
ar
X

iv
:2

00
3.

01
92

8v
1

 [
cs

.I
T

]
 4

 M
ar

 2
02

0

Coded Caching with Uneven Channels:

A Quality of Experience Approach

MohammadJavad Salehi and Antti Tölli

Center for Wireless Communications (CWC)

University of Oulu

90570 Oulu, Finland

Email: {first name.last name}@oulu.fi

Seyed Pooya Shariatpanahi

School of Electrical and Computer Engineering

College of Engineering, University of Tehran

Tehran, Iran

Email: p.shariatpanahi@ut.ac.ir

Abstract—The rate performance of wireless coded caching
schemes is typically limited by the lowest achievable per-user rate
in the given multicast group, during each transmission time slot.
In this paper, we provide a new coded caching scheme, alleviating
this worst-user effect for the prominent case of multimedia
applications. In our scheme, instead of maximizing the symmetric
rate among all served users, we maximize the total quality of
experience (QoE); where QoE at each user is defined as the
video quality perceived by that user. We show the new scheme
requires solving an NP-hard optimization problem. Thus, we
provide two heuristic algorithms to solve it in an approximate
manner; and numerically demonstrate the near-optimality of the
proposed approximations. Our approach allows flexible allocation
of distinct video quality for each user, making wireless coded
caching schemes more suitable for real-world implementations.

Index Terms—Coded caching, uneven channels, quality of
experience, multiple description coding

I. INTRODUCTION

Network data volume has continuously grown during the

past years. The global IP (Internet Protocol) data volume is

expected to exceed 4.8 Zettabytes (1021 bytes) by 2022, from

which 71 percent will pass through wireless networks [1].

Mobile video applications account for a major part of this

data volume; as their share is expected to reach 79% of the

global mobile data traffic by 2022. Consequently, great efforts

are made by the research community, for developing new

communication schemes well-suited to current and future (e.g.

immersive viewing) video applications.

Most video applications share a few important features.

First, the source of the received content is not important, as

long as each user receives its requested content [2]. Moreover,

the content request probability distribution is uneven and there

is a prime time where the request rate is higher [3]. As a result,

caching popular content is considered as a viable solution for

large scale video delivery [2], [4]; specially considering the

declining price of memory chips [5].

Recently, Coded Caching (CC) is introduced as a promising

extension to conventional caching schemes [6]. It enables a

global caching gain, proportional to the total cache size in

the network, to be achieved in addition to the local caching

This work was supported by the Academy of Finland under grants no.
319059 (Coded Collaborative Caching for Wireless Energy Efficiency) and
318927 (6Genesis Flagship).

gain at each user. This extra gain is enabled by multicasting

carefully designed codewords to various user subsets, such

that each codeword contains useful data for all users in its

target subset. It is also shown that CC gain is additive with

the spatial gain of using multiple antennas [7], [8]; making CC

even more desirable for future networks in which multi-input,

multi-output (MIMO) communications play a major role [9].

Following [6], a significant effort has been carried out by

the research community to make CC implementation practical

for future networks. For example, subpacketization, defined as

the number of fragments each file should be split into for a CC

scheme to work properly, is thoroughly investigated in [10]–

[12]; while CC performance at low-SNR wireless communi-

cations is studied in [13], [14]. Unfortunately, the multicast

nature of CC makes its performance to be compromised if

served users have diverse channel conditions. In fact, if the

channel capacity is small for a specific user k, the achievable

multicast rate of any user subset including k will be limited

to the rate of k. This issue, known as the worst-user effect,

is addressed in [15], [16]. In [15] a superposition coding

approach is used, in which more transmit power is allocated

to the weaker user. On the other hand, a dynamic network

is considered in [16] where queuing techniques are used to

transmit more data to the stronger users during the time.

In this paper, we take a new approach to the worst-user

effect by optimizing the total Quality of Experience (QoE) of

all users during a transmission interval (defined by application

requirements). Considering a single-antenna communication

setup, we use Multiple Descriptor Codes (MDC), introduced in

[17], to enable flexible video quality at each user. Expressing

QoE as the number of MDC elements a user receives (i.e. the

video quality it experiences), we propose a partial CC scheme

for optimizing the QoE sum. We show the optimization

problem is NP-hard; and provide two heuristic algorithms to

solve it approximately. Our scheme provides a new viewpoint

for solving the worst-user effect in CC schemes, enabling CC

to be better tailored for future wireless networks.

Throughout the text, we use [K] to denote {1, 2, ...,K}
and [i : j] to represent {i, i + 1, ..., j}. Sets are denoted by

calligraphic letters. For two sets A and B, A\B is the set

of elements in A which are not in B; and |A| represents the

number of elements in A.

http://arxiv.org/abs/2003.01928v1

II. SYSTEM MODEL

A. Coded Caching (CC)

We consider a CC setup similar to [6], where a single server

communicates with K users over a shared broadcast link. Each

user is equipped with a cache memory of size Mf bits; and

requests files from a library F , where |F| = N and each file

W ∈ F has the same size of f bits. For simplicity, we assume

a normalized data unit and drop f in subsequent notations.

The system operation consists of two phases. During the

placement phase, which takes place at low network traffic time

and without any knowledge of file request probabilities in the

future, each user stores data chunks of files in F , in its cache

memory. Following [6], we define the CC gain as t = KM
N

and assume t is an integer. Moreover, we assume each file

W ∈ F is split into P =
(

K

t

)

equal-sized chunks WT , where

T can be any subset of users with |T | = t. Then during the

placement phase, each user k ∈ [K] stores data chunks WT ,

for every W ∈ F and T ∋ k, in its cache memory.

At the beginning of the delivery phase, every user k ∈ [K]
reveals its requested file W (k) ∈ F . Based on users’ requests

and in accordance with a delivery algorithm, the server builds

carefully designed codewords; and transmits each codeword in

a separate time slot over the shared communication channel.

Each user k ∈ [K] should be able to decode W (k), using data

stored in its cache memory together with the data received

from the channel. For the original scheme of [6], a codeword

X(S) is built for every S ⊆ [K] with |S| = t+ 1. Denoting

the bit-wise XOR operation with ⊕, X(S) is built as

X(S) =
⊕

k∈S

WS\{k}(k) . (1)

In [6] it is shown that after the transmission of X(S) is

concluded, every user k ∈ S can remove unwanted terms using

its cache contents; and decode WS\{k}(k) interference-free.

This will decrease the load on the shared link by a factor of

t+ 1, compared to an uncoded, unicast transmission strategy.

B. The Worst-User Effect

In [6] it is assumed that the channel capacity for all users is

one (normalized) data unit per channel use. For a more realistic

setup, we assume after X(S) is transmitted, user k receives

yk(S) = hT
kX(S) + zk, where hk ∈ C and zk ∼ N (0, N0)

denote the channel coefficient and the additive Gaussian noise

at user k, respectively. Based on this assumption, for user k ∈
S to be able to decode X(S), the transmission rate of X(S)
should be smaller than or equal to the channel capacity of user

k; which is denoted by ck and calculated as

ck = log(1 +
PT |hk|2

N0
) , (2)

where PT stands for the available transmission power. How-

ever, for the delivery algorithm to work properly, every user

k ∈ S should be able to decode X(S); which means for the

transmission rate of X(S), denoted by r(S), we should have

r(S) ≤ min
k∈S

ck = min
k∈S

log(1 +
PT |hk|2

N0
) . (3)

Assuming the transmission is carried out with the highest rate

and considering the fact each data part has the size of 1
P

data

units, the delivery time for X(S) is then calculated as

T (S) =
1

P

1

mink∈S ck
, (4)

and the total delivery time of all users would be equal to

TT =
∑

S

T (S) =
1

P

∑

S

1

mink∈S log(1 + PT |hk|2

N0
)
. (5)

Equation (5) indicates that TT becomes very large, in case

|hk| is very small for some user k ∈ [K]. Although the achiev-

able TT is still smaller compared with an uncoded strategy,

the large delivery time can be undesirable for users with better

channel conditions (users with larger |hk| values); as these

users would have experienced smaller delivery times if they

had received their requested data through an uncoded, unicast

transmission. In fact, coded caching causes the download rate

of all users to be limited to the worst achievable rate, known

as the worst-user effect in the literature [15]. Clearly, this issue

is more prominent if the ratio between the largest and smallest

values of |hk| is larger.

C. A Quality of Experience (QoE) Approach

In order to address the worst-user issue, we introduce a new

approach for designing coded caching schemes; which is based

on the QoE definition and is well-suited for the prominent case

of video-based applications. The core of this new design ap-

proach is based on using Multiple Descriptor Codes (MDC), as

introduced in [17]. MDC enables creating multiple descriptors

of the same video (or any other multimedia) file, such that any

single descriptor is enough for reconstructing a basic-quality

replica of the original file; and the quality is increased as more

descriptors are used during the reconstruction process.

Let us assume file library F includes video files only; and

instead of denoting a file fragment, each WT represents one

of the P =
(

K

t

)

descriptors of the file W ∈ F , with size 1
P

data units. Similar to the original CC scheme, T can be any

subset of users with |T | = t; and at the cache memory of

user k ∈ [K] we store WT , for every W ∈ F and T ∋ k.

Using this scheme, each user k ∈ [K] is able to decode a

basic quality of its requested video file W (k) using its cache

contents; and the quality increases as it gets more descriptors

from the server. Defining QoE at user k as the total number

of W (k) descriptors available at user k after the transmission

is completed, the question is how much the QoE sum at all

users can be improved, during a limited transmission time.

In order to formulate this problem, we first need to revise

the delivery algorithm. Similar to the original CC scheme, we

select all subsets S ⊆ [K] with |S| = t + 1; and label the

users in set S as k(S, 1), k(S, 2), ..., k(S, t + 1), such that

if 1 ≤ i < j ≤ t + 1, |hk(S,i)| ≥ |hk(S,j)|. Then instead of

building X(S) as (1), we build the codeword YjS (S), jS ∈
[0 : t+ 1], using

YjS (S) =
⊕

i∈[jS]

WS\{k(S,i)}

(

k(S, i)
)

. (6)

In other words, we take the first jS users of S with better chan-

nel conditions; and create the codeword using the descriptors

requested by these users only. Clearly, the maximum error-free

transmission rate for YjS (S) is equal to

c(S, jS) = ck(S,jS) = log

(

1 +
PT

∣

∣hk(S,jS)

∣

∣

2

N0

)

, (7)

where, compared with (3), the minimizing operation is re-

moved as the users are sorted and hence k(S, jS) has the worst

channel condition among the target users. In fact, transmitting

YjS (S) instead of X(S) enables jS descriptors to be delivered

with rate c(S, jS); instead of t+ 1 descriptors with rate c(S)
(as in the original CC scheme). The question is then how to

select jS values, such that QoE sum is maximized.

Let us denote the transmission time limit by Tlim. Assuming

for every S, YjS (S) is transmitted with the highest possible

rate c(S, jS), the delivery time for YjS (S) would be

T (S, jS) =
1

P

1

c(S, jS)
, (8)

and the QoE sum optimization problem can be written as the

integer-programming problem

max
jS

∑

S

jS ,

s.t.
∑

S

T (S, jS) ≤ Tlim .
(9)

D. Demonstrative Example

Consider a small network of K = 5 users with diverse

channel conditions, t = 2 and P =
(

5
2

)

= 10. Assume for

every user k ∈ [5] we have ck = 1
10

1
k

; i.e. delivering a video

descriptor to user k requires k seconds. It can be verified that

in this setup, each user has 4 descriptors of its requested file

in the cache memory; and needs 6 other ones for the highest

possible QoE. Moreover, uncoded delivery requires 90 seconds

for all users to reach the highest QoE; while coded strategy

of [6] cuts this time half to 45 seconds. So in case the higher-

layer application requires Tlim < 45, it is not possible to serve

every user with the highest QoE; and one needs to build the

codewords such that the QoE sum is maximized for all users.

Let us consider the case Tlim = 10 seconds. Solving the

optimization problem (9) results in jS values

S1 = {1, 2, 3} → jS1
= 3 , S2 = {1, 2, 4} → jS2

= 2 ,

S3 = {1, 2, 5} → jS3
= 2 , S4 = {1, 3, 4} → jS4

= 1 ,

S5 = {1, 3, 5} → jS5
= 1 , S6 = {1, 4, 5} → jS6

= 1 ,

S7 = {2, 3, 4} → jS7
= 0 , S8 = {2, 3, 5} → jS8

= 0 ,

S9 = {2, 4, 5} → jS9
= 0 , S10 = {3, 4, 5} → jS10

= 0 ,

which means, for example, we transmit W{2,5}(1)⊕W{1,5}(2)
with rate c2 for users in S3; while for users in S6 we transmit

W{4,5}(1) with rate c1. Clearly, using these codewords, the

total QoE of users in this network becomes 10 (note that the

current descriptors in the cache memories are not counted).

In Figure 1 and 2 we have plotted user-specific and total

QoE for this network, for various Tlim values. Clearly, both

10 15 20 25 30 35 40 45

0

2

4

6

Tlim [Seconds]

Q
o
E

S
u
m

[D
es

cr
ip

to
rs

]

User 1

User 2

User 3

User 4

User 5

Fig. 1: User-specific QoE versus Tlim for the example network

10 20 30 40 50

10

20

30

Tlim [Seconds]

Q
o
E

S
u
m

[D
es

cr
ip

to
rs

]

Fig. 2: QoE sum versus Tlim for the example network

user-specific and total QoE increase with Tlim. Specifically, at

Tlim = 45 seconds, total QoE reaches its largest value of 30,

on par with the CC scheme of [6]. Moreover, users with better

channel conditions are prioritized (and enjoy higher QoE) at

smaller Tlim.

III. QOE MAXIMIZATION

A. Exhaustive Search

The QoE sum optimization problem in (9) is a special case

of the famous multiple choice knapsack problem [18], in which

every set S represents a class from which we can select at

most one of the t + 1 items (indexed by jS). Each item has

a known weight, denoted by T (S, jS); and the total weight

of the selected items should be smaller than the knapsack

capacity (Tlim). This problem is known to be NP-hard to solve.

Using exhaustive search, one can find the optimal solution.

A recursive procedure for the search operation is provided in

Algorithm 1; in which S̄ denotes the set of all available S sets

and Q(S̄, Tlim) represents the optimal solution. This procedure

requires comparison of all (t+2)γ possible selections, where

γ =
(

K
t+1

)

. This means computation complexity grows expo-

nentially with respect to both K and t, making the problem

computationally intractable for even moderate K and t.

B. SDT Approximation

As a first approximation, we provide SDT (Step Delivery

Time), as presented in Algorithm 2. As a brief explanation,

during each iteration we find the minimum increase in the total

required transmission time, per one new descriptor being deliv-

ered. Auxiliary variable α(S) denotes the current jS value; and

β(S) indicates the increase in the required transmission time,

if α(S) is increased by one. Complexity-wise, Algorithm 2

requires at most (t + 1)γ iterations ; and at each iteration, a

minimum is taken over a set of at most γ numbers.

Algorithm 1 Exhaustive Search Procedure

1: function EXHAUSTIVE(S̄, Tlim)

2: Q← 0
3: Randomly Select Sl ∈ S̄
4: if |S̄| = 1 then

5: î← 0
6: for all i ∈ [t+ 1] do

7: if T (Sl, i) ≤ Tlim and i > î then

8: î← i
9: Q← î

10: else

11: γ0 ← EXHAUSTIVE
(

S̄\{Sl}, Tlim

)

12: for all i ∈ [t+ 1] do

13: γi ← EXHAUSTIVE
(

S̄\{Sl}, Tlim − T (Sl, i)
)

14: γi ← γi + i

15: Q← maxi∈[0:t+1] γi
return Q

Algorithm 2 SDT Approximation Procedure

1: function RUNSDT(S̄ , Tlim)

2: Q← 0
3: T̂ ← Tlim

4: for all S ∈ S̄ do

5: α(S)← 0
6: β(S)← T (S, α(S))

7: Ŝ ← argminS β(S)
8: while β(Ŝ) ≤ T̂ do

9: Q← Q+ 1
10: T̂ ← T̂ − β(Ŝ)
11: α(Ŝ)← α(Ŝ) + 1
12: if α(Ŝ) = t+ 1 then

13: β(Ŝ)← +∞
14: else

15: β(Ŝ)← T (Ŝ, α(Ŝ))− β(Ŝ)

16: Ŝ ← argminS β(S)
return Q

C. PDT Approximation

Instead of finding the minimum increase in the required

transmission time, PDT approximation, presented in Algo-

rithm 3, is based on finding the minimum Perceived Delivery

Time (PDT) at each iteration. PDT is defined as the increase

in the required transmission time, normalized by the number

of new descriptors being delivered to the users in some set S.

Formally, if instead of jS descriptors, we deliver j′S descriptors

to the users of set S, PDT for this action is calculated as

T (S, j′S)− T (S, jS)

j′S − jS
.

Let us use A(S, j′S) to denote the action of increasing the num-

ber of descriptors being delivered to the users in set S, from

jS to j′S . A(S, j′S) is feasible, if it does not violate the total

transmission time constraint (Tlim). In PDT approximation, at

each iteration, we find S and j′S such that A(S, j′S) is feasible

and has the minimum PDT among all feasible actions.

Algorithm 3 PDT Approximation Procedure

1: function RUNPDT(S̄, Tlim)

2: Q← 0
3: T̂ ← Tlim

4: for all S ∈ S̄ do

5: α(S)← 0
6: for all i ∈ [t+ 1] do

7: if Tk(S,i) ≤ T̂ then

8: β(S, i)← T (S,i)/i
9: else

10: β(S, i)← +∞

11: (Ŝ, î)← argminS,i β(S, i)
12: while β(Ŝ) ≤ T̂ do

13: Q← Q+ î
14: T̂ ← T̂ − β(Ŝ, î)× (̂i− α(Ŝ))
15: α(Ŝ)← α(Ŝ) + î
16: for all S ∈ S̄ do

17: for all i ∈ [α(S)] do

18: β(S, i)← +∞

19: for all i ∈ [α(S) + 1 : t+ 1] do

20: if T (S, i)− T (S, α(S)) ≤ T̂ then

21: β(S, i)← (T (S,i)−T (S,α(S)))/(i−α(S))

22: else

23: β(S, i)← +∞

24: (Ŝ, î)← argminS,i β(S, i)
return Q

It should be noted that PDT is more complex than SDT, for

two good reasons. First, the search operation for finding the

minimum increment in required transmission time in PDT is

performed over a larger set of numbers, with approximately

t + 1 times more elements than SDT. Second, updating

auxiliary variables is more complex in PDT; as one needs to

calculate the perceived delivery time (which itself requires one

subtraction and one division) for a large number of elements

(compared with only one subtract operation in SDT).

IV. PERFORMANCE ANALYSIS

In order to compare the performance of SDT and PDT

approximations, we use numerical simulations. For small net-

works (e.g. K ≤ 5), it is possible to compare the results with

the optimal solution (calculated by the recursive procedure

of Algorithm 1). However, as K becomes larger, calculating

optimal solution becomes computationally intractable; and

hence we can only compare SDT and PDT with each other.

For simulations, we choose channel coefficients from a

complex Gaussian random variable with zero mean; and nor-

malize the coefficients such that the largest channel amplitude

becomes one. The comparison results of the optimal solution

(OPT) with respect to PDT and SDT approximations are

provided in Table I, for Tlim = 4 seconds. It can be verified

that for small networks, both approximations provide near-

optimal performance; such that the difference in QoE sum

compared with the optimal solution is less than 0.2% and

0.6%, for PDT and SDT respectively. Moreover, the algorithm

2 4 6 8 10

5

10

Coded Caching Gain t

Q
o
E

Im
p
ro

v
em

en
t

[%
]

K = 12

K = 14

K = 16

K = 18

K = 20

Fig. 3: Performance improvement of PDT over SDT

2 4 6 8 10

10

20

30

Coded Caching Gain t

R
u
n
ti

m
e

R
at

io

K = 12

K = 14

K = 16

K = 18

K = 20

Fig. 4: Runtime Increase of PDT over SDT

runtime is improved by at least 93% and 97%, for PDT and

SDT respectively. Overall, PDT provides an improved result

compared with SDT, but also requires a larger runtime.

K t
QoE Sum Algorithm Runtime

PDT/OPT SDT/OPT PDT/OPT SDT/OPT

4
1 -0.15% -0.51% -95.25% -98.08%
2 -0.04% -0.41% -93.12% -97.18%

5
1 -0.08% -0.58% -99.86% -99.93%
2 -0.04% -0.55% -99.99% -99.99%
3 -0.04% -0.31% -97.37% -98.69%

TABLE I: Performance comparison, Tlim = 4 seconds

In Figures 3 and 4 we have compared the performance

and runtime of PDT and SDT approximations, for moderate

networks with 12 ≤ K ≤ 20 users. In both figures, Tlim

is set to 4 seconds. Generally, it can be verified that PDT

provides at most 10% better performance, but requires up to

35 times more computations. Interestingly, the performance

gap is maximum when K
t
≃ 4; while the runtime ratio takes

its largest value at K
t
≃ 2. As the number of S sets, i.e.

|S̄| =
(

K
t+1

)

, is also maximized at K
t
≃ 2; this indicates the

runtime ratio is proportional to the number of variables in

the optimization problem (9). This makes sense, as a larger

number of variables necessitates more algorithm iterations;

and each iteration in PDT is more complex than SDT. The

performance gap does not follow the same rule however. This

might be due to the fact that for every set S, |S| = t+1; and

hence larger t will increase the problem size (and randomness),

enabling greedy algorithms like SDT to perform better. This

needs more thorough investigation however; which is part of

our ongoing research.

Overall, SDT provides a solid performance despite requir-

ing very small computation overhead. Ultimately, selecting

the best approximation algorithm depends on the available

computation power, as well as network parameters K and t.

V. CONCLUSION AND FUTURE WORK

We proposed a new design approach, based on QoE def-

inition and well-suited to the prominent case of video-based

applications, for the worst-user issue of wireless coded caching

setups. This approach results in an NP-hard optimization

problem, for which we provided two heuristic approximations.

This is a preliminary step for solving the worst-user issue,

proposing a new concept which can be further studied in

various directions. Using a weighted optimization problem

(prioritizing specific users), thorough investigation of approxi-

mation algorithms, and extending the concept to multi-antenna

setups are few examples of such directions; which are parts

of our ongoing research.

REFERENCES

[1] V. N. I. Cisco, “Cisco visual networking index: Forecast and trends,
2017–2022,” White Paper, vol. 1, 2018.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the

5th international conference on Emerging networking experiments and

technologies, 2009, pp. 1–12.
[3] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “Analyzing

the video popularity characteristics of large-scale user generated content
systems,” IEEE/ACM Transactions on networking, vol. 17, no. 5, pp.
1357–1370, 2009.

[4] M. J. Salehi, S. A. Motahari, and B. H. Khalaj, “On the Optimality
of 0–1 Data Placement in Cache Networks,” IEEE Transactions on

Communications, vol. 66, no. 3, pp. 1053–1063, 2017.
[5] A. Leventhal, “Flash storage memory,” Communications of the ACM,

vol. 51, no. 7, pp. 47–51, 2008.
[6] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”

IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, 2014.

[7] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server
coded caching,” IEEE Transactions on Information Theory, vol. 62,
no. 12, pp. 7253–7271, 2016.

[8] S. P. Shariatpanahi, G. Caire, and B. H. Khalaj, “Physical-layer schemes
for wireless coded caching,” IEEE Transactions on Information Theory,
vol. 65, no. 5, pp. 2792–2807, 2018.

[9] 6Genesis, “Key Drivers and Research Challenges for 6G Ubiquitous
Wireless Intelligence,” White Paper, vol. 1, 2019.

[10] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-
caching gains for finite file sizes,” IEEE Journal on Selected Areas in

Communications, vol. 36, no. 6, pp. 1176–1188, 2018.
[11] M. Salehi, A. Tölli, S. P. Shariatpanahi, and J. Kaleva,

“Subpacketization-Rate Trade-off in Multi-Antenna Coded Caching,”
in 2019 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2019, pp. 1–6.

[12] M. Salehi, A. Tölli, and S. P. Shariatpanahi, “A Multi-Antenna Coded
Caching Scheme with Linear Subpacketization,” in 2020 IEEE Interna-

tional Conference on Communications (ICC), 2020, pp. 1–6.
[13] A. Tölli, S. P. Shariatpanahi, J. Kaleva, and B. Khalaj, “Multi-antenna

Interference Management for Coded Caching,” IEEE Transactions on

Wireless Communications, pp. 1–1, 2020.
[14] M. Salehi, A. Tölli, and S. P. Shariatpanahi, “Subpacketization-

Beamformer Interaction in Multi-Antenna Coded Caching,” arXiv

preprint arXiv:1912.09891, 2019.
[15] E. Lampiris, J. Zhang, O. Simeone, and P. Elia, “Fundamental Limits

of Wireless Caching under Uneven-Capacity Channels,” arXiv preprint

arXiv:1908.04036, 2019.
[16] A. Destounis, M. Kobayashi, G. Paschos, and A. Ghorbel, “Alpha fair

coded caching,” in 2017 15th International Symposium on Modeling

and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt).
IEEE, 2017, pp. 1–8.

[17] V. K. Goyal, “Multiple description coding: Compression meets the
network,” IEEE Signal processing magazine, vol. 18, no. 5, pp. 74–93,
2001.

[18] P. Sinha and A. A. Zoltners, “The multiple-choice knapsack problem,”
Operations Research, vol. 27, no. 3, pp. 503–515, 1979.

	I Introduction
	II System Model
	II-A Coded Caching (CC)
	II-B The Worst-User Effect
	II-C A Quality of Experience (QoE) Approach
	II-D Demonstrative Example

	III QoE Maximization
	III-A Exhaustive Search
	III-B SDT Approximation
	III-C PDT Approximation

	IV Performance Analysis
	V Conclusion and Future Work
	References

