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Abstract—Surveillance cameras are being rapidly deployed for
facilitating smart transportation. Recognizing the vehicle license
plate from massive videos becomes a challenge in context of
system scalability and efficiency. This paper proposes a novel
algorithm for scalable and efficient license plate recognition
(SELPR). The SELPR algorithm first locates the license plate
using a YOLO (You Look Only Once) network and recognizes
the license plate using multi-label convolutional neural network
(Multi-label CNN). We deploy the SELPR algorithm to the
Apache Spark framework to evaluate its scalability and efficiency
in parallel processing. The results demonstrates that SELPR can
achieve synthesized performance with 95% recognition accuracy,
better processing efficiency and scalability on a Spark cluster.

I. INTRODUCTION

More and more cameras are deployed for smart transporta-

tion, which contributes to the fact that video data becomes

the majority of big data [1]. Efficiently mining of these data,

e.g., recognizing license plate [2] from traffic video data is

important for detecting the traffic status, tracking vehicles, and

so on. License plate recognition (LPR) is one of the earliest

application for smart transportation [3].

The main LPR steps consists of locating a license plate,

segmenting the plate characters, and obtaining the complete

plate information [3] [4]. There existed reports on LPR, for

example, vertical edge detection [5], color feature extraction

[6], and so on.

The deep learning based approaches promise better perfor-

mance than traditional plate feature extraction in a complex

background such as different angles, brightness, and weather,

[7] proposed an approach based on a visual attention model

and deep learning. He used a modified visual attention model

to detect license plate. But this approach is not accurate for

plate recognition in the above mentioned complex situations.

Masood [8] proposed an end-to-end license plate recogni-

tion pipeline with a sequence of deep CNNs. The pipeline

consists of three steps such as plate location, plate character

segmentation and character recognition.Cheang [9] proposed a

unified CNN-RNN model, which uses CNN to extract features

and uses RNN for modeling the feature and label sequence

to recognize plate. The idea is interesting to integrate plate

segmentation and recognition. However, his work ignores the

location of a plate. And we consider there are still rooms to

improve CNN-RNN approach in the context of performance.

YOLO can be a fast and lightweight method suitable for

locating a license plate [10]. YOLO directly takes the entire

image as input in training and running. Therefore YOLO

is able to encode the contextual information on objects. So

YOLO has less background errors than other approaches.

Multi-label CNN is suitable for plate recognition. A Multi-

label CNN [11] can be trained by inputting multiple labels,

where all different classes can share the convolution layer and

only need one classification model, so that the classification

of a plate does not need to repeat the calculation of the

classification network, which leads to an improved recognition

efficiency. This method is efficient for plate recognition with

a same size and same format, like Chinese vehicle plates.

The underlying platform running those algorithms are

equally important to themselves for effective LPR. There

are widely used big data processing framework providing

good chances for efficiently run LPR algorithms, like Apache

Hadoop1 [12] [13]. In this paper, we deploy our SELPR algo-

rithm on the Apache Spark2, which is a memory-based large

data parallel processing framework. Apache Spark can greatly

improve the processing speed through saving the intermediate

result in memory rather than on a local disk.

This paper aims to propose a scalable and efficient LPR

approach (SELPR). SELPR uses YOLO network to detect the

location of a license plate. Most existing LPRs often divide

license plate characters and character recognition into two

steps and our proposed SELPR combines both steps into one

1http://hadoop.apache.org/
2http://Spark.apache.org/



using multi-label CNN [11]. Therefore SELPR simplifies LPR

pipeline and improves LPR performance. We improve SELPR

performance by feeding video frames into RDD (Resilient

Distributed Datasets) [14] and running it in parallel. The

contributions of this paper are as the follows:

• We propose a SELPR algorithm, which combines multi-

label convolutional neural network and YOLO in order

to improve the plate recognition accuracy.

• We deploy the SELPR algorithm on Apache Spark frame-

work to improve SELPR performance.

• We verify the SELPR algorithm in terms of recognition

accuracy, algorithm efficiency and scalability.

The remainder of the paper is organized as the follows:

Section 2 presents the SELPR architecture. Section 3 designs

and implements the SELPR algorithm. Section 4 evaluates the

SELPR algorithm. Section 5 reviews the related work. Section

6 presents future work and draws a conclusion.

II. SELPR ARCHITECTURE

The SELPR architecture is illustrated as Figure. 1. It is

based on our previous work on intelligent video processing

[12] and combines Hadoop based batch processing with Spark

based in-memory processing.
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Figure 1: SELPR architecture

SELPR architecture consists of four layers. The bottom

layer is responsible for collecting and generating traffic video

data with the use of a video streaming server and a WebCam

module.

The second layer is the data storage layer built on HDFS

(Hadoop Distributed File System). HDFS as a distributed file

system which is fault-tolerant. HDFS provides high throughput

access to application data and is suitable for applications that

have large data sets.

The third layer is the data processing layer which is built

on Hadoop and Spark. In this layer, we also deploy Caffe3

framework for data training and plate recognition. We use

Hadoop MapReduce [15] to decode videos and train neural

networks. We deploy the run-time plate recognition and mem-

ory computation tasks on Spark clusters.

The top layer is the data service layer, which visualizes

results and provides the user with an interface for plate

location, recognition and classification.

III. SELPR ALGORITHM AND IMPLEMENTATION

A LPR algorithm usually consists of three steps: plate loca-

tion, plate character segmentation, plate character recognition.

Plate location determines the location of a license plate from a

surveillance video frame. Plate character segmentation divides

each character on the plate. Character recognition obtains the

recognition results. Our SELPR is different from other LPR

approaches. SELPR algorithm only consists of two steps: plate

location and plate recognition.

A. SELPR plate location

SELPR uses a YOLO network for plate location. SELPR

uses traffic video frames artificially marked with plate location

as the YOLO training data set. The final output target class

for YOLO is changed from twenty classes to one because our

objection is only one license plate. We adjust YOLO network

parameters in order to achieve better recognition results. Al-

though YOLO can achieve a good recognition accuracy, there

may still have multiple boxes for a same object. For reducing

redundant boxes, we use the non-maxima suppression to select

the best one. Figure. 2 illustrates SELPR plate location.

B. SELPR plate recognition

SELPR doesn’t separate plate character segmentation and

character recognition. It uses multi-label CNN model to di-

rectly recognize the plate after locating a plate. The SELPR

multi-label CNN model is illustrated in Figure. 3. SELPR

simplifies LPR pipeline, which consists of the following tasks.

• Firstly, SELPR collects plate images as an original

dataset. Then it makes a multi-label dataset, where each

plate image has seven labels corresponding to seven

characters. Finally, SELPR needs to modify Caffe to

adapt to multi-label CNN.

• Different from single-label classification which only

needs one loss function, multi-label CNN classification

needs to set multiple loss function layers. Each loss

function layer corresponds to a type of label.

3http://caffe.berkeleyvision.org/
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Figure 2: SELPR plate locating with YOLO
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Figure 3: multi-label CNN model

• To calculate loss functions, SELPR needs to connect the

full connection layer, and also to the corresponding label

layer which is cut by the slice layer.

• SELPR set weight to 0.143 because a Chinese vehicle

plate has seven characters with a same size.

C. SELPR
Figure. 4 illustrates the pipeline of SELPR plate recognition.

As mentioned in Figure. 1, the video collection layer tem-

porarily stores data collected by different methods in HDFS. In

order to facilitate the sub-processing, SELPR decodes data into

frames and converts frames to SequenceFile, which is in the

form of a pair (key, value) stored in HDFS. SequenceFile is a

small file solution from Hadoop to improve cluster utilization.

SELPR stores data on images such as time stamp, location in

the ’key’ and a binary numbers in the ’value’.
The core of SELPR algorithm is to parallelize SELPR

plate location and plate recognition. Here SELPR uses Map

transformation operation in RDD, that executes a function that

can be programmed by developer on all elements in the RDD

to produce a new RDD. The SELPR plate recognition on Spark

is given in Algorithm. 1.
The SELPR plate location and recognition are realized in

two Map operations (Map1 and Map2 respectively). Map1 is

Algorithm 1 License Plate Recognition

Input: Sequencefile of video data

Output: Text of recognition results

RDD1 〈K1, V1〉 ← Sequencefile.AddRDD

RDD2 〈K2, V2〉= RDD1.map1 (license plate locating)

imageinfo ← K1

imagevalue ← V1

image ← imagevalue.convert

location ← image.locate(YOLO model)

K2 ← imageinfo+location

V2 ← V1

RDD3〈Text〉 = RDD2.map2 (direct LPR)

locationAndImageinfo ← K2.getkey

location ← locationAndImageinfo.analyze

imagevalue ← V.getvalue

plateimage ← imagevalue.cut(location)

characters ← plateimage.recognize(multi-label CNN

model)

results ← imageinfo+charactersOfPlate

Text = RDD3.saveAsText

return Text
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Figure 4: SELPR pipeline

for plate location, where the input data is the RDD which

loads data from Sequencefile and processes this RDD.

Then SELPR converts binary data to Mat, and uses the

packaged YOLO network model (after training) to extract the

information on license plate in the underlying frame.

Finally, it returns the image information along with the

license plate location. The Map operation (Map2) of SELPR

plate recognition is similar to the license plate locating. Here

the Mat data of a single license plate is handled by a multi-

label CNN model and we get every plate character. At last it

returns the image information along with every plate character.

In the end of this algorithm, RDD is converted to a text file

saved in HDFS.

IV. EVALUATION

To verify our proposed SELPR approach, we collected real-

time traffic surveillance videos and open source data set of

Chinese vehicle plates. We evaluate SELPR in the terms of

recognition accuracy, performance and scalability.

A. Experiment environment

Table. I presents the test bed configuration. The software

packages include jdk1.8, OpenCV-2.4.9, Ant-1.7, Hadoop-

2.6.4, Spark-1.6.3, Cuda-8.0 and Caffe.

Table I: Experimental hardware

Node No. Hardware number

1 i7 6800K, 16G, NVIDIA 1070 1

2, 3, 4, 5, 6, 7 i7 4790, 16G, NVIDIA 745 6

The Hadoop cluster mainly comprised of two parts. Part

1 is HDFS (Hadoop Distribute File System) consisting of a

NameNode and six DataNodes. Part 2 is MapReduce con-

sisting of a NodeManager and six ResourceManagers in this

Hadoop cluster. Here a Hadoop cluster is mainly responsible

for data storage and video encoding/decoding. The Spark

cluster comprises of a master node and six slave nodes. The

master node manages tasks, and six slave nodes process video,

which installed SELPR algorithm. Table. II presents detailed

allocations for each roles.

Table II: Experimental configurations

Node No. Role

1 NameNode, ResourceManager, master

2, 3, 4, 5, 6, 7 DataNode, NodeManager, slave

B. SELPR recognition accuracy
We first train YOLO net work for plate location. We used

7587 traffic surveillance images with license plates as training

sets and 734 images as test sets. After the training, the plate

location accuracy reaches 99%.
Next, we select 6941 separate plate images as the training

sets for SELPR plate recognition, 592 images as testing sets.

With SELPR, plate character recognition accuracy reaches

96%.
Figure. 5 shows overall SELPR process in this experiment

with 1000 images as test data. First SELPR detects plate

location through YOLO network. Then it runs multi-label

CNN network to extract plate characters. The overall SELPR

accuracy reaches 95% by processing a frame. We also conduct

a continuous plate recognition through 5 frames, and the

overall SELPR accuracy reaches close to 100%.

C. Comparison
We compare SELPR algorithm with open OpenALPR4, with

the use of the same test dataset for accuracy experiment.
As shown in Figure. 6, YOLO based approach is much

better than OpenALPR on Chinese vehicle plate location.
OpenALPR doesn’t support Chinese characters that rep-

resent the abbreviation of Chinese provinces. We have to

program OpenALPR for Chinese character recognition. Chi-

nese vehicle plate usually contains seven characters. Its first

character is the abbreviation of a Chinese provinces. Its second

one is an English letter that represents a city in the province.

Its remaining five characters are random combinations of

numbers and English letters. We use this plate structure

to train identifiers for plate character recognition. Figure. 6

presents the comparison of SELPR with traditional LPRs and

OpenALPR. The result shows that Multi-label CNN-based

SELPR outperforms others.

D. Performance
For performance evaluation, we choose different sizes of

traffic videos (the resolution is 1280*720) as test data (Table.

III), each of them is tested eight times (see Table. IV, time as

second). The results are given in Figure. 7, X-axis represents

input data size, and Y-axis represents processing time. We can

see that processing time is increasing almost in linear with

input data. We also test plate recognition time using GTX

1070. And the average time is 30ms per frame. That shows

SELPR has an outstanding performance in plate recognition.

4https://github.com/openalpr/openalpr
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Figure 6: Comparison of SELPR with other method experiment

Table III: Input SequenceFile size

Experiment No. A B C D E

Size(Gb) 3.2 6.1 8.6 11.3 14.5

Table IV: Performance experiment of SELPR based on Spark

Exp.No. 1 2 3 4 5 6 7 8 average

A 751 785 781 755 783 764 752 771 767

B 1464 1484 1483 1519 1456 1443 1523 1535 1488

C 2073 2084 2072 2082 2054 2061 2060 2081 2071

D 2750 2805 2806 2785 2808 2779 2802 2777 2789

E 3537 3521 3497 3492 3533 3491 3494 3469 3467

E. Scalability

We test scalability for SELPR by changing Spark executor

numbers. In the experiment environment configuration, each

executor runs only one slave node. In order to ensure the

experiment accuracy, we unified 3.2 Gb SequenceFile file

as input data. Table. V and Figure. 8 present the scalability

experiment.

Figure. 8 shows that with the growth of slave nodes, the

proposed SELPR algorithm runs faster as expected. It also

Figure 7: Performance experiment of SELPR based on Spark

shows time decreasing gradually slows down. That means

that the current computing resources are enough and this is

consistent with the fact because we only deal with 3.2Gb data

in this experiment.



Table V: Scalability experiment of SELPR based on Spark

Exp.No. 1 2 3 4 5 6 7 8 average

1 4074 4017 4039 4064 4045 4024 4070 4117 4056

2 2341 2334 2318 2367 2344 2340 2321 2347 2339

3 2341 2334 2318 2367 2344 2340 2329 2339 2339

4 1150 1177 1185 1171 1197 1150 1195 1200 1178

5 943 888 956 933 924 934 908 917 925

6 751 785 781 755 783 764 752 771 767

Figure 8: Scalability experiment of SELPR based on Spark

V. RELATED WORK

Many researches have been done on LPR. Qadri [4] pro-

posed an approach involving a series of steps, including

searching for yellow pixels from plates with yellow back-

ground, filtering image, plate region extraction, line separation,

characters extraction and optical character recognition. Those

image processing techniques can be grouped into license plate

location, character segmentation and character recognition.

Chakraborty [16] proposed an improved template matching

algorithm for LPR and achieved a good recognition accuracy.

But his experiment only focused on character segmentation

and recognizing or Indian vehicle license plates. Mai [17]

proposed an approach for LPR by combining edge detection,

image subtraction, mathematical morphology, radon transform,

interpolation and specific characteristics for Vietnam vehicle

license plates. They trained a MLP neural network and used

BP algorithm for character recognition. The method achieved

a high accuracy on Vietnam vehicle plate recognition, but

its performance declines when plate edge is not clear due

to view angle. In addition, other traditional LPR processing

methods are such as vertical-edge-based detection [5] and

pattern recognition [18].

With the development of deep learning, there grows in

popularity on deep learning based LPR. Masood. [8] proposed

an end-to-end license plate detection and recognition pipeline

which is with a sequence of deep CNNs. In order to ensure

system robustness, they used different conditions and types

of license plates as training data sets. They used convolution

neural network in plate location, character segmentation and

character recognition. In contrast, we simplify their three

steps and use multi-lable CNN, and target the improvement

of recognition speed and accuracy for Chinese vehicle plate

recognition.

Cheang [9] proposed a unified CNN-RNN model, which

uses CNN to extract features and use RNN for sequencing,

to recognize license plates. This method combines feature

learning and joint image/label embedding of CNN and RNN

to model the feature and label sequence for LPR. This idea

is same as ours and integrates character segmentation and

recognition. However, we used multi- label CNN, which is

faster than CNN-RNN model. Also they did not consider plate

location.

Zang. [7] proposed an approach based on a visual attention

model and deep learning. They used a modified visual attention

model to detect license plate. The attention model takes into

account of plate color, brightness, orientation. They utilized a

projection method for character segmentation and recognized

plate characters through combining CNN and SVM. They used

method based SSD in license plate location. SELPR also uses

similar method to fit different angles of license plate to achieve

high accuracy with fast locating speed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a SELPR approach for recognizing

vehicle plate using Apache Spark. A SELPR algorithm is

designed based on deep learning for Chinese vehicle plate

recognition. The SELPR algorithm is deployed on Spark

framework to cope with massive traffic surveillance data in

parallel. Extensive experiments verify that SELPR is effective.

The evaluation shows that the SELPR solution is scalable and

efficient.

In the future, we will work on enhancing the robustness of

SELPR in extreme weather situations such as rainstorm, snow,

haze and so on.
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