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Abstract—This paper presents an analytical framework for the
data detection in massive multiple-input multiple-output uplink
systems with 1-bit analog-to-digital converters (ADCs). Consider-
ing the single-user case, we provide closed-form expressions of the
expected value and the variance of the estimated symbols when
maximum ratio combining is adopted at the base station (BS)
along with their asymptotic behavior at high signal-to-noise ratio
(SNR). These results are exploited to enhance the performance
of maximum likelihood detection by taking into account the
dispersion of the estimated symbols about their expected values.
The symbol error rate with 1-bit ADCs is evaluated with respect
to the number of BS antennas, the SNR, and the pilot length used
for the channel estimation. The proposed analysis highlights a
fundamental SNR trade-off, according to which operating at the
right SNR considerably improves the data detection accuracy.

I. INTRODUCTION

Beyond-5G wireless systems are expected to exploit the
large amount of bandwidth available in the mmWave band
and raise the operating frequencies up to 1 THz [1]. In this
context, fully digital architectures allow to truly capitalize on
the massive multiple-input multiple-output (MIMO) arrays to
implement highly flexible beamforming and serve more user
equipments (UEs) simultaneously. In fully digital architectures,
each base station (BS) antenna is equipped with a dedicated
radio-frequency chain that includes complex, power-hungry
analog-to-digital/digital-to-analog converters (ADCs/DACs) [2].
In this setting, the power consumed by each ADC/DAC scales
linearly with the sampling rate and exponentially with the
number of quantization bits [3]–[6]. Another limiting aspect is
the volume of raw data exchanged between the remote radio
head and the base-band unit, which scales linearly with both
the sampling rate and the number of quantization bits [7].

For these reasons, adopting low-resolution ADCs/DACs (e.g.,
with 1 to 4 quantization bits) can enable the implementation
of fully digital massive MIMO arrays comprising hundreds (or
even thousands) of antennas, which are necessary to operate
in the mmWave and THz bands [7]. In this regard, 1-bit
ADCs/DACs are particularly appealing due to their minimal
power consumption and complexity [3], [8]. Such a coarse
quantization is suitable especially at very high frequencies,
where high-order modulations may not be needed due to the
huge bandwidths. There is a vast literature on massive MIMO
with 1-bit ADCs/DACs. For instance, the capacity of the 1-bit
quantized MIMO channel is characterized in [3]. The work in
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[4] proposes an efficient iterative method for near maximum
likelihood detection (MLD) with 1-bit ADCs. The channel
estimation and the uplink achievable rate with 1-bit ADCs
are studied in [5]. The spectral efficiency of single-carrier
and orthogonal frequency-division multiplexing uplink systems
with 1-bit ADCs is analyzed in [9]. Some of the results derived
in [5], [9] for 1-bit ADCs are extended to the multi-bit case in
[7]. The performance of downlink linear precoding with 1-bit
DACs is studied in [6]. The benefits of oversampling in massive
MIMO systems with 1-bit ADCs are investigated in [10].

In this paper, we broaden prior analytical studies on the
uplink data detection in massive MIMO systems with 1-bit
ADCs. The statistical properties of the estimated symbols have
not been characterized by previous works. In this respect,
it was observed in [7] that the estimated symbols resulting
from transmit symbols with the same phase overlap at high
signal-to-noise ratio (SNR), although this aspect has not
been formally described in the literature. We fill this gap
by deriving closed-form expressions of the expected value
and the variance of the estimated symbols for the single-UE
case when maximum ratio combining (MRC) is adopted at
the BS. Furthermore, we analyze their asymptotic behavior at
high SNR. Building on these results, we propose an enhanced
MLD method that considerably reduces the symbol error rate
(SER) by properly weighting each detection region with the
corresponding variance. Numerical results are presented to
evaluate the SER with respect to the number of BS antennas,
the SNR, and the pilot length used during the channel estimation
phase. Our analysis highlights a fundamental SNR trade-off,
according to which operating at the right SNR significantly
improves the data detection accuracy.

Notation. A = (Am,n) specifies that Am,n is the (m,n)th
entry of matrix A; likewise, a = (an) specifies that an is the
nth entry of vector a. The notation {·} is used to represent sets,
whereas Re[·] and Im[·] denote the real part and imaginary
part operators, respectively.

II. SYSTEM MODEL

Let us consider a BS with M antennas serving K single-
antenna UEs in the uplink. Each BS antenna is connected
to a pair of 1-bit ADCs for the in-phase and the quadrature
components of the receive signal. We thus introduce the 1-bit
quantization function Q(·) : CA×B → Q, with

Q(C) ,

√
ρK + 1

2

(
sgn
(
Re[C]

)
+ j sgn

(
Im[C]

))
(1)



and where Q ,
√

ρK+1
2 {±1 ± j}A×B [7]. We use H ∈

CM×K to denote the uplink channel matrix whose entries are
assumed to be distributed independently as CN (0, 1) (as, e.g.,
in [5], [7]); more involved channel models will be considered
in our future work. Furthermore, each UE transmits with power
ρ and the additive white Gaussian noise (AWGN) at the BS has
unit variance: hence, ρ can be interpreted as the transmit SNR.

Let xk ∈ C be the transmit symbol of UE k, with E
[
|xk|2

]
=

1 and x , (xk) ∈ CK×1. The receive signal at the BS at the
input of the ADCs is given by

y ,
√
ρHx + z ∈ CM×1 (2)

where z ∈ CM×1 is the AWGN term with entries distributed
as CN (0, 1). Then, at the output of the ADCs, we have

r , Q(y) ∈ CM×1. (3)
At this stage, the BS obtains a soft estimate of x as

x̂ , VHr ∈ CK×1 (4)

where V ∈ CM×K is the combining matrix. Finally, the data
detection process maps each estimated symbol to one of the
transmit symbols.

III. DATA DETECTION ANALYSIS WITH MRC
In this section, we focus on characterizing the performance

of the data detection with respect to the different parameters
when 1-bit ADCs are adopted at each BS antenna. In doing so,
we consider the MRC receiver with combining matrix given
by V = Ĥ, where Ĥ ∈ CM×K is the estimate of H acquired
during the uplink pilot-aided channel estimation phase. Let
P , (Pu,k) ∈ Cτ×K denote the pilot matrix whose columns
correspond to the pilots used by the UEs, with {|Pu,k|2 =
1}u,k, and where τ is the pilot length: assuming τ ≥ K and
orthogonal pilots among the UEs, we have PHP = τIK . The
UEs simultaneously transmit their uplink pilots and the receive
signal at the BS at the input of the ADCs is given by

Yp ,
√
ρHPH + Zp ∈ CM×τ (5)

where Zp ∈ CM×τ is the AWGN term with entries distributed
as CN (0, 1). Then, at the output of the ADCs, we have

Rp , Q(Yp) ∈ CM×τ . (6)
Let us define

Ω(w) ,
2

π
arcsin(w) (7)

and assume that Ĥ is obtained via the scaled least-squares
(LS) estimator

Ĥ ,
√

ΥRpP ∈ CM×K (8)
where we have defined

Υ ,
2

π

ρ

(ρK + 1)2
τ2

(τ + ∆)2
(9)

with

∆ ,
1

K

K∑
k=1

∑
u6=v

(
Re[P ∗u,kPv,k]Ω

(
ρ
∑K
i=1 Re[Pu,iP

∗
v,i]

ρK + 1

)

− Im[P ∗u,kPv,k]Ω

(
ρ
∑K
i=1 Im[Pu,iP

∗
v,i]

ρK + 1

))
. (10)

Note that the scaling factor in (9) is chosen to minimize the
mean squared error of the channel estimation for the class of
scaled LS estimator: this is discussed in [8], which presents a
detailed analysis of the channel estimation with 1-bit ADCs.
Therefore, from (4), the estimated symbols are obtained as
x̂ =
√

ΥPHRH
p r. We point out that, when the MRC receiver

results from the quantized channel estimation, it cannot be
perfectly aligned with the channel matrix and results in residual
multi-UE interference even when M →∞.

In this paper, we focus on the single-UE case (i.e., K = 1)
and characterize the statistical properties of the estimated
symbols.1 Hence, in this preliminary analysis, we do not
consider the aforementioned multi-UE interference, which can
be included at the expense of more involved and less insightful
expressions: this will be explored in our future work.

A. Expected Value and Variance of the Estimated Symbols

Let x ∈ S denote the transmit symbol of the UE, where
S , {s` ∈ C}L`=1 represents the set of L transmit symbols.
Moreover, let ŝ` be the estimated symbol resulting from
transmit symbol s` ∈ S. Lastly, we use p , (pu) ∈ Cτ×1
to denote the pilot used by the UE. To facilitate the data
detection process at the BS, for each s` ∈ S , we are interested
in deriving the closed-form expression of the expected value
of ŝ`, denoted by E` , E[ŝ`].

Theorem 1. Assuming K = 1 and MRC, for each transmit
symbol s` ∈ S, the expected value of the resulting estimated
symbol ŝ` is given by

E` =

√
2

π
ρM

τ

τ + ∆

τ∑
u=1

p∗u

(
Ω

(
ρRe[pus`]√

(ρ+ 1)(ρ|s`|2 + 1)

)
+ j Ω

(
ρIm[pus`]√

(ρ+ 1)(ρ|s`|2 + 1)

))
(11)

with ∆ defined in (10), which can be simplified for K = 1 as

∆ =
∑
u 6=v

(
Re[p∗upv]Ω

(
ρRe[pup

∗
v]

ρ+ 1

)
− Im[p∗upv]Ω

(
ρIm[pup

∗
v]

ρ+ 1

))
. (12)

Proof: See [8, App. V].

The result of Theorem 1 can be used towards the efficient
implementation of MLD. Specifically, each estimated symbol
can be mapped to one of the expected values {E`}L`=1,
which are derived as in (11) without any prior Monte Carlo
computation, according to the minimum distance criterion. To
further reduce the data detection complexity, one can construct
the Voronoi tessellation based on {E`}L`=1 obtaining well-
defined detection regions: this allows to avoid the computation
of the distance between each estimated symbol and each E`. It
is worth mentioning that, in the case of multi-UE transmission,
the expression in (11) will be conditioned on the symbols
transmitted by all the UEs.

1Note that, when K = 1, the scaled LS estimator in (8) with the scaling
factor chosen as in (9) is equivalent to the state-of-the-art linear estimator
proposed in [5]. We refer to [8] for more details.



Now, for each s` ∈ S, we are interested in deriving the
closed-form expression of the variance of ŝ`, denoted by
V` , V[ŝ`].

Theorem 2. Assuming K = 1 and MRC, for each transmit
symbol s` ∈ S , the variance of the resulting estimated symbol
ŝ` is given by

V` =
2

π
ρM

τ2

τ + ∆
− 1

M
|E`|2 (13)

with E` and ∆ given in (11) and (12), respectively.

Proof: See [8, App. VI].

The result of Theorem 2 allows to quantify the absolute
dispersion of the estimated symbols about their expected value,
which arises from the 1-bit quantization applied to both the
channel estimation (through the MRC receiver) and the uplink
data transmission (see (3)). This dispersion is not isotropic
and assumes different shapes for different transmit symbols, as
shown in Fig. 1 and in [11]. Furthermore, V` diminishes as |s`|
increases due to the negative term on the right-hand side of
(13), since the transmit symbols that lie further from the origin
are less subject to noise. Let us now consider the normalized
variance V`/|E`|2, which quantifies the relative dispersion of ŝ`
about its expected value. It is important to notice that, although
V` grows linearly with the number of BS antennas M , the
normalized variance is inversely proportional to the latter.

The data detection process can be enhanced by taking
into account the dispersion of the estimated symbols about
their expected values. Specifically, in the context of MLD via
Voronoi tessellation based on {E`}L`=1 described above, one
can use the variance of the estimated symbols derived in (13)
to further refine the detection regions. In this setting, we adopt
the approach of multiplicatively weighted Voronoi tessellation,
where each detection region R` around E` is constructed as
R` ,

{
ξ ∈ C : ω`|ξ − E`| ≤ ωi|ξ − Ei|,∀i 6= `

}
(14)

where ω` > 0 is the weight corresponding to E`. In particular,
one must choose each ω` to be a decreasing function of V`
such that a higher variance of ŝ` corresponds to a smaller
distance function around E` and, consequently, gives rise to
a larger R` (see, e.g., the choice in (18)).2 Remarkably, it is
shown in Section IV-A that this approach can greatly boost
the performance of the data detection in terms of SER.

We now analyze the asymptotic behavior of the expected
value and the variance of the estimated symbols at high SNR.

Corollary 1. From Theorems 1 and 2, in the limit of ρ→∞,
we have

lim
ρ→∞

E`√
ρ

=

√
2

π
M

τ

τ + ∆̄

τ∑
u=1

p∗u

(
Ω

(
Re[pus`]

|s`|

)
+ j Ω

(
Im[pus`]

|s`|

))
(15)

and

lim
ρ→∞

V`
ρ

=
2

π
M

τ2

τ + ∆̄
− 1

M
lim
ρ→∞

|E`|2

ρ
(16)

2Note that the case of equal weights corresponds to conventional MLD.

where we have defined
∆̄ =

∑
u 6=v

(
Re[p∗upv]Ω

(
Re[pup

∗
v]
)
− Im[p∗upv]Ω

(
Im[pup

∗
v]
))
.

(17)

The result of Corollary 1 formalizes a behavior of the estimated
symbols that was observed in [7]. From (15), at high SNR, all
the estimated symbols lie on a circle around the origin and the
information carried by the amplitude of the transmit symbols
is entirely suppressed by the 1-bit quantization. Therefore, the
estimated symbols resulting from transmit symbols with the
same phase become indistinguishable in terms of their expected
value, which depends only on Re[s`]/|s`| and Im[s`]/|s`|.
For example, if S corresponds to the 16-QAM constellation
(as considered in Section IV), the inner estimated symbols
become indistinguishable from the outer estimated symbols
with the same phase. Moreover, according to (16), these
estimated symbols become identical also in terms of variance.
In view of these aspects, the system performance cannot be
enhanced simply by minimizing the normalized variance of the
estimated symbols. On the one hand, such a variance roughly
decreases with the transmit SNR; on the other hand, the overlap
between different symbols after the estimation increases with
the transmit SNR. This determines a clear SNR trade-off,
according to which operating at the right SNR enhances the
data detection accuracy.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the data
detection with 1-bit ADCs with respect to the different
parameters using the analytical results presented in Sec-
tion III-A. We assume that, during the uplink pilot-aided
channel estimation phase, the second column of the τ -
dimensional discrete Fourier transform matrix is used as pilot,
i.e., d2 , [1, e−j

2π
τ , e−j 2

2π
τ , . . . , e−j (τ−1)

2π
τ ]T ∈ Cτ×1,

which represents the best possible pilot choice (see [8, App. I]
for more details). In addition, we assume the same transmit
SNR for the two phases of channel estimation and uplink data
transmission. Lastly, although our analytical framework is valid
for any choice of the set of transmit symbols S , we analyze the
scenario where S corresponds to the 16-QAM constellation,
i.e., S = 1√

10

{
± 1± j,±1± j 3,±3± j,±3± j 3

}
.3

Fig. 1 illustrates the estimated symbols for different values
of the transmit SNR ρ, with M = 128 and τ = 32;
each 16-QAM symbol is transmitted over 102 independent
channel realizations. The expected value of the estimated
symbols is computed as in Theorem 1 and clearly matches
the corresponding sample average. Here, we observe two
fundamental and conflicting trends that constitute the SNR
trade-off described in Section III-A. First, the normalized
variance of the estimated symbols decreases with the transmit
SNR. Second, the estimated symbols resulting from the
transmit symbols with the same phase, i.e., ± 1√

10
(1 ± j)

and ± 1√
10

(3± j 3), get closer as the transmit SNR increases
from ρ = 0 dB to ρ = 10 dB and almost fully overlap

3Note that the symbols are normalized such that 1
L

∑L
`=1 |s`|2 = 1.
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Fig. 1: Estimated symbols with the MRC receiver, with 16-QAM transmit symbols, M = 128, and τ = 32. The expected value of the
estimated symbols is computed in closed form as in (11).
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Fig. 2: SER against the transmit SNR, with 16-QAM transmit symbols,
M ∈ {64, 128, 256}, and τ = 32.

at ρ = 20 dB. This behavior was observed in [7] and is
formalized in Corollary 1, according to which such estimated
symbols become identical at high SNR and the difference in
amplitude between symbols cannot be recovered. For the 16-
QAM, this produces a SER of 0.25 since there are four pairs
of indistinguishable estimated symbols (see also Fig. 2).

We now examine the combined effect of the channel
estimation and the data detection with 1-bit ADCs on the system
performance in terms of SER, which is computed numerically
via Monte Carlo simulations with 106 independent channel
realizations. The symbols are decoded via MLD aided by the
result of Theorem 1. Furthermore, different numbers of BS
antennas are considered, i.e., M ∈ {64, 128, 256}. Fig. 2 plots
the SER against the transmit SNR ρ, with τ = 32, showing
a clear SNR trade-off. In particular, the SER reduces until
it attains its minimum (which occurs at about ρ = 4 dB for
M = 256) before increasing again and reaching asymptotically
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Fig. 3: SER against the pilot length, with 16-QAM transmit symbols,
M ∈ {64, 128, 256}, and ρ = 10 dB.

the value of 0.25. In fact, as discussed above for Fig. 1, the
inner estimated symbols of the 16-QAM constellation become
indistinguishable from the outer estimated symbols with the
same phase at high SNR. Fig. 3 depicts the SER against the
pilot length τ , with ρ = 10 dB, showing the impact of the
channel estimation accuracy in the computation of the MRC
receiver. For instance, for M = 256, the SER is decreased
by a factor of 5 when the pilot length grows from τ = 4 to
τ = 8. We refer to [8] for a thorough analysis of the channel
estimation with 1-bit ADCs. In both Fig. 2 and 3, we observe
that increasing the size of the antenna array at the BS is always
beneficial. For example, in Fig. 2, the SER is decreased by
two orders of magnitude at the optimal transmit SNR when the
number of BS antennas grows from M = 128 to M = 256.
Indeed, the higher granularity in the antenna domain allows
to sum the contribution of a larger number of independent
channel entries.
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Fig. 4: Enhanced MLD with weights chosen as in (18), with M = 128,
ρ = 5 dB, and τ = 32.

A. Enhanced Maximum Likelihood Detection
The SER results presented so far have been obtained with

conventional MLD, whereby each estimated symbol is mapped
to one of the expected values {E`}L`=1 according to the
minimum distance criterion. Such a data detection process
can be enhanced by taking into account the dispersion of
the estimated symbols about their expected values, i.e., by
assigning larger detection regions to the estimated symbols with
higher variance. Hence, we now construct the detection regions
according to a multiplicatively weighted Voronoi tessellation
(see (14)) with the following heuristic choice of the weights:

ω` =
1

1 + α(V` − 1)
, ` = 1, . . . , L (18)

with α ∈ [0, 1]. This choice allows to strike a balance between
conventional MLD (i.e., ω` = 1 for α = 0) and enhanced
MLD with weights inversely proportional to the variance of
the estimated symbols (e.g., ω` = 1/V` for α = 1).

Fig. 4(a) plots the SER against α, with M = 128, ρ = 5 dB,
and τ = 32, showing that using even slightly weighted
detection regions can reduce the SER by a factor of 2.
Fig. 4(b) illustrates the detection regions corresponding to

the cases of α = 0 and α = 1. It is straightforward to
observe that the detection regions corresponding to the inner
estimated symbols of the 16-QAM constellation (with higher
variance) are enlarged at the expense of the ones corresponding
to the outer estimated symbols (with lower variance). For
instance, the detection threshold between the estimated symbols
corresponding to 1√

10
(1 + j) and 1√

10
(3 + j 3) is shifted

outwards to accommodate the larger dispersion of the former
(cf. Fig. 1). Indeed, this simple approach can greatly boost the
performance of the data detection in terms of SER.

V. CONCLUSIONS

This paper focuses on the uplink data detection analysis
of massive MIMO systems with 1-bit ADCs. We characterize
the expected value and the variance of the estimated symbols
when MRC is adopted at the BS along with their asymptotic
behavior at high SNR. Building on these results, we propose
an enhanced MLD method that is able to greatly reduce the
SER by taking into account the dispersion of the estimated
symbols about their expected values. The proposed analysis
provides important practical insights into the design and the
implementation of 1-bit quantized systems: in particular, it
highlights a fundamental SNR trade-off, according to which
operating at the right SNR considerably improves the data
detection accuracy. Future work will consider extensions to the
multi-UE case and the optimal design of the set of transmit
symbols capitalizing on our analytical framework.
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