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Abstract—We propose a distributed precoding design for down-
link cell-free massive multiple-input multiple-output (MIMO)
systems where the channel state information (CSI) exchange
via backhaul signaling is entirely replaced by a novel over-the-
air (OTA) signaling mechanism. The proposed method enjoys
desirable flexibility and scalability properties, as the amount of
OTA signaling does not scale with the number of base stations or
user equipments. Numerical results show remarkable gains over
uncoordinated precoding design, even after very few iterations.
The proposed method may also outperform the centralized
precoding design under realistic CSI acquisition.

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (MIMO) is
a recent concept that conveniently combines elements from
small cells, massive MIMO, and user-centric joint transmission
coordinated multi-point (JT-CoMP) [1]. In cell-free massive
MIMO, a large number of antenna elements are distributed
across the network to provide overall reduced pathloss and
enhanced coverage. Furthermore, a user-centric coherent trans-
mission extended to the whole network, where each user
equipment (UE) is served jointly by all the base stations (BSs),
allows to entirely eliminate the inter-cell interference [2]. To
this end, all the BSs are connected to a central processing unit
(CPU) that provides the UE-specific data via backhaul links.

Cell-free massive MIMO systems have been shown to
outperform traditional small-cell and cellular massive MIMO
networks in several practical scenarios [3], [4], while the sum-
rate performance depends on the level of coordination among
the BSs [5]. Simple uncoordinated precoding strategies, such
as matched filtering and local minimum mean squared error
(MMSE), are typically assumed at the BSs as they can be
optimized based on locally acquired channel state information
(CSI) without any CSI exchange via backhaul signaling.
However, the fact that the channel hardening effect is less
pronounced in cell-free massive MIMO than in cellular massive
MIMO [1] suggests that cooperative precoding design can bring
considerable gains over its non-cooperative counterpart.

In the centralized precoding design, the BSs convey their
locally acquired CSI to the CPU, which then feeds back the
optimized precoding vectors to the BSs via backhaul signaling.
As the number of BSs and UEs involved in the joint processing
increases, both the computational complexity at the CPU and
the amount of CSI exchange via backhaul signaling become
impractical. In [6], a distributed iterative scheme for JT-CoMP
was proposed to optimize the precoding strategies locally at
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each BS using bi-directional training between the BSs and the
UEs [7] along with periodic exchange of cross-term information
among the BSs via backhaul signaling. Still, the amount of such
CSI exchange makes the implementation of [6] challenging,
especially in cell-free massive MIMO contexts.

This paper proposes a distributed precoding design for cell-
free massive MIMO (and, more generally, for JT-CoMP) sys-
tems that entirely eliminates the need for backhaul signaling for
CSI exchange. To this end, a novel over-the-air (OTA) signaling
mechanism allows each BS to acquire the same cross-term
information that was exchanged among the BSs via backhaul
signaling in [6]. Remarkably, the amount of OTA signaling does
not scale with the number of BSs or UEs, and depends only
on the pilot length and on the number of bi-directional training
iterations. The proposed distributed precoding design via OTA
signaling brings significant gains over local MMSE precoding,
even after very few iterations. Furthermore, it outperforms the
centralized precoding design under realistic CSI acquisition
thanks to its robustness against imperfect channel estimation.

II. SYSTEM MODEL

Consider a downlink cell-free massive MIMO network where
a set of BSs B , {1, . . . , B}, each equipped with M antennas,
serve a set of UEs K , {1, . . . ,K}, each equipped with N
antennas. Assuming a time division duplex (TDD) setting with
channel reciprocity and a single data stream per UE, let Hb,k ∈
CM×N be the uplink channel matrix between UE k ∈ K and
BS b ∈ B, with Hk , [HT

1,k, . . . ,H
T
B,k]T ∈ CBM×N denoting

the global uplink channel matrix seen by UE k. Likewise, let
wb,k ∈ CM×1 be the BS-specific precoding vector used by
BS b for UE k, with wk , [wT

1,k, . . . ,w
T
B,k]T ∈ CBM×1

denoting the global precoding vector used for UE k. Hence,
the receive signal at UE k is given by

yk ,
∑
b∈B

∑
k̄∈K

HH
b,kwb,k̄dk̄ + zk ∈ CN×1 (1)

where dk ∼ CN (0, 1) is the transmit data symbol for UE k,
and zk ∼ CN (0, σ2

kIN ) is the average white Gaussian noise
(AWGN) at UE k. Upon receiving yk, UE k uses the combining
vector vk ∈ CN×1 and the resulting signal-to-interference-plus-
noise ratio (SINR) is

SINRk ,
|
∑
b∈B vH

k HH
b,kwb,k|2∑

k̄∈K\{k} |
∑
b∈B vH

k HH
b,kwb,k̄|2 + ‖vk‖2σ2

k

. (2)

Finally, the sum rate (measured in bps/Hz) is given by R ,∑
k∈K log2(1+SINRk). In the following, we describe realistic

pilot-aided CSI acquisition at both the BSs and the UEs.



A. Uplink Pilot-Aided Channel Estimation
Let hb,k , Hb,kvk ∈ CM×1 be the effective uplink channel

vector between UE k and BS b, and let pk ∈ Cτ×1 be the pilot
assigned to UE k, with ‖pk‖2 = τ . During the uplink pilot-
aided channel estimation, each UE k simultaneously1 transmits
its pilot precoded with its combining vector, i.e.,

XUL-1
k , vkp

H
k ∈ CN×τ . (3)

Note that, when used as precoder, vk must comply with the
transmit power constraint of UE k (as detailed in Section V).
Then, each BS b receives

YUL-1
b ,

∑
k∈K

hb,kp
H
k + ZUL-1

b ∈ CM×τ (4)

where ZUL-1
b ∈ CM×τ is the AWGN at BS b with elements

distributed as CN (0, σ2
b ), and the least-squares (LS) estimate

of hb,k is obtained as

ĥb,k ,
1

τ
YUL-1
b pk (5)

= hb,k +
1

τ

∑
k̄∈K\{k}

hb,k̄p
H
k̄ pk +

1

τ
ZUL-1
b pk. (6)

For the centralized precoding design, the estimation of the
channel matrix Hb,k requires N antenna-specific pilots for
UE k. In this context, let Pk ∈ Cτ×N be the pilot matrix
assigned to UE k, with ‖Pk‖2F = τN . Similarly to (3), each
UE k simultaneously transmits its pilot matrix and BS b obtains
the LS estimate of Hb,k as (cf. (6))

Ĥb,k ,
1

τ

∑
k̄∈K

Hb,k̄P
H
k̄ Pk +

1

τ
ZUL-1
b Pk. (7)

B. Downlink Pilot-Aided Channel Estimation
Let gk ,

∑
b∈BHH

b,kwb,k ∈ CN×1 be the effective down-
link channel vector between all the BSs and UE k. During the
downlink pilot-aided channel estimation, each BS b simultane-
ously transmits a superposition of pilots after precoding them
with the corresponding precoding vectors, i.e.,

XDL
b ,

∑
k∈K

wb,kp
H
k ∈ CM×τ . (8)

Then, each UE k receives

YDL
k ,

∑
b∈B

∑
k̄∈K

HH
b,kwb,k̄p

H
k̄ + ZDL

k ∈ CN×τ (9)

where ZDL
k ∈ CN×τ is the AWGN at UE k with elements dis-

tributed as CN (0, σ2
k), and the LS estimate of gk is obtained as

ĝk ,
1

τ
YDL
k pk (10)

= gk +
1

τ

∑
b∈B

∑
k̄∈K\{k}

HH
b,kwb,k̄p

H
k̄ pk +

1

τ
ZDL
k pk. (11)

III. PROBLEM FORMULATION WITH PERFECT CSI
In this paper, we target the weighted sum mean squared error

(MSE) minimization problem to optimize the precoding vectors
{wb,k}b∈B,k∈K and the combining vectors {vk}k∈K (see [8]
for more details). For the sake of clarity, we begin by illustrating

1Although perfect synchronization is infeasible, quasi-synchronous transmis-
sions among UEs and BSs can be achieved in practice as described in [1], [5].

the case of perfect channel estimation; then, we focus on the
case of realistic pilot-aided CSI acquisition in Section IV.

Building on (1), let us introduce the MSE at UE k as

MSEk , E
[
|vH
k yk − dk|2

]
(12)

=
∑
k̄∈K

∣∣∣∣∑
b∈B

vH
k HH

b,kwb,k̄

∣∣∣∣2−2Re

[∑
b∈B

vH
k HH

b,kwb,k

]
+ σ2

k‖vk‖2 + 1 (13)

which is convex with respect to either the transmit or the
receive strategies, but not jointly convex with respect to both.
Hence, we use alternate optimization, whereby the precoding
vectors are optimized for fixed combining vectors and vice
versa in an iterative best-response fashion [8].
• Computation of the combining vectors. The combining

vectors {vk}k∈K are computed locally and independently
by the UEs such that each UE k minimizes MSEk in (13).
From the point of view of UE k, we can rewrite the MSE as

MSEk = vH
k (Ψk + σ2

kIN )vk − 2Re[vH
k gk] + 1 (14)

where we have defined

Ψk ,
∑
k̄∈K

(∑
b∈B

HH
b,kwb,k̄

)(∑
b∈B

wH
b,k̄Hb,k

)
. (15)

The combining vector vk that minimizes (14) is the well-
known MMSE receiver, which may be written as

vk = (Ψk + σ2
kIN )−1gk. (16)

Observe that Ψk in (15) and the effective downlink channel
gk must be known by UE k.
• Computation of the precoding vectors. The precoding

vectors {wb,k}b∈B,k∈K are computed as the solutions of
the weighted sum MSE minimization problem with per-BS
power constraints

{∑
k∈K ‖wb,k‖2 ≤ ρBS

}
b∈B, where ωk

is the weight of UE k. In this respect, we introduce some
preliminary definitions: hk , [hT

1,k, . . . ,h
T
B,k]T ∈ CBM×1,

H , [h1, . . . ,hK ] ∈ CBM×K , W , [w1, . . . ,wK ] ∈
CBM×K , Ω , diag

(
[ω1, . . . , ωK ]

)
∈ RK×K , and Φ ,∑

k∈K ωkhkh
H
k ∈ CBM×BM , where the latter may be

rewritten as

Φ ,

Φ11 . . . Φ1B

...
. . .

...
ΦH

1B . . . ΦBB

 (17)

with Φbb̄ ,
∑
k∈K ωkhb,kh

H
b̄,k
∈ CM×M . Finally, the

weighted sum MSE can be expressed as∑
k∈K

ωkMSEk = tr(WHΦW)− 2Re
[
tr(ΩHHW)

]
+
∑
k∈K

ωk(σ2
k‖vk‖2 + 1). (18)

Next, we describe the centralized and the distributed
precoding designs in Sections III-A and III-B, respectively.

A. Centralized Precoding Design
In the centralized precoding design, the alternate optimization

of the precoding and the combining vectors takes place
transparently at the CPU. For fixed combining vectors, for
each UE k, the centralized precoding solution is given by



wk = ωk(Φ + Λ)−1hk (19)

where Λ , blkdiag(λ1IM , . . . , λKIM ) ∈ RBM×BM contains
the dual variables {λb}b∈B related with the per-BS power
constraints (which can be computed using the ellipsoid method).

The centralized precoding design is carried out as follows:
1) each BS b acquires the channel matrices {Hb,k}k∈K and
transmits them to the CPU via backhaul signaling; 2) the CPU
computes the global precoding vectors {wk}k∈K as in (19)
and the combining vectors {vk}k∈K as in (16) via alternate
optimization; 3) the CPU feeds back the BS-specific precoding
vectors {wb,k}k∈K to each BS b via backhaul signaling; 4) each
UE k acquires Ψk in (15) and the effective downlink channel
gk, and computes its combining vector vk as in (16).

B. Distributed Precoding Design
In the distributed precoding design, the alternate optimization

of the precoding and the combining vectors takes place between
the BSs and the UEs by means of bi-directional training [7].
For fixed combining vectors, for each BS b and for each UE k,
the distributed precoding solution is given by

wb,k = (Φbb + λbIM )−1(ωkhb,k − ηb,k) (20)

where we have defined
ηb,k ,

∑
b̄∈B\{b}

Φbb̄wb̄,k (21)

and where λb can be computed via bisection. At each iteration i,
each BS b can compute wb,k locally as in (20) for fixed
{wb̄,k}b̄∈B\{b} in parallel with the other BSs and update it as

w
(i)
b,k = (1− α)w

(i−1)
b,k + αwb,k (22)

with α ∈ (0, 1] (see [6] for more details).

Remark 1. The vector ηb,k in (21) contains implicit informa-
tion about the channel correlation between BS b and the other
BSs and about the precoding vectors adopted by the latter for
UE k. Such cross-term information allows to iteratively adjust
the distributed precoding solution so that it converges to the
centralized precoding solution in (19). Note that omitting ηb,k
from (20) yields the highly suboptimal local MMSE precoding.
In this regard, while the effective uplink channels {hb,k}k∈K
can be acquired locally by each BS b, extensive CSI exchange
among the BSs via backhaul signaling is still required to obtain
{ηb,k}k∈K [6]. In Section V, we propose a practical method to
acquire an estimate of such terms solely via OTA signaling.

The distributed precoding design iterates the following pro-
cess until a predefined termination criterion is met: 1) for fixed
combining vectors {vk}k∈K, each BS b acquires the effective
uplink channels {hb,k}k∈K and the vectors {ηb,k}k∈K; 2) each
BS b computes its BS-specific precoding vectors {wb,k}k∈K
locally as in (20) and updates them as in (22); 3) each UE k
acquires Ψk in (15) and the effective downlink channel gk,
and computes its combining vector vk as in (16).

IV. PROBLEM FORMULATION WITH IMPERFECT CSI

We now consider the centralized and the distributed precod-
ing designs described in Sections III-A and III-B, respectively
under realistic pilot-aided CSI acquisition at both the BSs and

the UEs (see Sections II-A and II-B). For notational simplicity,
and without loss of generality, we assume {ωk = 1}k∈K.
A. Centralized Precoding Design

In the centralized precoding design, the CPU computes the
combining and the precoding vectors for each UE k as

vk =

(∑
k̄∈K

(∑
b∈B

ĤH
b,kwb,k̄

)(∑
b∈B

wH
b,k̄Ĥb,k

)
+ σ2

kIN

)−1

×
∑
b∈B

ĤH
b,kwb,k, (23)

wk =

(∑
k̄∈K

Ĥk̄vk̄v
H
k̄ ĤH

k̄ + Λ

)−1

Ĥkvk (24)

respectively. More specifically, (23) and (24) are obtained by
replacing the channels {Hb,k}b∈B with the estimated channels
{Ĥb,k}b∈B (obtained as in (7)) in (16) and (19), respectively.

B. Distributed Precoding Design
In the distributed precoding design, after the downlink pilot-

aided channel estimation phase, each UE k obtains
1

τ
YDL
k (YDL

k )H = Ψk +
1

τ

∑
k̄,j∈K
k̄ 6=j

(∑
b∈B

HH
b,kwb,k̄

)

×
(∑
b∈B

wH
b,jHb,k

)
pH
k̄ pj + NDL

k (25)

with YDL
k and Ψk defined in (9) and (15), respectively, and

NDL
k ,

1

τ

(∑
b∈B

∑
k̄∈K

(
HH
b,kwb,k̄p

H
k̄ (ZDL

k )H

+ ZDL
k pk̄w

H
b,k̄Hb,k

)
+ ZDL

k (ZDL
k )H

)
. (26)

Here, perfect channel estimation would imply that: i) the pilot
contamination in the second term of (25) is eliminated; ii) as
τ →∞, NDL

k → σ2
kIN . Hence, (25) can be used as an estimate

of Ψk + σ2
kIN and, consequently, we can obtain an estimate

of MSEk in (14) as

MSEk '
1

τ
vH
k YDL

k (YDL
k )Hvk −

2

τ
Re[vH

k YDL
k pk] + 1. (27)

Finally, the combining vector vk can be computed locally by
UE k as

vk =
(
YDL
k (YDL

k )H
)−1

YDL
k pk (28)

which is equal to (16) for perfect channel estimation.
On the other hand, after the uplink pilot-aided channel

estimation phase, for each BS pair b and b̄, we have
1

τ
YUL-1
b (YUL-1

b̄ )H = Φbb̄ +
1

τ

∑
k,k̄∈K
k 6=k̄

hb,kh
H
b̄,k̄p

H
k pk̄ + NUL-1

bb̄ (29)

with YUL-1
b defined in (4) and

NUL-1
bb̄ ,

1

τ

(∑
k∈K

(
hb,kp

H
k (ZUL-1

b̄ )H + ZUL-1
b pkh

H
b̄,k

)
+ ZUL-1

b (ZUL-1
b̄ )H

)
. (30)

Here, perfect channel estimation would imply that: i) the pilot



1

τ

(
YUL-2
b pk −

(
YUL-1
b (YUL-1

b )H − τσ2
b IM

)
wb,k

)
= ηb,k +

1

τ

(∑
k̄ 6=k

∑
b̄∈B

Φbb̄wb̄,k̄p
H
k̄ pk −

∑
k̄,j∈K
k̄ 6=j

hb,k̄h
H
b,jwb,kp

H
k̄ pj

)
+ nUL-2

b,k + (σ2
b IM −NUL-1

bb )wb,k (37)

contamination in the second term of (29) is eliminated; ii) as
τ →∞, NUL-1

bb̄
→ 0 if b̄ 6= b and NUL-1

bb → σ2
b IM . Hence, (29)

can be used as an estimate of Φbb̄ if b̄ 6= b or of Φbb + σ2
b IM

if b̄ = b. This can be exploited to obtain an estimate of the
sum MSE in (18) as∑
k∈K

MSEk '
1

τ
tr
(
WH

(
YUL-1(YUL-1)H − τΣ

)
W
)

− 2

τ
Re
[
tr
(
PH(YUL-1)HW

)]
+
∑
k∈K

σ2
k‖vk‖2 +K (31)

where we have defined YUL-1 , [(YUL-1
1 )T, . . . , (YUL-1

K )T]T ∈
CBM×τ , Σ , blkdiag(σ2

1IM , . . . , σ
2
BIM ) ∈ RBM×BM , and

P , [p1, . . . ,pK ] ∈ Cτ×K . Finally, for each BS b and for
each UE k, the distributed precoding solution is given by

wb,k =
(
YUL-1
b (YUL-1

b )H + τ(λb − σ2
b )IM

)−1

×YUL-1
b

(
pk −

∑
b̄∈B\{b}

(YUL-1
b̄ )Hwb̄,k

)
. (32)

which is equal to (20) for perfect channel estimation. To
compute wb,k as in (32), BS b needs to acquire the vectors{

(YUL-1
b̄

)Hwb̄,k

}
b̄∈B\{b} via backhaul signaling [6]. This hin-

ders the implementation of the distributed precoding design,
as the amount of such signaling scales not only with the pilot
length τ but also with the number of BSs B and UEs K.

V. DISTRIBUTED PRECODING DESIGN VIA OTA SIGNALING

To efficiently implement the distributed precoding design
without any CSI exchange among the BSs via backhaul
signaling, we introduce a new uplink signaling resource
together with a new CSI combining mechanism that complement
the existing uplink and downlink signaling described in
Sections II-A and II-B, respectively.

To enable each BS b to acquire an estimate of ηb,k in (21),
each UE k simultaneously transmits YDL

k in (9) precoded with
the rank-1 matrix vkv

H
k , i.e.,

XUL-2
k , vkv

H
k YDL

k ∈ CN×τ . (33)

Then, each BS b receives

YUL-2
b ,

∑
k∈K

hb,kv
H
k

(∑
b̄∈B

∑
k̄∈K

HH
b̄,kwb̄,k̄p

H
k̄ +ZDL

k

)
+ZUL-2

b (34)

where ZUL-2
b ∈ CM×τ is the AWGN at BS b with elements

distributed as CN (0, σ2
b ). Hence, each BS b obtains

1

τ
YUL-2
b pk =

∑
b̄∈B

Φbb̄wb̄,k +
1

τ

∑
k̄ 6=k

∑
b̄∈B

Φbb̄wb̄,k̄p
H
k̄ pk + nUL-2

b,k

(35)
where we have defined

nUL-2
b,k ,

1

τ

(∑
k̄∈K

Hb,k̄vk̄v
H
k̄ ZDL

k̄ + ZUL-2
b

)
pk. (36)

Algorithm 1 (Distributed–OTA)
Initialization: Each BS b initializes {wb,k}k∈K; set i = 0.
Until a predefined termination criterion is met, do:
(S.0) i← i+ 1.
(S.1) DL: Each BS b transmits XDL

b in (8); each UE k
receives YDL

k in (9).
(S.2) Each UE k computes its combining vector as in (28).
(S.3) UL-1: Each UE k transmits XUL-1

k in (3); each BS b
receives YUL-1

b in (4).
(S.4) UL-2: Each UE k transmits XUL-2

k in (33); each BS b
receives YUL-2

b in (34).
(S.5) For each UE k, each BS b computes its precoding

vectors as in (38) and updates them as in (22).
End

00 1 2 3 4 5 6 7

DL DL UL-1 UL-2 DL DL UL-1 UL-2 · · ·

NR subframe (8 slots)

Slot (14 OFDM symbols)

Training
phase

Data transmission phase

Downlink
minislot

Uplink
minislot

1

Figure 1: Example of how the proposed OTA signaling can be
integrated into the flexible NR frame/slot structure.

Here, perfect channel estimation would imply that: i) the pilot
contamination in the second term of (35) is eliminated; ii) as
τ →∞, the noise term nUL-2

b,k in (36) is eliminated. Therefore,
(35) can be used as an estimate of

∑
b̄∈BΦbb̄wb̄,k and each

BS b can acquire an estimate of ηb,k in (21) as in (37) at the
top of the page. Finally, for each BS b and for each UE k, the
distributed precoding solution via OTA signaling is obtained as

wb,k =
(
YUL-1
b (YUL-1

b )H + τ(λb − σ2
b )IM

)−1(
YUL-1
b

×
(
pk + (YUL-1

b )Hwb,k

)
−YUL-2

b pk − τσ2
bwb,k

)
(38)

which is equal to (20) for perfect channel estimation. The
iterative implementation of the distributed precoding design
via OTA signaling is formalized in Algorithm 1. In [9], the
proposed OTA signaling mechanism has been adapted for the
uplink scenario to enable distributed joint receiver design.
Remark 2. The amount of OTA signaling does not scale with
the number of BSs B and UEs K, and depends only on the pilot
length τ and on the number of bi-directional training iterations.
Note that the signaling overhead becomes negligible for a
sufficiently large scheduling block size (see [7] for more details).
The optimal tradeoff between OTA signaling and performance
has been studied in the longer version of this paper [8].
Remark 3. The overall bi-directional training (comprising
DL, UL-1, and UL-2) can be easily integrated into the New
Radio (NR) frame/slot structure [7], [8]. Each of the 10 NR
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Figure 2: Average sum rate versus: (a) number of iterations with orthogonal pilots and K = 16; (b) number of UEs with orthogonal pilots;
and (c) pilot length with non-orthogonal random pilots and K = 16.

subframes consists of 8 slots of 14 OFDM symbols and can be
conveniently divided into training and data transmission phase.
Here, minislots of minimum 2 OFDM symbols can be flexibly
constructed to accommodate either uplink (i.e., UL-1 and/or
UL-2) or downlink (i.e., DL) training, as in the example in
Figure 1. The number and placement of training minislots can
be adjusted based on rate and latency demands.
Remark 4. To comply with the UE transmit power constraint
during the uplink training, XUL-1

k in (3) and XUL-2
k in (33) can

be multiplied by a scaling factor based on, e.g., the average re-
ceived power at all the UEs, and scaled back at each BS b upon
receiving YUL-1

b in (4) and YUL-2
b in (34) (as done in Section VI).

VI. NUMERICAL RESULTS

The simulation setup consists of B = 25 BSs with M = 4
antennas and transmit power ρBS = 30 dBm, placed on a
square grid with inter-site distance of 100 m, serving K = 16
randomly placed UEs with N = 2 antennas and transmit power
ρUE = 20 dBm. The channel model includes i.i.d. Rayleigh
fading and power-law pathloss with pathloss exponent 3.67.
The AWGN powers are fixed to σ2

b = −95 dBm, ∀b ∈ B, and
σ2
k = −95 dBm, ∀k ∈ K. We evaluate the average sum rate

obtained via Monte Carlo simulations with 103 independent UE
drops and compare the distributed precoding design via OTA
signaling (Distributed–OTA) with the local MMSE precoding
(Local MMSE), the centralized precoding design (Centralized),
and the distributed precoding design via backhaul signaling
[6] (Distributed–backhaul); for the latter, we consider a delay
of one iteration in the CSI exchange among the BSs.

Let us begin by considering orthogonal pilots. Figure 2(a)
shows that the proposed Distributed–OTA achieves a 100%
performance increase with respect to the Local MMSE after
just 6 iterations and reaches the performance of the Centralized
within 15 iterations. Here, the distributed precoding designs
can outperform the Centralized under imperfect CSI: this is
mainly due to the noise averaging during the bi-directional
training, whereas the Centralized relies on a single pilot-aided
CSI acquisition. Furthermore, the faster convergence of the
Distributed–OTA during the first few iterations with respect to
the Distributed–backhaul is due to delayed backhaul update.
Figure 2(b) shows that the performance gap between the
proposed Distributed–OTA (even after just 5 iterations) and
the Local MMSE increases with the number of UEs K. In

particular, in case of very high spatial load, the Distributed–OTA
also outperforms the Distributed–backhaul. Considering non-
orthogonal random pilots, Figure 2(c) shows that the Central-
ized (with orthogonal antenna-specific pilots within each UE)
has a similar performance to the Local MMSE due to the pilot
contamination in (7). Differently, in the distributed precoding
designs, the combining and precoding vectors are directly
estimated at each bi-directional training iteration as detailed in
Section IV. This provides greatly improved resilience against
pilot contamination (as also demonstrated in [6]) and the ideal
performance can be approached by increasing the pilot length.

VII. CONCLUSIONS

We proposed a distributed precoding design for cell-free mas-
sive MIMO that does not require any CSI exchange among the
BSs via backhaul signaling. Remarkably, the amount of in-
volved OTA signaling does not scale with the number of BSs or
UEs. The proposed method is shown to outperform the local
MMSE precoding (providing a 100% gain in the average sum
rate after just 6 iterations for the considered scenario) and even
the centralized precoding design under realistic CSI acquisition.
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