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Abstract—In multi-hop secondary networks, bidding strategies
for spectrum auction, route selection, and relaying incentives
should be jointly considered to establish multi-hop communi-
cation. In this paper, a framework for joint resource bidding
and tipping is developed where users iteratively revise their
strategies, which include bidding and incentivizing relays, to
achieve their quality of service requirements. A bidding language
is designed to generalize secondary users’ (SUs) heterogeneous
demands for multiple resources and willingness to pay. Then,
group partitioning-based auction mechanisms are presented to
exploit the heterogeneity of SU demands in multi-hop secondary
networks. These mechanisms include primary operator (PO)
strategies based on static and dynamic partition schemes com-
bined with new payment mechanisms to obtain high revenue and
fairly allocate the resources. The proposed auction schemes stim-
ulate the participation of SUs and provide high revenue for the
PO while maximizing the social welfare. Besides, they satisfy the
properties of truthfulness, individual rationality, and computa-
tional tractability. Simulation results have shown that for highly
demanding users the static group scheme achieves 150% more
winners and three times higher revenue for the PO compared
to a scheme without grouping. For lowly demanding users, the
PO may keep similar revenue with the dynamic scheme by low-
ering 50% the price per channel as the number of winners will
increase proportionally.

Index Terms—Auction mechanism, multi-hop
network, QoS, relaying incentives, routing.

secondary

I. INTRODUCTION

EW ECONOMIC models and system architectures have
Nemerged to better manage spectrum resources [1], [2].
Among these proposals, auction mechanisms have attracted
much attention as an efficient approach to pricing and resource
allocation. In spectrum trading markets, a spectrum owner or
primary operator (PO) leases its idle licensed spectrum bands
to secondary users (SUs) to obtain profit [3]. As leased spec-
trum usage is fundamentally opportunistic, the SU must assess
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its needs, determine the level of uncertainty that it can tolerate
and decide whether the spectrum quality is worth its price.

Auction in single-hop networks where SUs request a single
channel has been covered extensively in the literature and is
well understood. However with the advent of new communi-
cation paradigms, an SU may have multi-hop access to base
stations, access points or other users [4], [S]. The main chal-
lenge for spectrum trading in multi-hop cognitive networks
is to establish multi-hop communication using the purchased
channels under uncertain availability of licensed spectrum.
Besides, primary user (PU) return has significant impact on
the opportunistic usage of licensed spectrum and the achiev-
able quality of service (QoS). Therefore, SUs may need more
than one channel as backup to mitigate these effects and
keep delay at reasonable levels. The importance of backup
channels to increase link robustness in cognitive networks is
addressed in [6]. The impact of the number of channels on
sale is studied in [7] by considering a three-layer spectrum
market consisting of the spectrum holders, service provider
and end users. However, most works on spectrum auction
assume that one buyer can bid for at most one channel [§]
while others [9], [10] assume that a buyer can place bids for
multiple channels but win only one. Few recent works con-
sider combinatorial auctions [11] in which buyers may win
more than one channel, but incur heavy computational over-
heads. The limitations of the previous schemes make them
impractical for multi-hop networks with buyers bidding for
several channels.

The few works that do consider spectrum auction in
multi-hop networks [12], [13] ignored both the uncertainty of
channel availability due to PU activity and QoS provisioning.
They simply focused on providing the best channel allocation
and pricing according to interference. Besides, the complex-
ity of these schemes significantly grows with the number of
bidders, making them unsuitable for large networks.

In this paper, we aim to address the above issues.
Specifically, we study spectrum auctions in multi-hop
cognitive cellular networks where SUs have different QoS
requirements in terms of delay and thus, heterogeneous
valuations and willingness to pay. A framework for joint
bidding and tipping is developed to encourage users to
iteratively revise their strategies, which include bidding and
incentivizing relays, to achieve their QoS requirements.
A bidding language is designed to generalize heterogeneous
SU demands for multiple resources. In order to provide high
revenue to the PO and exploit users’ heterogeneity, static
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and dynamic group partition schemes are developed together
with new winner selection and payment mechanisms. The
concept of group buying emerged from Internet services such
as Groupon [14]. Few works have considered it for spectrum
allocation [10], [15]. The purpose of these works is to apply
group buying exclusively to price reduction. However, in addi-
tion to the above advantage, in our schemes the PO performs
the grouping and determines the group partition strategy based
on users’ QoS requirements to fairly allocate resources and
increase its own revenue. We prove that the auction schemes
not only provide high revenue for the operator but also max-
imize social welfare and satisfy the properties of individual
rationality, truthfulness and computational efficiency. This last
property is highly desirable for auctions in multi-hop networks.

The main contributions of the paper can be summarized as
follows.

1) A network model for multi-hop cognitive cellular net-
works (MC2Ns) that enables analysis of a number of per-
formance metrics as a function of the number of purchased
channels and users’ availability to relay. This model facili-
tates a tractable analysis of the network and provides insights
into the resources needed to auction based on users’ QoS
requirements.

2) A joint bidding and tipping scheme that relies on a new
bidding language where SUs bid for multiple commodities
and incentivize users to relay data to achieve their QoS
requirements.

3) New group partitioning-based auction mechanisms for
multi-hop networks. These mechanisms consider static and
dynamic partition strategies for spectrum allocation to exploit
the heterogeneous QoS demands of SUs. The groups are
formed on the basis of resource reusability. In the static
scheme, the winning groups are chosen to preserve the QoS
requirements of the highest bidders and the dynamic scheme is
intended for users with low QoS requirements and a tight bud-
get. Hence, the proposed schemes achieve different tradeoffs
between revenue and fairness.

4) Development of a reinforcement learning algorithm to
automatize the bidding process based on users’ previous expe-
riences and compare it to the iterative joint bidding and tipping
scheme.

Extensive simulations have been carried out to show the
performance of our schemes and highlight their robustness in
large networks compared with existing schemes.

The rest of this paper is organized as follows. The multi-hop
model is described in Section II. In Section III, the spectrum-
aware routing discovery protocol is characterized. The joint
bidding and tipping scheme is developed in Section IV. In
Section V, the group partitioning-based auction schemes are
presented. Numerical results are given in Section VI. In
Section VII we discuss related work. Finally, Section VIII
concludes the paper.

II. NETWORK MODEL
A. Secondary Spectrum Market

We consider a multi-hop cognitive cellular network (MC2N)
as presented in Fig. 1, where users are uniformly distributed

Fig. 1. Network model with K-reuse pattern for K = 7.

across the cell. For modeling purposes, the area of the cell
is divided into hexagonal subcells' of radius 7. In each sub-
cell, there is, potentially, an SU that will act as a source, relay
or destination. We remark that this model is intended to sup-
port the evaluation of the auction schemes presented and its
complexity is deliberately reduced to offer valuable insights
into the performance of these schemes without entering into
unnecessary details.

Each SU is equipped with one radio capable of switch-
ing between different channels. We assume that a spectrum
owner or PO leases its idle channels to SU sources. Due to
PU activity, there is uncertainty regarding channel availabil-
ity (PU activity is modeled in Section II-B). The SU source
will transmit uplink by relaying to one of its adjacent SUs
(located in adjacent subcells) by using the available channels
(one channel per hop). In the adjacent subcell, there will be
a SU available to relay with probability p, which depends on
coverage, battery charge, and willingness to cooperate.

We assume that SUs have QoS requirements in terms
of delay. To mitigate the impact of PU return, SUs keep
a number of frequency channels as backup. Spectrum trad-
ing in a multi-hop secondary network involves decisions by
SU sources on the number of channels to bid for, route
selection and required relay availability probability p. In the
bidding process, each source node submits a compound bid
B = {y,R,bid} to the auctioneer (PO) for a number of
resources ¥ = {b, Tyar, P} needed to transmit through the
preferred route R for a maximum time interval 4, (QoS
requirement), where b denotes the number of channels and
P the transmission power. According to the impossibility
theorem [16] we cannot simultaneously maximize social wel-
fare and operator revenue. Since our focus is on designing
auction mechanisms for multi-hop secondary networks, we
aim to maximize social welfare. This is a common assump-
tion in the literature when designing auction mechanisms for
secondary networks [12], [13]. We assume that the PO leases
its idle channels without causing quality degradation to its
own services and thus, the PO’s revenue is the total pay-
ment received from the winning SUs. Nevertheless, we are

1Suppose that all terminals transmit with the same power. This partition
is not physically implemented in the network, but rather used to capture the
mutual relations between the terminals in the cell that are potentially available
to relay each other’s messages [4].



aware that the PO will be interested in maximizing its rev-
enue. Consequently, we develop partition schemes to provide
high revenue to the PO by exploiting the heterogeneity of SUs’
demands and willingness to pay. After the auctioneer collects
all the bids, determines the partition strategy (i.e., static or
dynamic) that provides the highest revenue. Finally, the auc-
tioneer assigns the resources to the winning SUs to maximize
social welfare.

Winning sources will pay a price to the auctioneer and
transmit the traffic to the adjacent user on the route by utiliz-
ing the purchased resources. In addition, they will pay some
incentive tip to the relays to encourage them to participate in
the transmission. Consequently, the SUs’ strategy will con-
sist of determining the minimum bid and tip to satisfy their
QoS requirements. Let us remark that the implementation of
the multi-hop transmissions does not depend on the partition
strategy used.

B. Cognitive Link Availability

We model the activity of PUs since the transmission of
SUs on cognitive links depends on channel availability. We
assume that the PO will lease channels not occupied by any
PU to avoid degrading the performance of its own licensed
users. This is a common approach to modeling the interaction
between the PO and the SUs as a trading process [12], [13].

To model the link availability in a network with mul-
tiple channels ¢, we adopt an M/M/c queuing model as
in [6] and [17]. By modelling arrivals as a Poisson process
and call/session duration as exponentially distributed, the prob-
ability that the SU will have b channels available, p,, can be
obtained as a solution of birth/death equations [6]. Note that
the schemes presented in this paper are valid for simpler traffic
models for PU activity, i.e., ON/OFF model [5].

If we assume that spectrum monitoring is perfect, the prob-
ability that a PU will return to a channel currently allocated to
an SU is denoted by prenm. This is checked at every hop of the
route and is obtained as in [6]. If a PU returns to the channel
currently allocated to an SU, it will interrupt the transmission
and force the SU to try a new option. PU activity will have an
impact on the number of channels needed by SU sources to
satisfy their QoS requirements and is considered in the route
discovery protocol in the following section. For the tractabil-
ity of the problem, we consider that the probability of PU
return on a channel is the same for every channel and thus,
all channels are identically desirable.

C. Tessellation Factor and Scheduling

We assume users are interested in transmitting with the min-
imum power possible P; = P;pin to limit interference and
power consumption. For simplicity, we assume that all users
transmit with the same power P; = P.

The Shannon capacity on link / when transmitting on
channel ¢ is given 1/by c¢; = log(l + SINR(Y, P)) where
SINR(Ys, P) = —prl—

i PGltxr
ratio at any relaying user, Gg is the channel gain between

is the signal to interference noise

user i and j on channel ¥, ny is the number of concur-
rent transmissions using that channel, G,‘fj is the channel gain
between interfering users u# and j on channel ¥ and x, is the
background noise power. The detailed calculus of the interfer-
ence given the geometry of the cell is provided in [6]. Then,
the capacity on the multi-hop route R is cg = minjegc;.

The efficiency of capacity usage when b channels are used
on the route can be obtained as

(1

The optimization of scheduling in a multi-channel multi-hop
network is an NP-hard problem [5]. To keep the schedul-
ing process simple, we applied a conventional resource reuse
scheme for cellular networks to our tessellation model, shown
in Fig. 1, for a resource reuse factor K = 7. The subcell index
within the cluster indicates the slot allocation, k =1, ..., K.
Users with the same slot index will transmit simultaneously.
The transmission turn (in a round robin fashion) is given by
the slot index. When a user is scheduled for transmission, it
will transmit its own traffic and the relayed traffic. To avoid
transmission/reception collisions, users can transmit simulta-
neously if they are separated by a distance d > 2d,, where d, is
the relaying distance between adjacent subcells, d, = v/3-r [4]
and r is the subcell radius. This constraint is a direct conse-
quence of the fact that users are equipped with a single radio.
In this way, transmissions will be collision-free regardless of
the adjacent relay or the channel assigned for the transmis-
sion. This constraint holds for K > 7. To take advantage of
all available channels and reduce interference in the network,
the PO will randomly assign a different channel to each sub-
cell where there is a winning SU sharing transmission slot.
The K-scheduling pattern proposed is a heuristic that avoids
the complexity of re-computing the schedule according to PU
activity and user availability to relay.

The terminology used in the paper is summarized in Table I.

E‘R = CR/b.

III. SPECTRUM-AWARE ROUTING
DISCOVERY PROTOCOL

This section presents and analyzes a route discovery proto-
col for SUs. By following the K-scheduling pattern, collisions
between adjacent relays are avoided and thus, we focus on
discovering the route based on users’ availability to relay and
PU activity. The analysis of the protocol provides the delay
and the probability of accessing the destination, both crucial
metrics for estimating the needed resources to be auctioned.

A. Description of the Protocol

We assume that the PO shares with potential SUs informa-
tion regarding the number of channels b available for auction
and the channel uncertainty given by pjenm. This way the SU
is released from sensing and any errors it may experience.

Let us assume that in subcell i there is an SU willing to
transmit to an intended destination by relaying to adjacent
users. As each user has 6 adjacent subcells, the candidate relay
may be in any of these subcells w, w = 1, .., 6. We start by
assuming that the route discovery protocol provides the short-
est available path, although the protocol admits other criteria



TABLE I

NOTATION
Parameter | Definition
r Subcell radius
K Reuse pattern
P Transmission power
CR C, Route capacity, efficiency of route capacity usage
N Number of subcells
b Available channels
p Relay availability probability
Preturn Probability of PU return to a channel currently
allocated to an SU
Pfree Probability of free channel
T, Tmax Delay, maximum tolerable delay
ém, &, Strategy of source m, winning strategy
Pom, Bm Bidding strategy of source m, winning bidding strategy
Om, em Tipping strategy of source m, winning tipping strategy
Ee Normalized effective route capacity
PDm Probability that m access the destination
Anm Scheduling delay
Vin Valuation function of source m
Un Utility function of source m
pricec Tentative clearing price
priceg Clearing price
o Price step
N Set of SUs sources in partition &
O Bid of group k£
S Number of winning groups

for relay selection. Then, according to the relay priorities given
by the distance to the destination, the SU first checks the
availability of the adjacent user (located in the adjacent sub-
cell) in the direction corresponding to the shortest distance
towards the destination. The user will be available to relay
with probability p. If this is the case, the SU will transmit
to the adjacent subcell through a cognitive channel, and this
transition will occur with probability p,,—1. If the user is not
available, the SU will check the availability of the next adja-
cent user (2nd user), as shown in Fig. 2. If that user is available,
the SU will relay to it. This transition will occur with proba-
bility p,—2. Otherwise, the protocol will continue in the same
fashion until it checks the last adjacent user (6 user). If in
the last adjacent subcell there is no user available to relay, the
route will not be established, which happens with probability
po- The same process is repeated at every hop of the route.

As channel availability depends on the activity of the PUs, in
any system state a PU may return to the channel after the trans-
mission to a relay is initiated. This is also illustrated in Fig. 2.
In this case, the process will be aborted (with probability
Prewrn) and the SU will try another channel.

The relaying probability from subcell i to any adjacent
subcell j can be obtained by mapping the transmission pair
(i,j) = w, as

pw(®) =ppp(1 =) pee®), w=1,...,6  (2)

where p;, is the probability that the SU has b channels available
given in [6], p is the probability that in the adjacent subcell
there is a user willing to relay, and pf.. is the probability that

Fig. 2. State transition probabilities of the Markov model as in (2).

there will not be a PU return to the channel, piee = 1 —prewrn,
and pjemm 18 obtained as in [6].

The probability that the SU will not be able to transmit
to any adjacent user is po(b) = 1 — Y pw(b), which is
represented as a transition to an absorbing state nr (no route).

In order to balance the aggregated relayed traffic among the
nodes the availability probability p may be modified by factor
p — p(l —u) where u stands for the node utilization factor,
which is proportional to the aggregated relayed traffic. Due to
the limited space we have not elaborated further this aspect.

B. Analysis of the Protocol

We define a relaying probability matrix P(b) = [p;j(b)]
where entry p;;(b) indicates the relaying probability from sub-
cell 7 to j when b channels are available. This probability can
be obtained from (2) by mapping the transmission from subcell
i to any adjacent subcell j as (i,j) — w. It is worth noticing
that P also defines the network topology. To analyze the relay-
ing process in the network, we map the tessellation scheme
into an absorbing Markov chain with a set of absorbing states
A = {D, nr}. These states represent the end of the route when
the user has reached the destination (e.g., BS, AP, mobile to
mobile connection) or when no route (nr) is available.

Then, we reorganize the relaying matrix into an (N + 1) x
(N + 1) matrix of the form [18]

o[ 0
P"”‘[R(b) Q(b)] )

where N is the number of subcells, I is an Ny x Ny diago-
nal unitary matrix corresponding to the number of absorbing
states, 0 is an Ny x (N — Ny + 1) all-zero matrix, R
is the (N — N4 + 1) x N4 matrix of transition probabili-
ties from transient states to absorbing states and Q is the
(N—Ng+1) x (N— N4+ 1) matrix of transition probabilities
between transient states.

By defining N = (I—Q)~!, the mean time for the process to
reach any absorbing state starting from transient state i is [18]

() = (1), ..., - +1(D))’
=TI - Qb)) "1 =TN®)1 4)

when the dwell time for any state i is the same, T = 7T; and
1is an (N — Ny 4+ 1) x 1 column vector of ones. Otherwise,
T =1- Q)_lv = Nv where v is a column vector whose
components are 7;.



For the normalized dwell time T = T; = 1, the entries 1; of
vector T represent the average number of hops from state i to
the absorbing state. This expression will be used in the next
section to define SU valuation.

The probability that the Markov process starting in a tran-
sient state i ends up in an absorbing state j is e;;, where

E=[e;]=0-Q 'R )

The probabilities of accessing the destination and no route
availability are

[pp. pur] = fE (©6)

where f is the vector of probabilities of initial user
positions, pp = (Pp.1,...,PDN-Ns+1)" and P, =
(pnr,l» ce ,pnr,N—NA—H)I'

C. Multi Session Routing

When multiple routes are simultaneously active in the
network there is a probability that two routes will favor simul-
taneously a given subcell while the relay can only be available
for one route. The remaining routes will look for another sub-
cell in accordance with our route discovery protocol. This
phenomenon can be modelled by modifying the relay avail-
ability probability p as follows. A subcell used by route m
will be needed also by route my with [, — 1 relays with
probability ([, — 1)/N where [,> is the route length. If M
is the number of routes simultaneously active in the network,
the subcell required by route m; will not be required by any
other route with probability [Tpr _ .. (1 = (lny — 1)/N) .

Therefore, if M routes are simul aflezouslly active in a net-
work the relay availability probability should be modified as
p — p]_[f;[z:l,mz#ml(l — (lmy, — 1)/N). By using the new
p in (2) the same analysis applies. The delay and probabil-
ity of accessing the destination are obtained by (4) and (6),
respectively.

By using alternative routes provided by the route discovery
protocol we can avoid potential route collisions. In addition, in
a high dense cognitive network we can exploit the frequency
channels available per subcell by letting different users per
subcell relay on a different frequency channel simultaneously
or considering more advanced SU terminals equipped with
multiple antennas. If there are b channels available in the net-
work then route my will not be able to use a specific subcell
only if all b channels are allocated to other routes.

The probability of having b or more routes attempting to
use the same subcell is

Ly — 1\M~
)

=3 ()

The availability probability p can now be modeled as p —
p(1 —pe). The available channels would be used as backup to
avoid collisions as well as PU returns. Even so, if a collision
occurs, the route will not be established with probability pg
as described in Section III-A. For clarity of presentation, we
have not elaborated this case but the extension in this direction
is straightforward.

IV. JOINT BIDDING AND TIPPING SCHEME

In this section, we first describe the desired economic prop-
erties of our auction schemes and review some concepts, and
then present the joint bidding and tipping scheme. The auction
is a sealed-bid auction with one auctioneer (PO) and multiple
bidders (SU sources) requesting multiple channels. The auc-
tion procedure consists of a winner selection process (resource
allocation rule) and a payment mechanism.

A. Design Goals

We assume that bidders are selfish and may lie about
their valuation to maximize their utility. We define the dom-
inant strategy of a player as the one that maximizes the
player’s utility regardless of what other players’ strategies
are. Formally, if &, is the strategy of player m, for any
& # &, and any strategy profile of other players §_,,, we
have w;,(ém, €_,,) > um(f,;, €_,,). If the inequality always
holds, then &, is a strongly dominant strategy. Otherwise, it is
a weakly dominant one. We aim to design auction schemes that
can satisfy the following economic requirements: truthfulness,
individual rationality and computational efficiency, which are
defined as follows,

e Truthfulness: An auction is truthful if any player’s true

valuation is its dominant strategy. This means that given

the auction rules and the strategy profiles of other players,

a player cannot improve its utility by submitting a bid dif-

ferent from its true bid. Truthfulness is the most desirable

property as it simplifies player strategies.

e Individual rationality: An auction is individually rational,

if no bidder is charged higher than its bid.

e Computationally efficient: The result of the auction can

be obtained in polynomial time.

Let us denote by price, the clearing price the auctioneer
charges the SU source per channel. We define the PO’s rev-
enue as the total payment received from the winning SUs.
Since we consider that the PO leases its own idle spectrum
bands without causing quality degradation to its own services,
its revenue is always non-negative. As already mentioned, due
to the impossibility theorem [16] we cannot simultaneously
maximize social welfare and operator revenue. Therefore, our
auction schemes are designed to maximize social welfare and
provide high revenue to the PO by incorporating partition
schemes that exploit the heterogeneity of SU demands.

B. Joint Bidding and Tipping Scheme

We assume that all sources bid for resources simultaneously.
We define a new bidding language for multi-hop secondary
networks which enables each SU source m to submit a com-
pound bid to the auctioneer as B, = {ym, Rm, bid,;,} where y;,
are the resources to auction, R,;, is the transmission route and
bid,, is the bid amount. In our auction schemes, the resources
Ym are given by Y = {bm, Tmax,m, Pm}, where b, are the chan-
nels needed during maximum T,y slots (QoS requirement)
when transmitting with power P, = P.

The source node determines the bid based on its valuation of
the resources and willingness to pay. Besides, it also provides
a tip to encourage the relays to cooperate and thus, reduce



the delay. We define the strategy profile of source m as, &, =
(Bm, Om) where B, indicates the percentage of the valuation
that m is willing to pay per channel and 6,, is the percentage
offered as a tip per hop.

The PO is interested in the optimum allocation of resources
so SUs will achieve good performance and, thus, be able to
offer high bids.

The valuation function of bidder m depends on the num-
ber of demanded channels b, and the relay availability
probability p. We formulate it as

Vin(b, p) = oy Ce,m(brm P) )
Am(bmsp) : Pt,m
where,

e g, is the private valuation of resources, 0 < o, < 1,
which shows the heterogeneity of users’ valuations. We
set oy = 1/Timax.m to model the relation between highly
demanding users and high valuation.

. E‘e,m is the effective route capacity obtained as Ce,m =
PD.m * CR,,» Where pp ,, is the probability of accessing the
destination given by (6) and cg, the efficiency of route
capacity usage (1).2

e A, denotes the scheduling delay of route m and is
obtained as A;(b,,p) = Kty(bm, p) where 1, is given
by (4).

o The overall power consumption of route m is P; ;, = Pty,.
The previous definition of valuation, in terms of through-
put per unit power, has been used in multi-hop wireless
networks to analyze different trade-offs [4].

The bid offered is a percentage of the valuation of the

resources when b,, channels are used,

bidy, (b, p) = Bm - b - Vin (b, p) (8)

where f;, indicates the percentage of the gain that SU m is
willing to pay per channel. The PO will ask for a price g that
represents the minimum payment it is willing to accept for
selling the channels. This will result in a percentage of the
SU’s gain, By g

The overall tip that source m will pay to encourage users
to relay with probability p is

1P (b, P) = Om - T - Vin(bm, p) 9)

where 6,, indicates the percentage of the valuation SU m will
offer as a tip per hop and 7, is the number of hops on the
route (4). Note that a high valuation o, will result in a higher
bid and tip.

Following a particular strategy &, = (Bn, 6m), each SU m
determines the number of channels b, and p to satisfy its QoS
requirements by solving the following optimization problem,

maz&imize Un(bm, p) = Vin(bm, p) — bidy(bm, p)
)117p

- tipm (bmv P)

2The SUs calculate an estimation of their link capacity [6] considering that
in the worst case there will be N/K secondary users transmitting in the same
slot on any of the b available channels, where N is the number of subcells
and K the resource reuse factor. Due to the symmetry of the scenario, the
same capacity is assumed per hop. All SUs estimate the capacity in the same
way and thus, they bid under the same conditions.

subject to K - T (b, P) < Tmax.m
1<bp,<c—n

O0<p<l1 (10)
where Tpgxm 18 the QoS constraint given in terms of delay
and c are the total channels in the cellular network, n of which
are occupied by PUs. This optimization provides the optimum
number of channels b,, and the optimum availability prob-
ability p such that the SU obtains the maximum utility for
a given value of B, and 6,,. The valuation function defined
by (7) is concave and, thus, cost and utility functions are
concave as well. Problem (10) can be solved by introducing
a penalty term into the utility when the first constraint is vio-
lated. Then, the solution will favor the values of b,, and p such
that K - (b, p) Tmax- The equivalent optimization problem
can be solved efficiently by numerical methods [29].

Winner Selection: After the auctioneer receives all bids,
it sorts them in decreasing order {bid,},m = 1,...,N and
selects the M highest bidders as potential winners. Since
the K-reuse pattern provides full reusability of resources and
eliminates collision, the auctioneer selects the potential win-
ners based exclusively on their bids. Then, the auctioneer
announces the tentative clearing price (per channel), price,,
and allows all users to revise their strategies and submit
a new bid in the next iteration, as shown in Algorithm 1.
To encourage truthfulness and obtain high revenue, the ten-
tative clearing price in each iteration ¢ is increased as
pricec(t + 1) = pricey(t) + & - t, where § is a constant.
The auction iterates until the difference in the clearing price,
|pricec(t) — price.(t — 1)| < €. When the auction finishes, the
users whose bids are higher than the clearing price are the
winners. To control the communication overhead, the PO is in
charge of deciding the number of winners M, the step price §
and the iterations 7 needed to satisfy its expected revenue as
a function of N.

Payment Mechanism: We designed the payment mechanism
to be relatively independent of winner selection to ensure
truthfulness. We choose the highest losing bid as the clear-
ing price, pricey. In our iterative auction, this is highest bid
from the bidder who lost in all previous iterations, as given in
Algorithm 1.

Revision of Strategy: As a result of the auction in each
iteration, the SU m revises its strategy &,(t+ 1) = (Bn(t+ 1),
Om(t+ 1)) and obtains b*(t+4 1) and p*(r+ 1) by solving (10).
The strategy is updated as follows:

o Based on the tentative clearing price, price.(t + 1), the

new percentage of valuation offered per channel is given
by (8),

Bm(t + 1) = pricec(t + 1)/}, (t) Vin(8). Y

o Since p*(¢) is the required relay availability probability,
let us denote by 1 — p*(¢) the utilization of the relay,
defined as the probability that the relay is transmitting its
own traffic. The percentage of valuation offered as a tip
to compensate the user for relaying is set to

Ot + 1) = 1 — p*(0). (12)



Algorithm 1 Iterative Joint Bidding and Tipping (i-JBiT)

1. Initialize: r = 1, pricec (1) = 0, priceq(1) = 0, max_loser = bidyj4|
2. Store in max_loser the highest bid from the user who loses in all previous
iterations
Repeat
Each user submits a bid to the auctioneer
Let {bidy},m=1,..., N be the sorted array of bids
Find the tentative winner bids from {bidy,}/bidy, > priceg
Set the clearing price to priceq(t) = max_loser
t=t+1
Update the fentative clearing price, pricec(t) = priceg(t — 1) +c -t
0. Each user revises the bid and tip by solving (10) with B, (t + 1) and
Om(t+ 1) given by (11) and (12), respectively
11. Until |price.(f) — pricec(t — 1)| < &
12. priceg = max_loser
13. End
14. Return winners and clearing price priceg

TR RPN VR

After revising the strategy, the optimization in (10) is solved
and the SU m offers a new bid and tip, respectively, as

bidy(t + 1) = Bu(t+1) - bt + 1) - Viu(t + 1)
tipm(t+1) = Ot + 1) - Tu(bh(t + D), p*(t + 1) - Vit + 1)

If the SU cannot pay the price asked for the PO, it will
not get the resources, U, = 0. Otherwise, the user will win
with utility l~]m(bj1, py,) and strategy £,. This auction scheme
maximizes social welfare as it allocates resources to those who
value them the most.

The potential efficiency of the joint bidding and tipping
scheme reflects the probability that winners’ demands will be
satisfied. This can be characterized from the average proba-
bility of accessing the destination, npi7 = pp, given by (6).
The potential efficiency of each strategy is:

Nbid = / P (p. b)dp (13a)
p

Nip = Y _pp(p, b). (13b)
h/

C. Economic Properties and Time Complexity

The proofs of the properties truthfulness, individual rational-
ity and computational efficiency are provided in Appendix A.

Theorem 1: The i-JBiT scheme is truthful such that the SU
m’s best strategy is 5,,, = (ﬁm, 9~m).

Theorem 2: The i-JBiT scheme is individually rational since
SU m will not pay more than its true valuation, bid,, > price,.

Theorem 3: The i-JBiT scheme is computationally efficient
since the auction is solved in polynomial time.

V. GROUP PARTITIONING-BASED
AUCTION DESIGN

The concept of group-buying auctions (e.g., Groupon,
Google Offers) is widespread in the context of Internet
services [14], [19]. The idea behind online group buying is
to recruit enough users to generate a volume of orders large
enough to motivate lower transaction prices. These works dif-
fer from the group buying schemes applied to spectrum sharing
in that there may be more than one item to sell (channel)
and that resources can be shared among different users (spec-
trum reusability). In this section, we define static and dynamic

Fig. 3.

Static group-bidding scheme based on K-reuse pattern.

partition schemes to increase SU’s valuation by extending
the concept of Internet group buying to spectrum trading in
multi-hop networks.

When there is a large number of SU sources bidding for
resources at the same time, the PO will reuse the resources to
serve the highest bidders. However, high resource reusability
implies longer scheduling times, which will degrade SU QoS
and its valuation. To deal with this issue, in the sequel we
present static and dynamic partition strategies at the PO to
group SUs sources and benefit from the heterogeneity of their
requirements. Recall that once the winning SUs are determined
the multi-hop transmissions are implemented as explained in
Sections II-C and III-A.

A. Static Group Partitioning Scheme

We assume that after the auctioneer receives all bids, it will
partition the bidders into K groups, as shown in Fig. 3, follow-
ing the K-reuse pattern introduced in Section II-C (Fig. 1). We
call this scheme an sgroup scheme. The partition is denoted as
Ax ={Ni, NG, ..., Nk, ..., N}, where k is the index of the
k-th partition and Ay the set of bidders in that partition. The
cardinality of any partition is |Ax| = N/K = |[3R(R+2r)/K],
where N is the number of subcells, R the radius of the macro-
cell and r the radius of the subcells. The users of a winning
partition will transmit simultaneously in the same slot k to
their adjacent subcells on the way to their respective desti-
nations. This scheme reduces the number of winning groups
to S, § < K and the number of winners to those belonging to
the winning groups.

Following the i-JBiT scheme, each SU source m chooses its
strategy &, = (Bm, 0n) and determines the number of channels
by, and p to satisfy its QoS by (10). Then, all users simultane-
ously submit their sealed bids to the auctioneer. After receiving
all bids, the auctioneer will apply the previously described
static grouping scheme and calculate the bid per group.

We define the bid of a group as the sum of all SU bids
in that group. We denote by ©y the bid of group A’x and by
bid,, x the bid of a particular user m within that group. Then,
we have

O = Z bidpm k
mENk

(14)

where bid,, 1 is given by (8) for m € Ny.



Algorithm 2 Iterative Joint Bidding and Tipping Sgroup
Scheme (sgroup)

1. Initialize: 1 = 1, pricec(1) = 0, priceg(1) = 0
2. Store in max_group_loser the highest group bid from the group which
lost in all previous iterations

3. Repeat

4. Each user submits a bid to the auctioneer

5. The auctioneer groups the users following the K-reuse pattern and
obtains the group bids ®; from (14) and the
maximum tolerable delay per group, 7,y x = Min{Tnax,m}

6. Let {O),k=1,...,K be the sorted array of group bids

7. Find the S highest group bids from {®}/S -ty < min{tuax s}, s =
1....,S

8. Set the clearing price to priceq(t) = max_group_loser

9. t=t+1

10.  Update the tentative clearing price, pricec(t) = priceg(t — 1) +c -t

11.  Obtain the price per user, price; s by (15)

12. Each user revises the bid and tip by solving (10) with B,,(t 4+ 1) and
Om(t + 1) given by (11) and (12), respectively

13. Until |pricec(t) — pricec(t — 1)| < &

14. priceq = max_group_loser

15. Obtain the price per user, pricey, s by (15)

16. End

17. Return S winner groups and the clearing price per user pricem,s

We denote by T4y x the maximum delay that the users in
group Nk can tolerate, Tpaxx = Min{Tyax,m}, Where Tpgy m is
the QoS requirement of user m, m € Ny.

Winner Selection: The auctioneer sorts the group bids in

descending order and forms the set {®;}, s =1, ..., K. Then,
the auctioneer selects as potential winners the S, S < K, high-
est group bids such that 7,4 s < min{tpgrs—1},s=1,...,S
and m € Aj.

Payment Mechanism: The payment mechanism consists of
two steps: determination of the price for each winning group
and for each SU. The clearing price of a winning group
pricey is the highest group bid from the group that lost in
all previous iterations, as given in Algorithm 2. As before, to
encourage truthfulness and obtain high revenue, the tentative
clearing price in each iteration ¢ is sequentially increased as
pricec(t + 1) = pricey(t) + 6 - t.

Given the winning group clearing price defined as above,
the price a winning SU m in group s must pay is proportional
to its bid,

d
ﬂpn’cec (15)

s

pricey, s =

Revision of Strategy: The auctioneer allows all SUs to revise
their strategies &,(t+ 1) = (B (t + 1), 6,,(t + 1)) and submit
a new bid and tip as a result of (10). Strategy revision follows
i-JBiT, where B,,(t + 1) is now obtained by (11) for price, s,
and 0,,(t + 1) by (12).

Once the i-JBiT algorithm converges to the clearing price,
each source m belonging to a winning group S will trans-
mit to its intended destination on the selected route using
the resources purchased. Relays (compensated by tips) will
forward the traffic of the winning bidders following the
K-scheduling pattern. In this scheme, the number of winning
groups S is limited by the QoS requirements of the highest
bidders. This thus reduces the scheduling time by a factor of
S/K and is a fair scheme for users with more restrictive QoS
requirements as they will be eager to pay more and this will
increase their chances of winning the auction.

The PO can create new partitions by changing r and K,
r,K) — Ag = [N, Na, ..., Nx). The effects of these
parameters on network performance are the following:

o For constant K and smaller r, the number of members
per group increases. The delay per route increases with
the number of hops and thus, the users will need to pay
a higher tip as the route will be longer.

o For constant r and changing K, the number of hops is
fixed. The scheduling duration increases with K. The
interference and the number of users per group decreases
as K increases.

Theorem 4: The i-JBIiT with sgroup partition is truthful,

individually rational and computationally efficient.

Proof: The proof is provided in Appendix B. [ |

B. Dynamic Group Partitioning Scheme

In this section, we present a dynamic group partitioning
scheme (denoted as dgroup scheme) that exploits the dynamic
arrival of bidders to the network. The auctioneer allows users
to join forces within a given time frame 7 to get volume
discounts. This scheme is intended for users with low QoS
requirements and a tight budget.

The auction scheme consists of two steps. In the first step,
the PO sets its price curve and the auction period 7. As before,
we denote the clearing price in time ¢ as price.(t). This infor-
mation is available to the bidders to motivate additional buyers.
In the second step, the bidders place bids one by one accord-
ing to their arrival times. We assume that, when a bidder
arrives, it will bid immediately if the resources are consid-
ered to be worth the asking price. The bidding and arrival
times are therefore the same.

Winner Selection: Let us assume thatindexm,m=1,..., N
denotes the index of the SU source and also the sequence
number according to its arrival time. To bid successfully, each
bidder m must offer a bid bid,, > price.(t,). The user obtains
its strategy from (11) for B, > Bpn... Although the price is
given, the optimization in (10) is solved iteratively following
the i-JBiT to obtain the bid and tip. After this point, the user
will wait in the queue until the auction finishes. Otherwise,
it will leave the auction immediately and forever. The auction
will end after time 7. When the auction ends, the users whose
bids are higher than price.(T) will be the winners. Note that,
as the price decreases in time, a winner in time 7, will also
be a final winner.

Payment Mechanism: The pricing function is defined as
follows. The PO will reuse the resources among the SUs
following the K-reuse pattern and let the users transmit in
the same slot to share expenses. As the number of users
increases, the price per user will decrease and, consequently,
users will benefit from an increasing number of bidders. The
price will also be influenced by the uncertainty of resource
availability during the auction period 7 given by the proba-
bility prenm(T) [6]. The higher the uncertainty, the lower the
price charged for the resources will be. Based on the descrip-
tion above, the average price price.(t;;) when source m bids
at time t,, can be defined as

e tm .pfree(T)’ tm =T
(16)

pricec(ty) = price.(1) - by, -
ns(tm)



Algorithm 3 Iterative Joint Bidding and Tipping dgroup
Scheme (dgroup)

1. Initialize: number of winners ng =0
The auctioneer provides the initial clearing price price(1), and duration
of the auction 7'

2. Repeat
3. A new user m arrives at the network at time #;; and observes the price
pricec(tm)

4. Each user revises their bid and tip by solving (10) with B, (4 1) and
Om(t + 1) given by (11) and (12), respectively.

5. If bid,, > pricec(t;,) then

6. Update winners by ng = ng + 1

7 end

8. tm = tm + 1

9. Update the fentative clearing price, pricec(ty) as in (16)

10. Until t,, < T

11. Obtain the final clearing price, pricec(T) as in (16)
12. End

13. Return ny winners and the clearing price pricec(T)

where price (1) is the initial price of the resources at r = 1, by,
is the number of channels that m bids for, ng(t,,) is the average
number of SUs at time f,, and pfree(T) = 1 — prenrn(T). This
scheme is summarized in Algorithm 3.

If we assume that bid,,, > price.(t,,) with probability p,,, the
equivalent rate at which SUs attempt to access the spectrum
iS Aeg = As - pm. Then, the average number of SUs in the
network at time t,,, ns(t;;), can be obtained as [18]

" (hegtn)”

nS(t)n):ngg(tm):Zg c!

s=0 s=0

e_)heqtm

a7)

where p.(#,,) is the probability of ¢ arrivals until time
instant f,,.

The final price, price.(T), is obtained when the auction is
completed. The winning bidders will transmit to their intended
destination and relays (compensated by tips) will forward their
traffic following the K-scheduling pattern. The average queue
waiting time, wy, can be ignored, as wy << K - 1.

Theorem 5: The i-JBiT with dgroup partition is truthful,
individually rational and computationally efficient.

Proof: The proof is shown in Appendix C. [ ]

Both the static and dynamic partition schemes allow the
auctioneer to exploit the heterogeneity of SUs in terms of QoS
requirements and willingness to pay in order to increase the
operator’s revenue and maximize social welfare.

VI. SIMULATION RESULTS

We conducted Matlab simulations to verify the theoretical
analysis, evaluate the performance of our proposed auction
schemes and compare them with existing schemes. The net-
work considered is shown in Fig. 1, where the radius of the
macrocell is R = 1000m,H = 4 and P = 0.75 W. The
path loss exponent is « = 2 and the noise power is
N, = 10~* W [6]. We assume that in each subcell there is an
SU source willing to transmit to the BS or destination user. The
density of destinations is set to 0.1. Besides, the source will
be available to relay other users’ data with probability p. We
consider that there are ¢ = 10 channels in total in the cellular
network, n of which are occupied by PUs, and b potentially
available channels for SUs. The available channels during

average t

Fig. 4. Average 7 versus p for different values of b where 7 defined by (4).

iteration

Fig. 5. Bid, tip and price vs. iteration when p = 0.7.

a given transmission slot are randomly allocated to the SUs
sharing that slot, according to the K-reuse pattern. Monte Carlo
simulations were run and the results were averaged over
100 iterations.

A. Joint Bidding and Tipping

The simultaneous impact of b and p on average delay 7
is shown in Fig. 4. Note that a QoS requirement given by
Tmax can be achieved by different combinations of p and b. In
particular, the higher b the lower p is needed to achieve the
same delay, and vice versa. The minimum and maximum delay
per user observed in this network was 1 and 7, respectively.
This gap will be reflected in the QoS requirements.

In the following, we assume K = 7 and users’ QoS require-
ment T4 randomly varying between [7, 49]. The joint bidding
and tipping scheme is run for 7" = 25 iterations until the trad-
ing price is reached, |price.(t) — price.(t — 1)| < ¢ . The price
step is 8 = 1073 and the initial value of B,, and 6,, is set to
0.05. The revision of the bid and tip in each iteration is shown
in Fig. 5, together with the tentative clearing price. We can see
that the bid increases in each iteration to follow the tentative
clearing price. To keep raising the bid, the user will moderate
the number of channels it bids for, as shown in Fig. 6. In addi-
tion, to continue to meet the QoS requirement, the user will
request a higher relay availability probability p. As a result,
the tip will iteratively decrease, as shown in Fig. 5. Note that
the percentage of the valuation offered as a tipis 0 =1 — p.

In Fig. 6, the optimum number of channels »* is shown for
different p* as a result of solving (10) by i-JBiT. We can see
that for higher p*, fewer channels b* are needed to satisfy the
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QoS requirement, as previously discussed. The average user
utility is shown in Fig. 7 versus the iteration index for different
relay availability probabilities p. By increasing p, a higher
utility is obtained as the user’s valuation increases. Since the
i-JBiT algorithm iteratively updates the bid and tip, the utility
oscillates during the process.

In Fig. 8, the revenue of the auctioneer is presented versus
the iteration index. The revenue increases with the iteration
index and p. However, for p > 0.7, the gain is not significant
as the user needs fewer channels.

B. Group Partitioning Schemes
We consider three scenarios to show the performance of

the auction when the PO utilizes the sgroup partition scheme.
In each scenario, we assume that the QoS requirements of

PO revenue

Fig. 9. PO revenue in sgroup scheme vs. S.
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the SUs 1,4, vary randomly in [3, 21], [5, 35] and [7, 49],
respectively.

The revenue of the PO is shown in Fig. 9 for the previous
scenarios versus the number of winning groups, S. The highest
revenue is obtained for the first scenario when S = 2. This sce-
nario is the one with the most restrictive QoS requirements. As
the QoS requirements become more relaxed (scenario 1 — 3),
the optimum § increases since users can tolerate higher delays.
We can also see that the PO revenue is about 3 times higher
than in the scheme without groups (S = 7) in the most restric-
tive case. In scenario 3, even though the users can tolerate
higher delays, the PO revenue is twice as high as in the case
without grouping. The number of winners in each case is
shown in Fig. 10. In the first scenario, the sgroup scheme
provides 150% more winners than the no-group scheme and
40% more than in scenario 3. It is worth noting that although
the number of winners in scenario 1 is the lowest, the PO
obtains the highest revenue as the users place high value on
the resources. To show the performance of the dgroup parti-
tion scheme, we considered three additional scenarios. As this
scheme is intended to increase the revenue of the PO when
users have low QoS requirements, in the new scenarios we
assume that the QoS requirements ., vary randomly between
[9,63], [11,77] and [13,91]. The final clearing price price.(T)
is set to a fraction of the final clearing price obtained in the
scheme without groups for a fair comparison. In Fig. 11, the
number of winners is shown for the different scenarios. We can
see that by reducing the price per channel by 50%, the number
of winners increases by up to 45% in the low demand scenar-
ios, with consequent increase in social welfare. The revenue
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obtained by the PO is shown in Fig. 12 for the same scenar-
i0s. When the clearing price is reduced by 25%, the increased
number of winners compensates the price reduction and the
revenue obtained is even higher than in the scheme without
groups.

The initial values of §,, and 6,, have impact on the conver-
gence speed of the bidding and tipping process. The PO can
adjust the speed by changing the price step 6. In order to keep
the utility U, = 0, we need B, = 6,, = 1/(byy, + ). For the
range of QoS requirements considered, 8,, = 6,, = 0.25 when
Tw = 3 and b = 1, and B,, = 6,, = 0.01 when 7, = 91
and b = 9. Our simulations suggest that if the initial value
of B and 6, is set to 0.25, similar convergence speed as
in the current case with 0.05 is achieved. However, if we
change the initial value of B, and 6,, to 0.01 similar con-
vergence speed can be obtained decreasing § to 1/10 times of
its previous value.

C. Comparison With Other Schemes

To the best of our knowledge, our auction schemes are
the first to consider bidding and tipping strategies as well as
PO partition strategies to exploit heterogeneous QoS require-
ments in multi-hop secondary networks. As the previous
section already provides insights into PO gains obtained with
and without partition schemes, here we focus on comparing
our model, which integrates route discovery and the i-JBiT
algorithm, with other approaches.

Figure 13 shows the potential efficiency of the pro-
posed bidding scheme compared with the scheme in [13],
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Fig. 13. Bidding efficiency comparison.

which greedily assigns channels to different links. Recall that
in our bidding scheme users estimate the resources needed
and select the best route thanks to the route discovery proto-
col. We can see that our scheme significantly outperforms the
greedy scheme as it considers the existence of multiple pos-
sible routes to the destination depending on the availability
probability of the relays. Besides, we can observe the robust-
ness of our scheme as the network grows, while the efficiency
of the greedy scheme drops for large user populations. By
applying a K-scheduling pattern, we keep interference under
control. The highest interference levels come from the first tier
of interfering users as shown in Fig. 1, and therefore increasing
network size does not significantly increase overall interfer-
ence. We can also see that, for b = 1, efficiency increases
slightly with N. This is because we are increasing the length
of the relaying routes, which is especially critical when there
is just one channel available. For a fair comparison, we also
show the performance of our scheme when there is no PU
return, as considered in the greedy scheme. As expected, an
additional increase in efficiency is also seen.

Next, we compare our i-JBiT algorithm, which has
been proved to be truthful, with a reinforcement learning-
based bidding algorithm. There are a number of works
that consider reinforcement learning (RL) for spectrum
allocation [20], [21]. In our paper, RL is used to develop a bid-
ding algorithm that enables the SUs to revise their bids (and
truthful/untruthful behavior) based on previous experience.

We establish two different fixed values of B: one for the
truthful bid (B;) and another smaller one for the untruthful bid
(Bu < B:). Therefore, in an attempt to improve its utility, an
SU must decide which action to take, since there is a tradeoff
between obtaining resources (using a higher ) and increasing
utility (using a smaller 8). For this purpose, we endow SUs
with learning capabilities. The value of 6 is updated as in (12).
We denote the probabilities that the SU source m will bid
truthfully or untruthfully as p,,; and pp, ., respectively. Each
SU updates both probabilities individually using the Learning
Automata algorithm [22]. For example, suppose that a user
obtained a higher utility by using B,, then the probabilities
will be updated as

Pt +1) = pu(® + 8 - (1 = pm,u(0)
Pmi(t+1) = pm () - (1 = 8)

(18a)
(18b)
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Algorithm 4 Reinforcement Learning-Based Auction

1. Input: 8

2. for j =1 : Number_of Iterations do

3 [U, a] =bidding(8)

4 form=1:N

5 if used_Both_Actions() then

6. [pm,t» Pm,u] = update_Learning_Probabilities(ay, , Um)
7 Bm = choose_Action( pm.t, Pm,u )

8 end

9. end

10. end

where 0 < § < 1 is a step size parameter.
Algorithm 4 describes the bidding process. SU agents update
their actions following an iterative process, which involves
bidding and learning.

We consider two scenarios in order to study how learning
affects the bidding process and we also study the process from
a user perspective. In the first scenario, the QoS requirements
of the users in ring 1, Tjay, 1, are more restrictive than those for
the users in rings 2, 3 and 4 (i.e., Tnax,4 > Tmax,3 > Tmax,2 >
Tmax,1)- To achieve this QoS, we consider that all users bid
for the same number of channels (b,, = 3). As result, users
in ring 1 place a much higher value on the resources than
those in the other rings. We set the truthful and untruthful cost
percentages to S, = 0.04 and B, > B, = 0.02, respectively.
Note that the value of B, was chosen to be significantly lower
than B; to show the effects of untruthful bidding. The number
of iterations needed for the learning process to converge is
less than 100.

Figure 14 shows the utility per user U,, after the learning
process. Subcell indexes 1-6 correspond to the users from the
first ring, 7-18 to the users from the second ring, 19-36 to
the users from the third ring and the rest to the users from
the fourth ring. The simulations indicate that in this scenario
a relatively small fraction of the users (approximately 1/3) can
afford the resources. These users are located in the first and
second rings around the BS. We observed that users in the first
ring learn that using B, is the best option. This is because, by
using B, rather than fS;, they increase their utility and still
bid high enough to obtain the resources. In the second ring,
their valuation of resources is lower, so they learn that, in
order to improve their utility, they need to bid using f;. By
using a smaller value, they will not obtain the resources and,
therefore, their utility will be zero. Finally, for the last two
rings, we see that, regardless of the percentage 8 chosen, users
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will always obtain U, = 0. This is because their valuation of
resources is insufficient to win. Thus, in scenarios with mis-
balanced competition, a reinforcement learning-based bidding
algorithm cannot guarantee truthfulness.

In the second scenario, the competition among users is more
balanced. We assume that users require similar QoS and thus,
users from different rings will demand different numbers of
channels. In particular, we set the number of channels to
by, =1 for users in the first ring, b,, = 2 for users in the
second ring, b,, = 3 for users in the third ring and, finally,

= 7 for users in the last ring. The truthful and untruth-
ful cost percentages were set to Sy = 0.02 and 8, = 0.01,
respectively. Figure 15 shows the utility per user U,, after the
learning process. We can see that, in this case, the users in
the first ring do not value the resources highly enough to be
able to compete for them. However, the users in the other
rings learn that they can increase their utility by using f;. In
Fig. 16, we show how the percentages of truthful and untruth-
ful bidders evolve through iterations of the learning process.
As this scenario allows fairer competition among rings, the
percentage of users that bid truthfully increases. In a real net-
work, users will have heterogeneous valuations of resources,
so auction mechanisms such as i-JBiT should be applied to
ensure truthfulness.

VII. RELATED WORK

Recently, multi-hop cognitive cellular networks (MC2N)
have attracted a lot of attention due to their potential to
achieve efficient spectrum usage by exploiting local avail-
able channels and support dynamic traffic distributions without



additional infrastructure costs [23], [24]. Most auction appli-
cations in MC?N are incorporated for routing rather than
spectrum allocation purposes [25], [26]. To exploit the full
potential of MC?N, bidding strategies for spectrum alloca-
tion, route selection and relaying incentives should be jointly
considered.

Designing auction mechanisms for MC?N that consider
QoS is a challenging task as the process involves bidding for
multiple channels. The few works which consider spectrum
auction in multi-hop networks [12], [13] assume that users
bid for a single channel, and ignore SU QoS requirements.
Heterogeneous demands in spectrum auctions have been con-
sidered for single-hop networks in [10], [15], [27], and [28].
In [27] a QoS-aware auction framework is developed for
bidders to dynamically bid for primary or secondary users
rights according to their QoS demands. A multi-channel auc-
tion scheme is presented in [28] to satisfy heterogeneous SU
demands in terms of number of requested channels. The auc-
tion scheme is based on a combinatorial auction which is
computationally complex and channel reuse is not considered.
In [10] and [15], an auction framework for spectrum group
buying is presented where buyers are voluntarily grouped
together to acquire and share the spectrum band sold in the
auction. However, even though in this case buyers bid for
multiple channels, they will only win one channel and the
main purpose of these schemes is to obtain resources at a lower
price. Our partition-based auction schemes, in addition to pro-
viding group discounts, allow the partitioning of users based
on their QoS requirements, thereby ensuring a fair distribution
of resources. Despite being multi-item auctions, our schemes
are truthful, incentive compatible and computationally effi-
cient. This last property is highly desirable for auctions in
multi-hop networks.

VIII. CONCLUSION

This paper presents a new concept of spectrum auction in
multi-hop cognitive cellular networks (MC?Ns). First, a joint
bidding and tipping scheme is developed to iteratively revise
bidding and tipping strategies. Based on the clearing price
set by the auctioneer and the incentive needed to encourage
the relays to cooperate, SUs decide the number of resources
needed to satisfy their QoS requirements in the most prof-
itable way. Then, group partitioning-based auction schemes
are presented together with new winner selection and pay-
ment mechanisms to exploit the heterogeneous QoS demands
of SUs.

An extensive set of simulation results is provided to evalu-
ate different schemes. Simulation results have shown that for
highly demanding users, compared with the no-group scheme,
the static group scheme provides 3 times higher revenue for
the PO and 150% more winners with a consequent increase
in social welfare. For low-demanding users, the PO can keep
a similar revenue with the dynamic scheme by lowering the
price per channel by 50% as the number of winners will
increase proportionally. We also show that our i-JBiT scheme
outperforms other schemes for strategy revision based on rein-
forcement learning and is truthful, incentive compatible and

computationally efficient. As a byproduct, our model, which
integrates a route discovery protocol, allows for tractable
analysis and is more robust than other models when large
populations of bidders are considered.

APPENDIX A
PROOF OF PROPERTIES FOR i-JBiT SCHEME

1) Proof of Theorem 1 (Truthfulness): This proof follows
from [13] and [30]. Nevertheless, we decided to include it for
sake of completeness. To prove the truthfulness of the i-JBiT
scheme we first show that the resources are monotonically
allocated and winners are charged with critical value.

Definition 1 (Monotonic Allocation): When the bidding
strategies of other users f_,, are fixed, if user m wins the
auction by bidding bid,, (Bm), then it will also win by bidding
bidy(B,,) > bidy(Bm).

Definition 2 (Critical Value): The critical value is such that
if the user bids higher than that, it wins and otherwise, it loses.

Lemma 1: The auction resources, i.e., channels, are mono-
tonically allocated in our i-JBiT scheme.

Proof: The i-JBIiT scheme determines that bidm(ﬁm) is
a winning bid when bidm(ﬁm) > pricey. Thus, if bidy(B],) >
bidy(Bm) then bid,,(B,) is also a winning bid. ]

Lemma 2: The clearing price of the i-JBiT scheme, price,,
is a critical value.

Proof: Since user m wins the auction when bidm(ﬁm) >
priceg, this lemma directly follows. Besides, if user m wins the
auction by bidding bid,,(B,,) and bidy(B,,), then the payment
pricey is the same for both. u

Using the previous claims, let us prove the truthfulness of
i-JBIiT. We prove that if the best bidding strategy of user m is
B, following a strategy B., Bl # Bm results in U, (B)) <
Um(ﬁm). The following cases are possible:

- If user m places a bid bidn(B),) < bidy(B,) with
bidm(ﬂ,’n) > pricey, then according to Lemma 1 and 2, m
is charged the same price and thus, U,(B),) = Um(ﬁm). Our
claim holds.

- If user m places a bid bidm(,B,/n) < bidm(ﬁm) with
bid,, (,3,/,1) < priceg, then according to Lemma 1 and 2, m will
loss and its utility is zero (Un(B;,) = 0). Our claim holds.

- If user m places a bid bidn(B],) > bidy(B,) with
bidm(ﬂ,’n) > pricey, then according to Lemma 1 and 2, m
is charged the same price and thus, U,(B),) = Um(ﬁm). Our
claim holds.

- If user m places a bid bid,(B],) > bidm(ﬁm) with
bidn(B;,) < priceg, then B cannot be the best bidding
strategy of user m and thus, this case is not possible.

Hence, a user cannot improve its utility by submitting a bid
different from its true bid and we can conclude that i-JBiT is
truthful.

2) Proof of Theorem 2 (Individual Rationality): Since the
bids are sorted in decreasing order, bidm(ﬁm) > bidpy+ 1(,5,n+ 1)
and the price is determined as price, = bid;, where bid, is the
highest loosing bid, bid; < bid,,+1 then, price; < bidy 1 <
bid,,. We can conclude that i-JBiT is individually rational since
any user k will not pay more than its bid.



3) Proof of Theorem 3 (Computational Efficiency): We ana-
lyze the running time of i-JBiT. Winner selection (identifying
and ordering highest bids) takes O(log N) steps. In the worst
case, the process is repeated T times and then, M winners
are selected, which takes O(TM log N) steps. When the
users revise their strategies, they need to solve problem (10),
which is a convex problem and can be solved in polynomial
time [29]. Consequently, the overhead is acceptable.

APPENDIX B
PROOF OF PROPERTIES OF i-JBiT SGROUP
SCHEME (THEOREM 4)

1) Proof of Truthfulness: The proof of truthfulness of
the i-JBiT sgroup scheme can be easily derived from the
proof for the i-JBiT scheme considering a strategy per group
,3~S = {,31, /§2, ...,Ens} and assuming that one of the users
(e.g., user m = 1) chooses a strategy, 8| # B1, which results
in strategy . = {8/, B2, . . ., Pus}. The same reasoning applies
for any other user or for situations in which several users
simultaneously change strategies. The winning strategy By is
such that ©(B,) > pricey. The details are omitted due to
space constraints.

2) Proof of Individual Rationality: Let us denote by O
a winning group bid obtained as Oy = ), o bidys.
According to the winner selection and payment scheme, the
clearing price is price;, = ©; < OVs, where ©; is the
highest losing group bid. The price of each user m in the win-
ning group s is given by price, s = blg’"’spriceq, and thus
pricey s < bid, s. We can conclude that the i-JBiT sgroup
scheme is individually rational since any user m will not pay
more than its bid.

3) Computational Efficiency: We analyze the running time
of the i-JBiT sgroup. Winner selection (grouping and order-
ing) takes O(NK log S) steps. In the worst case, the process
is repeated T times which takes O(TNK log S) steps. When
the users revise their bids, they need to solve problem (10),
which is a convex problem and can be solved in polynomial
time [29]. Finally, if there are ns winning users per group S,
to obtain the bid per user renders an overall complexity of
O(TNK log S + Sns). Consequently, although the grouping
adds additional complexity the overhead is still acceptable.

APPENDIX C
PROOF OF PROPERTIES FOR DGROUP
SCHEME (THEOREM 5)

1) Proof of Truthfulness: Following the price set up of the
dgroup scheme given in (16), if B, is the winning bidding
strategy, then bidm(,gm) > pricec(ty,). If the user bids with
another strategy f., # B such that, bidy (L) < pricec(tm),
then U(B),) = 0. Thus, a user cannot improve its utility by
placing other than its true bid and we can conclude that dgroup
is truthful.

2) Proof of Individual Rationality: The dgroup scheme uses
a decreasing pricing mechanism. If the user bids successfully
at time 1, bidy,(Bpn) = pricec(ty), it will also win at time T
as the price decreases in time and with the number of bid-
ders (16). Hence, bid,(By) > price.(T) and we can conclude

that dgroup is individually rational since any user m will not
pay more than its bid.

3) Computational Efficiency: The computational complex-
ity of the dgroup scheme is the lowest of the three schemes.
The winner and payment calculation takes O(ng-N) steps.
The user bid is obtained by solving problem (10), which is
a convex problem and can be solved in polynomial time [29].
Consequently, the overhead is acceptable.

REFERENCES

[1] 1. Sugathapala, 1. Kovacevic, B. Lorenzo, S. Glisic, and Y. Fang,
“Quantifying benefits in business portfolio for multi-operator spec-
trum sharing,” IEEE Trans. Wireless Commun., vol. 14, no. 12,
pp. 6635-6649, Jul. 2015.

[2] C. Jiang, Y. Chen, K. J. R. Liu, and Y. Ren, “Network economics in
cognitive networks,” IEEE Commun. Mag., vol. 53, no. 5, pp. 75-81,
May 2015.

[3] Y. Zhang, C. Lee, D. Niyato, and P. Wang, “Auction approaches for
resource allocation in wireless systems: A survey,” I[EEE Commun.
Surveys Tuts., vol. 15, no. 3, pp. 10201041, 3rd Quart., 2013.

[4] B. Lorenzo and S. Glisic, “Context aware nano scale modeling of
multicast multihop cellular network,” IEEE/ACM Trans. Netw., vol. 21,
no. 2, pp. 359-372, Apr. 2013.

[5] M. Pan, H. Yue, C. Zhang, and Y. Fang, “Path selection under budget
constraints in multihop cognitive radio networks,” IEEE Trans. Mobile
Comput., vol. 12, no. 6, pp. 1133-1145, Jun. 2013.

[6] B. Lorenzo, I. Kovacevic, F. J. Gonzalez-Castano, and J. C. Burguillo,
“Exploiting context-awareness for secure spectrum trading in multi-hop
cognitive cellular networks,” in Proc. IEEE GLOBECOM, San Diego,
CA, USA, Dec. 2015, pp. 1-7.

[7]1 X. Feng, P. Lin, and Q. Zhang, “FlexAuc: Serving dynamic demands in
a spectrum trading market with flexible auction,” IEEE Trans. Wireless
Commun., vol. 14, no. 2, pp. 821-830, Feb. 2015.

[8] X. Zhou and H. Zheng, “Trust: A general framework for truthful double
spectrum auctions,” in Proc. IEEE INFOCOM, 2009, pp. 999-1007.

[9] D. Yang, X. Fang, and G. Xue, “Truthful auction for cooperative commu-

nications,” in Proc. 12th ACM Int. Symp. Mobile Ad Hoc Netw. Comput.,

2011, p. 9.

P. Lin, X. Feng, Q. Zhang, and M. Hamdi, “Groupon in the air: A three-

stage auction framework for spectrum group-buying,” in Proc. IEEE

INFOCOM, 2013, pp. 2013-2021.

M. Dong, G. Sun, X. Wang, and Q. Zhang, “Combinatorial auction with

time-frequency flexibility in cognitive radio networks,” in Proc. IEEE

INFOCOM, Orlando, FL, USA, 2012, pp. 2282-2290.

Z. Li, B. Li, and Y. Zhu, “Designing truthful spectrum auctions for

multi-hop secondary networks,” IEEE Trans. Mobile Comput., vol. 14,

no. 2, pp. 316-327, Feb. 2015.

M. Li, P. Li, M. Pan, and J. Sun, “Economic-robust transmission

opportunity auction in multi-hop wireless networks,” in Proc. IEEE

INFOCOM, 2013, pp. 1842-1850.

J. Chen, X. Chen, and X. Song, “Bidder’s strategy under group-buying

auction on the Internet,” IEEE Trans. Syst., Man, Cybern. A, Syst.,

Humans, vol. 32, no. 6, pp. 680-690, Nov. 2002.

D. Yang, X. Zhang, and G. Xue, “PROMISE: A framework for truth-

ful and profit maximizing spectrum double auctions,” in Proc. IEEE

INFOCOM, Toronto, ON, Canada, 2014, pp. 109-117.

V. Krishna, Auction Theory. Burlington, MA, USA: Academic, 2009.

W.-Y. Lee and I. F. Akyildiz, “Optimal spectrum sensing framework

for cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 7,

no. 10, pp. 3845-3857, Oct. 2008.

W. K. Grassmann, “Transient solutions in Markovian queueing systems,”

Comput. Oper. Res., vol. 4, no. 1, pp. 47-53, 1977.

R.J. Kauffman and B. Wang, “New buyers’ arrival under dynamic pric-

ing market microstructure: The case of group-buying discounts on the

Internet,” in Proc. 34th Hawaii Int. Conf. Syst. Sci., 2001, pp. 157-188.

N. Abji and A. Leon-Garcia, “An auction-based approach to spectrum

allocation using multi-agent reinforcement learning,” in Proc. IEEE

PIMRC, 2010, pp. 2233-2238.

S. K. Jayaweera, M. Bkassiny, and K. A. Avery, “Asymmetric cooper-

ative communications based spectrum leasing via auctions in cognitive

radio networks,” IEEE Trans. Wireless Commun., vol. 10, no. 8,

pp. 27162724, Aug. 2011.

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]



[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

K. S. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction. Prentice Hall: Upper Saddle River, NJ, USA, 1989.

S. Sengupta and K. P. Subbalakshmi, “Open research issues in multi-hop
cognitive radio networks,” IEEE Commun. Mag., vol. 51, no. 4,
pp. 168-176, Apr. 2013.

F. Gomez-Cuba, S. Rangan, and E. Erkip, “Scaling laws for infrastruc-
ture single and multihop wireless networks in wideband regimes,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Honolulu, HI, USA, 2014,
pp. 76-80.

S. Zhong, H. Yao, and Y. Fang, “MICOR: A market for incentive-
compatible cooperative relay in cognitive radio networks,” IEEE Trans.
Veh. Technol., vol. 64, no. 11, pp. 5350-5367, Nov. 2015.

1. Stanojev, O. Simeone, U. Spagnolini, Y. Bar-Ness, and R. L. Pickholtz,
“Cooperative ARQ via auction-based spectrum leasing,” IEEE Trans.
Commun., vol. 58, no. 6, pp. 1843-1856, Jun. 2010.

Q. Wang, B. Ye, S. Lu, and S. Guo, “A truthful QoS-aware spectrum
auction with spatial reuse for large-scale networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 10, pp. 2499-2508, Oct. 2014.

C. Yi and J. Cai, “Multi-item spectrum auction for recall-based cogni-
tive radio networks with multiple heterogeneous secondary users,” [EEE
Trans. Veh. Technol., vol. 64, no. 2, pp. 781-792, Feb. 2015.

S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

S. Manickam, M. K. Marina, S. Pediaditaki, and M. Nekovee,
“An iterative and truthful multi-unit auction scheme for coordinated shar-
ing of spectrum white spaces,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 42, no. 3, pp. 8-11, Dec. 2014.

Beatriz Lorenzo (M’08) received the M.Sc.
degree in telecommunication engineering from the
University of Vigo, Spain, in 2008, and the Ph.D.
degree from the University of Oulu, Finland, in
2012. From 2008 to 2014, she worked at the Centre
for Wireless Communications, University of Oulu.
Since 2014, she has been a Post-Doctoral Researcher
with the Atlantic Research Center for Information
and Communication Technologies, University of
Vigo. Her research interests include multi-hop
communications, heterogeneous networks, network

economics, opportunistic communications, and complex networks. She was
a recipient of the Fulbright Visiting Scholar Fellowship at the University of
Florida (autumn/winter 2016-2017).

Ivana Kovacevic (S’15) received the M.Sc. degree
in communications engineering from the University
of Oulu, Finland, in 2015, where she is currently pur-
suing the Ph.D. degree in wireless networks. In 2015,
she joined the Centre for Wireless Communications,
University of Oulu. Her research interest is in
the area of spectrum sharing, multihop wireless
networks, optimization theory, cognitive networks
and game theory, radio resource management, QoS,
queuing theory, networks information theory, and
mean-field theory.

Ana Peleteiro received the M.Sc. (Hons.) degree
in telecommunication engineering and the Ph.D.
(cum laude) degree artificial intelligence from the
University of Vigo in 2009 and 2014, respectively.
She was a Visiting Research Fellow with King’s
College London and the Artificial Intelligence
Research Institute, IITIA, Barcelona. She has pub-
lished over 20 international peer-reviewed pub-
lications. Her research topics include multiagent
systems, game theory, learning, dynamic coalition
formation, trust and reputation, questions of emer-
gent behaviour, network analysis and recommender systems. She is currently
a Data Scientist with Zalando, where she focuses on machine learning, NLP,
and engineering.

Francisco-Javier Gonzalez-Castafio received the
M.Sc. degree in telecommunication engineering
from University of Santiago de Compostela,
Spain, in 1990, and the Ph.D. degree from the
University of Vigo, Spain, in 1998. He is currently
a Full Professor with the Telematics Engineering
Department, University of Vigo, where he leads the
Information Technologies Group. He has authored
over 80 papers in international journals in the fields
of telecommunications and computer science, and
has participated in several relevant national and
international projects. He holds two U.S. patents.

Juan C. Burguillo received the M.Sc. degree in
telecommunication engineering and the Ph.D. degree
in telematics from the University of Vigo, Spain,
in 1995 and 2001, respectively, where he is cur-
rently an Associate Professor with the Department of
Telematics Engineering. From 2004 to 2006, he was
responsible for quality with the Telecommunications
School, and from 2005 to 2009, was the Vice-
Dean for International Relations. He has directed
and participated in several research and development
projects in the areas of telematics and computer sci-
ence in national and international calls, and has published over 100 papers in
international refereed journals and conference proceedings. He was a recipient
of the Merit Order Medal from the Ministry of Interior Affairs for supporting
the Spanish security forces on the fight against childhood crime in the Internet
in 2010.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


