehicle-RSU association)
and in return the RL agent receives an accumulated global
reward f(st,π(st)|s) =

∑
b∈B fb(s

t
b, z

t
b|s). The agent tries

to maximize a long term discounted reward at each time t with
discount factor γ ∈ (0, 1] i.e. F =

∑∞
t=0

∑∞
j=0 γ

jf t+j .
We assume that each RSU runs an RL agent, which de-

cide the vehicle to be served at every time slot. However,
every RSU forwards its action to a central entity i.e., reward
aggregator, which computes a global reward and send it to
all agents. We consider the state-of-the-art A3C reinforcement
learning framework [37] in which every RL agent consists of
an actor-critic pair, but with the addition of the concept of
a global reward. The actor network generates a policy based
on the probability distribution of the actions given the states
and the critic network criticizes the policy of the actor using
the temporal difference (TD) error [40]. The A3C framework
utilized in this work is shown in Fig. 3 and the NN architecture
of A3C framework is shown in Fig. 4, which is explained in
more detail in the next subsection. In Fig. 3 the value function
represents the critic network and the policy represents the actor
network.

B. A3C Framework

The A3C algorithm asynchronously updates the parameter
of NN using the stochastic gradient descent method. The A3C
framework has two main components, actor and critic, which
are constructed using NNs. The learning methods based on
the value function are referred to as critic-only i.e., temporal
difference (TD) learning. Furthermore, the actor-only learning
involves the utilization of the probability distribution of the
actions instead of computing the value functions. The actor-
critic framework is a combination of both the action value
based and the policy based reinforcement learning, where the
actor network formulates a policy based on the probability dis-
tributions of different actions and the critic network criticizes
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Fig. 3. The actor-critic framework [41]

the actor policy with value function using the TD error. Since,
the actor and critic network are performing different tasks this
leads to a difference in the NN architecture. In case of the
actor network, the output layer consists of N neurons, which
reflect the probability distribution of the N available actions.
On the other hand, the critic network has one output neuron
for the value function with which it criticizes the policy of the
actor network. In A3C algorithm, the policy π represents the
actor network and the critic network estimates the advantage
function, which is defined as

A(st,at) = Q(st,at)− V (st), (6)

where Q(st,at) is the Q-value of performing action at

compared to the value of optimal action V (st) in state st.
The advantage function is a measure of how good the specific
action is compared to the optimal action. The parameterization
of the actor and the critic is done with their respective NNs
using the parameters θ and θc respectively and the pseudocode
for A3C algorithm is presented in Algorithm 1. The parameters
of the the agents are updated upon reaching the terminal state
using the gradient descent method.

Algorithm 1 A3C algorithm pseudocode
1: Initialize the parameter of learning agents θ and θc
2: Get initial state st of each agent
3: for time = 1, ..., t do
4: Perform action at according to policy πθ(st,at).
5: Forward the actions to the reward aggregator.
6: Obtain global reward f t from reward aggregator.
7: Observe new state st+1.
8: if terminal state then
9: Aggregate actor gradient θ w.r.t. (10).

10: Aggregate critic gradient θc w.r.t. (9).
11: Update parameters θ and θc.
12: end if
13: end for

The A3C algorithm works by maintaining a policy
π(st,at; θ) along with an estimate of the value function
V (st; θc). The policy and the value function are incremented
after reaching a terminal state at which point their gradients are
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Fig. 4. A3C based NN architecture of RSU.

computed. The gradients are used to estimate the accumulated
reward by observing the action trajectories of the policy. The
gradient of the accumulated reward is updated as:

∇θEπθ
[ T−1∑∑
t,j=0

γtf t+j
]
= E

π
θ

[
∇θ logπ(st,at; θ)Aπ(st,at; θ)

]
,

(7)
where Aπ(st,at; θ) is an estimate of the advantage function
when following policy π [37]. The advantage function rep-
resents the difference in the expected reward obtained from
following a deterministic policy compared to the expected
reward obtained by following policy πθ. To compute the
expected return of following a deterministic policy, we need
an estimate from the critic network, which is found through
exhaustive search method. However, instead of exhaustively
searching for the value of deterministic policy we can update
the policy parameter towards minimizing the long term dis-
counted reward of the chosen action. In this regard, the update
of policy parameter θ follows the idea of policy gradient as
follows:

θt+1 = θt + α
T−1∑
t

∇θ logπθ(st,at)Aπ(st,at), (8)

where α is the learning rate of the RL agent. The policy param-
eter update specifies the direction to increase the probability
distribution π, where it effects to reinforce action that leads
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to more reward. To update the critic network θc, we need
to compute the value function V πθ (st). The critic network
in A3C based RL agents learns the estimates of the value
function from the discounted reward. While, the traditional
learning techniques which compute the value function become
infeasible due to the huge state space. To overcome this, an
alternative approach is to estimate the Q-values using NNs,
which map the value of state-action pair to their corresponding
Q-values. Moreover, applying NN in Q-learning scenarios may
result into unstable behaviour due to correlation in the training
samples. The correlation between the training samples can be
reduced by using a deep NN as a function approximator of the
Q-values, where the agent explores random actions and stores
the experience in a target network [42]. The experience is
randomly sampled in mini-batches to break the correlation be-
tween training samples known as experience replay. However,
in this work we utilize the idea of asynchronously updating
the agents in a parallel manner instead of experience replay
[37]. With the help of parallelism the training samples are
decorrelated into a more stationary process, as parallel agents
experience different instances of the state. Parameter θc of
critic network is updated according to the temporal difference
method [43].

θt+1
c = θtc − β

T−1∑
t

∇θc
(
xt + γV πθc(s

t+1; θc)− γV πθc(s
t; θc)

)
,

(9)
where θt+1

c is the new search direction, β is the critic learning
rate and γ is the discount factor which represents the weights
of instantaneous reward vs long term reward. The update
parameter compares the prediction of the value function of
current state to the value function of next state and is termed
as temporal difference approach. It was found in [37] that
adding an entropy regularization term in the actor update rule
encourages exploration to discover optimal policies, hereby
discouraging premature convergence to suboptimal policies.
The actor update rule with entropy H is given as:

θt+1 = θt + α
T−1∑
t

∇θ logπθ(st,at)Aπ(st,at)+

η∇θH(πθ(s
t)), (10)

where η controls the strength of entropy with high value of
η encouraging exploration and vice-versa. The RL agent in
this work uses softmax output for the actor network which
is the policy π and a linear output for the critic network
which is the value V πθ (st; θc). To train the network, the value
of entropy is kept higher at the start to encourage exploring
good policies and then gradually reduced over time to enforce
maximizing rewards. The training methodology used in this
work is explained in the next subsection.

C. Training Methodology

The A3C algorithm used for training the deep NN is
presented in Algorithm 1. The first step in the learning phase
is the interaction with the environment i.e., observing the
channels of each vehicle from RSU, the experienced rate and

the threshold violations of all the vehicles as shown in Fig.
5. In this work, each RSU is modelled as an independent NN
which is trained offline to reduce the overhead of intensive
computation in learning the mapping between the input state
and output actions as seen in Fig. 5 and similar strategies have
been followed in [44], [45]. However, in the online learning
phase where all the trained NNs are deployed together, the
mapping of input/output is performed using a pre-trained NN
without performing intensive computation [46]. In this work,
we consider a central entity referred to as reward aggregator,
which computes the global reward based on the action of all
the RSUs. The accumulated global reward is propagated back
to the RSUs by the reward aggregator.
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Fig. 5. Offline vs Online training.

The association of vehicle with RSU is performed as per the
policy of the RL agent. After each action the RL agent receives
a global reward that reflects how good is the chosen action.
In the offline learning phase, the RL agent explores different
policies for which entropy weight plays an important role. The
offline learning phase is carried out to avoid the complexity
of online training and to learn the mapping of state to action
(probability distribution) in a mobile vehicular environment
i.e., the NN model can map the expected rates from the
observed channels and can choose the best vehicle-RSU asso-
ciation yielding maximum reward. Once the offline learning
phase has converged to an optimal policy, we deploy all the
individually trained NNs in a distributed setting. The reward
aggregator plays an important role due to the distributed setting
of the NNs, since there is no information exchange between
the RSUs and the global reward is a function of actions of
all the RSUs. In the online learning phase association of each
vehicle can be with a single RSU (disjoint association) or
with multiple RSUs (joint association), which depends upon
the individually learned policy during the offline training. In
the next section we explain the simulation environment.

IV. SIMULATION ENVIRONMENT

For an accurate performance evaluation, it is essential to
have a realistic simulation environment. In this regard, the
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TABLE I
SIMULATOR PARAMETERS [48].

Parameter Value
Scenario Urban micro
Tx Power 30 dBm
Barometric Pressure 1013.25 mbar
Humidity 50%
Temperature 20◦ C
Polarization Co-Pol
Path Loss Exponent 2

Tx Antenna
Type Uniform linear array (ULA)
Elements 128
Spacing 0.5 Wavelength
Azimuth 10◦
Elevation 10◦

Rx Antenna
Type ULA
Elements 1
Azimuth 360◦
Elevation 180◦

following subsections discuss the simulation environment used
in this work in details.

A. Channel Generation

For mmWave channel generation, we use NYUSIM channel
simulator that is developed on the real word channel mea-
surements [47]. Therein, a 28 GHz mmWave band with radio
frequency bandwidth of 800 MHz in urban micro environment
and LOS connectivity is considered. NYUSIM generates the
temporal and spatial channel impulse response (CIR) from the
omni-directional channel models of NYU Wirless that uses
statistical spatial channel model (SSCM) [48]. It utilizes time
clusters (multipath components travelling closely in the time
domain and arrive at the receiver within a short excess delay
window) and spatial lobes to model the omnidirectional CIR
and the AoAs, AoDs power spectrums. Multipath components
that arrive from different AoAs within a 25 ns window are
grouped in one time cluster. Spatial lobes on the other hand
represent the direction of maximum energy. The real world
measurement of NYUSIM indicates that time cluster can
have a value between 1-6, and the spatial lobes have an
average value of 2 and a maximum value of 5. The simulation
parameters used for channel generation are listed in Table I.

Using the aforementioned parameters, we have generated
the channel impulse responses of mobile vehicles for different
RSUs as shown in Fig. 1. During the simulation time, 2000
CIRs are generated for each VUE Rx.

B. VUE-RSU Setup

The service area consists of a road segment with the width
of 10 m and the length of 160 m as shown in Fig. 6. Here, 6
RSUs are installed on building rooftops at a height of 30 m,
apart from a distance of 60 m from one another on each
side of the road. Each RSU is equipped with ULA antennas
facing the street. The antenna array has 128 antenna elements,
which use a total of 30dBm transmit power. The RSUs operate
independently from one another without any coordination in
a distributed manner.

Inter-RSU distance each lane

60m

Inter-RSU 

distance 

across lane 

10m

BS height 

30m
20m

Y
-A

x
is

X-Axis

Service area

160m*10m

Fig. 6. Geometry of the simulation environment.

Each VUE is equipped with a single omni-directional an-
tenna that is placed at a height of 1.5 m above the ground.
In this work, we have assumed the number of VUEs in the
service area to be eight, i.e., four vehicles in each lane. The
start point of each vehicle is chosen randomly and then the
VUEs move in the direction corresponding to their lanes with
an average speed of 25 km/h.

C. Neural Network Implementation

The state-of-the-art A3C architecture illustrated in Fig. 4
is used in this work to devise the VUE-RSU association
policy. Here, two NNs, the actor and the critic, deployed in
an RSU use a mix of convolution layers and fully connected
layers [49]. In the actor network, the channels from the RSU
to all vehicles are passed to a 1D convolution layer, which
maintains a history of last k channels. The indicator of rate
outages and expected rates of all VUEs are fed into the fully
connected layers. All the layers use rectified linear activation
units (ReLU). The result from input layer is aggregated at a
fully connected hidden layer that is composed of 64 neurons
and the aggregated data is passed on to the output layer, which
applies a softmax function. Similarly, the critic network uses
the same architecture and share the same inputs, but instead
of returning a softmax output it returns a value function using
linear neuron as shown in Fig. 4. The training of the actor
and critic network uses RMSprop optimizer [50]. To account
for immediate reward vs delayed reward, a discount factor
of 0.99 is used, which indicates that the current reward is
influenced by 100 future iterations. The learning rate of the
NN plays an important role in the convergence to the optimal
policy. Learning rate specifies the magnitude of step taken
towards the optimal solution i.e., small value of learning rate
results slow convergence while a large value of learning rate
may produce oscillations and thus, no convergence. In this
regard, the learning rates of the actor and critic network is
fixed at 0.0001 and 0.001. All these hyperparameters remain
fixed in the offline and online phase. Although optimizing
these hyperparameters based on simulation environment can
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lead to policies with higher rewards, such investigations are
not included within the scope of this paper.

V. PERFORMANCE ANALYSIS

In this section, first we analyze the performance of the pro-
posed DRL-based VUE-RSU association solution compared
to several baselines designs. Next, we study the impact of
NN parameters on the performance of the proposed technique,
where we have found that utilizing more training episodes
results into higher reward and lower threshold violations.
Moreover, the effect of hidden layers in the NN is also
analyzed therin.

A. Performance of Proposed Solution

In this work, we consider two different schemes with the
proposed design: DRL with offline training over 2000 CIRs
and DRL without offline training. Then, the proposed solutions
are compared with three baselines: (i) Optimization based
solution: a central controller collects the VUE-RSU channel
information over the network and solves (5) for each time
t, (ii) Max RSSI: VUEs report the receive signal strength
indicator (RSSI) to RSUs in which each RSU associates with
the VUE with maximum RSSI [12] and (iii) Proportional Fair:
each RSU observes average rates over all VUEs and make
association decision based on proportional fairness criteria
[51] . In all above scenarios, 0.5 Gbps of the target minimum
rate is considered.
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Fig. 7. Experienced reward over time.

Fig. 7 shows the observed reward over time for the proposed
RL-based solution and the baselines. The observed reward for
the proportional fair method remains almost the same over
time, since the goal here is to maintain an average rate for
all the vehicles by following a proportional fairness policy. In
this regard, the RSU pushes the average rate of all the vehicles
above the threshold without maximizing the individual vehicle
rate. The observed reward for the max RSSI baseline fluctuates
over time, due to the fact that it opportunistically maximizes
the rate whenever possible without considering the threshold

violations. The myopic optimization approach achieves higher
reward than the rest of the baselines and achieves the same
performance as the DRL agent without offline training. The
observed reward with the proposed deep learning actor critic
solution with offline training outperforms all the baselines,
while the reward for the DRL approach without offline training
is the same as the proposed optimization based solution.
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Fig. 8. CDF of the experienced rate of vehicles.

Fig. 8 compares the performance of the proposed deep
learning solution with the baselines in terms of the CDF of the
experienced rate. Proportional fairness maintains an average
experienced rate of 1.15 Gbps for all the vehicles at all times
while keeping the violations at its minimum. The max RSSI
performs the worst in terms of achieving a threshold rate,
while maximizing the individual rates. The experienced rate
for max RSSI ranges from 0.1 Gbps to 2 Gbps, with the
mean value of experienced rate at 1.17 Gbps. The violation
in case of max RSSI is the largest, since it opportunistically
maximizes the individual vehicle rate. Moreover, the proposed
A3C learning based solution with offline training achieves the
highest reward as seen from Fig. 7 and this translates to the
gain in experienced rate of all the vehicles as shown in Fig. 8.
The expected rates of the proposed solution with and without
offline training varies from 0.5 Gbps to 2.5 Gbps, with an
average value of 1.35 Gbps for the former and 1.28 Gbps
for the latter scenario. Moreover, the threshold criteria of 0.5
Gbps for all the vehicles is satisfied by the proposed learning
approach at all times compared to the baseline vehicle-RSU
association approach, which violates the minimum threshold
criteria for 20 % of the cases.

The CDF of sum rate of the all the vehicles is shown
in Fig. 9. The sum rate of the proposed solution is better
compared to the baselines. The sum rate of 7 Gbps is achieved
for the proposed DRL with offline training approach which
confirms that the proposed approach maintains an average
rate of 1 Gbps as shown in Fig. 8. The performance of the
sum rate of the proposed DRL without offline training is
the same as the optimization based solution. Maximum RSSI
performs better than proportional fair approach in terms of
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Fig. 9. CDF of sum rate of all the vehicles.

the sum rate as it opportunistically tries to maximize the sum
rate without considering the threshold violations, which is
the reason of lower reward compared to proportional fair as
seen in Fig. 7. The vehicles violate the threshold for the max
RSSI as seen from Fig. 8. It is clear from the results that
the proposed DRL scheme learns the environment geometry
from the observed states at each time slot and the NN based
vehicle-RSU association policy can outperform the traditional
techniques.
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Fig. 10. Effect of the number of vehicles on sum rate.

The effect of the number of vehicles on sum rate is shown
in Fig. 10. The sum rate decreases with the increase in the
number of vehicles due to large computation times. The impact
of computation time on the achieved rate is given by (3). The
sum rate for 1 vehicle with 4 RSUs is 6.3 Gbps which is
reduced to 5.3 Gbps, when the number of vehicles increases
to 8. On the other hand, increasing the number of RSUs
increases the sum rate. The sum rate for 4 vehicles with 2
RSUs is 3 Gbps, which is increased to 6 Gbps when the RSUs
are doubled. Furthermore, the increase of RSUs from 4 to 6

increases the sum rate by 2 Gbps for the same number of
vehicles. The decrease in sum rate with the increase in number
of vehicles is associated with the overhead of computation
time.
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Fig. 11. Effect of the number of vehicles on the probability of violations.

The objective function in this work accounts for minimizing
the violations along with maximizing the sum rate. The effect
on the number of violations as a function of different vehicular
densities, and number of RSUs is shown in Fig. 11. The
number of violations increases with the increase in the number
of vehicles or the decrease in the number of RSUs. The
probability of violation for the scenario with 6 RSUs and 4
vehicles is 5× 10−4, which is increased to 5.3× 10−3 when
the number of vehicles are doubled, while keeping the same
number of RSUs. On the other hand, for the same number of
vehicles when we reduce the number of serving RSUs we see
an increase in the number of violations, which is because of
the lower experienced rate as shown in Fig. 10. The formulated
objective function has the maximum value when there are less
number of vehicles in the network and the performance gets
worse with increasing vehicles.

B. Neural Network Training

In this subsection, we analyze the impact of NN parameters
on the performance of the proposed solution. The effect of
history on the sum rate and average violations can be seen
from Fig. 12. The history of channels plays an important
role in the learning of vehicular mobility i.e., utilizing more
history leads to more awareness of user mobility resulting into
a mobility aware vehicle-RSU association policy. However,
due to variation in mmWave channels, utilizing large number
of past observations degrades the performance of the system.
This is evident from the Fig. 12, where the utilization of eight
past observation provide the maximum sum rate and minimum
violations. On the other hand, when we increase the number
of past observations to 16, we see a decrease in the sum rate
and an increase in the number of violations. The NN learns
the correlation between the past observations and optimize
its policy based on the observation. Since, we are utilizing
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Fig. 12. Impact of utilizing channel history on sum rate and violations.

mmWave links and finding the correlation for large number of
channel observations require more training compared to the
case with less channel realizations.
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Fig. 13. Effect of training episodes on sum rate.

The NN in this work is trained in episodes, where one
episode represent the sequence of agent interactions with the
environment until a terminal state is reached. The terminal
state here refers to the state when the vehicles leave the service
area. The impact of training episodes is shown in Fig. 13 and
the performance is compared in terms of the sum rate and the
average violations. The training episodes play an important
role in converging to an optimal policy. We can see from Fig.
13, that lower value of training episodes result in minimum
sum rate and the maximum number of violations. The number
of violations decrease as we train the DRL agent i.e., the
average number of violations for 30 training episodes is 64
and the number of violations reduces to 8, when the training
is performed for 2000 episodes. Moreover, the sum rate also
increases with the increase in training episodes.
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Fig. 14. Impact of the number of NN hidden layers on sum rate and violations.

The number of hidden layers in the NN plays an important
role. The impact of hidden layer on the proposed objective
function is shown in Fig. 14. The number of hidden layers
can improve the accuracy depending upon the problem. How-
ever, increasing the number of hidden layers larger than the
sufficient number of layers will cause accuracy in the test set to
decrease. We can see from the Fig. 14, that the average number
of violations decrease from 13.5 to 6.2 when we increase the
layers from 1 to 2 and after that increasing the number of
layers does not decreases the violations. Moreover, we see an
increase in the sum rate when the number of hidden layers are
increased from 1 to 4 and after that increasing the number of
layers does not have any effect on the sum rate. The number of
hidden layers determines the capacity to learn the underlying
patterns and we can see that the problem at hand can be learned
by utilizing 4 hidden layers.

VI. CONCLUSION

In this paper, we proposed a reinforcement learning based
distributed solution for vehicular user association in a V2X
scenario. The goal is to devise vehicle-RSU association policy
to enhance mobile user experience in terms of maximizing the
network-wide sum rate while guaranteeing a minimum level
of service rate for all vehicles. The vehicle-RSU association
policy is found using distributed deep reinforcement learning
techniques by utilizing observations of the rewards from past
decisions across a large number of channel traces. This allows
RSUs to learn the association policy for different network
states. Numerical results demonstrate performance enhance-
ment of the proposed solution over several state-of-the-art
baselines models.
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